列一元二次方程解应用题(利润问题)
一元二次方程解利润问题

一元二次方程解利润问题举例:某百货大楼服装柜在销售者发现:“某”牌童装平均每天可售出20件,每件利润40元为了迎接国庆节市场决定采取适当的降价措施,扩大销售量,增加利润。
条件:如果每件降价4元,那么平均每天多售出8件。
求:要想平均每天销售这种童装盈利1200元那么每件童装应降价多少?解:设每件童装应降价x元,则每件的利润为(40-x)元,平均每天多售出8×x/4=2x件,实际平均每天售出(2x+20)件,平均每天利润为(40-x)(2x+20)元;根据题意,可列方程:(40-x)(2x+20)=1200(40-x)(x+10)=60040x+400-x²-10x=600x²-30x+200=0(x-10)(x-20)=0x-10=0 或x-20=0x1=10 , x2=20答:要想平均每天销售这种童装盈利1200元,那么每件童装应降价10元或降价20元。
一元二次方程的应用:一、百分率变化问题增长率的问题在实际生活普遍存在,有一定的模式,若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)=b。
在解题过程需要注意总量和增长后达到的量的区别,需要注意“增长了”和“增长到”的区别。
二、传播问题“传播问题”的基本特征是:以相同速度逐轮传播。
解决此类问题的关键步骤是明确每轮传播中的传染源个数,以及这一轮被传染的总数。
需要注意的是疾病传播问题和某种植物分支的区别和联系,疾病传播问题中传染源将参与下一轮传播,而树分支则是树干不参与下一次分支。
三、互送礼物和单循环比赛问题n(n≥2) 个人之间互送礼物,礼物总数=n(n-1);n(n≥2)支球队进行单循环比赛,共需要进行1/2n(n-1)场比赛。
四、商品销售利润与定价问题用一元二次方程解决的营销问题中,常用的关系式有:利润=售价-进价,单件利润×销售量=总利润。
最新一元二次方程利润问题应用题

1、某市场销售一批名牌衬衫,平均每天可销售
20 件,每件赢利 40 元.为了扩大销售,增加赢利,尽快减
少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价
1 元,商场平均每天可多售出
2 件.求:
(1)若商场平均每天要赢利 1200 元,每件衬衫应降价多少元?
(2)要使商场平均每天赢利最多,请你帮助设计方案.
元
8、将进货单价为 40 元的商品按 50 元出售时, 能卖 500 个,如果该商品每涨价 1 元,其销售量就减少 10 个。 商店为了赚取 8000 元的利润,这种商品的售价应定为多少 ?应进货多少?
答案 1、解:设每天利润为 w 元,每件衬衫降价 x 元, 根据题意得 w=( 40-x )(20+2x ) =-2x2+60x+800=-2 (x-15 ) 2+1250 ( 1)当 w=1200 时, -2x2+60x+800=1200 , 解之得 x1=10, x2=20.
解得: x1 = 0.2 , x2 = 0.3
答:应将每千克小型西瓜的售价降低 0.2 或 0.3 元。
4、解:设没件降价为 x,则可多售出 5x 件,每件服装盈利 44-x 元,依题意 x≤ 10∴(44-x)(20+5x)=1600
展开后化简得: x2-44x+144=0 即 (x-36)(x-4)=0 ∴ x=4 或 x=36( 舍 ) 即每件降价 4 元要找准关系式
5、解 : (1)若销售单价为 千克 ,每千克获利 (x-30) 元. 依题意得 :
x 元,则每千克降低了 (70-x) 元 ,日均多售出 2(70-x) 千克 ,日均销售量为 [60+2(70-x)]
一元二次方程应用 利润问题

一元二次方程应用利润问题(1)姓名____________ 班级___________【例1】:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存。
商场决定采取适当的降价措施:如果每件衬衫每降价1元,商场平均每天可多售出2件。
若商场平均每天要盈利1200元,每件衬衫应降价多少元?【变式1】:某商场销售一种商品,每件进价60元,每件售价110元,每天可销售50件,每销售一件需要支付给商场管理费3元。
6月份该商品搞“减价促销”活动。
市场调查发现,售价每降低1元,每天销售量增加2件。
若某一天销售该商品共获利2590元,求该商品降价多少元?【例2】:今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本。
已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元。
请解答以下问题:(1)填空:每天可售出书_______本(用含x的代数式表示)(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【变式1】:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?一元二次方程--利润问题(2)姓名____________ 班级____________【例1】:为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100 个。
若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?【变式1】:因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次。
一元二次方程利润问题

