铁氧体软磁材料1

合集下载

2024年铁氧体软磁(磁芯)市场规模分析

2024年铁氧体软磁(磁芯)市场规模分析

2024年铁氧体软磁(磁芯)市场规模分析引言铁氧体是一种重要的软磁材料,广泛用于电子和电器行业中的各种磁性器件中,如磁芯。

磁芯作为电子产品的核心部件之一,对产品的性能和质量具有重要影响。

本文旨在对铁氧体软磁(磁芯)市场规模进行分析,为相关产业提供参考。

市场概述在现代电子和电器产业中,铁氧体软磁材料是一种非常重要的功能性材料。

它具有优良的磁导率、饱和磁化强度和抗腐蚀性能,被广泛应用于电感器、变压器、电源、传感器等各种电子器件中。

随着电子产品的不断升级换代和需求的增加,铁氧体软磁材料市场也呈现出良好的发展势头。

市场规模分析铁氧体软磁(磁芯)市场规模可以从多个维度进行分析,如地区、产品类型和应用领域等。

地区分析全球范围内,铁氧体软磁材料市场主要集中在亚太地区、欧洲和北美地区。

亚太地区是全球最大的铁氧体软磁应用市场,其市场份额占据全球的70%以上。

中国、韩国和日本是亚太地区主要的铁氧体软磁制造及应用国家。

欧洲和北美地区的市场规模相对较小,但在高端市场和技术创新方面具有一定的竞争优势。

产品类型分析铁氧体软磁材料市场可以根据不同的产品类型进行细分,主要包括磁芯、电感器和传感器等。

其中,磁芯是市场上最主要的产品类型,占据了铁氧体软磁材料市场的主要份额。

磁芯被广泛应用于电源、变压器和电感器等电子设备中,对于提高电路的性能和稳定性起着至关重要的作用。

应用领域分析铁氧体软磁材料广泛应用于各个电子领域,包括通信、汽车、工业控制、医疗设备等。

其中,通信领域是铁氧体软磁材料的主要应用领域之一。

随着5G通信技术的发展和智能手机的普及,对于高频、高性能磁芯的需求不断增加。

此外,汽车电子领域也是铁氧体软磁材料的重要市场,随着车载电子设备和智能驾驶技术的发展,对于高效能磁芯的需求也在不断增长。

市场前景展望随着电子和电器产业的快速发展,铁氧体软磁材料市场具有良好的前景。

新技术的不断涌现和需求的不断增加将持续推动市场的发展。

未来,市场竞争将更加激烈,创新能力和产品质量将成为企业竞争的关键。

高速电机 软磁材料

高速电机 软磁材料

高速电机软磁材料
在高速电机应用中,选择合适的软磁材料对电机的性能至关重要。

软磁材料是指具有较低的磁滞损耗和高磁导率的材料,能够有效地传导和集中磁场。

以下是一些常用的软磁材料在高速电机中的应用:
1. 硅钢片(Silicon Steel):硅钢片是最常用的软磁材料之一,广泛应用于高速电机。

硅钢片由高硅含量的冷轧电工钢制成,具有低磁滞损耗和高饱和磁感应强度。

这使得硅钢片在高速电机中能够减小涡流损耗和磁滞损耗,提高电机的效率和性能。

2. 铁氧体(Ferrite):铁氧体是一类陶瓷磁性材料,具有较高的电阻率和磁导率。

由于其低导电性,铁氧体在高速电机中能够抑制涡流损耗。

此外,铁氧体具有良好的耐高温性能和耐腐蚀性能,适用于高温和恶劣环境下的电机应用。

3. 高能量磁体(High Energy Magnets):高能量磁体(如钕铁硼磁体)在高速电机中也扮演重要角色。

这些磁体具有较高的磁能积(磁能密度),能够提供强大的磁场和高电机效率。

高能量磁体通常用于电机的永磁励磁系统,提供稳定和高效的磁场。

4. 高温磁体(High-Temperature Magnets):对于高速电机应用中的高温环境,如航空航天领域,需要选择能够在高温条件下保持较高磁性能的软磁材料。

一些高温磁体材料,如钴磁体和铱钍磁体,具有优异的磁性能和高温稳定性。

选择合适的软磁材料需要考虑电机的工作条件、性能要求和成本等因素。

不同的软磁材料具有不同的特性和适用范围,因此在设计和
制造高速电机时,要根据具体需求选择最合适的软磁材料。

软磁铁氧体

软磁铁氧体

软磁铁氧体软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。

有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,为1~10 欧姆/米,一般在100kHZ以下的频率使用。

Cu-Zn、Ni-Zn铁氧体的电阻率为102~104欧姆/米,在100kHz~10 兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器。

磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等。

在应用上很方便。

由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。

而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。

随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。

国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn铁氧体为例介绍其应用状况。

分为三类基本材料:电信用基本材料、宽带及EMI材料、功率型材料。

电信用铁氧体的磁导率从750~2300, 具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系, 是磁导率在工作中下降最慢的一种,约每10年下降3%~4%。

广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器。

宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000。

其特性为具有低损耗因子、高磁导率、高阻抗/频率特性。

广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用。

功率铁氧体具有高的饱和磁感应强度,为4000~5000Gs。

另外具有低损耗/频率关系和低损耗/温度关系。

也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大。

软磁材料的损耗(一)

软磁材料的损耗(一)

软磁材料的损耗(一)铁氧体磁性材料处在随时间变化的磁场中,材料所吸收的并以热形式耗散的能量,称为磁性材料的损耗。

在低磁通密度下,铁氧体磁性材料的损耗可用损耗角正切 tgò来表示:(1-13)式中。

Rs=仅由磁芯引起的测量线圈的串联电阻(Ω)Ls =带磁芯线圈的串联电感(H)f = 频率(Hz) tgò损耗角正切的倒数,称为品质因数,用 Q 表示(1-14)众所周知,铁氧体磁性材料的总损耗包括涡流损耗tgòe,磁滞损耗 tg òh 以及剩余损耗 tgòr,即:tgò=tgòe+tgòh+tgòr (1-15)涡流损耗与材料电阻率,磁芯尺寸及使用频率有关,并可由下面近似公式表示:(1-16)式中,ρ= 材料的电阻率,d = 磁芯尺寸,β=系数。

对厚度为 d 的薄片,β=6;对直径为 d 的园柱体,β=16。

在弱磁场条件下,由磁滞现象引起的损耗角正切由下式表示:tgòh=ηBμeB (1-17)式中,ηB = 材料磁滞常数(T1)B = 测量时磁芯中磁感应强度的峰值(T)μe = 磁芯的有效磁导率。

总损耗减去涡流损耗和磁滞损耗的差值,称为剩余损耗。

在低频弱磁场条件下,因为频率低,涡流损耗可以忽略,且弱磁场下磁滞损耗很小,所以实际测量磁芯损耗角正切实质上主要是剩余损耗值。

当磁芯中有气隙存在时,磁芯损耗因子与有效磁导率μe 有关。

在低磁通密度时,只要漏磁通可忽略,比损耗与气隙长度无关,即:(1-18)因此,常用损耗角正切与相对磁导率之比,来表征磁性材料的优值,有时也用μ·Q 乘积来表示,因为tgò/μ=1/μQ。

对于开路状态使用的磁芯(如棒形磁芯、螺纹磁场芯等),磁芯损耗用表观品质因数 Qapp 来表示:(1-19)式中,Qe = 有磁芯线圈的品质因数;Q0 = 无磁芯线圈的品质因数;损耗的出现导致磁导率的下降。

