形体的三面正投影(基本体)

合集下载

绘制基本体的三面投影讲解

绘制基本体的三面投影讲解
图2-14 一个投影图不能确定形体的空间形状
单元二 绘制基本体的三面投影
(一)三面投影体系的建立及其名称 把形体放在三个互相垂直的平面所组成的三面投影体系中进行投
影, 如图2-15所示。三个投影面为:水平投影面——H面、正立投影 面——V面、侧立投影面——W面。三个投影面两两垂直相交构成三条 投影轴 OX、OY、OZ,三投影轴垂直相交于O,称为原点。
(三)实形性 平行于投影面的直线和平面,其投影反映实长或实形,如图2-9所 示。
(四)从属性 (1)若点在直线上,则该点的投影必在该直线的投影上。(2) 若点或直线在平面上,则该点或该直线的投影必在该平面的投影上。
图2-9直线与平面的实形性图
单元二 绘制基本体的三面投影
(五)定比性 点分割线段成定比,其投影也把线段的投影分成相同的比例,即 点的定比分割性,如图2-10所示。
单元二 绘制基本体的三面投影
图2-2投影的概念
图2-3投影的分类(a)中心投影;(b)平行投影图 图2-4平行投影的分类(a)正投影;(b)斜投影
单元二 绘制基本体的三面投影
(三)工程上常用的几种图示法 图示工程结构物时,由于表达的目的和被表达对象特征的不同,需
要采用不同的图示方法。常用的图示方法有正投影法、轴测投影法、 透视投影法和标高投影法。
2、轴测投影法 轴测投影法是一种平行投影,采用单面投影,把物体按 平行投影法投射至单一投影面上所得到的投影图。如图2-5所示。
缺点:不能完整表达物体的形状,度量性差;优点:富有立体感,直观性好。
图2-5正投影与轴测投影的区别 (a)正投影;(b)轴测投影
单元二 绘制基本体的三面投影
3、透视投影法 透视投影法即中心投影,如图2-6所示。由于透视图和照相原理 相似,它符合人们的视觉,图像接近于视觉映象,图像逼真、直观性强,常作为 设计方案比较、展览用的图样。近年来透视图在高速公路设计中应用较广,它是 公路设计的依据之一。

建筑识图项目五建筑模型三面投影图的识读和绘制

建筑识图项目五建筑模型三面投影图的识读和绘制

项目五建筑模型三面投影图的识读和绘制知识结构本项目知识结构如图5-1所示。

图5-1 项目五知识结构图任务一绘制基本体模型三面正投影图知识要点一、投影的概念和方法1.投影的概念投影就是一个物体在太阳光线或灯光的照射下,在地面或墙壁面上产生该物体的影子。

2.投影的种类投影法分为中心投影法和平行投影法两大类。

平行投影法又可分为正投影和斜投影两种。

3.正投影图的投影特点:(1)正投影图能正确反映物体的形状、大小和空间相互位置关系;(2)正投影图作图方便快捷;(3)正投影图的度量性好,按比例可直接量取物体的形状和大小。

正因为正投影图具有以上优点,因而在工程上应用最广泛。

绘制房屋建筑工程图主要用正投影,今后不作特别说明,“投影”即指“正投影”。

二、三面正投影图的形成1.三面正投影体系的设立在三面正投影体系中:水平放置的投影面,称为水平投影面,用H表示;正对观察者的投影面,称为正立投影面,用V表示;右面侧立的投影面,称为侧立投影面,用W表示。

这三个投影面两两相交,交线称为投影轴,其中H面与V面的交线称为OX轴;H面与W面的交线称为OY轴;V面与W面的交线称为OZ轴,且三条投影轴相互垂直的。

三个投影面或三个投影轴的交点O,称为原点。

OX轴可表示长度方向,OY轴可表示宽度方向,OZ轴可表示高度方向。

2. 三面正投影图的形成将形体安放于于H面的上方,V面的前方,W面的左侧。

自前向后作正投影,形成形体的正立面投影图或称正立投影图,简称V图;自上而下作正投影,可得形体的水平面投影图或称平面图,简称H图;自左向右作正投影,形成侧立面投影图或称侧立面图,简称W 图。

三、三面正投影图的展开1.将V面及正立面图保持不变,将H面及连同平面图绕OX轴90°,将W面及侧立面图绕OZ轴向右旋转90°,使它们和V面及正立面图处在同一个平面上。