一元二次方程利润问题1、商场每天要赚1200元利润,每件衬衫降价x元,每天能多售出2x件衬衫。
设降价后每件衬衫的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件衬衫应降价2元。
2、商场每天要赚2100元利润,每件衬衫降价x元,每天能多售出2x件衬衫。
设降价后每件衬衫的售价为y元,则有:30(y-x) = 210030(y-x+2x) = 2100解得:x=3,每件衬衫应降价3元。
3、商店要赚8000元利润,每卖出一个商品的利润为y-40元,每涨价1元销售量减少10个。
设售价为y元,则有:y-40)×500 = 8000y-40-x)×(500-10x) = 8000解得:x=2,售价为46元。
4、商场每天要赚1600元利润,每件衣服降价x元,每天能多售出5件衣服。
设降价后每件衣服的售价为y元,则有:20(y-x) = 160020(y-x+5x) = 1600解得:x=2,每件衣服应降价2元。
5、商场每天要赚6000元利润,每卖出一个商品的利润为y-10元,每涨价1元销售量减少20千克。
设售价为y元,则有:500(y-10) = 6000500-20x)(y-9+x) = 6000解得:x=1,每千克应涨价1元。
6、商场每月要赚元销售利润,每台灯售价上涨x元,销售量减少10个。
设售价为y元,则有:600(y-30) =600-10x)(y-x) =解得:x=1,售价为35元,应进货600个。
7、商场每天要赚1200元利润,每件童装降价x元,每天能多售出2件童装。
设降价后每件童装的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件童装应降价2元。
可多售出50千克。
如果经营户希望每天仍能获利400元,每千克应该降价多少元?8、某种服装每天能够销售20件,每件盈利44元。
如果每件降价1元,每天可以多售出5件。
一元二次方程利润问题应用题

一元二次方程应用元.为了扩大销售,增加赢利,尽快减40件,每件赢利20、某市场销售一批名牌衬衫,平均每天可销售1元,商场平均每天可多售出1少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价件.求:2 元,每件衬衫应降价多少元?1200)若商场平均每天要赢利1(()要使商场平均每天赢利最多,请你帮助设计方案.2 台,为了配合国家“家电下乡”政策8元售出,平均每天能售出2400元的冰箱以2000、某商场将进价为2元,平均每天就能多售出50的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低每台冰箱应降价多少元?同时又要使百姓得到实惠,元,4800商场要想在这种冰箱销售中每天盈利台,4 千克的价格购进一批小型西瓜,以/元2、西瓜经营户以3为了.千克200每天可售出,千克的价格出售/元3千克,/元O.1这种小型西瓜每降价,经调查发现.该经营户决定降价销售,促销另外,.千克40每天可多售出 ? 元,应将每千克小型西瓜的售价降低多少元2O0该经营户要想每天盈利.元24每天的房租等固定成本共、某种服装,平均每天可以销售4元的情况下,若每件降10元,在每件降价幅度不超过44件,每件盈利20 元,每件应降价多少元?1600件,如果每天要盈利5元,则每天可多售出1价 ,某化工材料经售公司购进了一种化工原料、5物价部门规定其销售单价不得高于每.元30进货价格为每千克日,;单价每千克降低一元60kg 元时日均销售70市场调查发现:单价每千克.元30也不得低于,元70千克均多售如果日均获利.按一天计算),元(天数不足一天时500每天还要支出其他费用,。
在销售过程中2kg 求销售单价,元1950 1纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加20L、一容器装满6 的纯酒精,第一次倒出的酒精多少升?(过程)5L满,容器里只有 30、某商场销售一批衬衫,平均每天可出售7元,为扩大销售,加盈利,尽量减少库存,商50件,每件赚元,问衬衫降价多少2100件,若商场平均每天要赚2元,商场平均每天可多卖1场决定降价,如果每件降元 8个。
一元二次方程的应用利润问题