软磁材料分类

软磁材料分类

软磁材料分类以软磁材料分类为标题,写一篇文章:软磁材料是指在外加磁场下具有高磁导率和低磁滞损耗的材料,主要应用于电子设备、通信设备、电力设备等领域。

根据其物理性质和化学组成的不同,软磁材料可以分为多种类型。

本文将以此为主题,介绍几种常见的软磁材料分类。

一、铁氧体材料铁氧体材料是一类非常重要的软磁材料,其主要成分为氧化铁和一些稀土元素。

铁氧体材料具有高磁导率、低磁滞损耗和较高的饱和磁感应强度,适用于高频应用。

常见的铁氧体材料有镍锌铁氧体(NiZn)、锌铁氧体(ZnFe)、锰锌铁氧体(MnZn)等。

二、铁基合金材料铁基合金材料是指以铁为主要成分,同时添加一定的合金元素来调节其磁性能的软磁材料。

常见的铁基合金材料有铁铝合金、铁硅铝合金、铁镍合金等。

铁基合金材料具有高磁导率、低磁滞损耗和良好的饱和磁感应强度,适用于高频应用和高温环境下的使用。

三、非晶态合金材料非晶态合金材料是一类由金属元素组成的非晶态结构的软磁材料。

它们具有高磁导率、低磁滞损耗和较高的饱和磁感应强度,适用于高频应用和大功率变压器。

非晶态合金材料具有优异的软磁性能,是目前软磁材料研究的热点之一。

四、纳米晶材料纳米晶材料是指在纳米尺度下制备的具有高磁导率和低磁滞损耗的软磁材料。

纳米晶材料具有优异的磁性能和高温稳定性,适用于高频应用和大功率电子设备。

纳米晶材料的制备技术和表征方法是当前研究的热点之一。

五、复合材料复合材料是指由两种或两种以上的材料组成的软磁材料。

常见的复合材料包括软磁粉末和有机粘结剂的复合材料、软磁粉末和金属基底的复合材料等。

复合材料具有高磁导率、低磁滞损耗和较高的饱和磁感应强度,适用于高频应用和大功率电子设备。

总结一下,软磁材料根据其物理性质和化学组成的不同可以分为多种类型,包括铁氧体材料、铁基合金材料、非晶态合金材料、纳米晶材料和复合材料等。

这些材料都具有高磁导率、低磁滞损耗和良好的饱和磁感应强度,适用于不同领域的应用。

随着科技的不断发展,软磁材料的分类和应用也将不断拓展,为电子设备和通信设备等领域的发展提供更多的选择和可能性。

磁性材料及软磁铁氧体科普

磁性材料及软磁铁氧体科普

磁性材料及软磁铁氧体科普磁性及软磁铁氧体材料磁性及其普遍性随着科学技术的发展,已揭⽰出⼀切物质都具有磁性,任何空间均存在磁场。

磁性在⽣产和技术、科研和国防、以及家庭⽣活中有⼴泛的应⽤。

磁性是物质的基本属性1)发电机和电动机等电⽓化设备,是以磁场的作⽤和磁性材料为基础进⾏能量转换的。

2)在信息化中,如计算机需要使⽤多种的磁记录器和磁存储器。

3)在⾼能加速器和粒⼦检测器中以及⾼温等离⼦体装置中,都需要使⽤强磁场。

4)磁场是多种研究原⼦核和基本粒⼦的加速器和检测器所必需的重要设备。

5)在⽣物学和医⽅⾯,利⽤弱的⽣物磁性和极微弱的⽣物磁场的变化进⾏⽣理和病理⽅⾯的研究以及疾病的诊断。

地磁地球具有磁性,⼜称“地球磁场”或“地磁场”,指地球周围空间分布的磁场。

地球磁场近似于⼀个位于地球中⼼的磁偶极⼦的巨⼤的地磁场。

它的磁南极(S)⼤致指向地理北极附近,磁北极(N)⼤致指向地理南极附近。

⾚道附近磁场最⼩(约为0.3-0.4Oe),两极最强(约为0.7Oe)。

地球表⾯的磁场受到各种因素的影响⽽随时间发⽣变化。

司南—铁磁材料应⽤的起源中国是磁的故乡。

早在3000多年前我国就已发现磁⽯相互吸引和磁⽯吸铁的现象, 并在世界上最先发明⽤磁⽯作为指⽰⽅向和校正时间的应⽤。

公元前4世纪,中国发明了司南。

后来,出现了指南车。

司南指南车公元前3世纪,战国时期,<<韩⾮⼦>>中这样记载:“先王⽴司南以端朝⼣”。

<<⿁⾕⼦>>中记载:“郑⼈取⽟,必载司南,为其不惑也”。

公元1世纪,东汉,王充在<<论衡>>中写道:“司南之杓,投之于地,其柢指南”。

公元1044年,北宋曾公亮、丁度等修撰的《武经总要》中有应⽤磁⽯的⽔浮型指南针制法的叙述。

公元11世纪,北宋,沈括在<<梦溪笔谈>>中提到了指南针的制造⽅法:“⽅家以磁⽯磨针锋,则能指南......⽔浮多荡摇,指抓及碗唇上皆可为之,运转尤速,但坚滑易坠,不若缕悬之最善。

铁氧体磁性材料

铁氧体磁性材料
旋磁材料大都输送微波的波导管或传输线等组成各种微波器件,主要用于雷达、通讯、导航、遥测、遥控等 电子设备中。微波器件,主要用于雷达、通讯、导航、遥测、遥控等电子设备中。
矩磁材料是指一种具有矩形磁滞回线的铁氧体材料,如图4所示。磁滞回线是指外磁场增大到饱和场强+Hs后, 由+Hs变到-Hs再回到+Hs往返一周的变化中,磁性材料的磁感应强度也相应由+Bs,变到-Bs再回到+Bs,所经历 的闭合循环曲线。最常用的矩磁材料有镁锰铁氧体Mg-MnFe2O4和锂锰铁氧体Li-MnFe2O4等。
将混合后的配料在高温炉中加热,促进固相反应,形成具有一定物理性能的多晶铁氧体。这种多晶铁氧体也 称为烧结铁氧体。这种预烧过程是在低于材料熔融温度的状态下,通过固体粉末间的化学反应来完成的固相化学 反应。在固相反应中,一般来说,铁氧体所用的各种固态原料,在常温下是相对稳定的,各种金属离子受到品格 的制约,只能在原来的结点作一些极其微小的热振动。但是随着温度的升高,金属离子在结点上的热振动的振幅 越来越大,从而脱离了原来的结点发生了位移,由一种原料的颗粒进入到另一种原料的颗粒中。形成了离子扩散 现象。
这种材料不仅可以用作电讯器件中的录音器、微音器、拾音器、机以及各种仪表的磁铁,而且在污染处理、 医学生物和印刷显示等方面也得到了应用。
硬磁铁氧体材料是继铝镍钻系硬磁金属材料后的第二种主要硬磁材料,它的出现不仅节约了镍、钻等大量战 略物资,而且为硬磁材料在高频段(如电视机的部件、微波器件以及其他国防器件)的应用开辟了新的途径。
软磁铁氧体主要用作各种电感元件,如滤波器磁芯、变压器磁芯、天线磁芯、偏转磁芯以及磁带录音和录象 磁头、多路通讯等的记录磁头的磁芯等。
一般软磁铁氧体的晶体结构都是立方晶系尖晶石型,应用于音频至甚高频频段(1千赫-300兆赫)。但是具 有六角晶系磁铅石型晶体结构的软磁材料却比尖晶石型的应用频率上限提高了好几倍。