三个正投影图展开后,三条投影轴成为十字交叉轴,OX轴、OZ轴位置不变,原OY轴则被一分为二,在H面内的为OY H;另一条在W面内的标为OY W。

基本体的三视图

基本体的三视图

求出素线的水平投 影s1及侧面投影s”1”。
求出M点的水平投 影和侧面投影。
方法二:辅助圆法
过M点作一平行与底面
的水平辅助圆,该圆的正
面投影为过m’且平行于
V
a’b’的直线2’3’,它们的
水平投影为一直径等于
2’3’的圆,m在圆周上,
由此求出m及m”。
a’
X
第四章 基本体 的三视图
Z
s’ S
s” W
顶住工件,防止它掉下来砸坏车床, 如发现 工件的 位置不 正确或 歪斜, 切忌用 力敲击 ,以免 影响车 床主轴 的精度 ,必须 先将夹 爪、压 板或顶 针略微 松
开,再进行有步骤的校正。 工具和车刀的安放
3.三棱锥表面上取点
作图步骤1如下:
s’
Z
s”
m’
a’
X
2’ c’
a
s
2m
m” b’
a”(b”) b
时才填写。此外,各公司可以另外掭 加一些 符号, 用连接 号将其 与ISO代码相 连接(如 一PF代 表断屑 槽型) 。可转 位刀片 用于车 、铣、 钻、镗 等不同 的加
工方式,其代码的详细内容也略有不 同。
②可转位刀片的断屑槽槽形。为满足切 削能断 屑、排 屑流畅 、加工 表面质 量好、 切削刃 耐磨等 综合性 要
圆柱投影图的绘制: a’ c’(d’) b’ d’
a’ c’(d’) b’ d’ d
a
b
c 圆柱的投影
(1) 先绘出圆柱的对
a”(b”)
c’ 称线、回转轴线。 (2)绘出圆柱的顶面 和底面。
(3)画出正面转向轮 廓线和侧面Z转向轮廓线。
c’ a”(b”)
c’d’ b’

机械制图基本体三视图

机械制图基本体三视图
(n)

k
由圆锥面和底面组成。
S
A
如何在圆锥面上作直线?
过锥顶作一条素线。
圆的半径?
3.圆球
三个视图分别为三 个和圆球的直径相等的 圆,它们分别是圆球三 个方向轮廓线的投影。
圆母线以它的直径为轴旋转而成。
⑵ 圆球的三视图
⑶ 轮廓线的投影与曲 面可见性的判断
左视图 —— 体的侧面投影
2.三视图之间的度量对应关系
三等关系
主视俯视长相等且对正
主视左视高相等且平齐
俯视左视宽相等且对应




长对正
宽相等
高平齐
视图就是将物体向投影面投射所得的图形。
3.三视图之间的方位对应关系
主视图反映:上、下 、左、右 俯视图反映:前、后 、左、右 左视图反映:上、下 、前、后












6.2 基本体的形成及其三视图
常见的基本几何体 平面基本体 曲面基本体
一、平面基本体
点的可见性规定: 若点所在的平面的投影可见,点的投影也可见;若平面的投影积聚成直线,点的投影也可见。
由于棱柱的表面都是平面,所以在棱柱的表面上取点与在平面上取点的方法相同。
⑷ 圆球面上取点
k
辅助纬圆法
k
k
⑴ 圆球的形成
圆的半径?
3.圆环
(1) 圆环的形成
(2) 圆环的三视图
小 结
重点掌握:
基本体的三视图画法及面上找点的方法。
⒈ 平面体表面找点,利用平面上找点的方法。
⒉ 圆柱体表面找点,利用投影的积聚性。

投影基本知识—三面正投影(建筑构造)

投影基本知识—三面正投影(建筑构造)

规定正面V不动,将水平面H绕OX轴向下旋转90°,侧面W绕OZ 轴向右旋转90°,就得到如下图所示的在同一平面上的三个视图。
三面正投影 四、三面投影图的对应关系

X 长



Z 宽
YH
V面投影反映物体长度、高度。 H面投影反映物体长度、宽度。 W面投影反映物体高度、宽度。
YW
V,H两面投影反映物体长度且左右对 齐,称为“长对正” V,W两面投影反映物体高度且上下对 齐,称为“高平齐” H,W两面投影反映物体宽度且前后对 齐,称为“宽相等”
三面正投影
三面正投影 一、正投影的特性
1.显实性 显实性:若线段和平面图形平行于投影面, 其投影反映实长或实形。
正投影的显实性
三面正投影 一、正投影的特性
2.积聚性 积聚性:若线段和平面图形垂直于投影面,其投影积聚为一点或一直线段。
正投影的积聚性
三面正投影 一、正投影的特性
3.类似性 类似性:若线段和平面图形倾斜于投影面,其投影短于实长或小于实形,但与 空间图形类似。
正投影的类似性
三面正投影
1、单面投影
二、三面正投影的由来
2、两面投影
单面投影只能反映物体两个方向的量
两面投影可以反映物 体三维方向的量
但是两面投影可能不是
唯一形体的投影
三面正投影 二、三面正投影的由来
右图为空间3个不同形状的形体,它们在同一投影面上的投影却 是相同的。
由图可以看出:虽然一个投影面能够准确的表现出形体的一个侧面 的形状,但不能表现出形体的全部形状。
三面正投影
举例画出三视图
五、三面正投影的绘制
正三棱锥
正视图
侧视图
俯视图