每台利润
x 2500
总利润
2900 x ( x 2500 )(8 4) 50
例2、某商场将进货价为30元的台灯以40元 售出,平均每月能售出600个.市场调研表 明:当销售价为每上涨1元时,则每月的销售 量就将减少10个. ⑴.那么当销售价上涨2元时,其销售量 就将减少多少个? 2×10=20 ⑵.当销售价上涨2元时,其销售量为多 600-2×10=580 少个? ⑶.当销售价上涨x元时,其销售量将 减少多少个?此时销售量为多少个?
解 : 设每张贺年片应降价 x元, 根据题意 ,得 x (0.3 x)( 500 100 ) 120 . 0.1 2 整理得: 100x 20x 3 0.
解这个方程 ,得 x1 0.1, x2 0.3(不合题意 , 舍去).
答 : 每张贺年片应降价 0.1元.
习题1 某种服装,平均每天可销售20件,每件盈利
公式:
1件利润=1件售价-1件进价 总利润=1件利润×件数 某商人将进价为每件8元的某种商品 按每件10元出售,则1件利润是 2元 ; 若每天可销出100件,则一天的总利润 是 200元 .
例1. 新华商场销售某种冰箱,每台进价为2500元. 市场调研表明:当销售价为2900元时,平均每天能售 出8台;而当销价每降低50元时,平均每天能多售4台. 商场要想使这种冰箱的销售利润平均每天达5000 元,每台冰箱的定价应为多少元?
每台利润=售价-进价
降价
定价
2900 x
总利润=每台 利润×销售量
x
销售量 总利润
x 8 4 50
每台利润
2900 x 2500
x (2900 x 2500 )(8 4) 50
13.解一元二次方程的实际应用——利润问题

采青 春 风
高考总分: 692分(含20分加分) 语文131分 数学145分 英语141分 文综255分 毕业学校:北京二中 报考高校: 北京大学光华管理学 院
北京市文科状元
来自北京二中,高考成绩672分,还有20 分加分。‚何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。‛ 班主任吴京梅说,何旋是个阳光女孩。 ‚她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。‛吴老师说,何旋考出好成绩的秘 诀是心态好。‚她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她
设降价x元 单利润 原来
现在 40
日利润=单件利润×销售数量
件数
20
总利润
800
40-x
20+2x
1200
则(40-x)(20+2x)=1200
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元? 解:设降价x元, 则(40-x)(20+2x)=1200
上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分 物理145分 综合27分 总分585分
初中数学九年级上册解一元二次方程的实际应用——利润问题

某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配 合国家“家电下乡”政策的实施,商场决定采取合适的降价措施.调查表明:这 种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中 每天盈利4800元,同时又要使得百姓得到实惠,每台冰箱应降价多少元?
在利润问题中,常有销售量随销售价格的变化而变化的问题,在这些 问题中总存在着数量关系:“日利润=单件利润×日销售数量”,这类问 题通常可以列一元二次方程求解.
具体办法为:①分析题意,弄清题目中的数量关系,②设合适的未知
量为未知数,用含未知数的代数式分别表示出“单件利润”、“销售数量 ”等,③根据上述数量关系和题意列出方程,④解上述方程,⑤检验方程
解一元二次方程的实际应用-----利润问题
薄利多销是指低价低利扩大销售的策略.“薄利多销”中的“薄利”就是
降价,降价就能“多销”,“多销”就能增加总收益.
“日利润=单件利润×日销售数量”,由于降价或提价,造成销售量
随之变化,根据该数量关系通常可以列一元二次方程解决有关利润的问题.
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元?
设降价x元 单利润
原来 40
日利润总利润
800
现在
40-x
20+2x
1200
则(40-x)(20+2x)=1200
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元? 解:设降价x元, 则(40-x)(20+2x)=1200
(完整版)利润问题:一元二次方程含答案

Al l练习2:利润问题(一元二次方程应用)1、某商场购进一种单价为元的篮球,如果以单价元售出,那么每月可售出个.根据销4050500售经验,售价每提高元.销售量相应减少个.110(1)假设销售单价提高元,那么销售每个篮球所获得的利润是________元;这种篮球每月的销x 售量是_________个.(用含的代数式表示)(4分)x (2)元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最8000大利润,此时篮球的售价应定为多少元?(8分)答案:(1),; 10x +50010x -(2)设月销售利润为元,y 由题意, ()()1050010y x x =+-整理,得. ()210209000y x =--+当时,的最大值为,20x =y 9000.205070+=答:元不是最大利润,最大利润为元,此时篮球的售价为元.80009000702.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x (角),零售店每天销售这种面包所获得的利润为y (角).⑴用含x 的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y 与x 之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?)每个面包的利润为(160-204002×(20)=10时,y 最大,此时最大利润y=500(角).3、某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价 (元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润 与每件的销售价 之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。
一元二次方程的应用利润问题

