活性炭活化原理
湿法碳化 活化
湿法碳化活化湿法碳化活化是一种常见的活化方法,用于制备活性炭材料。
活性炭是一种具有高度发达的孔隙结构和巨大比表面积的碳材料,具有很强的吸附能力和化学稳定性,被广泛应用于环境保护、能源储存、电化学催化等领域。
湿法碳化活化方法通过在活化过程中添加一定的湿润剂,可以改善活化效果,提高活性炭的孔隙结构和吸附性能。
湿法碳化活化的基本原理是将碳源与活化剂混合后加热,使碳源在高温下发生碳化反应,并通过活化剂的作用形成孔隙结构。
湿法碳化活化相比于干法活化,通过添加湿润剂可以提高反应温度下的碳源活化速率,促进活化剂对碳源的均匀分散和渗透,从而得到具有更好孔隙结构和吸附性能的活性炭材料。
湿法碳化活化的湿润剂通常选择具有一定溶解性的物质,如水、醇类、有机酸等。
湿润剂的添加可以有效降低活化温度,提高碳源与活化剂的接触性能,增加反应的活性中心,从而改善活化效果。
此外,湿法活化还可以调控活化反应的速率和产物分布,使活化过程更加可控。
在湿法碳化活化过程中,湿润剂的添加量和种类、反应温度、反应时间等条件对活化效果有着重要影响。
合理选择湿润剂种类和添加量,控制反应温度和时间,可以调控活化剂的活性和选择性,优化活性炭的孔隙结构和吸附性能。
此外,湿法碳化活化还可以与其他活化方法相结合,如常见的磷酸活化、氯化锌活化等,进一步改善活化效果。
值得注意的是,湿法碳化活化方法虽然在活化效果上具有一定优势,但也存在一些问题。
首先,湿法活化过程中湿润剂的选择和添加量需要经过一定的试验和优化,否则可能导致活化效果不佳。
其次,湿法活化需要进行水洗和干燥等后续处理步骤,增加了工艺复杂性和能耗。
此外,湿法活化还存在一定的废水和废液处理问题,需要进行合理处理和回收利用。
湿法碳化活化是一种有效改善活化效果的方法,可以制备具有优良孔隙结构和吸附性能的活性炭材料。
通过合理选择湿润剂种类和添加量,控制反应条件,可以优化活化剂的活性和选择性,提高活性炭的吸附能力和化学稳定性。
活性炭活化原理
活性炭的活化机理及应用材研1407 朱明2014200483 活性炭是一种非常优良的吸附剂,它是利用植物原料(木屑、木炭、果壳、果核)、煤和其它含碳工业废料作原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。
根据活化介质的不同,活性炭活化方法分为物理活化法、化学活化法和物理—化学复合活化法。
物理活化水蒸汽、二氧化碳、空气或它们的混合气体对环境污染小,因其依靠氧化碳原子形成孔隙结构,活化温度较高且活性炭得率低。
化学活化法活性炭得率较高,孔隙发达,吸附性能好。
但此法对设备腐蚀性大,环境污染严重。
热解能量循环利用困难。
而且活性炭中残留化学药品.在应用方面受到限制。
一.活性炭的活化机理1.物理活化法物理活化法一般分两步进行,先将原料在500℃左右炭化,再用水蒸汽或CO2 等气体在高温下进行活化。
高温下,水蒸汽及二氧化碳都是温和的氧化剂,碳材料内部C原子与活化剂结合并以CO+H 2或CO的形式逸出,形成孔隙结构。
物理活化法所需的活化温度一般较化学活化法高,而且活化所需的时间也更长,因此耗能比较大,成本高。
尽管有这些缺点,物理活化法在实际生产中的应用仍然十分广泛,原因在于其制得的活性炭无需过多的后处理步骤,不像化学活化法制得的活性炭需要除去残留的活化剂。
将炭化材料在高温下用水蒸气、二氧化碳或空气等氧化性气体与炭材料发生反应,使炭材料中无序炭部分氧化刻蚀成孔,在材料内部形成发达的微孔结构。
炭化温度一般在600℃,活化温度一般在800℃∽900℃。
其主要化学反应式如下:C+2H2O 2H2+CO2 △H=18kcalC+H2O H2+CO △H=31kcalCO2+C 2CO △H=41kcal上述三个化学反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃,上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补充外加热源,以保证活化炉活化反应区域的活化温度。
活性炭活化原理
活性炭的活化机理及应用材研1407 朱明2014200483 活性炭是一种非常优良的吸附剂,它是利用植物原料(木屑、木炭、果壳、果核)、煤和其它含碳工业废料作原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。
根据活化介质的不同,活性炭活化方法分为物理活化法、化学活化法和物理—化学复合活化法。
物理活化水蒸汽、二氧化碳、空气或它们的混合气体对环境污染小,因其依靠氧化碳原子形成孔隙结构,活化温度较高且活性炭得率低。
化学活化法活性炭得率较高,孔隙发达,吸附性能好。
但此法对设备腐蚀性大,环境污染严重。
热解能量循环利用困难。
而且活性炭中残留化学药品.在应用方面受到限制。
一.活性炭的活化机理1.物理活化法物理活化法一般分两步进行,先将原料在500℃左右炭化,再用水蒸汽或CO2 等气体在高温下进行活化。
高温下,水蒸汽及二氧化碳都是温和的氧化剂,碳材料内部C原子与活化剂结合并以CO+H 2或CO的形式逸出,形成孔隙结构。
