钢筋混凝土极限状态设计
混凝土结构设计规范--正常使用极限状态验算
正常使用极限状态验算8.1 裂缝控制验算第8.1.1条钢筋混凝土和预应力混凝土构件,应根据本规范第3.3.4条的规定,按所处环境类别和结构类别确定相应的裂缝控制等级及最大裂缝宽度限值,并按下列规定进行受拉边缘应力或正截面裂缝宽度验算:1一级--严格要求不出现裂缝的构件在荷载效应的标准组合下应符合下列规定:σck-σpc≤0(8.1.1-1)2二级--一般要求不出现裂缝的构件在荷载效应的标准组合下应符合下列规定:σck-σpc≤f tk(8.1.1-2) 在荷载效应的准永久组合下宜符合下列规定:σcq-σpc≤0(8.1.1-3)3三级--允许出现裂缝的构件按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,应符合下列规定;ωmax≤ω1im(8.1.1-4) 式中σck、σcq——荷载效应的标准组合、准永久组合下抗裂验算边缘的混凝土法向应力;σpc——扣除全部预应力损失后在抗裂验算边缘混凝土的预压应力,按本规范公式(6.1.5-1)或公式(6.1.5-4)计算;f tk--混凝土轴心抗拉强度标准值,按本规范表4.1.3采用;ωmax--按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,按本规范第8.1.2条计算;ω1im--最大裂缝宽度限值,按本规范第3.3.4条采用。
注:对受弯和大偏心受压的预应力混凝土构件,其预拉区在施工阶段出现裂缝的区段,公式(8.1.1-1)至公式(8.1.1-3)中的σpc应乘以系数0.9。
第8.1.2条在矩形、T形、倒T形和I形截面的钢筋混凝土受拉、受弯和偏心受压构件及预应力混凝土轴心受拉和受弯构件中,按荷载效应的标准组合并考虑长期作用影响的最大裂缝宽度(mm)可按下列公式计算:(8.1.2-1)(8.1.2-2)d eq=Σn i d2i/Σn i v i d i(8.1.2-3)(8.1.2-4)式中αcr--构件受力特征系数,按表8.1.2-1采用;ψ--裂缝间纵向受拉钢筋应变不均匀系数:当ψ<0.2时,取ψ=0.2;当ψ>1时,取ψ=1;对直接承受重复荷载的构件,取ψ=1;σsk--按荷载效应的标准组合计算的钢筋混凝土构件纵向受拉钢筋的应力或预应力混凝土构件纵向受拉钢筋的等效应力,按本规范第8.1.3条计算;E s--钢筋弹性模量,按本规范表4.2.4采用;c--最外层纵向受拉钢筋外边缘至受拉区底边的距离(mm):当c<20时,取c=20;当c>65时,取c=65;ρte--按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率;在最大裂缝宽度计算中,当ρte<0.01时,取ρte=0.01;A te--有效受拉混凝土截面面积:对轴心受拉构件,取构件截面面积;对受弯、偏心受压和偏心受拉构件,取A te=0.5bh+(b f-b)h f,此处,b f、h f为受拉翼缘的宽度、高度;A s--受拉区纵向非预应力钢筋截面面积;A p--受拉区纵向预应力钢筋截面面积;d eq--受拉区纵向钢筋的等效直径(mm);d i--受拉区第i种纵向钢筋的公称直径(mm);n i--受拉区第i种纵向钢筋的根数;v i--受拉区第i种纵向钢筋的相对粘结特性系数,按表8.1.2-2采用。
钢筋混凝土结构的设计方法—概率极限状态设计方法
极限状态的分类
欧洲混凝土协会
我
国
国 际 标 准 化 组 织
极限状态
承载能力
正常使用
的 可 靠 度 标 准 、 各
极限状态
极限状态
种
规
范
国际预应力混凝土协会
承载能力极限状态
——对应于结构或构件达到最大承载能力或不适于继续承载的变形。
结构或结构构件丧 失稳定(柱的压曲 4 失稳)
3 结构转变 成机动体系
结构可靠性
