matlab图像拼接程序代码

合集下载

sift算法matlab复杂代码

sift算法matlab复杂代码

一、介绍SIFT算法SIFT(Scale-Invariant Feature Transform)算法是一种用于图像处理和计算机视觉领域的特征提取算法,由David Lowe在1999年提出。

SIFT算法具有旋转、尺度、光照等方面的不变性,能够对图像进行稳健的特征点提取,被广泛应用于物体识别、图像匹配、图像拼接、三维重建等领域。

二、SIFT算法原理SIFT算法的主要原理包括尺度空间极值点检测、关键点定位、关键点方向确定、关键点描述等步骤。

其中,尺度空间极值点检测通过高斯差分金字塔来检测图像中的极值点,关键点定位则利用DoG响应函数进行关键点细化,关键点方向确定和关键点描述部分则通过梯度方向直方图和关键点周围区域的梯度幅度信息来完成。

三、使用Matlab实现SIFT算法在Matlab中实现SIFT算法,需要对SIFT算法的每个步骤进行详细的编程和调试。

需要编写代码进行图像的高斯金字塔和高斯差分金字塔的构建,计算尺度空间极值点,并进行关键点定位。

需要实现关键点的方向确定和描述子生成的算法。

将所有步骤整合在一起,完成SIFT算法的整体实现。

四、SIFT算法复杂代码的编写SIFT算法涉及到的步骤较多,需要编写复杂的代码来实现。

在编写SIFT算法的Matlab代码时,需要考虑到算法的高效性、可扩展性和稳定性。

具体来说,需要注意以下几点:1. 高斯差分金字塔和高斯金字塔的构建:在构建高斯差分金字塔时,需要编写代码实现图像的高斯滤波和图像的降采样操作,以得到不同尺度空间的图像。

还需要实现高斯差分金字塔的构建,以检测图像中的极值点。

2. 尺度空间极值点检测:在检测图像中的极值点时,需要编写代码实现对高斯差分金字塔的极值点检测算法,以找到图像中的潜在关键点。

3. 关键点的定位:关键点定位阶段需要编写代码实现对尺度空间极值点的精确定位,消除低对比度点和边缘响应点,并进行关键点的精细化操作。

4. 关键点的方向确定和描述子生成:在这一步骤中,需要编写代码实现对关键点周围区域的梯度幅度信息的计算和关键点方向的确定,以及生成关键点的描述子。

2013年数学建模B题碎纸片的拼接复原

2013年数学建模B题碎纸片的拼接复原


9 月 15 日
赛区评阅编号(由赛区组委会评阅前进行编号) :
1
2013 高教社杯全国大学生数学建模竞赛
编 号 专 用 页
赛区评阅编号(由赛区组委会评阅前进行编号) :
赛区评阅记录(可供赛区评阅时使用) : 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号) :
全国评阅编号(由全国组委会评阅前进行编号) :
2
三.模型假设
1. 所有碎纸片的拼接都可以忽略边缘效应,即可无缝地融合在一起; 2. 对于仅纵切的两块待拼接的碎纸片,可用像素点灰度值矩阵的相似度大于 0.6 作为 判别标准; 3. 对既纵切又横切的碎纸片,拼接后原图形四周的像素点是 255; 4. 人工干预可以准确的选择出不确定的待拼接图形; 5. 对于既纵切又横切的两块待拼接的碎片,先进行行拼接,再进行列拼接; 6. 假设给定待拼接碎纸片边缘平滑。
二.问题分析
第一问中, 对于中、 英文的纵切单面文件, 可以选择矩阵相关性匹配算法, 在 MATLAB 中导入图形后,将图形中的变量转换为矩阵的形式,采用矩阵相似度比较法,提取待拼 接图形中第一列和最后一列像素点灰度值, 用 corr2 函数进行相似度比较, 然后根据相 关系数的大小来判断待拼接图形文字区域的相似程度,相关系数(0 表示毫不相关,-1 和 1 表示完全相关,靠近-1 或 1 表示相似程度较大) 。 由此得到待拼接图形的相应位置,从而实现文字的拼接。 第二问中,中、英文的纵横切单面文件拼接复原的处理问题,在上一问的基础上将 问题简化为 19 次行方向的碎片拼接,对一拼接的行再进行列方向上的拼接。依然使用 矩阵相关性算法,在 MATLAB 中导入图形后,将各个图形的变量转换为的相应的矩阵形 式,矩阵相似度比较,提取待拼接图形四周边缘像素点灰度值,用 corr2 函数进行相似 度比较, 然后根据相关系数的大小来判断带拼接图形文字区域的相似程度。 由于图形数 量多, 相关系数不能唯一确定一张拼接图形, 此时要进行人工干预, 筛选出合适的图形, 再对剩余的待拼接图进行矩阵相似度比较,得到行方向的图形。最后根据 MATLAB 软件 编写的程序和人工干预拼接处整张图形。 第三问中,对于中、英文的纵横切双面文件的拼接复原,在第二问的基础上需要比 较正反两面, 在比较的过程中其中一张有可能出现正反两面与另一张图像在算法中计算 出来的相关系数几乎差不多,此时可能要进行人工干预,选出那张是正面还是反面。