软磁铁氧体材料

软磁铁氧体材料

软磁铁氧体材料吕迪格尔·德赖尔(Rudiger Dreyer) <卡施克(Kaschke)合资有限公司,格廷根,德国>  本文对软磁铁氧体的结构—特性关系进行研究.介绍高磁导率的锰锌铁氧体,功率传导直至2MHz的锰锌铁氧体和电磁兼容应用的镍锌铁氧体.讨论工艺的影响,特别是对锰锌铁氧体在还原气氛下的烧结控制以及最佳的还原气氛状态的调节.此外,重点介绍铁氧体在功率传导,照明技术,抗干扰和通信技术领域中的应用. 1. 物理的基本原理 一般惯用的说法是对一种显示铁磁性特性的材料称之为”磁性材料”.在这种情况下,电子自旋的所有的磁距通过交换作用在同一个方向上进行排列(图1a),并被保持到不超过该材料特定的极限温度(居里温度Фc).其可达到的磁性参数,如磁导率,磁通密度等是最大.在一定的条件下,邻近的自旋可以处于反平行的,人们称之为反铁磁性(图1b).最好直观的是,当我们将晶体晶格划分成两个亚晶格时,在此际,每个亚晶格又重新是铁磁性的,但是显示出相反的排列.如果每个亚晶格经不同强度的磁化时,那么通过外界作用的磁化保留是不完全的,存在着一种磁性起作用的材料.人们对这种状态称之为亚铁磁性.(图1c).a) 铁磁性 b) 反铁磁性 c)亚铁磁性图1 磁性的状态带有奇数原子的电子具有不平衡的自旋,以致产生一个外部的磁距.在过渡金属(3d-原子)中,这个数还要大些,因为3d-轨道首先将占据单个的(Hund’sche 规则).表1: 3d-金属或挑选的3d-离子的磁距μBS cTiV CrMnFeCoNiCuZnμB1 2 3 4 5 4 3 2 1 0S c3+Ti4+V5+Cr3+Mn2+Fe2+Co2+Ni2+Cu2+Zn2+μB0 0 0 3 5 4 3 2 1 0(还有其他的价态,在这里没有列举的,但是在铁氧体中具有重要作用的有:例如Fe3+ 的磁距为5个玻尔磁子和Mn3+ 为4个玻尔磁子)所有亚铁磁性的物质(材料)都概括在”铁氧体”之中.最简单的铁氧体的成分是用化学式MeOFe2O3 (或MeFe2O4)来表示.这里Me是一个两价的金属离子,如Mn,Fe2+,Co,Ni,Zn或Mg,或者是这些金属的混合物.一般来说,铁氧体就有一个尖晶石结构(称之为矿物尖晶石的晶格:MgAl2O4).在一个单位晶胞中,可能有64个四面体座和32个八面体座,其中仅有8个四面体座和16个八面体座被占据.在软磁铁氧体种类中,特别是具有应用技术意义的有两组:Ni-Zn铁氧体和Mn-Zn 铁氧体.为此,将说明除了Fe2O3和ZnO外,或者是NiO,或MnO所组成的结晶晶格的结构.为了改善对此获得的性能,可以添加各种不同的掺杂,如CoO,TiO2,V2O5,SnO2,CaO或SiO2.技术上可使用的铁氧体的成分局限于一个相对小的范围内,在这方面,FeO3是位于化学计量的范围或有点超化学计量范围(见图3).图2 尖晶石晶格 图3 Mn-Zn 铁氧体混合物在这个范围内,我们可以用各种不同的成分来确定其需要的性能,例如磁导率,饱和磁通密度或居里温度.铁氧体与一种铁磁性磁体(例如与纯铁)来作比较,那么其区别主要是下列的参数: 纯铁的初始磁导率为100000~200000,约高于最高磁导的铁氧体(μI ≈25000)8倍纯铁的饱和磁感应强度为2.3T,约高于铁氧体(约550mT)值的4倍.铁氧体由于它的氧化物基,具有与半导体(Mn-Zn 铁氧体)或电介质(Ni-Zn 铁氧体)可比较的电导率,对此比金属低约106~1012.由此其后果是诱发的涡流在显著较高的频率时才起作用,所以薄片叠成的纯铁在最大频率到10KHz 时使用,而铁氧体直到GHz-范围还能保持磁性有效的.为了能够说明一种磁性材料的性能,材料特定的磁滞曲线的确定提供一个重要的帮助. 由此可以推导出如初始磁导率和增量磁导率,饱和磁通密度,剩余磁通密度和矫顽磁场强度等参数.虽然目前已经能购买到可以很容易用来确定频率直至10MHz 时的磁滞曲线的仪器(价格约250000DM),在一般情况分别对单个参数进行测量或计算.1.1初始磁导率μi作为表示一种软磁材料的基本特性,在一般情况下是考虑材料的磁导率.一般的定义是:HBu u ∆∆=01---------------------(1)由于磁滞曲线的非线性,我们立即看到,不可能给出唯一的磁导率.那么确定各种不同的有区别的磁导率要根据当时应用的需要.人们对铁氧体应用初始磁导率μi 作为材料参数,其是用很小的最大磁化磁场(B ≤0.25mT)来定义的:HB u u H i ∆∆=→00lim 1-------------------(2) 试图对μi 进行计算,考虑到材料的内在参数,其相互关系将通过下列公式给出1) :...2+•+=σλK Si E M u --------------------------(3)式中:Ms—饱和磁化强度 Ek—各向异性能 λ—磁致伸缩常数 σ--势能然而,对一个实体的铁氧体的初始磁导率要进行精确分析的计算是不可能的.但是这些公式指出,高磁导率的和最高磁导率的铁氧体的初始磁导率是以高的饱和磁化强度,微小的各向异性和一个理想的晶体结构为先决条件的.然而,当这些先决条件也被满足时,μi 值还很大程度上取决于外界的压力;即材料处于压力下(例如在涂复时或在一个紧绕的绕组中),其磁导率可能下降直至60%.唯一能够精确测定μi 的磁芯形状是环形磁芯.由于他的形状和绕缠线圈的方式,实际上磁力线的走向完全在磁芯内部,磁导率不会由于气隙产生露磁而降低.对于通过绕组产生的磁场H 适用于下面的近似方式:el I N H •=--------------------------------------(4)式中:N—绕组匝数I--测试电流和 L e —平均磁路长度.因此,我们通过少的绕组匝数,小的测试电流和长的磁路长度来获得一个小的磁场.用于测定材料特性数据大多数选择一个外径约为30mm 的环形磁芯,在上面绕上10匝或20匝的线圈.测试电流是通过(仪器侧预先确定)测试电压和仪器的内阻来确定的.如果仪器有较多个测试电压时,那么原则上是选择最低的.按照IEC 规定,作为测试频率值应该选择远低于旋磁性的谐振,所以对所有的材料统一的规定,F ≤10KHz;与此同时,测试温度与室温,即约25℃. 1.2增量磁导率μa 如果我们将磁场从接近零开始加上较大的值时,那么将改变磁滞曲线的斜率.如果我们将这个斜率作为磁通密度B的函数时,那么曲线在B=0开始与初始磁导率一起增大,为了超过一个最大值接近1. HBu u a 01= ---------------(5) 人们对这样获得的磁导率称为增量磁导率μa,其在功率感抗的设计参数中是一个比μi更重要的参数,在较弱的磁场下μa能够明显的区别与μi.超过最大值后,L值降低并在末端效应中接近1(=达到饱和磁通密度).曲线的走向是与温度有依赖关系,图4是表示对25℃和100℃的相关性. 图4 增量磁导率μa作为温度T的函数  1.3饱和磁通密度Bs,剩余磁通密度Br,矫顽磁场强度Hc 由于磁场的增强,首先是外斯畴壁的布咯赫壁位移,在一个非弹性的反转过程之前,同磁化强度的转动导向H 的方向.当所有的磁距被排列时,达到最大的磁通密度(=饱和磁通密度Bs)当磁场H 减小时,由于不可逆的巴克好生一阶跃,曲线不再按磁场增强时的走向.在H=0时,滞留一部分(在外部起作用的)磁感应强度,剩余磁通密度Bs.这与工艺过程,磁芯形状和其他可影响的参数有相互依赖关系.为了使这个剩余的磁通密度为零,必须要接上一个相反极性的外界磁场.这个磁场的强度是一个材料特定的参数,矫顽力Hc.1.4损耗一种磁性介质的每次交流磁化都带有损耗,在很弱的磁化磁场下首先是涡流损耗和后效损耗,在稍强些的磁化磁场( B ≈10mT)下还附带有磁滞损耗,在这些范围上,在磁芯中发生的损耗功率直接用W/g或W/cm3来说明. 1.4.1 相关损耗因数 tanδ/μi 在一个交变场磁化时,在磁芯中产生的磁通密度B 不是在与施加的磁场的相位中(模拟交变电流和交流电压).在产生的磁化强度与磁通密度之间的角δ被称作为损耗角.损耗角越小,材料的Q 值越高.由于这些原因,品质因数Q 被如下来定义:'''tan 1uu u a ==δ --------------(6)对Q 的精确测量一般的使用一种Q 表,其是按照可调谐的振荡回路的原理来工作的.为了将振荡回路调准到谐振上,对此,测试频率调整到固定置位和电容量无极可变的.因为品质因数的测量只有在绕缠的组件上才有可能,真正的材料品质只能够通过对微小的欧姆分量的外推法来确定.然而由于小的相位角,那么我们获得的Q 值非常的离散,因此要更好的证明是可靠的,质量因数是在规定的绕组的情况下来说明并放弃外推法.可是直至今天还没有标准化的测试方法,因此对不同的生产厂的不同材料依据产品目录值来进行对比是不适宜的.1.4.2 磁滞损耗,涡流损耗和后效损耗一种软磁材料的损耗是有较多的部分形成的,按照JORDAN 2) 可以将其分别成3个单独的相加的参数.即磁滞损耗,涡流损耗喝后效损耗:L f n L f e L H f h R R R R eff n e h v ••+••+•••=++=2 -------------------(7)式中: Rh—磁滞损耗电阻 Re—涡流损耗电阻 Rn--后效损耗电阻h,e,n—相对应的损耗系数为了能够将损耗进行分离,将商 R v /f*L 作为在不同Heff 值时频率f 的函数并且图解的对磁场强度与频率零进行外推. 磁滞损耗时由于材料的反复磁化而产生的.因为磁距进行排列不是完全”无摩擦的”和可逆的,所施加的磁场能的一部分转变为热量.在这种情况下,磁滞曲线的面积是所产生的损耗的量值. 涡流是发生在电导的介质中,当经过时间上的变化时,磁通密度产生诱导的环电压.由此出现的涡流在这方面产生的一个磁感应强度,其方向始终是与外界磁场相反的(楞次定律).由此为了保持由此产生的损耗尽可能的小,人们需要具有高电阻率的或宽磁滞曲线的材料(参见第1.5节). 后效损耗由于驰豫过程而形成的.例如当布咯赫壁由于各向异性的晶体场能使电位阱”深化”,不仅因为阳离子扩散,而且因为支撑内部由热能来源的起伏场.然而如果布咯赫壁在一般情况下承受强大的结合力或完全缺乏时,那么将附加低的后效损耗,磁滞损耗也小(叵明伐型—铁氧体). 1.4.3 功率损耗Pv 在较强的磁化磁场中,将直接测量重量单位的或体积单位的磁芯损耗.按照定义,涡流损耗不应该计算在功率损耗,可是测量技术不可能轻而易举的将其分开.对此,人们认识到其影响,在一个双对数的描绘中,损耗作为频率的函数时,开始的线性上升自一个较低的频率开始,超正比的升高.在这些频率下适用:q P v B f r P ••= -------------------------(8)式中:r,p 和q 是材料常数,通常是烧绕过程能对其有影响,所以必须根据实践经验来确定.(参见图5)图5功率损耗作为频率的函数标准测量位置建立在直至1MHz 的基础上,以一个电压信号与一个电流等值的信号的倍增为底数:φcos ••=I U P -------------------------(9)在这时,电流与电压之间的相位差关系到在磁芯中消耗的能量.为了对测量对象记忆正弦形的电压,功率放大器必须提供高的视在功率和低的内阻.电流将通过一个纯粹的直流电阻来进行测定,由此进行电压测量.紧接着进行电流和电压的倍增. 通常,损耗在室温和100℃下,在磁化磁场为 50mT ,100mT 和200mT时进行测量.频率范围是从16KHz(在黑白电视机中行扫描变压器的频率)在这同时扩展到超过1MHz,在此之际对于高频只把低的磁化磁场(≤50mT)考虑在内. 由于经过引线和触点的能量反射,在≥1MHz范围中进行测量是非常昂贵的和不精确的.所以对于计量目的和试验目的,为了尽可能进行精确的测量,人们应用一种量热的方法. 在这个场合,首先是将样品放到所希望的测试频率中施加规定的磁化磁场,并测量其放出的热量.然后在一个纯粹的直流电阻下用直流电流和直流电压来调整相同的温升,由此可以通过简单的倍增来计算功率损耗. 1.5 电阻率ρ  如在第1.4.3节中提及的,电阻率确定涡流损耗的效应.如果我们对曲线走向用电阻率ρ作为频率的函数时,那么首先时保持恒定并且在较高的频率时才渐近地下降到一个恒定的,较低的值.对此的原因是微晶不同的电导率和其围绕的(绝缘的)晶界.如果取决于价电子和传导带的状态时,按频率情况而定,两个部分的一个占主要部分.结果是在用于高频(f=0.5-1MHz)的功率铁氧体中要求小的晶粒尺寸. 对于功率铁氧体来说,电阻率的一个其他的不判影响是它的温度相关性,并通过玻兹曼—函数给出: ()TK E A eT •−•=0ρρ ---------------(10)  在一个激活能EA为0.1-0.5eV3) 时可以通过对磁芯进行加热从20℃到100℃时,电阻率出现二等分,这将导致在较低的频率时涡流损耗已经开始插入.在测量电阻率ρ时的困难是由于接上了测量导线.由于他的类似半导体的特性,容易有累接阻抗通过绝缘层,使精确的测量失真. 一种常用的可能性是接触铆焊,用银-钯糊剂经丝网印刷.紧接着用可焊的材料进行电镀的覆层. 1.6 频率特性 如果我们对曲线的走向用初始磁导率μi作为频率的函数时,那么,曲线首先有一段恒定,然后当超过最大值(谐振回路的放大系数)后,陡度较大或较小的下降.初始磁导率越高,这个最大值向较低的频率移动越多.作为经验公式适用于铁氧体的使用频率与1/μi成正比.通过适合的粉末制备(特别是研磨细度)和最佳的烧结可以对”频率稳定性”明显地改 善.在频率范围在最大值以上时,这个材料不能再用作规定L-值的电感,因为制造工艺的最佳化仅被限制在旋磁性的谐振以下的范围上,并且在不同的制造批中磁导率下降可能是不相同的. 图6 复数磁导率的实数部分μ’和虚数部分μ”作为频率f的函数  1.7 温度特性,居里温度Qc  一种铁氧体材料的温度曲线很强烈的取决于他的成分(特别是掺杂)和烧结过程.如在任何一种磁性材料中有一规定的温度,在这个温度(居里温度Qc)上磁性消失.按初始磁导率前是陡度升高(最初的最大值),然后陡度下降. 和制造的‘精确”,初始磁导率的接近Qc远低于居里温度之下时,一般情况下还出现一个另外的最大值(SPM=感应的磁导率最大值).对于特殊用途(例如在滤波器铁氧体中)可以对μi(T)—曲线通过掺杂(特别是通过C o O;由于他影响磁晶各向异性常数K1的曲线走向)起作用,使其超过所期望的温度范围时单调地升高.2. 制造方法通常是应用粉末状的金属氧化物或金属碳酸盐来作为原材料,其不仅是可以合成制造而且可以用例如钢回收利用设施产生的”副产品”.在最佳成分的称量后,将原始材料在(用少许的水和有机的粘合剂)湿润之前在一个混料机中进行均匀化。