3.耐久性 结构在正常使用和正常维护的条件下,在规定的时间内,具有足够的耐久性。
例如,不发生由于混凝土保护层碳化或裂缝宽度过大而导致 的钢筋锈蚀过快或过度,从而致使结构的使用寿命缩短。
结构可靠性
结构的安全性、适用性和耐久性这三者总称为结构的可靠性。
可靠性
——结构在规定的时间(设计基准期)内,在规定的条件(结构设 计时所确定的正常设计、正常施工和正常使用条件)下,完成预定 功能的能力。
汶川地震震害
承载能力极限状态
支架压曲失稳
正常使用极限状态
——对应于结构或构件达到正常使用或耐久性能的某项规定限值。
影响正常使用或外观的变形
正
常
影响正常使用或耐久性能的局部损坏
使
用
影响正常使用的振动
极 限
状
影响正常使用的其它特定状态
态
使用寿命——为结构或构件在正常维护条件下,不需要大修即可按其设计规 定的目的正常使用的时间。
结构的使用年限超过设计基准期时,表明它的失效概率可能会增大,不能 保证其目标可靠指标,但不等于结构丧失所有要求功能甚至报废,通常使用寿 命大于设计基准期。
一般桥梁结构的设计基准期为100年 ;建筑结构的设计基准期为50年。
08--水工钢筋砼--钢筋混凝土正常使用极限状态 2012
概述
四、裂缝的控制等级规定
分三级: 一级---严格要求不出现裂缝的构件,按荷载效应的标准组合 进行计算,构件受拉边缘砼不应产生拉应力; 二级---一般要求不出现裂缝的构件,按荷载效应的标准组合 进行计算,构件受拉边缘砼允许产生拉应力,但拉应力不应超
过以砼拉应力限制系数αct控制的应力值;
三级---允许出现裂缝的构件,按荷载效应的标准组合分别进 行计算,最大裂缝宽度计算值不应超过附录5表1所列允许值。
概述
三、裂缝控制验算规范规定
钢筋混凝土结构构件设计时,应根据使用要求进行 不同的裂缝控制验算: 1、抗裂验算
承受水压的轴心受拉构件、小偏心受拉构件、以及 发生裂缝后会引起严重渗漏的其它构件,应进行抗裂 验算。如有可靠防渗措施或不影响正常使用时,也可 不进行抗裂验算。
抗裂验算时,结构构件受拉边缘的拉应力不应超过
8.1 抗裂验算
二、受弯构件
4、讨论: (1)γm 的影响因素: γm是受拉区为梯形的应力图形,按Mcr相等的原则, 折算成直线应力图形时,相应受拉边缘应力比值 γm与假定的受拉区应力图形有关,各种截面的γm值见 附录五表4 γm还与截面高度h﹑配筋率和受力状态有关 γm随h值的增大而减小
述
概述
一、结构的极限状态分类
分为两类: 1、承载能力极限状态: 结构或构件达到最大承载力或不适应承载的过大变 形。超过该极限状态,结构就不能满足预定的安全性 要求。 对各种结构构件都应进行承载能力极限状态设计。 采用荷载设计值及材料强度设计值。 荷载效应采用基本组合及偶然组合。
概述
普通钢筋混凝土结构构件,由于混凝土抗拉强度低,通常带 裂缝工作,裂缝的控制等级属于三级,故需进行裂缝宽度的验 算。若需达到一、二级,需使用预应力技术。
混凝土结构极限状态详解
活荷载
偶然荷载
(2)多荷载相遇——荷载组合 (3)计算、分析情况的复杂——例如强度计算和变形验算 荷载代表值的提出
荷载标准值 荷载组合值 永久荷载代表值 荷载标准值
10–10
可变荷载代表值
荷载准永久值 荷载频遇值
混凝土结构设计
荷载标准值: 是荷载的基本代表值;是指在结构的使用期间(一般结构 的设计基准期为50年)可能出现的最大值。
R 和S 的概率密度分布曲线
在多数情况下,R 大于S 。但是,在它们概率密度曲线的重叠区(阴 影段内)仍有可能出现 R 小于S 的情况
11-06
混凝土结构设计
当 R 和 S 都服从正态分布 时,功能函数 Z 的概率密 度曲线如图所示: 结构失效概率
pf :
0
p f P(Z 0) f (Z ) dZ
荷载效应组合的概念
恒荷载产生的效应 结构计算一般是 按单个荷载计算 的其效应 楼面活荷载产生的效应 风荷载产生的效应