《机械制图》三视图的投影规律

《机械制图》三视图的投影规律
掌握物体三视图的投影规律,学会如何画、读物 体视图以及标注物体视图的尺寸都非常重要,这是学 习机械制图的重要基础。
14
谢谢观看
Thanks for looking
一、剧情回顾
基本体的投影:
正面投影
1.棱柱的三面投影: 2.棱锥的三面投影: 3.圆柱的三面投影:
水平投影
5
侧面投影
三视图的投影规律 一、剧情回顾
基本体的投影: 1.棱柱的三面投影: 2.棱锥的三面投影: 3.圆柱的三面投影: 4.圆锥的三面投影:
6
正面投影 水平投影
侧面投影
三视图的投影规律 一、剧情回顾
8
画法几何
投影
在画法几何中,几何元素向 投影面投射,所得图形称为 几何元素的投影。
三视图的投影规律
二、视图的概念
画法几何
投影
机械制图
视图
在机械制图中,物体向投影面投射所得图形称为视图
9
三视图的投影规律 二、视图的概念
画法几何
机械制图
投影
视图
正面投影 水平投影 侧面投影
10
主视图 俯视图 左视图
三视图的投影规律
机械制图
MECHANICAL DRAWING
目录
CONTENTS
三视图的投影规律
三视图的投影规律
一、剧情回顾
基本体的投影:
正面投影
1.棱柱的三面投影:
水平投影
3
侧面投影
三视图的投影规律
一、剧情回顾
基本体的投影:
正面投影
1.棱柱的三面投影: 2.棱锥的三面投影:
水平投影
4
侧面投影
三视图的投影规律
基本体的投影: 1.棱柱的三面投影: 2.棱锥的三面投影: 3.圆柱的三面投影: 4.圆锥的三面投影: 5.圆球的三面投影:

第三章 基本体的三视图

第三章 基本体的三视图

例3:如图所示,已知球面对V面的转向轮廓线上点的1’ 投影,求1”、1;又知它对V的转向轮廓线上的点水平 投影2,求2’、2”。
球面转向轮廓线上点的投影的求解步骤与上一图例相 似,作图过程如图所示。
2’ 1’ 2”
y
1”
2 y
1
练 习 题
1. 根据立体图,找出相对应的三视 图,并在括号内填写相应编号。 2. 根据立体图及所给观察方向,画 出相应的三视图。 3. 根据立体图及所给观察方向,画 出相应的三视图。
1. 根据立体图找出相应三视图,并在括号内填写相应编号。









11

12
请点击解答显示其内容
2. 根据立体图及所给观察方向,画出相应的三视图。
S
请点击解答显示其内容
3. 根据立体图及所给观察方向,画出相应的三视图。
S
请点击解答显示其内容
k


k

n

n
圆的半径?
辅助圆法
k
n

例1: 已知三棱锥棱线上一点的V面投影1′和另一点 的V面投影2′,求两点的其它各面相应投影1″、1及 2、2″。
作图步骤:
y 1“ 2′ 1′ 2″ ⑴过点的V面投影1’作水平投 射线,投射线与W面相应棱线 投影的交点即为投影1”;根 据“宽一致”的投影规律, 在W面投影中量取1”的Y坐标 值,然后在H面相应棱线的投 影上直接量取Y,得H面投影1。 ⑵过点的V面投影2’分别作水 平投射线和垂直投射线,水 平投射线与W面相应棱线投影 的交点即为投影2”,垂直投 射线与H面相应棱线投影的交 点即为投影2。
作投影图时,先画出正六棱柱的水平投影正六边形,再根据 其它投影规律画出其它的两个投影。如图所示。

三面投影图(精)

三面投影图(精)