锰锌铁氧体软磁材料及产品系列

锰锌铁氧体软磁材料及产品系列

锰锌铁氧体软磁材料及产品系列双高材料■材料用途这种材料具有高磁导率和高剩磁,低功率损耗的特点,适用于宽带变压器(特别是含有直流分量的场合)、脉冲(功率)变压器、特殊要求的扼流圈等磁芯的制造。

该材料特性与西门子公司新近开发的N55材料性能相当。

■材料指标■典型曲线功率铁氧体材料■材料用途这种材料是一种高频率低损耗铁氧体材料, 相当于TDK的PC40(H7C4)。

主要应用于100~500KHz 开关电源变压器。

■材料指标■典型曲线高频功率铁氧体材料■材料用途这种材料是一种高频低损耗材料。

主要应用于500~1000 KHz开关电源,相当于TDK的PC50材料。

■材料指标■典型曲线宽温铁氧体材料■材料用途这种该类材料具有适中的磁导率、高的饱和磁感应强度与低的损耗等优良特性,特别是在很宽的温度范围(-40℃—100℃)内,具有较好的磁导率稳定性。

主要应用于温度范围很宽,电感值变化很小的场合。

■材料指标■典型曲线产品类型【EER磁芯】■ 外形结构■ 用途高频开关电源变压器、匹配变压器、扼流变压器等。

■ 型号【EE磁芯】■ 外形结构■ 用途电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

■ 型号【ETD磁芯】■ 外形结构■ 用途电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。

■ 型号【EI 磁芯】■ 外形结构■ 用途高频开关电源变压器、功率变压器、整流变压器、电压互感器等。

■ 型号【ET 磁芯】■ 外形结构■ 用途滤波变压器■ 型号【EFD 磁芯】■ 外形结构■ 用途高频开关电源变压器器、整流变压器、开关变压器等。

■型号【UF 磁芯】■ 外形结构■ 用途整流变压器、脉冲变压器、扼流变压器、电源变压器等。

■ 型号【PQ 磁芯】■ 外形结构■ 用途高频开关电源变压器、整流变压器等。

■ 型号【RM 磁芯】■ 外形结构■ 用途高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。

2023年铁氧体软磁(磁芯)行业市场规模分析

2023年铁氧体软磁(磁芯)行业市场规模分析

2023年铁氧体软磁(磁芯)行业市场规模分析铁氧体软磁(磁芯)是指由氧化铁、镍氧化物、锌氧化物等多组分混合物烧结制得的一种新型软磁材料,具有高饱和磁感应强度、低磁导率、低磁滞损耗、稳定的磁特性等优点。

广泛应用于变压器、电感器、电子测量仪器、通信设备、汽车电子、医疗器械等场合,成为现代电力和电子技术领域中的重要材料之一。

目前,全球铁氧体软磁(磁芯)行业市场规模持续增长,市场需求推动着技术创新,同时也加速了市场上的激烈竞争。

1.市场规模根据市场研究公司的统计数据,在2020年全球铁氧体软磁(磁芯)行业市场规模约为150亿美元,预计到2025年将达到210亿美元,年均复合增长率为6.98%。

