分布式电源架构与分解动力系统的介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分布式电源架构与分解动力系统的介绍
光通信交换机构成了现代电信和数据通信基础设施的支柱。在过去的几十年里,他们已经看到了架构的巨大变化,因为它们变得越来越强大。
它们将高性能光学控制与基于最先进半导体工艺的并行数字处理相结合。结果,系统需要大量的电源域,其中许多电源域提供高电流和低电压的组合。为了适应现代通信枢纽,电力系统需要高效。随着电压的降低,对效率的需求迫使能源发送到每个处理器和光收发器模块的方式发生了变化。
在20世纪90年代,许多电信系统使用的电力传输架构改为分布式电源架构。其中48 V 电源被提供给位于线卡和其他计算元件的大量DC/DC转换器。这种趋势是由电压的逐渐降低和电流的增加所驱动的,以及对电源排序的更多控制,以允许模块的热插拔。
分布式电源架构是在假定存在的情况下设计的。每块板通常只有一个或两个不同的负载电压。对于大多数48 V系统,需要在较高的配电电压和目标电压之间提供隔离。隔离的转换器往往比它们的非隔离等效物更大且更昂贵。隔离阶段需要变压器,而大多数非隔离设计可以简单地使用电感器。此外,转换器的PCB设计更复杂,因为在转换器电路需要提供准确控制的初级侧和次级侧之间的控制信号之间需要隔离屏障。
然而,即使是分布式电源架构限制了可支持的电源轨数量的灵活性。利用隔离转换器提供两个以上的输出电压需要大量空间并且迅速变得昂贵。用于光网络系统的高密度现场可编程门阵列(FPGA)和处理器通常具有复杂的功率要求,涉及大量低压供电轨。例如,高密度FPGA上使用的串行收发器对核心结构使用的串行收发器有不同的要求,可能与用于通用I/O的要求不同。
图1:分布式电源和中间总线架构。
解决该问题的一种方法是使用级联电源转换器,使用48 V至5 V模块为一组非隔离降压稳压器供电并降低产生所需电压的压差调节器(LDO)。通过采用中间总线架构(IBA),