图2.1.8 基本形体的三面正投影图(一)图作图的实例
例 2
作出该(如图2.1.9所示(a))有曲面形体的三面正投影图。
(a)直观图
作图步骤:
① 分析:注意,该形体中有曲面体,要掌握曲面体轮廓
线的表达方式。 ② 将形体假想的放在三面投影体系当中。放平放正。让 形体更多的面分别平行于V、H、W这三个投影面。按 习惯可先做出其在 V 面上的投影图。如图 2.1.9 ( b ) 注意该投影图中有的面反映了投影的真实性、也有的 面反映了投影的积聚性,还有的面反映了投影的类似 性。还要注意圆柱体的轮廓线的表达。 ③ 运用同样的原理再做出该形体的 H 、 W 面的投影图。 一定要注意投影图之间的对正关系(长对正、高平齐、 宽相等),同样还要注意形体轮廓图线的不可见性。
图2.1.7 三面投影图的展开
三.基本形体投影图作图的实例
例 1
作出该形体的三面正投影图,图2.1.8所示。
作图步骤:
① 将形体假想的放在三面投影体系当中。放 平放 正。让形体更多的面分别平行于V、 H、W这三个影面。按习惯可先做出其在V 面上的投影图。如图2.1.8(b)注意该投 影图中有的面反映了投影的真实性、也有 的面反映了投影的积聚性,还有的面反映 了投影的类似性。 ② 运用同样的原理再做出该形体的H 、W面 的投影图 。一定要注意投影图之间的对 正关系(长对正 、高平齐 、宽相等), 还要注意形体轮廓图线的不可见性。
二. 基本形体正投影图的作图方法——三面正投影图的形成
形成原因
如图2.1.5所示:空间形体虽然不同,但却有着相同的正投影图。 故仅凭形体的单面投影不足以确定形体的空间形状和尺度的。需 要从几个方面对形体作投影图并综合起来识读,确定形体唯一的 形状和大小。因此,工程上用三面投影体系来完成形体投影图的 表达。

建筑制图

建筑制图
3.剖面图的画法 其步骤如下:
(1)确定剖切平面的位置
所取的剖切平面应是投影面平行面
剖切平面应尽量通过形体的孔、槽等结构的轴线或对称面 (2)画剖面剖切符号并进行标注
在投影图上的相应位置画 上剖切符号并进行编号 (3)画断面、剖开后剩余部分的轮廓线 对照右图c中的1-1剖面图和图b 中的V面投影图,可看出它们既 有共同点,又有不同点。
剖面图由两部分组成的 : 1、是断面图形(左图b中阴影部分);
未被切 到
断面
2、是沿投影方向未被切到但能看 到部分的投影(左图b中的杯口)。
名称
自然土壤 夯实土壤 砂、灰土 砂砾石、碎砖
三合土 石材 毛石 普通砖 饰面砖
图例
常用建筑材料图例
备注
名称
混凝土
钢筋混凝土
靠近轮廓线绘 较密的点
木材
泡沫塑料 材 料
b)平面图上的楼地 面标高符号
所注部位 的引出线
c)立面图、剖面图各 部位的标高符号
约3m m 约3mm
a)左边标注时
b)右边标注时
c)右边标注特殊情况时
d)多层标高时
3. 索引符号与详图符号
(1) 索引符号 (2) 索引剖面详图的索引符号 (3) 详图符号
(1) 索引符号
详图的编号
详图绘制在 本张图纸内
在建筑工程和装饰工程中,为了表 示楼面、屋面、墙面及地面等的构造和 所用材料,常用分层剖切的方法画出各 构造层次的剖面图,称为分层局部剖面 图。
5.旋转剖面图
用两个相交的剖切平面(交线垂直于基本投影面)剖开物体,把 两个平面剖切得到的图形,旋转到与投影面平行的位置,然后再进 行投影,这样得到的剖面图称为旋转剖面图。
第三节 断面图

3 三面投影体系

3 三面投影体系

a
A
X
O
点A的水平投影
H
a
点的二面投影图是将空间点向二个投影面作正投影 后,将二个投影面展开在同一个面后得到的。
两面投影图的画法 V a A V a
X
ax a
O
X
ax
O
H H
a
H
展开时,规定V面不动,H面向下旋转90。用投影图 来表示空间点,其实质是在同一平面上用点在二个不同 投影面上的投影来表示点的空间位置。
1、位置关系
• 以主视图为准,俯视 图在它的正下方,左 视图在它的正右侧,
位置固定,不必标注。
2、三视图之间的“三等”关 系
• 主、俯视图长对正。
• 主、左视图高平齐。
• 俯、左视图宽相等。
2.1.3 两点的相对位置和重影 点
1.两点的相对位置
2.重影点
两点的相对位置
两点的相对位置指两 点在空间的上下、前后、 左右位置关系。
Y
① aa ⊥OX轴 aaz = aaY = XA(A到W面的距离) ② aa⊥OZ轴 aax =aa Y = ZA ( A到H面的距离)
③aax= aaz= YA
(A到V面的距离)
??已知点的两个投影,求第三投影。
解法一:
a● ax az

a
通过作45°线 使aaz=aax
a● 解法二:
Bb
O
a
b
Cc c
Aa
例题3:根据投影图判断点在空间的位置
b'
V
B
X a' b c' c O C
a A
例题4:画出点(15,5,10)的三面投影及空间位置
a'