采用的荷载值 恒荷载标准值 活荷载标准值 风荷载标准值
两类极限状态
第一类:承载能力极限状态——对应的是安全性功能。 第二类:正常使用极限状态——对应的是适用性功能和耐久 性功能。
结构或结构构件达到最大承载能力或者达到不适于继续承载的变 形状态,称为承载能力极限状态。 结构或构件达到正常使用或耐久性能的某项规定限度的能力,称 为正常使用极限状态。
11-06
11-06
混凝土结构设计
怎样满足功能要求? 取极限状态函数判别: Z=R-S
R:抗力;S:荷载效应
Z>0,能完成预定功能的状态,结构可靠 Z=0,临界状态,极限状态 Z<0,不能完成预定功能的状态,结构失效
混凝土承载能力极限状态计算
混凝土承载能力极限状态计算混凝土结构在使用过程中会受到外界荷载的作用,因此需要保证结构的安全性和承载能力。
为了评估混凝土结构的承载能力,在设计和施工阶段需要进行一系列的计算,其中包括极限状态计算。
极限状态指的是结构在荷载作用下达到或超过规定的极限情况,如弯曲、剪切、压缩和拉伸等。
混凝土承载能力的极限状态计算主要包括弯曲极限承载力、剪切极限承载力、压缩极限承载力和拉伸极限承载力的计算。
弯曲极限承载力计算是评估结构在受到弯曲荷载作用时的能力。
一般采用弯矩-曲率法进行计算,通过计算截面的应力和应变分布,确定截面的极限弯矩。
常用的方法有弯矩系数法和受拉区受压区应变平衡法。
弯曲极限承载力计算要考虑混凝土的强度、受压钢筋的强度和配筋率等因素。
剪切极限承载力计算是评估结构在受到剪切力作用时的能力。
常用的方法有剪力平衡法和剪力延性法。
剪力平衡法是基于混凝土截面内的剪应力等于剪力作用的基本原理,通过计算剪应力分布和抗剪承载力来确定截面的极限剪力。
剪力延性法是基于结构的整体性能,通过计算结构的延性系数和剪切滑移的特性曲线来确定截面的极限剪力。
压缩极限承载力计算是评估结构在受到压力作用时的能力。
一般采用受压区受拉区应变平衡法进行计算,通过计算截面的受压和受拉钢筋应变平衡的条件,确定截面的极限压力。
压缩极限承载力计算要考虑混凝土的强度、受压钢筋的强度和配筋率等因素。
拉伸极限承载力计算是评估结构在受到拉力作用时的能力。
一般采用混凝土截面的抗拉强度和钢筋的抗拉强度进行计算,通过计算截面的抗拉强度和抵抗拉伸力的能力来确定截面的极限拉力。
拉伸极限承载力计算要考虑混凝土的抗拉强度和受拉钢筋的强度等因素。
在实际计算中,需要根据具体结构的几何形状,荷载形式和受力边界条件等因素,选择合适的计算方法和假设条件。
同时,还需要根据设计准则和规范的要求,进行弯曲、剪切、压缩和拉伸等极限状态计算,确保结构的承载能力和安全性。
总之,混凝土承载能力的极限状态计算是评估结构在受到荷载作用时的能力,涉及到弯曲、剪切、压缩和拉伸等方面的计算。
混凝土结构设计规范--正常使用极限状态验算
正常使用极限状态验算8.1 裂缝控制验算第8.1.1条钢筋混凝土和预应力混凝土构件,应根据本规范第3.3.4条的规定,按所处环境类别和结构类别确定相应的裂缝控制等级及最大裂缝宽度限值,并按下列规定进行受拉边缘应力或正截面裂缝宽度验算:1一级--严格要求不出现裂缝的构件在荷载效应的标准组合下应符合下列规定:σck-σpc≤0(8.1.1-1)2二级--一般要求不出现裂缝的构件在荷载效应的标准组合下应符合下列规定:σck-σpc≤f tk(8.1.1-2) 在荷载效应的准永久组合下宜符合下列规定:σcq-σpc≤0(8.1.1-3)3三级--允许出现裂缝的构件按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,应符合下列规定;ωmax≤ω1im(8.1.1-4) 式中σck、σcq——荷载效应的标准组合、准永久组合下抗裂验算边缘的混凝土法向应力;σpc——扣除全部预应力损失后在抗裂验算边缘混凝土的预压应力,按本规范公式(6.1.5-1)或公式(6.1.5-4)计算;f tk--混凝土轴心抗拉强度标准值,按本规范表4.1.3采用;ωmax--按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,按本规范第8.1.2条计算;ω1im--最大裂缝宽度限值,按本规范第3.3.4条采用。