物理活化法所需的活化温度一般较化学活化法高,而且活化所需的时间也更长,因此耗能比较大,成本高。
尽管有这些缺点,物理活化法在实际生产中的应用仍然十分广泛,原因在于其制得的活性炭无需过多的后处理步骤,不像化学活化法制得的活性炭需要除去残留的活化剂。
将炭化材料在高温下用水蒸气、二氧化碳或空气等氧化性气体与炭材料发生反应,使炭材料中无序炭部分氧化刻蚀成孔,在材料内部形成发达的微孔结构。
炭化温度一般在600℃,活化温度一般在800℃∽900℃。
其主要化学反应式如下:C+2H2O 2H2+CO2 △H=18kcalC+H2O H2+CO △H=31kcalCO2+C 2CO △H=41kcal上述三个化学反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃,上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补充外加热源,以保证活化炉活化反应区域的活化温度。
活性炭制造的主要工艺过程-回转炉活化法
活性炭制造的主要工艺过程-活化法制造活性炭的关键工艺是活化。
由于所用活化剂的不同,可分为两类方法:(1)用氯化锌或磷酸等化学品为活化剂的化学品活化法;(2)用水蒸气或二氧化碳等为活化剂的气体活化法。
前者称为化学活化法,后者称为物理活化法。
其实两类活化过程都各自发生质的变化,都是化学变化的过程。
1、化学品活化法(一)氯化锌活化法以化学品氯化锌为活化剂。
将0.4~5.0份氯化锌浓溶液和1份泥炭或锯屑混合,在转炉中下燥,加热到600~700℃,成品以酸洗和水洗回收锌盐。
有时化学品活化后继续进行水蒸气活化,藉以增加活性炭的细孔。
氯化锌活化的活性炭具较多大孔。
虽然这是有效和简单的方法,但因锌化合物的环境污染而渐衰。
(二)磷酸活化法以化学品磷酸为活化剂。
炭化的或未炭化的含碳物作起始原料。
例如将研细的锯屑和磷酸混成浆状,在转炉中干燥,加热到400~600℃。
萃取回收磷酸,有时中和后回收磷酸盐。
于燥得活性炭,一般较氯化锌法的活性炭具有更细的细孔。
也可采用磷酸和水蒸气联合活化法。
近年磷酸活化法趋向广泛应用,磷酸回收等革新未见发表。
(三)氢氧化钾活化法以化学品氢氧化钾为活化剂。
将含碳原料以熔融的无水氢氧化钾处理,激烈的反应产生非常高的多孔性,比表而积可高达3000m2/g。
(四)其他化学品活化法硫酸、硫化钾、氯化铝、氯化钱、硼酸盐、硼酸、氯化钙、氢氧化钙、氯气、氯化氢、铁盐、镍盐、硝酸、亚硝气、五氧化二磷、金属钾、高锰酸钾、金属钠、氧化钠和二氧化硫均可用于活化。
2、气体活化法以水蒸气、二氧化碳或两者的混合气体为活化剂,将含碳物料和气体在转炉或者沸腾炉内,在800~1000℃高温下进行碳的氧化反应,制成细孔结构发达的活性炭。
水蒸气、二氧化碳和碳的反应是吸热反应,而氧和碳的反应是很强的放热反应,因此炉内反应温度难以控制,尤其要避免局部过热,防止不均匀活化更难,故氧或空气不宜作为活化剂。
有时使用空气和水蒸气的混合气体,用碳的燃烧作为热源。
活性炭活化原理
精心整理活性炭的活化机理及应用活性炭是一种非常优良的吸附剂,它是利用植物原料(木屑、木炭、果壳、果核)、煤和其它含碳工业废料作原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。
根据活化介质的不同,活性炭活化方法分为物理活化法、化学活化法和物理—化学复合活化法。
物理活化水蒸汽、二氧化碳、空气或它们的混合气体对环境污染小,因其依靠氧化碳原子形成孔隙结构,活化温度较高且活性炭得率低。
化学活化法活性炭得一.1.CO+H2般在800上述三个化学反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃,上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补充外加热源,以保证活化炉活化反应区域的活化温度。
活化反应属于气固相系统的多相反应,活化过程中包括物理和化学两个过程,整个过程包括气相中的活化剂向炭化料外表面的扩散、活化剂向炭化料内表面的扩散、活化剂被炭化料内外表面所吸附、炭化料表面发生气化反应生成中间产物(表面络合物)、中间产物分解成反应产物、反应产物脱附、脱附下来的反应产物由炭化料内表面向外表面扩散等过活化反应通过以下三个阶段最终达到活化造孔的目的。
第一阶段是炭化时形成的但却被无序的碳原子及杂原子所堵塞的孔隙的打开,即高温下,活化气体首先与无序碳原子及杂原子发生反应。
第二阶段是打开的孔隙不断扩大、贯通及向纵深发展,孔隙边缘的碳原子由于具有不饱和结构,易于与活化气体发生反应,从而造成孔隙的不断扩大和向纵深发展。
2.化化学法、KOH以(600~800℃)在KOHKOH 的加入也加快了非碳原子N、H等的脱除,KOH活化反应成孔机理就是通过KOH与原料中的碳反应,把其中的部分碳刻蚀掉,经过洗涤把生成的盐及多余的KOH洗去,在被刻蚀的位置出现了孔。