基本体的三视图

基本体的三视图
8
五棱柱旳三视图
9
正五边形作图措施:
10
正五边形作图措施:
11
二、棱锥
S
A
C
B
12
注意:
三棱锥旳三视图
三棱锥左视图不
是一种等腰三角形。
s'
s"
a’ b' c' a"(c") b"
a
c
s
b
13
三、圆柱
转向(侧影)轮廓线旳投影。
转向(侧影) 转向(侧影)
轮廓线
轮廓线
14
孔转向(侧影)轮廓线旳投影
截交线为圆 截交线为矩形 截交线为椭圆 截交线为部分椭

截交线为部分椭 圆
41
[例题一] 求侧平面与圆柱旳截交线
y
截平面平行圆柱轴线 截交线为矩形
42
y
[例题二]圆柱体被切片
y1 y
侧平面R 水平面Q 立体旋装90˚ 怎么体现?
43
y y1
[例题三]圆柱体开槽
y1 y
侧平面R
y y1
水平面Q
44
空心圆柱开圆孔
70
空心圆柱开马蹄槽
空心圆柱开键槽
71
60
[例题一] 完毕正方体与半圆柱相交旳主视图
61
[例题二] 求三棱柱穿孔后旳投影
c' b'
c" b"
a' a"
a c
b
62
[例题三] 完毕两圆柱旳相贯线
清除!
a'
b'
1'
2'
c'Leabharlann a" b" 1"

房屋建筑构造与识图课件第3章 三面正投影图的形成及特性

房屋建筑构造与识图课件第3章 三面正投影图的形成及特性
一般位置直线
3.1 点、直线、平面的投影
➢2.直线上点的投影 直线上点的投影,必在直线的同面投影上;直线段上的点分割直线段之比,在 投影后仍保持不变。如下图所示,C是直线AB上的点,C点投影在直线AB的同面 投影上,且有AC∶CB=ac∶cb= a'c'∶c'b'= a''c''∶c''b''。
直线上点的投影
两直线交叉
3.1 点、直线、平面的投影
3.1.3 平面的投影 三点确定一个三角形平面,将三点的同名投影用直线两两相连,就得到平面的同 名投影,如下图所示。平面的投影一般仍为平面,特殊情况下投影可为一直线。
平面的同名投影
3.1 点、直线、平面的投影
当平面垂直于投影面时,其投影重合成直线,具有积聚性,如图(a)所示; 当平面平行于投影面时,其投影反映平面实形,如图(b)所示; 当平面倾斜于投影面时,其投影类似原平面,如图(c)所示。
直线的同名投影
3.1 点、直线、平面的投影
当直线垂直于投影面时,其投影重合为一点,具有积聚性,如图 (a)所示; 当直线平行于投影面时,其投影反映线段实长,ab=AB,如图 (b)所示; 当直线倾斜于投影面时,其投影比空间线段短,ab=AB cos α,如图(c)所示。
(a)
(b)
(c)
直线对一个投影面的投影特性
侧垂线
3.1 点、直线、平面的投影
投影面垂直线特性:垂直于那个投影面,在那个投影面上的投影积聚成一个点, 而另外两个投影面上的投影平行于投影轴且反映实长。
正垂线
铅垂线
侧垂线
3.1 点、直线、平面的投影
3)一般位置直线 直线与三个投影面都处于倾斜位置,称为一般位置直线。一般位置直线的三个 投影仍为直线;三个投影都倾斜于投影轴;投影长度小于直线的真长;投影与 投影轴的夹角,不反映直线对投影面的倾角,如下图所示。