注:对受弯和大偏心受压的预应力混凝土构件,其预拉区在施工阶段出现裂缝的区段,公式(8.1.1-1)至公式(8.1.1-3)中的σpc应乘以系数0.9。
第8.1.2条在矩形、T形、倒T形和I形截面的钢筋混凝土受拉、受弯和偏心受压构件及预应力混凝土轴心受拉和受弯构件中,按荷载效应的标准组合并考虑长期作用影响的最大裂缝宽度(mm)可按下列公式计算:(8.1.2-1)(8.1.2-2)d eq=Σn i d2i/Σn i v i d i(8.1.2-3)(8.1.2-4)式中αcr--构件受力特征系数,按表8.1.2-1采用;ψ--裂缝间纵向受拉钢筋应变不均匀系数:当ψ<0.2时,取ψ=0.2;当ψ>1时,取ψ=1;对直接承受重复荷载的构件,取ψ=1;σsk--按荷载效应的标准组合计算的钢筋混凝土构件纵向受拉钢筋的应力或预应力混凝土构件纵向受拉钢筋的等效应力,按本规范第8.1.3条计算;E s--钢筋弹性模量,按本规范表4.2.4采用;c--最外层纵向受拉钢筋外边缘至受拉区底边的距离(mm):当c<20时,取c=20;当c>65时,取c=65;ρte--按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率;在最大裂缝宽度计算中,当ρte<0.01时,取ρte=0.01;A te--有效受拉混凝土截面面积:对轴心受拉构件,取构件截面面积;对受弯、偏心受压和偏心受拉构件,取A te=0.5bh+(b f-b)h f,此处,b f、h f为受拉翼缘的宽度、高度;A s--受拉区纵向非预应力钢筋截面面积;A p--受拉区纵向预应力钢筋截面面积;d eq--受拉区纵向钢筋的等效直径(mm);d i--受拉区第i种纵向钢筋的公称直径(mm);n i--受拉区第i种纵向钢筋的根数;v i--受拉区第i种纵向钢筋的相对粘结特性系数,按表8.1.2-2采用。
第九章 钢筋混凝土深受弯构件承载能力极限状态计算
(2)承载力复核 对截面尺寸和配筋均为已的短梁,承载力复核的方法是: 首先由公式(9-8),求得混凝土受压区高度x,将其代入公 式(9-7)求得截面所能承担的弯矩设计值:
若 ,则说明正截面抗弯承载力是足够的。 (三)钢筋混凝土盖梁作为短梁时的斜截面抗剪承载力计 算 钢筋混凝土盖梁的纵向受拉钢筋,一般均通长布置,中 间不予剪断和弯起。斜截面的抗剪承载力主要由剪压区混凝 土和箍筋提供。钢筋混凝土盖梁的斜截面抗剪承载力的计算 可按<桥规JTG D62>给出的公式(9-4)计算。钢筋混凝土盖 梁的截面尺寸,应满足公式(9-3)的要求。
于深受弯构件的短梁。
(一)深梁的受力特点及破坏形态 钢筋混凝土深梁因其高度与计算跨径接近,在荷载作用 下其受力性能与普通钢筋混凝土梁有较大差异。图9-1是用有 限元分析确定的具有不同跨高比的均质弹性材料简支梁在均 布荷载作用下,其跨中截面的弯曲应力分布图。 从图9-1 (b)、(c)、(d)可以看出,深梁的正截面应变分布 不符合平截面假设,应力分布亦不能再看作是线性关系。梁 的跨高比越少,这种非线性分布越明显。
图9-2 中间支承处折减弯矩计算图
(9-6) q=R/a 式中 Me ——折减后的支点负弯矩; M ——按理论公式或方法计算的支点中心线处的负弯 矩; M' ——折减弯矩; q ——梁的支点反力在支座两侧向上按45°分布于梁 截面重心轴G-G的荷载集度。 R ——支座反力; a ——梁支点反力在支座(墩柱)按45°扩散交于重 心轴G-G的长度(圆形墩柱可换算为0.8d的方 形柱向上扩散)。