这一过程主要发生以下反应:4KOH+—CH2一K2CO3+K2O+3H2K2CO3+2—C—2K+3COK2O+—C—2K+CO2KOHK2O+H2OC+H2OH2+COCO+H20H2+C02K2O+CO2K2CO3K2O+H22K+H2OK2O+C2K+CO在KOH活化法制备活性炭时,活化后的洗涤是关键。
活性炭的特性,作用原理及其应用[1]
活性炭的特性,作用原理及其应用活性炭介绍活性炭是以优质椰子壳、核桃壳、杏壳、桃壳为原料,经系列生产工艺精制而成,外观呈黑色颗粒状。
优点是孔隙结构发达,比表面积大,吸附性能强,库层阻力小,化学性能稳定,易再生。
适用于高纯度的生活饮用水、工业用水和废水处理的深度净化脱氯、脱色、除臭和黄金提炼等方面。
活性炭是一种多孔性的含炭物质, 它具有高度发达的孔隙构造, 是一种极优良的吸附剂,每克活性炭的吸附面积更相当于八个网球埸之多. 而其吸附作用是藉由物理性吸附力与化学性吸附力达成. 其組成物质除了炭元素外,尚含有少量的氢、氮、氧及灰份,其結构则为炭形成六环物堆积而成。
由于六环炭的不规则排列,造成了活性炭多微孔体积及高表面积的特性。
活性炭可由许多种含炭物质制成,这些物质包括木材、锯屑、煤、焦炭、泥煤、木质素、果核、硬果壳、蔗糖浆粕、骨、褐煤、石油残渣等。
其中煤及椰子壳已成为制造活性炭最常用的原炓。
活性炭的制造基本上分为两过程,第一过程包括脱水及炭化,将原料加热,在170至600℃的温度下干燥,並使原有的有机物大約80%炭化。
第二过程是使炭化物活化,这是经由用活化剂如水蒸汽与炭反应来完成的,在吸热反应中主要产生由CO及H2组成的混合气体,用以燃烧加热炭化物至适当的溫度(800至1000℃),以烧除其中所有可分解的物质,由此产生发达的微孔結构及巨大的比表面积,因而具有很强的吸附能力。
活性炭的孔隙按孔径的大小可分為三类。
大孔:半径1000 - 1000000 A。
过渡孔:半径20 - 1000 A。
微孔:半径- 20 A。
由不同原料制成的活性炭具有不同大小的孔径。
由椰壳制的活性炭具有最小的孔隙半径。
木质活性炭一般具有最大的孔隙半径,它们用於吸附较大的分子,並且几乎专用于液相中。
在都市給水处理领域中使用的第一种类型之粒状活性炭即是用木材制成的,称为木炭。
煤质活性炭的孔隙大小介於两者之间。
在煤质活性炭中,褐煤活性炭比无烟煤活性炭具有较多的过渡孔隙及较大的平均孔径,因此能有效地除去水中大分子有机物。
活性炭活化原理
活性炭活化原理、火化炉性能参数1.工作原理采用水蒸汽、烟道气(主要成分为CO2)或其混合气体等含氧气体作为活化剂,在高温下与炭接触发生氧化还原反应进行活化,生成一氧化碳、二氧化碳、氢气和其它碳氢化合物气体,通过碳的气化反应(“烧失”)达到在碳粒中造孔的目的.其主要化学反应式如下:C+2H2O 2H2+CO2—18kcal ①C+H2O H2+CO-31kcal ②CO2+C 2CO—41kcal ③上述三个化学反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃,上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补充外加热源,以保证活化炉活化反应区域的活化温度。
活化反应属于气固相系统的多相反应,活化过程中包括物理和化学两个过程,整个过程包括气相中的活化剂向炭化料外表面的扩散、活化剂向炭化料内表面的扩散、活化剂被炭化料内外表面所吸附、炭化料表面发生气化反应生成中间产物(表面络合物)、中间产物分解成反应产物、反应产物脱附、脱附下来的反应产物由炭化料内表面向外表面扩散等过活化反应通过以下三个阶段最终达到活化造孔的目的。
第一阶段是炭化时形成的但却被无序的碳原子及杂原子所堵塞的孔隙的打开,即高温下,活化气体首先与无序碳原子及杂原子发生反应.第二阶段是打开的孔隙不断扩大、贯通及向纵深发展,孔隙边缘的碳原子由于具有不饱和结构,易于与活化气体发生反应,从而造成孔隙的不断扩大和向纵深发展。
第三阶段是新孔隙的形成,随着活化反应的不断进行,新的不饱和碳原子或活性点则暴露于微晶表面,于是这些新的活性点又能同活化气体的其它分子进行反应,微晶表面的这种不均匀的燃烧就不断地导致新孔隙的形成。
活化工艺控制的主要操作条件包括活化温度、活化时间、活化剂的流量及温度、加料速度、活化炉内的氧含量等.炭化料经破碎筛分,筛选合格炭粒作为活化原料,太粗的炭粒返回破碎筛分,太细的炭粒返回作为燃料使用,合格炭粒由斗提机提升到活化炉炉顶部加入炉内,借助炭化料的重力缓慢加入,炭每隔一定时间加入活化炉的炉内,与送入的过热蒸汽反应,炭在逐步下降过程中被蒸汽加热干燥,实现活化,最后经冷却由最下端卸料口隔一段时间卸出.水蒸气先经预热至300~400℃送至活化管内作为活化介质,与炭化料并流由上而下,在流动过程中不断与炭粒接触,经过一系列活化反应,在活化管下部烧失炭变成水煤气,水煤气与活化炭一同进入冷却段后在分离管内被分离出来,由下连烟道送到底部活化管外炉膛燃烧,由二次空气管吸入空气以满足燃烧需要,燃烧产生的高温烟气,通过蓄热室将热量传递给格子阵进行热交换,维持炉温,使活化反应继续不断地进行。
活性炭生产之活化