三面投影图.ppt

三面投影图.ppt
③ 运用同样的原理再做出该形体的H、W面的投影图。
一定要注意投影图之间的对正关系(长对正、高平齐、 宽相等),同样还要注意形体轮廓图线的不可见性。
(b)作形体的主视图(V面投影图) (c)作形体的俯视图(H面投影图)
(d)作形体的左视图(W面投影图)
图2.1.9 基本形体的三面正投影图(二)
图2.1.7 三面投影图的展开
三.基本形体投影图作图的实例
例1
作出该形体的三面正投影图,图2.1.8所示。
作图步骤: ① 将形体假想的放在三面投影体系当中。放
平放 正。让形体更多的面分别平行于V、 H、W这三个影面。按习惯可先做出其在V 面上的投影图。如图2.1.8(b)注意该投 影图中有的面反映了投影的真实性、也有 的面反映了投影的积聚性,还有的面反映 了投影的类似性。 ② 运用同样的原理再做出该形体的H 、W面 的投影图 。一定要注意投影图之间的对 正关系(长对正 、高平齐 、宽相等), 还要注意形体轮廓图线的不可见性。
图2.1.8 基本形体的三面正投影图(一)
步骤1
步骤2
步骤3
三.基本形体投影图作图的实例
例2
作出该(如图2.1.9所示(a))有曲面形体的三面正投影图。
(a)直观图
作图步骤:
① 分析:注意,该形体中有曲面体,要掌握曲面体轮廓
线的表达方式。
② 将形体假想的放在三面投影体系当中。放平放正。让
形体更多的面分别平行于V、H、W这三个投影面。按 习惯可先做出其在V面上的投影图。如图2.1.9(b) 注意该投影图中有的面反映了投影的真实性、也有的 面反映了投影的积聚性,还有的面反映了投影的类似 性。还要注意圆柱体的轮廓线的表达。
形成原理
在空间中建立由三个相互垂直的平面组成的三面投影体系。将形 体放在该体系中,使形体的主要面分别与三个投影面保持平行关 系,由前向后投射得正面投影图(V面投影或称主视图),由上 向下投影得水平投影图(H面投影或称俯视图),由左向右投射 得侧面投影图(W面投影或称左视图)。如图2.1.6所示。

基本体及组合体三视图

基本体及组合体三视图
二、简朴叠加体的画图和看图办法
⒈ 画图时一定逐个形体画,同时注意分析表面的 过渡关系,以避免多线或漏线。
⒉ 看图时切忌只抓住一种视图不放。运用封闭线 框分解形体和分析表面的相对位置关系。
即使三个视图基本相似,但由于主视图
中虚实线各异,而得出两种不同的形体。




例:求作侧视图
体2 体3 体1
★ 分解形体, 看懂形状。
作图方法: 逐个画出各
个形体,并分析 体与体之间的表 面过渡关系。
此处无线
小结
重点掌握:
一、基本体的三视图画法及面上找点的办法。
⒈ 平面体表面找点,运用平面上找点的办法。 ⒉ 圆柱体表面找点,运用投影的积聚性。 ⒊ 圆锥体表面找点,用辅助线法和辅助圆法。 ⒋ 球体表面找点,用辅助圆法。
视图中一种封闭线框普通状况下表达一种面的 投影,线框套线框,则可能有一种面是凸出的、凹 下的、倾斜的,或者是含有打通的孔。
两个线框相连,表达两个面高低不平或相交。
⒊ 要几个视图联系起来看,以拟定物体的形状。
一种视图不能唯一拟定物体的形状,往往需要 两个或两个以上的视图才干唯一拟定物体的形状。
⒋ 注意图中虚实线变化,分辨不同形体。
3.三视图之间的方位对应关系



右后 前






• 主视图反映:上、下 、左、右 • 俯视图反映:前、后 、左、右 • 左视图反映:上、下 、前、后
2.圆锥体
⑴ 圆锥体的构成 由圆锥面和底面构成。
⑵ 圆圆锥锥体面是的由三直视线图SA绕与 ⑶它成在轮相。图廓交示的线位轴素置线,线O俯的O视1投旋图影转为与而一 圆 角为形。曲S母称,另面线为三两。的锥角个圆可顶形视锥见,的图面直性底为上线边等的过S为边判锥A圆三称顶断 ⑷锥的底圆任面始锥的终面投线上影称取,为两点圆腰锥分面别的

三讲基本体三面投影

三讲基本体三面投影

截交线的性质:
⒈ 是一封闭的平面多边形。
⒉ 截交线的形状取决于被截立 体的形状及截平面与立体的 相对位置。 截交线的投影的形状取决于 截平面与投影面的相对位置。
⒊ 截交线是截平面与立体表面 的共有线。
一、平面体表面的截交线
• 截交线是一个由直线组成的封闭的平 面多边形。
• 截交线的每条边是截平面与棱面的交线。
V a’
D
A
正面转向轮廓线
d”
B
a”b”
c”W
C
a
b
c
圆柱的投影
a’ c’d’ 侧面转向轮廓线 A
d
X
a
d” a”b” c”
Cb
c
Y
2、圆柱表面上取点
已知圆柱表面上的点M及N正面投影a’、 b’、m′ 和n′,求它们的其余两投影。
b’ a’
(b”) a”
b
a
在圆柱表面上取点
二、圆锥体
1、 圆锥的投影
c’d’
M
A d
m
a
d” m” Ba”(b”) C b c
c”
Y
圆锥的三面投影图
s’
s”
已知圆锥表面的点
M的正面投影m’,求出
M点的其它投影。
m’ a’
1’ c’(d’) d
m”
b’
过m’s’作圆锥表面
d” a’(b’)1” c” 上的素线,延长交底
圆为1’。
a
s
b
m
1 c
图3-14 圆锥的投影及表面上的点
c
Y
图3-11 圆锥的三面投影图
圆锥投影图的绘制:
s’
s”
(1) 先绘出圆锥的对 称线、回转轴线。