例3.某商场销售一批名牌衬衫,平均每天可售
出20件,每件盈利40元,为了扩大销售, 尽快减少库存,商场决定采取适当的降价 措施。经调查发现,如果每件衬衫降价1元, 商场平均每天可多售出2件。 (1)若商场平均每天销售这种衬衫的盈利要 达到1200元,每件衬衫应降价多少元? (2)每天衬衫降价多少元时,商场平均每天 盈利最多? 分析:设衬衫的单价应降x元,根据题意得:
解 : 设每台冰箱降价x元, 根据题意, 得 x (2900 x 2500)(8 4 ) 5000. 50 2 整理得 : x 300 x 22500 0. 解这个方程, 得 x1 x2 150.
2900 x 2900 150 2750. 答 : 每台冰箱的定价应为2750元.
列方程解应用题的一般步骤?
第一步:审清题意,找出等量关系。 第二步:设未知数(单位名称); 第三步:根据相等关系列出列出方程; 第四步:解这个方程,求出未知数的值; 第五步:检验求得的值是否符合实际意义; 第六步:写出答案(及单位名称)。
提示:隐含条件的挖掘,从中找等量关系。
∴
x2-30x+200=0
解之得:x1=10, x2=20
而商场为了尽快减少库存
∴ y=-2x2+60x+800 ∴y=-2( x-15)2+1250 ∴当 x=15时, y有最大值是1250 答:每件降价15元时, 平均每天盈利最多1250元
x1=10舍去 答:每件应降价20元
ห้องสมุดไป่ตู้
变式探究
某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,尽快 减少库存,商场决定采取适当的降价措施。 经调查发现,如果每件衬衫每降价1元,商场 平均每天可多售出2件。 (3)商场盈利能否达到1300元,试说明理由?
一元二次方程应用题(利润问题)

一元二次方程应用题(利润问题)1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.2.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?4、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价。
6、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元?7、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。
一元二次方程应用--利润问题

【畅谈收获】:
1.解决一元二次方程应用题的 关键: 找等量关系。
2.
每件售价-每件进价 每件利润x件数
3.解:使实际问题有意义 符合题目条件
作业:
课本P65 7.14
!
排球进价30元/个, 卖价40元/个。
卖一个排球赚多少钱? 一箱排球60个,全部卖 完赚多少钱? (有时也叫成本价)
每件售价-每件进价
每件利润x件数
1、排球每个进价30元,售价40元,可得利润 10 元. • (1)若涨价2元,则售价 42 元,利润 12 元。 • (2)若涨价x元,则售价 (40+x) 元,利润(10+x) 元。 • (3)若降价x元,则售价 (40-x) 元,利 (10-x) 元
每件商品的利润= 售价
—
进价
.
2、排球原来每天可销售80个,后来进行价格调整。 (1)ቤተ መጻሕፍቲ ባይዱ场调查发现,该商品每降价3元,商场平均每天 可多销售2个。 ①如果降价3元,则多卖 2 个,每天销售量为 82 个
②如果降价9元,则多卖 6 个,每天销售量为 86 个。
③如果降价x元,则多卖
2 x) 每天销售量为 (80+ 3 个。
解:设涨价x元,由题意得 (40+x-30)(600-10x)=10000 x2-50x+400=0 x1=10 x2=40
答:应涨价10元或40元.
• 2、某商场礼品柜台春节期间购进大量贺 年卡,每张贺年卡进价0.5元,以0.8元 出售,平均每天可售出500张。为了尽 快减少库存,商场决定采取适当的降价 措施。调查发现,如果这种贺年卡的售 价每降价0.1元,那么商场平均每天可多 售出100张。商场要想平均每天盈利120 元,每张贺年卡应降价多少元?
一元二次方程应用专题--利润问题(含答案)