官网地址:活性炭生产之活化赋予炭颗粒活性,使炭形成多孔的微晶结构,具有发达的表面积的过程称为活化过程。
活化方法通常有三种,即化学药品活化法、物理化学联合活化法和物理活化法。
(1)化学药品活化法即将含碳原料与化学药品活化剂混捏,然后炭化、活化制取活性炭。
药品有ZnCl2,H3PO4,K2SO4及K2S等。
(2)物理化学联合活化法一般先进行化学药品活化,然后进行物理活化。
由物理活化法特别是用水蒸气活化制成的产品,微孔发达,对气相物质有很好的吸附力,当然也可以通过控制炭的活化程度而用于液相吸附;由化学药品活化法制得的活性炭次微孔发达,多用于液相吸附。
(3)物理活化法(气体活化法)在活化过程中通入气体活化剂如二氧化碳,水蒸气,空气等。
活化反应通过以下三个阶段最终达到活化造孔的目的:官网地址: 第一阶段:开放原来的闭塞孔。
即高温下,活化气体首先与无序碳原子及杂原子发生反应,将炭化时已经形成但却被无序的碳原子及杂原子所堵塞的孔隙打开,将基本微晶表面暴露出来。
第二阶段:扩大原有孔隙。
在此阶段暴露出来的基本微晶表面上的碳原子与活化气体发生氧化反应被烧失,使得打开的孔隙不断扩大、贯通及向纵深发展。
第三阶段:形成新的孔隙。
微晶表面上的碳原子的烧失是不均匀的,同炭层平行方向的烧失速率高于垂直方向,微晶边角和缺陷位置的碳原子即活性位更易与活化气体反应。
同时,随着活化反应的不断进行,新的活性位暴露于微晶表面,于是这些新的活性点又能同活化气体进行反应。
微晶表面的这种不均匀的燃烧不断地导致新孔隙的形成。
随着活化反应的进行,孔隙不断扩大,相邻微孔之间的孔壁被完全烧失而形成较大孔隙,导致中孔和大孔孔容的增加,从而形成了活性炭大孔、中孔和微孔相连接的孔隙结构,具有发达的比表面积。
气体活化的基本反应式如下:。
活性炭设备生产工艺
活性炭设备生产工艺一、活性炭活化生产设备活性炭活化的生产工艺目前市场上常见的活性炭的种类大致有椰壳、杏壳、核桃壳、山楂壳、桃壳、煤、棕榈壳、木炭等可以生产活性炭的材质,主要依托本地资源优势。
本设备采用自动化控制系统,活化炉的炉体主要由料仓、提升机、喂料机、炉体、耐材、转动装置、测温装置、活化装置、冷却装置、沉降室、锅炉、风机、除尘装置自动化PLC控制系统组成。
先将各种原材料进行炭化,然后将炭化好的材料2mm以下细粉筛掉,要求水份<15%,此时将物料送入提升机料仓提入顶部给料仓,由顶部给料仓通过变频喂料机均匀将物料送入炉内,经点火装置加温,此前炉内的温度需达到800℃以上方可喂料,此时需通过风机向炉内送入适量的氧,再将蒸汽打开,向炉内送入适量的蒸汽进行对物料活化,此时的蒸汽需穿透蒸汽,每吨成品活性炭需向炉内送入4吨蒸汽,此时的蒸汽不可以作扩散蒸汽,否则炭就会烧失率很大,并且效率质量也不高。
物料随着炉体的转动逐渐进入炭化预热升温区,待物料升温至约800℃时进入物料活化区,此时的物料经与水蒸汽接触反应后温度迅速升高,约900-1050℃,此时物料与水蒸汽所接触的时间称为“活化时间”,根据温度与供氧量的不同,活化时间会有所区别,约30-40分钟,即物料以每小时6米的速度随转动的炉体向前行进。
待物料进入降温段时进入炉体出料管,此时的温度约500-600℃,当经过出料管逐渐降温至200℃时,物料就会自动滑落到炉体外的另外一个水降温冷却装置,经过约3分钟的无氧冷却时间,活化好的物料已经达到常温,约30-40℃,此时冷却好的物料自然滑落到提前准备好的包装吨袋(每袋可装0.5吨)或通过气流输送装置输送到料仓以备磨粉,当袋装满后可用人力压力叉车将物料移位,炉尾配备沉降室,此沉降室起四个作用,一是给余热锅炉提前预热,二是粉尘沉降,三是停炉后可不停蒸汽,防止寒冷地区管道上冻,四是燃烧不干净的烟气再次燃烧,减少黑烟,并充分利用烟气烧变成的热量。
生物活性炭原理
生物活性炭原理
生物活性炭是一种经过特殊处理的炭化生物质制品。
它由天然的生物质材料(例如柚子核、木剑草等)经过高温炭化和活化处理制成。
生物活性炭的主要作用是通过其具有的多孔结构和大比表面积,吸附和去除水中的有害物质和异味。
生物活性炭的多孔结构使其具有很高的吸附能力。
这是因为多孔结构为分子提供了大量的表面积,使得吸附物质能够充分接触到活性炭表面,并发生化学吸附作用。
此外,生物活性炭的多孔结构还能提供更多的孔隙容积,使得更多的污染物能够被吸附。
生物活性炭还具有很好的亲水性和亲油性。
这使得它可以同时吸附水中的有机物质和无机物质。
它可以去除水中的重金属离子、有机污染物、溶解性气体等。
此外,生物活性炭还能去除水中的异味,特别是有机物产生的异味,如腐败水中的臭味。
生物活性炭的活性是可以再生的。
在一段时间使用后,当生物活性炭表面几乎被吸附物质填满时,可以通过热解或蒸汽再生的方法,将吸附物质从生物活性炭上脱附,使其恢复吸附能力,延长使用寿命。
总之,生物活性炭通过其多孔结构、大比表面积和亲水亲油性,能够高效吸附水中的有害物质和异味。
它是一种常用的水处理材料,广泛应用于水处理、净水、净化空气和除臭等领域。
活性炭的工作原理