形体的三面投影图

形体的三面投影图
形体的 三面投影图
主讲老师:李晓丹 交通信息系
旧知回顾
什么是平行正投影法?
物体
投射线相互平行 且垂直于投影面
投射线 900 H
引入
仅有一个投影面不能够确定形体 的空间形状。ቤተ መጻሕፍቲ ባይዱ
如何解决?
单面正投影
形体的三视图
1、三面投影体系的建立
正立投影面
V
Z
W
侧立投影面
X
水平投影面
0
H
Y 图1
2、三视图的形成
• 画物体的三视图时,应遵循的投影规律:
长对正,高平齐,宽相等.
• 挑战“自我”,提高画三视图的能力
拓展训练
画出圆台的三视图
主视图 主视图
左视图 左视图
俯 视 图
谢谢!
V
由前向后投影
主视图:
由上向下投影 由左向右投影
俯视图 X
左视图
Z W
H
图2
Y
3、三面投影体系的展开
V 主视图
Z W
左视图
X
O
YW
俯视图
H
YH 图3
4. 三视图的投影规律
X 主、俯视图长对正; 主、左视图高平齐; 俯、左视图宽相等。
主视图
Z
左视图
高平齐
长对正
俯视图
45°
YW
宽相等
YH
5、长、宽、高和方位关系












随堂练习-1
想一想:如图所示蒙古包,小明认为这个蒙古包可以
看成下图所示几何体,并画出了这个几何体的三视图, 你同意小明的做法吗?为什么?