8.某商场以每件 元的价格购进一批商品,当每件商品售价为 元时,每月可售出 件,为了迎接“双 ”节,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价 元,那么商场每月就可以多售出 件.要使商场每月销售这种商品的利润达到 元,且更有利于减少库存,则每件商品应降价多少元?
每千克核桃应降价多少元?
在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
13.一商店销售某种商品,平均每天可售出 件,每件盈利 元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于 元的前提下,经过一段时间销售,发现销售单价每降低 元,平均每天可多售出 件.
且更有利于减少库存,则每件商品应降价 元.
9.
【答案】
解:设销售单价应定为 元,
由题意,得 ,
解得 , ,
∵尽可能让利消费者,
∴ .
答:销售单价应定为 元.
10.
【答案】
,
设该商品的销售单价为 元 ,则当天的销售量为 件,
依题意,得: ,
整理,得: ,
解得: , .
答:当该商品的销售单价为 元或 元时,该商品的当天销售利润是 元.
所以每千克核桃应降价 元,
此时,售价为: (元),
∴ .
答:该店应按原售价的 折出售.
13.
【答案】
设每件商品降价 元时,该商店每天销售利润为 元,
根据题意得 ,
整理,得 ,
解得: , .
∵要求每件盈利不少于 元,
∴ 应舍去,
一元二次方程 利润问题

一元二次方程利润问题引入:服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为______元。
解:标价:售价:折扣:利润:设这款服装每件的进价为x元。
等量关系:利润=若每天可卖出20件此商品,则可获利___________元。
等量关系:总利润=变式:服装店销售某款服装,一件服装的进价为180元,每件服装按240元销售时,每天可销售20件。
若销售单价每降低一元,每天可多售5件。
(1)如果降10元,利润=(2)如果降x元,利润=等量关系:总利润=例:某种服装,平均每天可销售20件,每件盈利44元.若每件降价1元,则每天可多售5件.如果每天盈利1600元,应降价多少元?解:每件利润:销量:设每件衣服应降价x元。
等量关系:总利润(1600元)=变式1:某种服装,平均每天可售出20件,每件盈利40元,若每件服装降价4元,那么平均每天就可多售出8件,如果平均每天在销售这种服装上盈利1200元,那么每件服装应降价多少元?解:每件利润:售价:销量:设每件玩具的销售单价为x元。
等量关系:总利润=迎接国庆节,决定釆取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
此时,每件服装应降价元。
变式2:某种服装,平均每天可售出20件,每件盈利40元,若每件服装涨价1元,那么平均每天就少售出2件,如果平均每天在销售这种服装上盈利720元,那么每件服装应涨价多少元?解:每件利润:销量:设每件服装应涨价x元。
等量关系:总利润(720元)=变式3:某种服装,平均每天可售出20件,每件盈利40元,若每件服装降价1元,那么平均每天就可多售出5件。
(1)试求出每天的销售量y(单位:件)与每件服装降价x(单位:元)之间的函数关系式(2)当每件服装降价定为多少元时,每天销售的利润w达到最大?最大利润为多少?习题练习:某种服装,购进时的单价为20元/件。
根据市场预测,在一段时间内,销售单价为40元时,销售量为200件;若每件服装降价1元,那么平均每天就可多售出20件。
(完整版)一元二次方程应用题之利润问题

(完整版)一元二次方程应用题之利润问题问题描述:某公司生产和销售某种商品,已知该商品的定价为每件x元,每件商品的制造成本为200元,销售每件商品所需的费用为10元。
该公司希望通过调整销售价格来最大化利润。
现在需要确定一个一元二次方程,以确定的销售价格为自变量,利润为因变量。
请求解这个问题。
解决方法:设销售价格为p元,销售商品的数量为q件。
由此可得以下关系:收入 = 销售价格 ×销售数量 = p × q成本 = 制造成本 ×销售数量 = 200 × q总费用 = 成本 + 销售费用 = 200 × q + 10 × q = 210 × q利润 = 收入 - 总费用 = p × q - 210 × q = q(p - 210)根据问题描述可知,一元二次方程的自变量是销售价格p,因变量是利润。
设方程为 y = ax^2 + bx + c,其中a、b、c为待确定的系数。
由上述推导可得:y = q(p - 210)即 y = q(p - 210) = q(210 - p)将y与x对应:y表示利润,x表示销售价格p。
根据问题描述,已知a=0,b=q,c=q×210,因此方程可以写成:y = q(210 - p)这是一个一元二次方程,通过求导可以找到该方程的极值点。
方程的极值点对应的销售价格就是能够使利润最大化的价格。
因为a=0,所以只需要求二次项的系数b即可。
结论:根据上述分析,该公司应将销售价格定为210元时,利润最大化。
注意事项:本文档中所述方程为一种简化模型,只考虑了制造成本和销售费用,没有考虑其他因素对利润的影响。
在实际情况中,可能还需要考虑市场需求、竞争对手的定价等因素,并进行综合分析来确定最优销售价格。
因此,读者在实际应用中应谨慎对待该模型的结果,结合具体情况做出决策。
一元二次方程应用题3销售利润--非常不错