活性炭的工作原理活性炭作为一种优良的吸附剂,它是利用木炭、各种果壳和优质煤等作为原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。
活性炭具有物理吸附和化学吸附的双重特性,可以有选择的吸附气相、液相中的各种物质,以达到脱色精制、消毒除臭和去污提纯等目的。
活性炭吸附,是一种常见的废气处理工艺。
活性炭吸附利用多孔性的活性炭,将有机气体分子吸附到其表面,从而使废气得到净化治理。
工艺流程(1)工艺流程简介废气——风管——干式过滤器——活性炭吸附——引风机——达标高空排放(2)工艺说明工厂车间有机废气通过吸气罩收集,在排风机作用下,经过管道输送进入干式过滤器,再进入活性炭吸附装置,有机污染物被活性炭吸附,净化后的气体经风机增压后达标排放。
原理活性炭吸附现象是发生在两个不同的相界面的现象,吸附过程就是在界面上的扩散过程,是发生在固体表面的吸附,这是由于固体表面存在着剩余的吸引而引起的。
吸附可分为物理吸附和化学吸附;物理吸附亦称范德华吸附,是由于吸附剂与吸附质分子之间的静电力或范德华引力导致物理吸附引起的,当固体和气体之间的分子引力大于气体分子之间的引力时,即使气体的压力低于与操作温度相对应和饱和蒸气压,气体分子也会冷凝在固体表面上,物理吸附是一种吸热过程。
化学吸附亦称活性吸附,是由于吸附剂表面与吸附质分子间的化学反应力导致化学吸附,它涉及分子中化学键的破坏和重新结合,因此,化学吸附过程的吸附热较物理吸附过程大。
在吸附过程中,物理吸附和化学吸附之间没有严格的界限,同一物质在较低温度下往往是化学吸附。
活性炭纤维吸附以物理吸附为主,但由于表面活性剂的存在,也有一定的化学吸附作用。
特点(1)对于芳香族化合物的吸附优于对非芳香族化合物的吸附。
(2)对带有支键的烃类物理优于对直链烃类物质的吸附。
(3)对有机物中含有无机基团物质的吸附总是低于不含无机基团物质的吸附。
(4)对分子量大和沸点高的化合物的吸附总是高于分子量小和沸点低的化合物的吸附。
活性炭的工作原理
活性炭的工作原理活性炭是一种具有高比表面积和多孔结构的吸附剂,由于其独特的性质,在环境保护、水处理、空气净化和工业生产中起着重要的作用。
活性炭的工作原理主要是通过吸附作用将有害物质从气体或溶液中去除。
活性炭通常是由天然无机物(如树木、椰壳、藤壳等)经过碳化和活化处理而成。
其特点是比表面积大、多孔结构发达,并具有良好的物理化学性质。
这些特性使得活性炭具有较高的吸附性能和催化性能。
活性炭具有很高的比表面积,通常在500-2000平方米/克之间,甚至高达3000平方米/克以上。
这是由于其多孔结构的存在,表面积因此得以增加。
这些微小的孔道提供了许多的吸附位点,使得活性炭可以吸附大量的分子。
活性炭吸附的原理主要是靠物质表面的静电力、范德华力、孔道效应等因素。
首先,活性炭表面常常带有一些极性团,如羟基(—OH)、胺基(—NH2)等,这些团可以吸引极性分子,如水分子和有机化合物。
其次,活性炭表面还带有很多孔道,这些孔道形成了一个像海绵一样的结构,使得活性炭具有很大的吸附容量。
此外,活性炭的表面电位常常较低,可以吸引带有正电荷的离子。
活性炭的孔道多种多样,可以分为微孔、中孔和宏孔。
其中,微孔是活性炭吸附的主要位置,其孔径在0.8-2纳米之间。
微孔通常具有极高的比表面积,可以吸附一些小分子,如氧气、二氧化碳、氮气等。
中孔的孔径在2-50纳米之间,可以吸附一些中等大小的分子,如水分子和一些有机物。
宏孔的孔径在50纳米以上,可以吸附较大的分子,如重金属离子和某些有机溶剂。
活性炭选择吸附物质的主要环节是靠物质分子与活性炭表面之间的分子间的相互作用力。
常见的有静电作用力、范德华力和毛细作用力。
静电作用力主要是指分子范围内两个相邻分子的电荷间的作用力。
范德华力主要是吸附分子之间的电子间的分子间力,而毛细作用力主要是指吸附分子和活性炭之间的毛细现象。
这些力对分子的吸附有重要的影响,决定了分子是否能够被活性炭吸附。
活性炭的吸附性能不仅与其孔道结构和表面性质有关,还与环境条件有关。
活性炭活化方法之气体活化法
活性炭活化方法之气体活化法气体活化法也称物理活化法,采用水蒸气、烟道气(主要成分为C02)、空气等含氧气体或混合气体作为活化剂,.在高温下与炭化料接触进行活化或两种活化剂交替进行活化,从而生产出比表面积巨大、孔隙发达的活性炭产品。
活化反应属于气固相系统的多相反应,活化过程中包括物理和化学两个过程,整个过程包括气相中的活化剂向炭化料外表面的扩散、活化剂向炭化料内表面的扩散、活化剂被炭化料内外表面所吸附、炭化料表面发生气化反应生成中间产物(表面络合物)、中间产物分解成反应产物、反应产物脱附、脱附下来的反应产物由炭化料内表面向外表面扩散等过程。
一物料在炭化过程中已形成了类似石墨的基本微晶结构,在微晶之间形成了初级孔隙结构,不过由于这些初级孔隙结构被炭化过程中生成的一些无序的无定形碳或焦油馏出物所堵塞或封闭,因此炭化料的比表面积很小。
气体活化的过程就是用活化气体与C发生氧化还原反应,侵蚀炭化物的表面,同时除去焦油类物质及未炭化物,使炭化料的微细孔隙结构发达的过程。
通过气化反应,使炭化料原来闭塞的孔开放、原有孔隙的扩大及孔壁烧失、某些结构经选择性活化而产生新孔的过程。