b
6d s
ha
t
图9-4 撑杆计算高度 1、墩柱;2、盖梁;3、系杆钢筋;4、支座
(2)钢筋系杆拉抗承载力计算 《桥规JTG D62》规定钢筋系杆抗拉承载力按下式计算: (9-17)
混凝土结构设计原理极限状态精品PPT课件
M = Mu f = [f]
M > Mu f > [f]
耐久性 裂缝宽度 wmax<[wmax] wmax=[wmax] wmax>[wmax]
极限状态
承载力能力极限状态
超过该极限状态,结构就不能满足预定的安全性功能要求 ◆ 结构或构件达到最大承载力(包括疲劳) ◆ 结构整体或其中一部分作为刚体失去平衡(如倾覆、滑移) ◆ 结构塑性变形过大而不适于继续使用 ◆ 结构形成几何可变体系(超静定结构中出现足够多塑性铰) ◆ 结构或构件丧失稳定(如细长受压构件的压曲失稳)
S < R 可靠 S = R 极限状态
S > R 失效 S——荷载效应
结构上的各种作用(如荷载、不均匀沉降、温度变形、
收缩变形、地震等)产生的效应总和(如弯矩M、轴力N、剪 力V、扭矩T、挠度 f、裂缝宽度 w 等)
S = S(Q)
结构力学的主要内容
内力:轴力、弯矩、剪力、扭矩 变形:挠度、转角、裂缝
极限状态
■ 显然这种可靠与经济的均衡受到多方面的影响,如国 家经济实力、设计工作寿命、维护和修复等。
■ 规范规定的设计方法,是这种均衡的最低限度,也是 国家法律。
■ 设计人员可以根据具体工程的重要程度、使用环境和 情况,以及业主的要求,提高设计水准,增加结构的 可靠度。
■ 经济的概念不仅包括第一次建设费用,还应考 虑维修,损失及修复的费用
极限状态
1.3 结构功能的极限状态
◆ 结构能够满足功能要求而良好地工作,则称结构是“可靠” 的或“有效”的。反之,则结构为“不可靠”或“失效”。 ◆ 区分结构“可靠”与“失效”的临界工作状态称为“极限 状态”
表4.1 钢筋混凝土简支梁的可靠、失效和极限状态概念
混凝土结构极限状态设计技术规程
混凝土结构极限状态设计技术规程一、设计基本原则1.1 极限状态设计原则混凝土结构的设计应基于极限状态设计原则,保证结构在极限状态下的安全可靠性。
1.2 安全系数混凝土结构的设计应考虑载荷和材料参数的不确定性,采用安全系数法进行设计。
1.3 可靠度指标设计可靠度指标为β=3.0,即设计载荷的极限状态概率为1/300。
二、设计载荷2.1 作用载荷作用载荷应按国家及行业规范的规定进行计算,包括常规载荷和偶然载荷。
2.2 风荷载对于高层建筑和大型结构,应按规范要求考虑风荷载。
2.3 地震荷载对于地震区域的建筑结构,应按规范要求考虑地震荷载。
三、材料参数3.1 混凝土强度混凝土强度应按规范要求进行检测并确定,取强度标准值为fck,采用混凝土标准强度等级设计。
3.2 钢筋强度钢筋强度应按规范要求进行检测并确定,取强度标准值为fy。
3.3 混凝土和钢筋的材料参数应考虑其不确定性,按规范要求确定相应的安全系数。
四、结构设计4.1 构件尺寸构件尺寸应满足规范的要求,考虑混凝土的收缩、膨胀和温度变化等因素。
4.2 梁的受弯承载力设计梁的受弯承载力设计应考虑弯矩和剪力的作用,并满足规范的要求。
4.3 柱的承载力设计柱的承载力设计应考虑轴心受压和弯曲的作用,并满足规范的要求。
4.4 基础的承载力设计基础的承载力设计应考虑荷载的传递和基础的稳定性,并满足规范的要求。
五、验算5.1 极限状态下的验算针对极限状态下的载荷,进行验算,满足规范的要求。
5.2 极限状态下的变形针对极限状态下的变形,进行验算,满足规范的要求。
5.3 偏心受力状态下的验算针对偏心受力状态下的验算,进行验算,满足规范的要求。
六、设计文件6.1 设计图纸设计图纸应符合规范的要求,包括结构平面布置图、结构纵断面图、结构细部构造图等。