答:每X束1玫=1瑰不应符降合价题4元意。应舍去
列一元二次方程解应用题 的基本步骤:
数量关系
( 每束利润 )×(束数 ) = 利润
审
10-X
40+8X
432
解:设每束玫瑰应降价X元,
设
则每束获利(10-X)元,
平均每天可售出(40+8X) 束,
由题意,得 (10-X)(40+8X)= 432
列
X2-5X+4=0
• 分析:如果设衬衫的单价降ⅹ元,那么商场平均每天可 多售出_2_ⅹ___件。根据相等关系:
• 售_出__的__衬_衫__件_数_ x _每__件_衬__衫_的__盈_利_ =1200,
• 可以列出方程求解
解:设衬衫的单价降x元。 根据题意得 (20+2 x)(40- x)=1200
整理得
X2-30X+200=0
每株利润 × 株株数数 =利润利润
直接设:3设每盆应该3植X株 3×3 增加X1{株3-03.﹣5(0X.5-×3)1}=103+1间接设未知数
增加2株 3﹣0.5×2 3+2
…
…
…
增加x株 3﹣0.5x
3+x
10
回顾与思索
如果每束玫瑰盈利10元, 小新家的花圃用花盆培育 平均每天可售出40束.为扩 玫瑰花苗,经过试验发现, 大销售,经调查发现,若 每盆植入3株时,平均每株 每束降价1元,则平均每天 盈利3元;以同样的栽培条 可多售出8束.如果小新家每 件,每盆每增加1株,平均 天要盈利432元,那么每束 每株盈利就减少0.5元。要 玫 瑰 应 降 价 多 少 元 ? 使每盆的盈利达到10元,
a.设旅游的x人,比30人多了多少人? (x-30)人
人教版九年级上册数学第21章一元二次方程利润问题应用题(含答案)

一元二次方程利润问题应用题1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?3、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?4、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价6、一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)7、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元8、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标:通过本节课的学习,使学生能列一元二次方程解有关利润问题。
学习重难点:列一元二次方程解有关利润问题,并会进行根的取舍
学习活动一、
填一填
1、列一元二次方程解应用题的一般步骤:
2、一支铅笔的进价为0.5元,售价为0.8元,则1支铅笔的利润=
某天共卖了20支铅笔,那天卖铅笔获得总利润= _
3、一件商品利润= ,一批商品总利润=
学习活动二:自学课本74页例2 (要求:审清题意后填空)
1、本题的主要等量关系是:=5000元
设每台冰箱降价x元,则每台冰箱定价元
每台冰箱的销售利润为元
平均每天销售冰箱的数量为台
2、解决了以上问题,你能列方程吗?你会顺利地求出方程的根吗?
3、思考:如果设每台冰箱的定价为x元,你会再列一个方程吗?
典型例题:
例1 :某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利40元,为了扩大销量增加利润,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
例2 :某商店从厂家以每件21元价格购进一批商品,该商品可以自行定价,若每件商品售价为a元,则可卖出(350-10a)件,但物价局规定每件商品加价不能超过20%,商店计划要赚400元,需要卖出多少商品,每件商品的售价应是多少元?
课堂检测:
1. 某种T恤衫,平均每天销售40件,每件盈利20元,若每件降价1元,则每天可多售出10件,如果每天要盈利1400元,每件应降价多少元?这时每天应进货多少?
2、某批发商店将进价为4元的小商品按5元卖出时,可卖出500件,以致这种商品每件涨价1元,其销售量就减少10件,问若要赚3080元的利润,售价应为多少?
学教反思:
作业设计:
商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采取提高售价,减少售货量的办法增加利润,已知这种商品没涨价0.5元,其销售量就减少10件,问应将售价定为多少使进货量少,每天所获利润为700元?
某租凭公司拥有汽车100辆,据统计,当每辆车的月租金为3000元时,可全部租出.每辆车的月租金每增加50元,未租出的车将增加1辆,租出的车每辆每月的维护费为150元,未租出的车每两每月只需维护费50元
(1)当每辆车的月租金定为3600元时,能租出多少辆?
(2)当每辆车的月租金定位多少元时,租凭公司的月收益(租金收入扣除维护费)可达到306600元?。