孔隙的形成与C的氧化程度密切相关,在一定的活化烧失率范围内,活化气体与炭化料的气化反应程度越深,生产出的活性炭比表面积就越大、孔隙就越发达、活性炭的吸附性能就越好。
杜比宁(Dubinin)理论认为,烧失率小于50%时,得到的是微孔活性炭;烧失率大于75%时,得到的是大孔活性炭;烧失率在50%-75%时,得到的是具有混合结构的活性炭。
目前的研究表明,活化反应通过以下三个阶段最终达到活化浩孔的目的。
第一阶段:开放原来的闭塞孔。
即高温下,活化气体首先与无序碳原子及杂原子发生反应,将炭化时已经形成但却被无序的碳原子及杂原子所堵塞的孔隙打开,将基本微晶表面暴露出来。
第二阶段:扩大原有孔隙。
在此阶段,暴露出来的基本微晶表面上的C原子与活化气体发生氧化反应被烧失,使得打开的孔隙不断扩大、贯通及向纵深发展。
用竹子做活性炭的原理
用竹子做活性炭的原理竹子是一种天然的植物材料,具有多孔性和高矿物质含量的特点。
活性炭则是一种具有发达的孔隙结构和吸附能力的材料。
将竹子用作原料制备活性炭,其基本原理主要包括竹子的炭化过程和活化过程。
炭化是将竹子加热至高温下,使其内部的有机物质发生热解和挥发,最终形成炭质骨架的过程。
竹子中的纤维素、木质素、半纤维素和其他有机杂质在高温下逐渐分解,挥发出水蒸汽、醇类、酸类等化学物质,最终残留下炭质骨架。
炭化过程中,竹子的结构发生了明显的变化,主要是由有机物质向无机物质转变,形成了一定的孔隙结构。
活化是通过将炭化后的竹子再次进行加热处理,并与空气中的氧气发生反应,使竹子内部的孔道进一步扩张和延伸,形成更多的微孔和介孔结构。
活化过程主要有物理活化和化学活化两种方式。
物理活化是指在高温下将炭化的竹子与气体或蒸汽进行煅烧,通过气体的物理效应来改变竹子内部孔隙结构的方式。
常用的方法包括水蒸气活化和氮气活化。
水蒸气活化是将炭化的竹子暴露在高温下的水蒸气环境中,水蒸气进入竹子孔道,促使孔隙结构的扩张和延伸。
氮气活化是将炭化的竹子暴露在高温下的氮气环境中,氮气通过气体膨胀的作用来改变竹子内部孔隙结构。
化学活化是指在高温下将炭化的竹子与化学物质进行反应,通过化学物质的腐蚀和溶解作用来改变竹子内部孔隙结构的方式。
常用的化学活化剂包括磷酸、硝酸、氢氧化钾等。
通过与这些化学物质的反应,竹子内部的碳质骨架会被逐渐侵蚀,形成更多的微孔和介孔结构。
活化后的竹子活性炭具有发达的孔隙结构和较大的比表面积,能够吸附气体、液体和溶液中的有机物质、无机物质及金属离子等。
这是因为竹子活性炭的孔隙结构具有多孔、均匀、连通的特点,孔径大小和分布范围广泛,有助于提高吸附分子与竹子活性炭之间的相互作用力。
此外,竹子作为原料制备活性炭具有资源丰富、环境友好的特点,符合可持续发展的要求。
总结来说,用竹子制备活性炭的原理主要包括竹子的炭化过程和活化过程。
活性炭的理化性质
活性炭的理化性质
活性炭又称活性炭黑。
是黑色粉末状或颗粒状的无定形碳.活性炭主成分除了碳以外还有氧、氢等元素。
活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产生碳组织缺陷,因此它是一种多孔碳,堆积密度低,比表面积大.活性炭具有一种强烈的“物理吸附”和“化学吸附”的作用,可将某些有机化合物吸附而达到去除效果,利用这个原理,我们就能很快而有效地去除水族箱水质中的有害物质、臭味以及色素等等,使水质获得直接而迅速的改善。
生物活性炭工艺的原理
生物活性炭工艺的原理
生物活性炭工艺是一种利用生物质材料制备活性炭的方法。
其原理如下:
1. 原料选择:生物活性炭的原料主要是生物质材料,如木材、秸秆、椰壳等。
这些生物质材料富含有机质,并且内含丰富的生物活性物质。
2. 炭化过程:原料经过炭化处理,通过高温加热处理,使原料中的有机质失去水分和挥发性成分,重组为炭基结构。
炭化过程中,生物质材料中的碳原子与氧、氢等原子形成化学键,进而形成高度结晶和稳定的碳骨架结构。
3. 活化处理:炭化后的材料进行活化处理,即通过一定的化学或物理方法,增加材料的比表面积和孔隙度,使其具有更好的吸附性能。
一般采用的活化方法有物理活化和化学活化两种。
- 物理活化是通过将炭化后的材料与活化剂混合后,进行高温热解,使原材料中的无定形碳变成结晶碳,从而增加材料的孔隙度和比表面积。
- 化学活化是在炭化后的材料中加入一定的化学活化剂,使其发生化学反应,生成气体和固体产物,这些气体通过化学反应产生的气体可以引入材料中,生成更多的孔隙结构。
4. 脱离处理:经过活化处理后的生物活性炭需要进行脱离处理,主要是去除活化剂残留和其他杂质,以提高活性炭的纯净度。
5. 活性炭的应用:生物活性炭具有较大的比表面积和孔隙度,具有良好的吸附性能和生物活性。
因此,生物活性炭广泛应用于水处理、空气净化、脱硫脱氮、医药和食品工业等领域。
活性炭活化炉工作原理
活性炭活化炉工作原理
活性炭活化炉是一种用于制备活性炭的设备,其工作原理主要包括物理活化和化学活化两个过程。
在物理活化过程中,活性炭原料进入活化炉后,通过加热升温至高温区。
高温下,原料中的大分子有机物开始分解,并释放出气体和蒸汽。