6.2 设计计算书设计计算书应包括设计依据、载荷计算、材料参数、结构设计、验算等内容。
七、结构施工7.1 混凝土浇筑混凝土浇筑应按照规范要求进行,包括混凝土的配合比、浇筑顺序、振捣等。
钢筋混凝土柱设计标准
钢筋混凝土柱设计标准一、前言钢筋混凝土柱是建筑结构中常用的承重构件之一,其设计标准是保证其安全可靠的关键。
本文旨在介绍钢筋混凝土柱的设计标准,以供相关工程师参考。
二、设计基础1.设计荷载:根据工程所处的地点、楼层数、建筑类型、使用功能等因素,确定设计荷载,包括恒载、活载、风载、地震作用等。
2.材料性能:钢筋混凝土柱的设计应考虑混凝土和钢筋的性能指标,如抗压强度、抗拉强度、弹性模量、黏结力等。
3.几何形状:钢筋混凝土柱的几何形状应根据建筑物的结构形式和荷载特点进行合理的选择,包括截面形式、尺寸、长宽比等。
三、设计方法1.极限状态设计法:根据荷载特点和抗力性能,采用极限状态设计法,确定柱子的截面尺寸和配筋方案,以满足强度、稳定性、变形等极限状态的要求。
2.等效矩形法:利用等效矩形法计算截面的受力性质,确定柱子的配筋方案,以满足强度、稳定性、变形等要求。
3.强度约束设计法:采用强度约束设计法,以保证柱子在极限状态下具有足够的抵抗能力,同时满足变形限制。
四、设计要求1.强度要求:钢筋混凝土柱的强度指标包括抗压强度、抗拉强度、弯曲强度等。
设计时应根据荷载和结构特点,合理选择截面和配筋方式,满足强度要求。
2.稳定性要求:钢筋混凝土柱的稳定性是指柱子在外力作用下不发生屈曲或屈曲不稳定的能力。
设计时应采用合理的截面尺寸和配筋方式,满足稳定性要求。
3.变形要求:钢筋混凝土柱的变形是指柱子在受力时产生的形变和变形,包括弹性变形和塑性变形。
设计时应采用合理的截面尺寸和配筋方式,满足变形要求。
五、设计步骤1.确定设计荷载和材料性能,根据设计要求和设计规范,选择合适的设计方法。
2.确定柱子的截面形式和尺寸,计算柱子的截面性能指标,如抗压强度、抗拉强度、弯曲强度等。
3.计算柱子的配筋方案,根据设计要求和设计规范,满足强度、稳定性、变形等要求。
4.进行柱子的验算,根据设计荷载和设计要求,验证柱子在极限状态下的强度、稳定性和变形等是否符合要求。
2 极限状态设计原则
可采用结构的功能函数 Z = R – S 来描述结构完
成预定功能的状况。因抗力R和S均具有随机性,所
以只能用功能函数Z的概率来描述。
2 结构按极限状态法设计计算的原则
2.1.2
结构可靠度及极限状态法的基本概念
2.结构极限状态 (3) 工程结构可靠度的 功能函数 ◆ 三种状态:结构极限 状态方程可写为: Z=R—S=0 当Z>0时, 结构处 于可靠状态, 当Z=0时, 结构处 于极限状态, 当Z<0时, 结构处 于失效状态。
0 Sd R
R ( f d , ad ) R Sk 0 Sk 0 Sd R k R Rk
荷载效应 设计值 荷载效应 组合值 承载能力 设计值 结构抗力 设计值
荷载效应 标准值
结构抗力 标准值
式中 γ0——结构构件的重要性系数。
2 结构按极限状态法设计计算的原则
2 结构按极限状态法设计计算的原则
2.2.2 承载能力极限状态计算表达式
◆ 《公路桥规》规定 桥梁构件的承载能力极限状态的 计算以塑性理论为基础,设计的原则是作用效应最 不利组合(基本组合)的设计值必须小于或等于结 构抗力的设计值。
2 结构按极限状态法设计计算的原则
2.2.2 承载能力极限状态计算表达式
◆ 公路桥涵承载能力极限状态的要求——是对应 于桥涵及其构件达到最大的承载能力或出现不适 于继续承载的变形或变位的状态。 ◆ 公路桥涵的安全等级——表2-3
2 结构按极限状态法设计计算的原则
2.2.2 承载能力极限状态计算表达式
◆ 建筑结构的安全等级
安全 等级
一 级 二 三 级 级
破坏后的 影响程度