从地域分布来看,亚太地区是全球铁氧体软磁(磁芯)行业最大的市场,占据了市场份额的45%以上,其中中国是该地区最大的市场。

欧洲和北美市场规模相对较小,占据了市场份额的20%以下和15%以下,但在技术方面具有优势。

2.市场趋势(1)智能化和高频化随着智能化和高频化的发展,铁氧体软磁(磁芯)在新型计算机、5G通信、物联网等领域得到了广泛应用。

这些应用对磁芯的性能和质量提出了更高的要求,尤其是在高温、高震动、高频等环境下,对铁氧体软磁(磁芯)的性能有更高的要求。

(2)小型化和节能化目前,小型化和节能化是电子产品和电子设备的发展趋势,对于铁氧体软磁(磁芯)也是如此。

在现代电子设备和电子产品中,一个电子元件中搭载的磁芯数量和体积都在逐渐减小,而功率和效率则在逐渐提高。

(3)产业竞争随着市场规模的不断扩大,铁氧体软磁(磁芯)行业竞争日趋激烈。

目前,市场上主要的厂商有TDK、Murata、AVX和Vishay等,其中TDK和Murata在市场份额方面处于领先地位。

这些企业主要通过技术创新、产品升级、市场拓展和定制化服务等方式增强市场竞争力,同时也带动了整个行业向更高水平发展。

综上所述,随着电力和电子技术的发展和市场需求的不断增加,铁氧体软磁(磁芯)行业市场规模持续扩大,同时也面临着智能化和高频化、小型化和节能化、产业竞争等新趋势和新挑战。

软磁材料

软磁材料

软磁材料软磁材料软磁材料的定义:当磁化发生在Hc不大于1000A/m,这样的材料称为软磁体。

典型的软磁材料,可以用最小的外磁场实现最大的磁化强度。

目录软磁材料加工厂羰基铁。

其特点是饱和磁化强度高,价格低廉,加工性能好;但其电阻率低、在交变磁场下涡流损耗大,只适于静态下使用,如制造电磁铁芯、极靴、继电器和扬声器磁导体、磁屏蔽罩等。

②铁硅系合金。

含硅量 0.5% ~ 4.8%,一般制成薄板使用,俗称硅钢片。

在纯铁中加入硅后,可消除磁性材料的磁性随使用时间而变化的现象。

随着硅含量增加,热导率降低,脆性增加,饱和磁化强度下降,但其电阻率和磁导率高,矫顽力和涡流损耗减小,从而可应用到交流领域,制造电机、变压器、继电器、互感器等的铁芯。

③铁铝系合金。

含铝6%~16%,具有较好的软磁性能,磁导率和电阻率高,硬度高、耐磨性好,但性脆,主要用于制造小型变压器、磁放大器、继电器等的铁芯和磁头、超声换能器等。

④铁硅铝系合金。

在二元铁铝合金中加入硅获得。

其硬度、饱和磁感应强度、磁导率和电阻率都较高。

缺点是磁性能对成分起伏敏感,脆性大,加工性能差。

主要用于音频和视频磁头。

⑤镍铁系合金。

镍含量30%~90%,又称坡莫合金,通过合金化元素配比和适当工艺,可控制磁性能,获得高导磁、恒导磁、矩磁等软磁材料。

其塑性高,对应力较敏感,可用作脉冲变压器材料、电感铁芯和功能磁性材料。

⑥铁钴系合金。

钴含量27%~50%。

具有较高的饱和磁化强度,电阻率低。

适于制造极靴、电机转子和定子、小型变压器铁芯等。

⑦软磁铁氧体。

非金属亚铁磁性软磁材料。

电阻率高(10-2~1010Ω·m ),饱和磁化强度比金属低,价格低廉,广泛用作电感元件和变压器元件(见铁氧体)。

⑧非晶态软磁合金。

一种无长程有序、无晶粒合金,又称金属玻璃,或称非晶金属。

其磁导率和电阻率高,矫顽力小,对应力不敏感,不存在由晶体结构引起的磁晶各向异性,具有耐蚀和高强度等特点。

此外,其居里点比晶态软磁材料低得多,电能损耗大为降低,是一种正在开发利用的新型软磁材料。

07.磁性材料第一部分-软磁铁氧体材料

07.磁性材料第一部分-软磁铁氧体材料


引言
• 磁性材料是功能材料的重要分支; • 磁性元器件具有转换、传递、处理信息、存储能量、节约能源等 功能, • 应用于能源、电信、自动控制、通讯、家用电器、生物、医疗卫 生、轻工、选矿、物理探矿、军工等领域,尤其在信息技术领域 已成为不可缺少的组成部分。 • 信息化发展的总趋势是向小、轻、薄以及多功能、数字化、智能 化方向发展;要求磁性材料制造的元器件不仅大容量、小型化、 高速度,而且具有可靠性、耐久性、抗振动和低成本的特点。
二、提高µ 的方法 i
(一).提高材料的Ms 尖晶石铁氧体 Ms = | MB - MA| 1.选高Ms的单元铁氧体 如:MnFe2O4(4.6--5 µ ); NiFe2O4 (2.3 µ ) B B 2.加入Zn,使MAs降低 另外: CoFe2O4 (3.7 µ )磁晶各向异性 B Fe3O4(4 µ ) 电阻率低,K也较大 B Li0.5Fe2.5O4(2.5 µ ) 烧结性差,10000C, Li挥 B 发
§1-3
软磁铁氧体的磁谱
一、软磁铁氧体磁谱及形状 磁谱:软磁材料在弱交变磁场中,复磁导率µ = r µ ' - µ " 随频率变化的曲线 r r
µ µ' r
1
µ" r
2
3
4
f
一般软磁铁氧体材料的磁谱
铁氧体磁谱分区: 1.低频( f<104Hz): 复磁导率µ 大, µ 小,损耗小, r r 磁导率随频率变化不大; 2.中频(f=104 106Hz):与低频相似,可能出现尺寸 共振和磁力共振; µ 下降, µ 出现峰值 ; r r
<<磁性材料>>(铁氧体部分)
引言
• 无论是电子技术、电力技术、通信技术、还是空间技术、计算技术、生 物技术,乃至家用电器,磁学和磁性材料都是不可缺少的重要部分。

铁氧体——精选推荐

铁氧体——精选推荐

1.引言1.1铁氧体的种类及特性[1、2]铁氧体为一种具有软磁性的金属氧化物。

是由铁和其它一种或多种金属合成的金氧化物。

尖晶石型铁氧体的化学分子式为MeFe2O4或MeO·Fe2O3,Me是指离子半与二价铁离子相近的二价金属离子(Mn2+﹑Zn2+﹑Cu2+ Ni2+﹑Mg2+)或平均化学价为二价的多种金属离子组成。

使用不同的替代金属,可以合成不同类型的铁氧体。

以Mn2+替代Fe2+所合成的复合氧化物MnOFe2O3(MnFe2O4)称为锰铁氧体,以Zn2+替代Fe2+所组成的复合物ZnO.Fe2O3(ZnFe2O4)称为锌铁氧体。

通过控制替代金属,可以达到控制材料磁特性的目的。

由一种金属离子替代而成的铁氧体为单组分铁氧体;由两种或两种以上的金属离子替代可以合成出双组分铁氧体和多组分铁氧体。

锰锌铁氧体(Mn-ZnFe2O4)和镍锌铁氧体(Ni-ZnFe2O4)就是双组分铁氧体,而锰镁铁氧体(Mn-Mg-ZnFe2O4))则是多组分铁氧体。

1.2软磁铁氧体现状与发展由于我国的电子信息产业取得空前的发展,作为软磁铁氧体的重要应用领域无论是传统消费的电子音像产品,还是新崛起的移动通信设施和家用电脑及外部设备,都处于蓬勃发展的状态;而基础设施建设的大规模开展使节能照明产品的需求也在快速增长;由于电磁兼容要求的提高,EMI 专用器件需求猛增。

这些都对软磁铁氧体产业提出更高的要求。

纵观电子信息产业发展的态势,可以得到一个结论:当前软磁铁氧体的最大市场在中国,市场增长最快的地区也是中国国内电子工业产品需求量将会以15%左右年增长率向前发展,高档产品和出口产品的比率将会很快提高,国内需要高档产品量也不断增加。

据统计,珠江三角洲地区磁环年需量30亿只左右,磁芯约2亿只,美国的PULSE,台商YCL等在大陆办厂的企业用量也比较大,仅美国PULSE公司一年要用1亿美元进口高磁导率铁氧体系列产品,还有国内华为、中兴、大唐、东方通讯等程控交换机生产厂,也需要高档软磁铁氧体产品代替进口产品。