同时,原料中的氧和氮等元素发生氧化反应,形成气体。
这些气体和蒸汽在高温区内进行扩散和反应,从而增加原料的孔隙度和比表面积。
在化学活化过程中,活化炉内的高温区域会同时添加化学活化剂。
活化剂可以是碱性或酸性物质,如碱金属、碱土金属、磷酸等。
活化剂会与原料中的物质发生化学反应,促进孔隙的生成和扩张。
同时,活化剂也可通过催化作用,加速气体和蒸汽的生成和反应,增加活性炭的比表面积和孔隙度。
整个过程中,活化炉会通过控制温度、时间和活化剂的添加量来控制活性炭的物理和化学性质。
通过不断调整这些参数,可以制备出具有不同孔径大小和比表面积的活性炭,以满足不同应用领域的需求。
活性炭制备及其活化机理研究进展
活性炭改性
为了提高活性炭的吸附性能或满足特定应用需求,通常需要对活性炭进行改 性处理。改性方法主要包括氧化、还原、掺杂、接枝等。
氧化改性
氧化改性是指利用氧化剂对活性炭进行改性处理,常用的氧化剂有臭氧、过 氧化氢等。氧化改性可以增加活性炭的表面官能团数量和种类,从而提高其研究和实际应用中都具有重要意义。通 过对制备工艺和机理的深入了解,可以更好地优化活性炭的性能,拓展其应用领 域。随着科技的不断进步和研究技术的不断创新,未来对活性炭制备及机理的研 究将更加深入和精细化,为实现活性炭的高效制备和广泛应用奠定坚实基础。
谢谢观看
热解法是以有机物为原料,在高温下热解生成活性炭。该方法的优点是产品 比表面积高、孔径分布均匀,但设备投资较大、操作成本较高。
活性炭的制备机理主要涉及物理和化学两个角度。从物理角度来说,活性炭 的制备过程中会发生物理吸附和结晶过程。原料中的有机分子在高温下热解成碳 原子,碳原子进一步聚集形成石墨微晶,最终形成活性炭的物理结构。从化学角 度来说,活性炭的制备过程中会发生一系列的氧化还原反应。原料中的有机分子 在高温下与氧气、氢气等反应,生成二氧化碳、水等无机物,同时碳原子被还原 成石墨结构,进一步形成活性炭的化学结构。
活性炭活化机理
活性炭的活化机理主要涉及表面官能团形成、孔隙结构演变和比表面积增加 等方面。表面官能团形成主要是指炭表面含氧官能团(如羧基、酚羟基等)和含 氮官能团(如吡啶氮、氨基等)的形成过程。这些官能团可以提供额外的吸附点, 提高活性炭的吸附性能。孔隙结构演变主要是指在活化过程中,炭材料内部逐渐 形成和扩展孔隙结构的过程。
基于活性炭制备工艺及机理分析,可以提出以下优化建议:首先,针对不同 原料和不同制备方法,优化反应温度、时间、气氛等参数,以提高产品的吸附性 能和比表面积;其次,添加催化剂或助剂,改善制备过程中的化学反应和物理结 构,从而提高活性炭的孔径分布和比表面积;此外,实现活性炭的表面改性,提 高其在特定应用领域中的吸附性能和稳定性。
活性炭
应用
应用简史
应用领域
(1)国外应用简史 公元前约3750年,古埃及就有使用木炭的记载。 1900年英国人首次发明以金属氯化物炭化植物来制造活性炭的方法。 1917年一战双方均已在防毒面具里使用活性炭。 1927年美国芝加哥自来水厂发生了恶臭事故,此后活性炭被广泛应用于自来水除臭。 1930年第一个使用粒状活性炭吸附池除臭的水厂建于美国费城。 20世纪60年代末70年代初,由于煤质粒状炭的大量生产和再生设备的问世,发达国家开展了利用活性炭吸附 去除水中微量有机物的研究工作,对饮用水进行深度处理。粒状活性炭净化的装置在美国、欧洲、日本等国陆续 建成投产。美国以地面水为水源的水厂已有90%以上采用了活性炭吸附工艺。 (2)国内应用简史 20世纪50年代初,我国才开始生产活性炭。 20世纪60年代末期,开始利用活性炭去除受污染的水源水的除臭、除味。
炭化使碳以外的物质挥发,氧化活化可进一步去掉残留的挥发物质,产生新的和扩大原有的孔隙,改善微孔 结构,增加活性。低温(400℃)活化的炭称L-炭,高温(900℃)活化的炭称H-炭。H-炭必须在惰性气氛中冷却, 否则会转变为L-炭。活性炭的吸附性能与氧化活化时气体的化学性质及其浓度、活化温度、活化程度、活性炭中 无机物组成及其含量等因素有关,主要取决于活化气体性质及活化温度。
分类与命名
原材料分类符号
命名规则
形状分类符号
活性炭按材料和形状命名。命名的方法则依据命名原则规定的内容进行,有三层内容:第一层表示活性炭制 造主要原材料,用主要原材料英文单词的首字母大写表示;第二层表示活性炭的形状,用形状英文单词的首字母 大写表示;第三层为活性碳的名称,由汉字组成。
活性炭制造原材料命名的分类符号以材料名称英文单词的首字母大写表示,若名称首字母重复,则在英文单 词首字母后缀一个小写英文字母,该字母来源于材料名称的英文单词(辅音优先)。制造原材料分类符号中,由 于类属于木质活性炭的加工原材料种类较多,而各种木质原材料制造后的活性炭性能有一定的区别,因此,将木 质活性炭的制造的原材料细分为四类:木屑类活性炭、果壳类活性炭、椰壳类活性炭、生物质类活性炭。这四类 木质活性炭的分类符号,用原材料分类符号(W)和其具体的原料(木屑、果壳、椰壳、生物质)英文单词的首字 母大写用下脚标标注共同表示。其分类符号详见2016年发布的中国国家标准GB/T -2016 《活性炭分类与命 名》。