2) 影响正常使用或耐久性能的局部损坏,如水池池壁 开裂漏水不能正常使用、如裂缝过宽导致钢筋锈蚀等。 3) 影响正常使用的振动,如由于机器振动导致结构的 振幅超过按正常使用要求所规定的限位等。 4) 影响正常使用的其它特定状态,如相对沉降量过大等。
钢筋混凝土梁受弯承载力的极限状态分析
钢筋混凝土梁受弯承载力的极限状态分析1. 概述钢筋混凝土梁是建筑结构中常用的构件之一,承载结构负荷的能力是设计的重要指标之一。
梁的受弯承载力是指梁在受弯矩作用下所能承受的最大荷载,也是梁设计中的重要参数之一。
本文将从极限状态分析的角度出发,介绍钢筋混凝土梁受弯承载力的计算方法。
2. 极限状态设计基本原理极限状态设计是建筑结构设计中的一种设计方法,其基本原理是将结构在使用寿命内所可能承受的荷载和变形分为两类,即正常工作状态和极限状态。
正常工作状态下,结构应能够满足正常使用要求,而在极限状态下,结构发生破坏或失效。
极限状态设计的目的是为了确保结构在极限状态下依然具有足够的安全性。
3. 钢筋混凝土梁受弯承载力的计算方法钢筋混凝土梁受弯承载力的计算方法包括弯矩容许值法、受压区高度法、受拉钢筋屈服限制法等。
其中,弯矩容许值法是最常用的方法之一。
3.1 弯矩容许值法弯矩容许值法是通过计算梁截面的弯矩容许值和实际弯矩之间的比较来确定梁的承载能力。
弯矩容许值可通过截面的几何形状和材料强度来计算。
梁的实际弯矩可通过荷载分析得到。
弯矩容许值和实际弯矩之间的比较可用以下公式表示:MRd >= M其中,MRd为弯矩容许值,M为实际弯矩。
弯矩容许值的计算涉及到混凝土和钢筋的特性和截面形状等因素。
在计算时,需要考虑截面受压区和受拉区的不同特性,以及混凝土和钢筋的强度等因素。
具体计算方法可参考《混凝土结构设计规范》(GB 50010-2010)等国家标准。
3.2 受压区高度法受压区高度法是通过计算梁截面受压区的高度来确定梁的承载能力。
梁截面受压区高度的计算涉及到混凝土的强度、钢筋的位置和形状等因素。
具体计算方法可参考《混凝土结构设计规范》等国家标准。
3.3 受拉钢筋屈服限制法受拉钢筋屈服限制法是通过计算梁截面受拉钢筋的屈服限制来确定梁的承载能力。
具体计算方法可参考《混凝土结构设计规范》等国家标准。
4. 结论钢筋混凝土梁受弯承载力的计算方法多种多样,其中弯矩容许值法是最常用的方法之一。
钢筋混凝土梁极限状态设计规范
钢筋混凝土梁极限状态设计规范一、前言钢筋混凝土结构是现代建筑中最常见的结构形式之一,钢筋混凝土梁是其中最基本的构件之一。
本文将详细介绍钢筋混凝土梁极限状态设计规范。
二、设计原则1.强度设计原则:在荷载作用下,构件内应力达到强度极限时,保证构件不发生破坏。
2.变形设计原则:在荷载作用下,构件内应力达到强度极限前,保证构件的变形控制在规定范围内,以保证结构的稳定性。
3.耐久性设计原则:要求结构具有一定的耐久性,保证结构在使用寿命内不失效。
三、荷载计算1.自重:按照建筑设计规范计算。
2.活载:按照建筑设计规范计算。
3.温度变形:考虑梁的温度变形对结构的影响。
4.地震作用:按照建筑设计规范计算。
四、截面设计1.弯矩和剪力的作用下,截面内受应力的分布应符合规范要求。
2.截面应满足强度和稳定性要求。
在满足强度要求的前提下,应尽量减小截面尺寸。
3.应设置适当的箍筋以保证梁的受力性能。
五、受力分析1.计算弯矩和剪力大小和分布情况。
2.按照受力分析结果进行截面设计。
3.计算受力构件内部的应力大小和分布情况。
六、配筋设计1.按照规范要求计算配筋量。
2.合理分配钢筋,使得钢筋在截面内的作用能够得到充分发挥。
3.满足构件的强度和变形要求。
七、箍筋设计1.按照规范要求计算箍筋的数量和尺寸。
2.在满足强度和变形要求的前提下,尽量减小箍筋的数量和尺寸。
八、构造设计1.构造设计应符合规范要求,保证结构的强度和稳定性。