04基本体的投影

04基本体的投影

(1)圆柱面的形成 圆柱面由直线AA1绕与其平行的轴线回转而 成。
(2)投影 当圆柱的轴线垂直于H面时,圆柱的顶面、底面是水平 面,所以水平投影反映圆的实形,其正面投影和侧面投影积聚为直 线,直线的长度等于圆的直径;由于圆柱的轴线垂直于水平面,圆柱 面的所有素线都是铅垂线,故其水平投影积聚为圆,与上下底面圆 的投影重合;在圆柱的正面投影中,前后两半圆柱面的投影重合为 一矩形,矩形的左右两边分别是圆柱面最左、最右素线的投影,这
4.2.2.2 圆锥
圆锥(cone)由圆锥面和底面所围成,如图4-11(a)所示。
(1)圆锥面的形成 圆锥面由直线SA绕与它相交的轴线回转而成, 其上所有素线均交于锥顶S点,且面上任一点与顶点的连线均为属 于圆锥表面的直线。
(2)投影 当圆锥的轴线垂直于H面时,底面为水平面,水平投影反 映实形,其正面投影、侧面投影均积聚成直线;圆锥面在水平面上 的投影为圆内区域,与底面的水平投影重影,另两个投影为等腰三 角形,三角形两腰为锥面的转向轮廓线的投影;最左和最右素线
通常把棱柱、棱锥、圆柱、圆锥、圆球、圆环 等简单立体称为基本几何体,简称基本体(elementary soild)。
4.2.1 平面立体及其表面上的点和线
平面立体的表面都是平面,平面由直线围成,所以绘制平面立 体的投影可归结为绘制各种直线、平面及它们之间相对位 置的投影,再判别可见性,将可见轮廓线的投影画成粗实线,不 可见轮廓线的投影画成细虚线,当粗实线和细虚线重合时画 粗实线,当轮廓线与细点画线重合时画轮廓线。
[例4-2] 已知图4-7所示棱锥外表面上K点的正面投影k'(可见),试 作K点的其他投影。
【作图】
方法一:如图4-7(a)所示。
① 过锥顶S点和K点作一辅助线SD,即在视图上作s'k'延长交b'c'于 点d'。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3-3 4种工程形体的投影
2 棱锥
•正棱锥——底面为正 多边形,顶点过底面 中心垂线的棱锥体。
视图特征: 1)反映底面实形的视图 为多边形(三角形的组 合图形); 2)另两视图均为三角形。
三棱锥的投影图
s
s
b
a c
c
a
b
(b)
c
s
B
a
S C A
3 棱台
•棱台可看成是由棱锥用平行于锥底面的平面截去锥顶而形 成的形体,上、下底面为各对应边相互平行的相似多边形, 侧面为梯形。
【例3.4】如图所示,已知立体表面上的点K的正面投影k',求其 另外两面的投影k、k"。
(a) 已知条件
(b) 作图方法
【例3.5】如图所示,已知圆柱表面上线段AB的正面投影a'b', 求其另外两面上的投影。
(a) 已知条件
(b) 作图方法
【例3.6】如图所示,已知圆锥上点K的正面投影k',求其另两面 上的投影。
【例3.2】如图所示,已知立体表面上直线MK的正面投影m'k', 试作直线MK的水平投影mk和侧面投影m"k"。
(a) 已知条件
(b) 作图方法
【例3.3】如图所示,已知立体表面点K的正面投影k',试求其水 平与侧面投影k、k"。
(a) 已知条件
(b) 一般位置直线作为辅助线 求k点的投影
(c) 特殊位置直线作为辅助线 求k点的投影
视图特征: 1)反映底面实形的视图为两个相似多边形和反映侧面的 几个梯形; 2)另两视图均为梯形(或梯形的组合图形)。
2 曲面体的投影
常见的曲面体多是回转体,如圆柱、圆锥、圆球、圆环等。
回转面 ——有一条母线(直线或曲线)绕固定轴线 回转而成的曲面。
素 线 ——在回转面上每一个位置的母线。 回转体 ——由回转面或回转面与平面所围成的体。
•视图特征: 1)与轴线垂直的 投影面上的投影 为两个同心圆; 2)另两视图均为 等腰梯形。
4 圆球
圆球可看成是由一个圆 面绕其任一直径回转而 成。
圆球是由球面围成的。 球面可看作圆绕其直径 为轴线旋转而成。
•视图特征: 三个视图均为圆 (不完整球体的 三视图,其外形 轮廓都有半径相 等的圆弧)。
2 圆锥
圆锥可看作是由一 个直角三角形绕其直 角边回转而成。
圆锥由圆锥面、底 面所围成。圆锥面可 看作由直线绕与它相 交的轴线旋转而成。
•视图特征: 1)反映底面实形 的视图为圆; 2)另两视图均为 等腰三角形。
3 圆台
圆锥被垂直于轴线的平面截去锥顶部分,剩余部分 称为圆台,其上下底面为半径不同的圆面,
(a) 已知条件
(b) 作图方法
3. 位于一般位置平面上的点(辅助线法)
——当点位于立体表面的一般位置平面上时,因所在平面无积 聚性,不能直接求得点的投影,而必须先在一般位置平面上做辅 助线(辅助线可以是一般位置直线或特殊位置直线),求出辅助线 的投影,然后再在其上定点,这种方法称为辅助线法。
【例3.1】如图所示,M、N分别是立体表面上的两个点。已知M 点的正面投影m'、N点的水平投影n,试求点M、N的另外两面 投影。
1.3.1 基本体的投影
1 平面体的投影 2 曲面体的投影
3 求立体表面上点、线的投影
1 平面体的投影
1 棱柱
直棱柱—侧棱与底面垂直。 斜棱柱—侧棱与底面倾斜。
•正棱柱——底面为正多边 形的直棱柱。
视图特征: 1)反映底面实形的视图为 多边形; 2)另两视图均为由实线或 虚线组成的矩形。
六棱柱的投影图
3.3 求立体表面上点、线的投影
3.3.1 平面立体上点和直线的投影
1、位于棱线或边线上的点(线上定点法)
——当点位于立体表面的某条棱线或边线上时,可利用线上点 的“从属性”直接在线的投影上定点,这种方法即为线平面上的点(积聚性法)
——当点位于立体表面的特殊位置平面上时,可利用该平面的 积聚性,直接求得点的另外两个投影,这种方法称为积聚性法。
3.3 求立体表面上点、线的投影
3.3.2 曲面立体上点和直线的投影
1. 线上定点法(从属性法)
——当点或线位于曲面立体的轮廓素线上时,可利用“线上 定点(从属性)法”求解。
2. 积聚性法
——当点或线所在的立体表面有积聚性时,可利用“积聚性 法”求解。
3. 辅助素线或辅助纬圆法
——当点或线所在的曲面立体表面无积聚性时,则必须利用 “辅助线法”求解,如位于圆锥(圆台)的锥面上的点或线,可 利用辅助素线或辅助纬圆法;而位于圆球的球面上的点或线可 利用辅助纬圆法。
1 圆柱
圆柱由圆柱面和两个底面所围 成。
圆柱可看作是由一个矩形平面 绕着它的一条边回转而成。圆 柱面可看作由直线绕与它相平 行的轴线旋转而成。
视图特征: 1)反映底面实 形的视图为圆; 2)另两视图均为 矩形。
分析圆柱轮廓素线的投影
•轮廓素线 ——构成圆柱面 投影的轮廓线 (对某投影面的 可见与不可见部 分的分界线) (回转面上外形 轮廓线)。
相关文档
最新文档