铁氧体磁性材料的制备及研究进展

铁氧体磁性材料的制备及研究进展

铁氧体磁性材料的制备及研究进展【摘要】铁氧体磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。

综述了铁氧体磁性材料的研究进展及其应用,分析了铁氧体磁性材料的制备方法,展望了研究和开发铁氧体磁性材料的新性能和新技术的应用前景。

【关键词】铁氧体磁性材料;研究进展;制备铁氧体是一种非金属磁性材料,又称磁性陶瓷。

人类研究铁氧体是从20世纪30年代开始的,早期有日本、荷兰等国对铁氧体进行了系统的研究;在20世纪40年代开始有软磁铁氧体的商品问世;20世纪50年代是铁氧体蓬勃发展的时期。

1952年磁铅石硬磁铁氧体研制成功;1956年又在此晶有必要对1.1.1(参数[1]3~4个数量级一起,能转化为热能,从而增加吸收体的吸波能力。

在应用方面,铁氧体吸波材料可分为结构型(整体烧结成一定形状的器件)和涂敷型(用铁氧体颗粒的涂层作为吸收剂使用),混合一定量的粘结剂后制成的吸收介质材料,有时为了提高吸波总体性能,将铁氧体吸波材料同金属型或有机型的材料混合使用。

1.2 信息存储铁氧体材料磁记录是利用强磁性介质输入,记录,存储和输出信息的技术和装置。

其磁记录用的磁性材料分为两类:磁记录介质,是作为记录和存储信息的材料,属于永磁材料。

另一类是磁头材料,是作为输入和输出信息用的传感器材料,属于软磁材料。

1.2.1 磁记录介质主要是磁带、硬磁盘、软磁盘、磁卡及磁鼓等,从构成上有磁粉涂布型磁材料和连续薄膜型磁材料两大类。

目前,主要的磁记录材料有:γ-Fe2O3,钴改性γ- Fe2O3,CrO2和钡铁氧体磁粉。

1.2.2 磁头材料磁头在磁记录技术中的作用是将输入信息存到磁记录介质中或将记存在磁记录介质中的信息输出来,起着转换器的作用。

目前应用的磁头材料有:热压多晶铁氧体,单晶铁氧体和六角晶系铁氧体[2]。

1.3在磁场作,包括10nm。

磁泛的应用并已用于癌症治疗目前器;剂,1.4效应构La1-, 3由于自旋无序散射作用,材料的导电性质向半导体型转变,因此,随着Mn4+离子含量的变化,材料可以形成反铁磁耦合和铁磁耦合,如果是反铁磁耦合,材料呈高电阻态:如果是铁磁耦合,则材料呈低电阻态;如果在零磁场下,材料是反铁磁,则电阻处于极大,施加磁场后,由反铁磁态转变为铁磁态,则电阻由高电阻变为低电阻。