2.连接件的设计应满足强度和变形要求。
3.预留伸缩缝和变形缝,以保证结构的变形和温度变化的安全性。
九、结构计算1.按照规范要求进行计算,计算结果应符合规范要求。
2.计算过程中应考虑荷载的组合和相互作用。
3.计算过程中应注意构件的强度和变形控制。
十、结构施工1.按照设计要求进行施工,保证结构的质量和安全性。
2.施工过程中应注意构件的强度和变形控制。
3.施工过程中应注意施工工艺和施工工具的安全性。
十一、验收标准1.按照规范要求进行验收,保证结构的质量和安全性。
钢筋混凝土结构的设计方法—承载能力极限状态
荷载效应组合
结构功能函数与结构状态
可靠度分析中,结构的极限状态一般用功能函数描绘。当有n个随机
变量(X1,X2,…..Xn)影响结构的可靠度时,结构的功能函数可表示为
Z Z ( X 1 , X 2 ,......, X n )
若功能函数中仅包括结构抗力R和作用(或荷载)综合效应S两个基本变量,
等。
何为作用效应?
结构的失效概率
作用效应
——结构对所受作用的反应:结构或者构件的内力、变形等。
P
P
P
P/2
PL/4
弯矩图
剪力图
P/2
结构的失效概率
2.失效与失效概率
❖
失 效——指结构或结构的一部分不能满足设计所规定某一功能要求,
即达到或超过了承载能力极限状态或正常使用极限状态中的某一限值。
❖
失效概率——作用效应S和结构抗力R都是随机变量或随机过程,因
约束变形的原因,它分为直接作用和间接作用。
结构的失效概率
两类作用
作用
直接作用
施加在结构上的荷载,如结构自
重、汽车荷载等。
间接作用
引起结构约束变形和外
加变形的原因
结构的失效概率
约束变形
外加变形
结构材料发生收
强迫结构产
缩或膨胀等变化
生变形。基
,结构在支座或
础的不均匀
节点的约束下间
沉降,地震
接产生的变形。
此要绝对地保证R总是大于S是不可能的。可能出现R小于S的情况,
这种可能性的大小用概率来表示就是失效概率。
结构的失效概率
可靠概率 p s 1 p f , p f 为失效概率。
R,S的概率密度分布曲线
混凝土承载能力极限状态和正常使用极限状态
混凝土承载能力极限状态和正常使用极限状态下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言混凝土结构在使用过程中需要满足一系列设计要求和安全标准,其中包括其在极限状态和正常使用状态下的性能。
混凝土结构设计原理:第9章 正常使用极限状态验算及耐久性设计
为可变荷载组合系数。
ci
i=2
由于可变荷载达到其标准值Qk的作用时间较短,故Sk也称为短期效应, 其值约为作用效应设计值的50%~70%。
在荷载长期作用下,构件的变形和裂缝宽度随时间增长,需要考虑长期
荷载的影响,荷载效应的准永久组合为:
n
∑ Sq = SGk +
ψ qi SQik ,
ψ
为可变荷载准永久系数。
2
9.1 概述
第9章 正常使用极限状态验算及耐久性设计
结构设计的 功能要求
安全性
承载能力极限状态
适用性 耐久性
正常使用极限状态
n 正常使用极限状态的设计特点
p 可靠指标可适当降低 p 这种设计为验算而非计算 p 材料和荷载采用标准值或准永久值 p 考虑荷载的长期作用效应
变形 抗裂 裂缝宽度
3
9.1 概述
Mk
12
σ sm = ω 1σ s2
lm
εs
ψ
=
ω
1
σ σ
s2 sq
εctm εsm
εct
p 由2-2截面的平衡条件可得
Mq = Asσ s2η2h0 + Mct
σs2
=
Mq − Mct Asη2h0
ψ
=ω
1 (1 −
M ct Mq
)
ψ = 1.1(1− Mct ) Mq
22
9.3 裂缝宽度的计算
第9章 正常使用极限状态验算及耐久性设计
9.3.3 平均裂缝宽度
wm
= ε smlm
− ε cmlm
=
ε sm (1 −
ε ε
cm sm
)lm
令: αc