活性炭活化机理与再生
活性炭活化机理与再生***(***)摘要:介绍了几种主要的活性炭再生方法:光催化再生、热再生法、湿式氧化再生法、溶剂再生法、电化学再生法、超临界流体再生法、微波辐照再生法。
指出了各种性炭再生法的特点;评述了各种再生法的优点和缺点。
关键字:活性炭;活化机理;再生中图分类号:TQ12活性炭因其比表面积大,空隙多,无毒无污染被定义为优良吸附剂。
它是利用植物原料(木屑、木炭、果壳、果核)、煤和其它含碳工业废料作原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。
国内活性炭在失活后往往被废弃,对环境产生二次污染并浪费了资源,故本文对目前主要几种活性炭再生方法进行分析,评述每种方法的优点和缺点。
1.光催化再生法1.1光催化再生的机理活性炭的光催化再生由三个准一级反应组成,再生初期 ,再生反应速度由光催化降解吸附质的速率决定。
反应的第二个阶段由光催化反应速度和吸附质的解吸速度共同决定,再生后期,再生反应速度由吸附质在活性炭上的解吸速率所决定,活性炭表面及其大孔内负载的是使苯酚降解转化分解为无机物的降解中心,正是由于降解中心的存在及其表面苯酚浓度趋于零的状态,使得已吸附于活性炭孔内的苯酚不断向这个中心扩散 ,形成活性炭孔内苯酚的浓度差在浓度差的作用下,扩散作用持续进行,导致活性炭内吸附位的逐步空出,从而实现活性炭的光催化再生。
1.1.1光催化再生的优缺点该技术所需原料成本低,设备简单。
炭的损失低,无二次污染等优点,开发此新型活性炭再生技术具有重要意义。
其再生后吸附能力与光催化降解质的浓度有很大的关系。
12h后由于吸附质解吸速度有限,再生速度将减缓。
2.热再生法2.1热再生法机理活性炭高温热再生方法是通过加热对活性炭进行热处理,使活性炭吸附的有机物在高温下炭化分解,最终成为气体逸出,从而使活性炭得到再生。
高温热再生在除去炭吸附的有机物的同时,还可以除去沉积在炭表面的无机盐,而且使炭的新微孔生成,使炭的活性得到根本的恢复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性炭活化原理、火化炉性能参数
1.工作原理
采用水蒸汽、烟道气(主要成分为CO2)或其混合气体等含氧气体作为活化剂,在高温下与炭接触发生氧化还原反应进行活化,生成一氧化碳、二氧化碳、氢气和其它碳氢化合物气体,通过碳的气化反应(“烧失”)达到在碳粒中造孔的目的。
其主要化学反应式如下:C+2H2O 2H2+CO2—18kcal ①
C+H2O H2+CO—31kcal ②
CO2+C 2CO—41kcal ③
上述三个化学反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃,上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补充外加热源,以保证活化炉活化反应区域的活化温度。
活化反应属于气固相系统的多相反应,活化过程中包括物理和化学两个过程,整个过程包括气相中的活化剂向炭化料外表面的扩散、活化剂向炭化料内表面的扩散、活化剂被炭化料内外表面所吸附、炭化料表面发生气化反应生成中间产物(表面络合物)、中间产物分解成反应产物、反应产物脱附、脱附下来的反应产物由炭化料内表面向外表面扩散等过
活化反应通过以下三个阶段最终达到活化造孔的目的。
第一阶段是炭化时形成的但却被无序的碳原子及杂原子所堵塞的孔隙的打开,即高温下,活化气体首先与无序碳原子及杂原子发生反应。
第二阶段是打开的孔隙不断扩大、贯通及向纵深发展,孔隙边缘
的碳原子由于具有不饱和结构,易于与活化气体发生反应,从而造成孔隙的不断扩大和向纵深发展。
第三阶段是新孔隙的形成,随着活化反应的不断进行,新的不饱和碳原子或活性点则暴露于微晶表面,于是这些新的活性点又能同活化气体的其它分子进行反应,微晶表面的这种不均匀的燃烧就不断地导致新孔隙的形成。
活化工艺控制的主要操作条件包括活化温度、活化时间、活化剂的流量及温度、加料速度、活化炉内的氧含量等。
炭化料经破碎筛分,筛选合格炭粒作为活化原料,太粗的炭粒返回破碎筛分,太细的炭粒返回作为燃料使用,合格炭粒由斗提机提升到活化炉炉顶部加入炉内,借助炭化料的重力缓慢加入,炭每隔一定时间加入活化炉的炉内,与送入的过热蒸汽反应,炭在逐步下降过程中被蒸汽加热干燥,实现活化,最后经冷却由最下端卸料口隔一段时间卸出。
水蒸气先经预热至300~400℃送至活化管内作为活化介质,与炭化料并流由上而下,在流动过程中不断与炭粒接触,经过一系列活化反应,在活化管下部烧失炭变成水煤气,水煤气与活化炭一同进入冷却段后在分离管内被分离出来,由下连烟道送到底部活化管外炉膛燃烧,由二次空气管吸入空气以满足燃烧需要,燃烧产生的高温烟气,通过蓄热室将热量传递给格子阵进行热交换,维持炉温,使活化反应继续不断地进行。
活化后的炭料经冷却后,破碎筛分,成品出售,细炭回收进入粉状活性炭工序,生产副产品粉状活性炭。
H:\斯列普炉(SLEP)活化方504斯列普炉技术参
数
2.活化炉性能参数。