东磁dmr53铁氧体

东磁dmr53铁氧体

东磁dmr53铁氧体东磁DMR53铁氧体是一种用于电子器件的磁性材料。

它具有高磁导率、低损耗以及较高的饱和磁感应强度等特点,因此在电感器、传感器、变压器等领域得到广泛应用。

本文将介绍东磁DMR53铁氧体的基本性质、制备工艺以及应用领域。

一、东磁DMR53铁氧体的基本性质东磁DMR53铁氧体属于软磁材料,它具有一系列独特的磁性能。

首先,它具有较高的磁导率,能够有效地传导磁场,提高电子器件的性能。

其次,东磁DMR53铁氧体具有低损耗特性,能够减少能量的损耗,提高能源利用效率。

此外,它还具有较高的饱和磁感应强度,能够在外加磁场较大时保持较高的磁感应强度,满足各种应用需求。

二、东磁DMR53铁氧体的制备工艺东磁DMR53铁氧体的制备主要包括原料的选择、成分控制以及烧结工艺等步骤。

首先,选取高纯度的金属氧化物作为原料,通过严格的质量控制,保证材料的纯度。

然后按照一定的配方比例,混合原料,并通过球磨等工艺进行均匀混合。

接下来,将混合物进行干燥,以去除水分。

最后,将干燥后的材料进行烧结,形成具有特定形状和性能的铁氧体材料。

三、东磁DMR53铁氧体的应用领域东磁DMR53铁氧体在电子器件中有各种应用。

首先,它常用于电感器领域。

电感器是一种电子元件,能够存储电能,并在需要时释放电能。

东磁DMR53铁氧体由于其高磁导率和低损耗特性,能够提高电感器的工作效率,使得电子器件具有更好的性能。

其次,东磁DMR53铁氧体还可以应用于传感器。

传感器是一种将各种物理量转化为电信号的装置,如温度传感器、压力传感器等。

东磁DMR53铁氧体具有较高的饱和磁感应强度,能够提高传感器的灵敏度和测量精度。

此外,东磁DMR53铁氧体还可以用于变压器领域。

变压器是一种能够改变交流电压的电气设备。

东磁DMR53铁氧体的高磁导率和低损耗特性,能够提高变压器的能效,减少能量的损失。

总结东磁DMR53铁氧体是一种用于电子器件的磁性材料。

它具有高磁导率、低损耗以及较高的饱和磁感应强度等特点,广泛应用于电感器、传感器、变压器等领域。

锰锌铁氧体磁环和镍锌铁氧体磁环

锰锌铁氧体磁环和镍锌铁氧体磁环

锰锌铁氧体磁环和镍锌铁氧体磁环锰锌铁氧体磁环和镍锌铁氧体磁环是两种常见的磁性材料,它们在电子设备、电力设备、通信设备等领域都有广泛的应用。

下面将从材料特性、应用领域、制备工艺等方面进行介绍。

一、材料特性1.锰锌铁氧体磁环锰锌铁氧体磁环是一种软磁材料,具有高磁导率、低磁滞损耗、高饱和磁感应强度等特点。

它的磁滞回线比较平缓,磁化容易,磁场强度较小时,磁感应强度随磁场强度的变化较为线性。

锰锌铁氧体磁环的磁导率随着频率的增加而降低,因此在高频应用中,锰锌铁氧体磁环的应用受到一定的限制。

2.镍锌铁氧体磁环镍锌铁氧体磁环也是一种软磁材料,具有高磁导率、低磁滞损耗、高饱和磁感应强度等特点。

它的磁滞回线比较平缓,磁化容易,磁场强度较小时,磁感应强度随磁场强度的变化较为线性。

镍锌铁氧体磁环的磁导率随着频率的增加而降低的程度比锰锌铁氧体磁环小,因此在高频应用中,镍锌铁氧体磁环的应用比锰锌铁氧体磁环更为广泛。

二、应用领域1.锰锌铁氧体磁环锰锌铁氧体磁环主要应用于低频电感器、变压器、电源滤波器、电子变压器等领域。

由于锰锌铁氧体磁环的磁导率随着频率的增加而降低,因此在高频应用中,锰锌铁氧体磁环的应用受到一定的限制。

2.镍锌铁氧体磁环镍锌铁氧体磁环主要应用于高频电感器、变压器、电源滤波器、电子变压器等领域。

由于镍锌铁氧体磁环的磁导率随着频率的增加而降低的程度比锰锌铁氧体磁环小,因此在高频应用中,镍锌铁氧体磁环的应用比锰锌铁氧体磁环更为广泛。

三、制备工艺1.锰锌铁氧体磁环锰锌铁氧体磁环的制备工艺主要包括粉末冶金法、溶胶-凝胶法、水热法等。

其中,粉末冶金法是最常用的制备工艺。

该工艺的主要步骤包括原料混合、压制成型、烧结等。

2.镍锌铁氧体磁环镍锌铁氧体磁环的制备工艺主要包括粉末冶金法、溶胶-凝胶法、水热法等。

其中,粉末冶金法是最常用的制备工艺。

该工艺的主要步骤包括原料混合、压制成型、烧结等。

总之,锰锌铁氧体磁环和镍锌铁氧体磁环是两种常见的磁性材料,它们在电子设备、电力设备、通信设备等领域都有广泛的应用。

软磁材料介绍

软磁材料介绍
软磁材料介绍
第1页,共36页。
*主要的软磁材料:
〔1〕合金--如硅钢〔Fe-Si〕、坡莫合金〔Fe-Ni〕、 仙台斯特合金〔Fe-Si-Al〕;
〔2〕软磁铁氧体--Mn-Zn系、Ni-Zn系、Mg-Zn系等; 〔3〕非晶态、纳米晶、薄膜等。
*开展史: 〔1〕铁氧体问世之前,金属软磁材料垄断了电力、电子、 通信各领域。优点:其MS远高于铁氧体,因此电力工业 中的变压器、电机等至今仍是Fe-Si合金材料。缺点:涡 流损耗限制了其在高频段的应用。 〔2〕20世纪40年代开场,软磁铁氧体由实验室走向工业 生产。
Ni78.5%Fe-Ni合金经过热处理后,i可达104 *铁氧体软磁材料:配方时选择K1和 S很小的根本成分,如 MnFe2O4、MgFe2O4、CuFe2O4、NiFe2O4等。然后再采用正 负K1、 S补偿或添加非磁性金属离子冲淡磁性离子间的耦合作 用。
第7页,共36页。
3、改善材料的显微构造
*应用:电动机、发电机、变压器、电磁机构、继电器电子器件及测 量仪表中。
第16页,共36页。
第17页,共36页。
2.3.3 坡莫合金 *1913年被开发出来,镍的质量分数为30%-90%的镍铁合金。
*优点:很高的磁导率,成分范,延展性好,低的损耗。
消除方法:保温后,采用缓慢冷却到100-300℃的退火措施,这样在
650-300℃之间Fe3C有足够的时间析出、长大为对磁性能影响不大 的大颗粒夹杂物。
*应用:电磁铁的铁芯和磁极,继电器的磁路和各种零件, 感应式和电磁式测量仪表的各种零件,扬声器的各种磁路, 中的振动膜、磁屏蔽,电机中用以导引直流磁通的磁极,冶 金原料等。
*含碳量是影响磁性能的主要因素。
除碳方法:高温用H2处理除碳,以消除铁中碳对畴壁移动的阻碍作用。

电机铁氧体

电机铁氧体

电机铁氧体
电机铁氧体是一类软磁材料,主要用于电机、发电机和变压器中的磁路部分,用以增强和导向磁场。

铁氧体材料通常由铁氧化物与其他金属氧化物(如锰、锌、镍等)合成,形成复杂的晶体结构,这种结构使得它们具有良好的磁性能。

电机铁氧体的主要特性包括:
1. 高磁导率:铁氧体具有较高的磁导率,这意味着它们能够高效地引导和增强磁场,从而提高电机的效率。

2. 低损耗:在交变磁场中,铁氧体材料的磁滞损耗和涡流损耗相对较低,这有助于减少电机运行时的能量损失。

3. 饱和磁感应强度高:铁氧体能够在不失磁的情况下达到较高的磁感应强度,这对于承受大电流的电机尤为重要。

4. 良好的频率特性:铁氧体材料适用于宽频率范围内的应用,从直流到几十兆赫兹的交流电。

5. 易于加工:铁氧体可以通过粉末冶金工艺制成各种形状和尺寸的磁心,适应不同的电机设计要求。

6. 耐环境影响:铁氧体材料通常具有较好的耐温、耐湿和耐腐蚀性能,适合恶劣的工作环境。

电机铁氧体按照其磁性特性可以分为各向同性铁氧体和各向异性铁氧体:
-各向同性铁氧体(Isotropic ferrites):在所有方向上磁
性能相同,适合用于需要全方向磁通的应用场合。

-各向异性铁氧体(Anisotropic ferrites):在某一特定方向上的磁性能优于其他方向,通常用于需要单方向磁通的应用,如定向磁头和特殊类型的电机。

电机铁氧体的选择取决于具体应用的需求,包括工作频率、磁通密度、温度范围、尺寸限制和成本等因素。

常见的电机铁氧体材料有锰锌铁氧体(Mn-Zn ferrite)和镍锌铁氧体(Ni-Zn ferrite),它们分别适用于不同的频率范围和磁性能要求。

软磁材料性能

软磁材料性能
③开关电源变压器对功率铁氧体材料的要求 变压器可传输功率为: Pth = c f Bmax Ae Wd Pth——传输功率 C——与开关电源电路工作型式有关系数, Bmax——最大允许磁通 Ae——磁路有效截面积 Wd——绕组设计参数 即 Pth ∝ f Bmax Ae
上式说明:
a 工作频率f越大, Pth 越大
C、 μi –f特性
意义:
材料的磁导率随使用频率的变化关系即为μi –f特性,当μi 降低 时的频率为截止频
率 μi –f特性与使用的关系:
1
截止频率以上材料的μi值急剧下降,使材料的电感值急剧下降,会造成产品失效不能2 使
用。所谓宽频即为截止频率高。
影响μi –f特性的因素:
材料的制造工艺
材料的晶粒尺寸越小截止频率越高
3、我公司高导铁氧体材料的特性 命名方法 R 10K 磁导率大小 软磁
材料 名称 R4K R5K R7K R10K R12K R15K
μi
4300±25%
5000±25%
7000±25%
10000±30 % 12000±30 % 15000±30 %
tanδ/μi (×10-6)
<10
αμr ( ×106℃) (20—60℃)
μi高
1、功率铁氧体材料
主要用于高频小型化开关电源、电视机显示器的回扫变压器等。
①发展过程
70年代第一代
中国2KD TDK H35 PHILIPS 3C85 适于20KHZ
80年代初第二代 (DMR30)2KBD TDK PC30 EPCOS N27 适于100K以下
80年代后期第三代 (DMR40)2KB1 TDK PC40 PHILIPS 3C90 适于250K以下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

软磁材料的研究
二、软磁材料介绍 1、当磁化发生在Hc不大于1000A/m,这样的 材料称为软磁体 。软磁材料的矫顽力很低, 在磁场中可以反复磁化,当外电场去掉以 后获得的磁性便会全部或大部分消失。 2、软磁铁氧体分为以下九中:纯铁和低碳钢、 铁硅系合金、铁铝系合金、铁硅铝系合金、 镍铁系合金、铁钴系合金、软磁铁氧体 、 非晶态软磁合金、超微晶软磁合金。
软磁材料的研究
3 水热法 • 水热法也是近 10 余年来发展起来的制备超微粉 又一新的合成方法。此法以水作溶剂, 在一定温度 和压力下, 使物质在溶液中进行化学反应的一种制 备无机功能材料微粉的方法, 此法可实现多价离子 的掺杂, 这些特性为研究新材料提供了有利条件。 在水热反应中, 微粉晶粒的形成经历了一个溶 解结晶的 过程, 所制备 的微粉晶体粒 径小, 粒度较 均匀, 不需高温煅烧预处理, 合成温度大约为 900 ℃, 形成的晶体较为完整, 纯度高, 且具有较高的活 性。有研究表明, 水热反应温度、时间等对产物纯 度、颗粒、磁性有较大影响, 所制备的微粉晶粒一 般只有几十纳米。
软磁材料的研究
1. 2 碳酸盐共沉淀法 碳酸盐共沉淀法是它是在金属盐溶液 中加入适当的沉淀剂碳酸盐, 得到前驱体 沉淀物, 再焙烧成粉体。在共沉淀时, 为了 防止钠离子的污染, 选用 NH3- NH4HCO 3 作沉淀剂, 可消除使用 单一沉淀剂所产 生的沉淀过滤困难和后烧结困难等蔽端。 此法工艺简单, 易于操作, 成本较低, 具有 较好的经济价值。
软磁材料的研究
化学共沉淀法制备铁氧体微粉是选择一种合 适的可溶于水的金属盐类, 按所制备材料组成计量, 将金属盐溶解, 并以离子状态混合均匀, 再选择一 种合适的沉淀剂, 将金属离子均匀沉淀或结晶出来, 再将沉淀物脱水或热分解而制得铁氧体微粉。因 此化学共沉淀法是一种最经济的制备铁氧体微粉 的方法。由于其所制备的粉体微粒具有纯度高, 粒 度分布均匀, 活性好等特点, 使之近年来得到深入 研究及广泛应用。共沉淀法按其沉淀剂的不同可 分为:碳酸盐、草酸盐和氢氧化物等若干种方法。
软磁材料的研究
国内高性能永磁铁氧体磁性材料(相当于日 本TDK产品的FB4和FB5及以上系列)的需求占 永磁铁氧体磁性材料总需求的比例将由2000年的 40%左右(不足6万吨)增至2005年的70%以上 (约15万吨)高性能软磁铁氧体磁性材料(相当 于日本TDK产品的PC40和H5C2及以上系列)的 需求占软磁铁氧体磁性材料总需求的比例将由 2000年的10%以下增至2005年的30%以上 (PC40及以上2万吨,H5C2及以上1万吨)
软磁材料的发展趋势
现在软磁铁氧体产品,高技术领域应用占22%, 如数字通信、电磁兼容(EMC)、射频宽带、抗 电磁干扰(EMI)、高清显示、汽车电子。传统 中低档产品领域应用占78%,如电视机、电源适 配器、电子镇流器、普通开关电源变压器、天线 棒。 从总体来看,中国的铁氧体磁体的性能还以中 低档为多数,虽然产量高居世界第一,但产值并 不理想。现在中国的磁性材料总产值约265亿人 民币,永磁铁氧体产值62亿,平均价格在1.5万元 /吨;软磁铁氧体产值在93亿,平均价格在3.1万 元/吨,其余钐钴磁体、钕铁硼磁体和金属磁体占 市场110亿元 。
软磁材料的发展趋势
1、铁氧体吸波材料由于科学技术的讯猛发展,在武 器的隐身技术和电子计算机防信息泄露技术中, 以及在生物学中的热效应方面,铁氧体作为吸波 材料方面的应用尤为重要 。近年来研究者主要集 中研究复合铁氧体材料以及纳米尺寸的铁氧体来 控制其电磁参数,铁氧体纳米磁性材料作为微波 的吸收体,纳米级的微粒材料的比表面积比常规 粗粉大3-4个数量级,吸收率高,一方面,它能吸 收空所中的游离的分子或介质中其他分子通过成 键方式连接在一起,造成各向异生的改变。另一 方面,在微波场中,活性原子及电子运动加剧, 促使磁化,最终将电磁能转化为热能,从而增加 吸收体的吸波能力。
软磁材料的研究
磁损耗分类 : • 非共振区:涡流损耗 、磁滞损耗 剩余损耗 • 共振区:尺寸损耗 、畴壁损耗 自然共振 其中:非共振区损耗较小,共振区损耗较大
软磁材料的研究
四、软磁铁氧体材料粉料的制备 软磁铁氧体微粉的制备大多采用火法和 湿化学法两种, 铁氧体微粉的制备主要采用 湿化方法 ,软磁铁氧体微粉的制备主要采 用共沉淀法、溶胶-凝胶法、水热法等湿化 学法 。下面以湿法工艺制备Mn-Zn铁氧体 微粉为实例进行讲述。 1、共沉淀法制备铁氧体微粉
软磁材料的研究
2 溶胶-凝胶法 • 溶胶-凝胶法是 20 世纪 90 年代兴起的一种新的 湿化学合成方法, 被广泛的应用于各种无机功能材 料的合成当中。此法是将金属有机化合物如醇盐 等溶解于有机溶剂中, 通过加入纯水等使其水解、 聚合、形成溶胶, 再采取适当的方法使之形成凝胶, 并在真空状态下低温干燥, 得疏松的干凝胶, 再作 高温煅烧处理, 即可制得纳米级氧化物粉末, 凝胶 的结构和性质在很大程度上取决于其后的干燥致 密过程, 并最终决定材料的性能。 • 此法制备的粉体纯度高, 均匀性好, 粒经小 ,尤其 对多组分体系, 其均匀度可达到分子或原子 水平。
软磁材料的研究
4 超临界法 • 超临界法是指以有机溶剂等代替水作溶剂, 在水热反应器中, 在超临界条件下制备微粉 的一种方法。反应过程中液相消失, 更有利 于体系中微粒的均匀成长和晶化, 比水热法 更为优越, 是一个进一步值得研究的方法。 超临界流体干燥法所制备的微粉粒度分布 较均匀, 晶体完全, 比表面能较小, 不易团聚。
软磁材料的研究
• 烧结温度比高温固相反应温度低, 晶粒大小 随温度和时间的增加而增大, 完全晶化温度 约为750 ℃左右。与共沉淀法相比, 该法合 成的纳米粉体仅在烧结时才出现团聚, 且在 不高的温度( 700~800 ℃) 晶化完全。这样 可以节约能源, 避免由于烧结温度高而从反 应器中引入杂质, 同时烧前易部分形成凝胶, 具有较大的表面积, 利于产物的形成。是一 种较好的制备超微粉的方法 。
软磁材料的研究
三、软磁铁氧体材料 1、 软磁铁氧体是以Fe2O3为主成分的 亚铁磁性氧化物,采用粉末冶金方法生产。 有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中MnZn铁氧体的产量和用量最大 。 2、软磁铁氧体材料的分类: 1)按晶体结构:尖晶石型;平面六角 晶系 。 2)按材料应用性能分:
软磁材料的研究
铁氧体软磁材料 的研究与发展
软磁材料的研究
一、磁性材料的历史 中国是世界上最先发现物质磁性现象 和应用磁性材料的国家。早在战国时期就 有关于天然磁性材料(如磁铁矿)的记载。 11世纪就发明了制造人工永磁材料的 指南针用 于航海的记述,同时还发现了地磁偏角的 现象。
软磁材料的研究
近十年来,世界、中国铁氧体磁性材料的 发展速度分别高达10%和20%以上。据有关部 门和专家预测,未来5年,世界磁性材料市场 (含金属磁性材料、稀土永磁等)的年需求增 长率约为15%,中国国内市场的年需求增长率 将超过20%。市场需求的快速增长,促进了产 能的快速扩张:截止到2005年底,全球永磁铁 氧体磁性材料的产量将由2000年的72万吨递增 到100多万吨,软磁铁氧体磁性材料的产量将由 2000年的30万吨递增到50万吨左右;中国国内 软磁铁氧体磁性材料的产量将由2000年的6万吨 (含外资企业的产量)递增到10万吨左右。
软磁材料的发展趋势
人类研究铁氧体是从20世纪30年代开始的。 20世纪50年代是铁氧体蓬勃发展的时期。1952年 磁铅石硬磁铁氧体研制成功;1956年又在此晶系 中开发出平面型超高频铁氧体,同时发现了合稀 土元素的石榴石型铁氧体,从而形成了尖晶石型、 磁铅石型和石榴石型三大晶系铁氧体材料体系。 应该说铁氧体的问世是强磁学和磁性材料发展史 上的一个重要里程碑。至今铁氧体磁性材料已在 众多高技术领域得到了广泛的应用。近年来,国 内外学者在磁性材料方面进行了卓有成效地新探 索,其重点的研究和应用主要集中在以下几个方 面。
软磁材料的发展趋势
3、磁性流体 磁流体是一种新型的功能材料,它由磁性颗 粒、稳定剂(表而活性剂)和载液三部份组成, 在磁场作用下显示出优于其他磁性材料的优良性 能,因此被广泛应用。这是一种人工合成的胶体 系统,包括胶状的磁性微料(磁铁矿),经界面 活性剂的辅助分散于连续的载粒液中,磁性微粒 的直径约10mm。磁性流体集固体的可磁化性和 液体的流动性于一体,在磁场作用下,磁性流体 可被磁化,显示超顺磁性。磁性流体在生物医学 领域具有广泛的应用,近年发展起来的磁性药物 载体是国内外十分关注的高新技术
• 高磁导率材料:低频、宽频带变压器及脉 冲变压器 • 低损耗材料:电源磁芯,高功率场合 • 低损耗高温定性材料:通信滤波器磁芯 • 高频大磁场材料: 空腔谐振器、高功率变 压器等 • 功率铁氧体(高Bs)材料: 开关电源及低 频功率变压器
软磁材料的研究
• 高密度记录材料:用做录音,录象磁头 • 电波吸收体材料:吸收电磁波能量,广泛 应用于抗干扰 电子技术 3、软磁铁氧体的损耗 软磁材料在弱交变场,一方面会受磁 化而储能,另一方面由于各种原因造成B落后 于H而产生损耗,即材料从交变场中吸收能 量并以热能形式耗散。
软磁材料的发展趋势
2、铁氧体材料在信息存储方面的应用。 信息存储铁氧体材料磁记录是利用强磁 性介制输入、记录、存储和输出信息的技 术和装置。其磁记录用的磁性材料分为两 类:磁记录介制,是作为记录和存储信息 的材料,属于永磁材料。另一类是磁头材 料,是作为输入和输出信息用的传感器材 料,属于软磁材料。
软磁材料的研究
软磁材料在工业中的应用始于十九世纪末, 是伴随着电力电工及电讯技术的兴起而出现的, 其应用范围极其广泛。软磁材料不仅应用于家电 领域、信息化领域、汽车领域和其他配套领域,更 主要的是软磁材料作为电子元器件生产的主要原 材料为其带来了源源不断的需求。近年来,其市 场需求量逐年上升,产品种类也日益增多,成为 磁性材料行业发展的一大亮点。根据权威机构统 计数据的显示,2004年中国软磁材料产量超过10 万吨,实现销售收入约70亿元,其产量占全球磁 性材料总产量的33%左右,而实现的销售收入则 占全球磁性材料总销售收入的40%左右。
相关文档
最新文档