在Matlab中进行图像融合与图像叠加的方法与技巧

在Matlab中进行图像融合与图像叠加的方法与技巧

在Matlab中进行图像融合与图像叠加的方法与技巧引言:随着数字图像处理和计算机视觉领域的发展,图像融合和图像叠加变得越来越重要。

图像融合是指将多幅图像合成为一幅具有更清晰、更丰富信息的图像,而图像叠加则是在保留所叠加图像的原始信息的同时,使图像更加丰富和易于理解。

Matlab作为一种强大的科学计算工具,提供了丰富的图像处理函数和工具箱,可以很方便地进行图像融合与图像叠加。

一、图像融合的方法与技巧1. 融合算法图像融合的基本方法有加权平均法、空间域融合法、频域融合法、小波融合法等。

加权平均法是最简单的方法,通过计算图像像素的平均值来融合。

空间域融合法是通过对直接融合的图像进行空间域操作来提取融合结果。

频域融合法则是通过将图像转换到频域,然后进行频域操作来实现融合。

小波融合法是基于小波变换的方法,利用小波分析的多尺度分解能力对图像进行分析和融合。

根据具体需求和图像的特点,选择合适的融合算法是非常重要的。

2. 图像预处理在进行图像融合之前,通常需要进行图像预处理,以提高融合结果的质量。

常用的图像预处理方法包括灰度拉伸、直方图均衡化、滤波等。

灰度拉伸是通过对图像的像素值进行线性变换,将图像像素值的范围拉伸到合适的范围内,从而增加图像的对比度。

直方图均衡化则是将图像的像素值在灰度直方图上均匀分布,以增强图像的细节。

滤波是通过对图像进行滤波操作,如低通滤波、高通滤波等,以去除图像中的噪声和不需要的细节。

3. 图像融合的策略图像融合的策略可以根据具体需求来选择。

常见的策略包括全局融合和局部融合。

全局融合是将所有图像的信息进行融合,得到整体的融合结果。

而局部融合则是将不同图像的不同区域进行融合,以保留更多的细节和纹理。

根据具体应用和需求,选择合适的融合策略可以使融合结果更加符合实际需求。

4. 参数设置与调整在进行图像融合过程中,不同的算法和方法有各自的参数,根据不同的图像和具体应用,需要适时地进行参数的设置和调整。

图像处理matlab及图像融合图像镶嵌图像拼接

图像处理matlab及图像融合图像镶嵌图像拼接

图像处理matlab及图像融合图像镶嵌图像拼接在实际的对图像处理过程中,由于我们读出的图像是unit8型,⽽在MATLAB的矩阵运算中要求所有的运算变量为double型(双精度型)。

因此读出的图像数据不能直接进⾏相加求平均,因此必须使⽤⼀个函数将图像数据转换成双精度型数据。

MATLAB中提供了这样的函数:im2double函数,其语法格式为:I2 = im2double(I1)其中I1是输⼊的图像数据,它可能是unit8或unit16型数据,通过函数的变化输出I2为⼀个double型数据,这样两图像数据就可以⽅便的进⾏相加等代数运算.要把double的图像(范围是0到1)再次转化为256灰度值的,可以这样Igrey= uint8(I2*255)图像类型转换函数:dither() 通过颜⾊抖动,把真彩图像转换成索引图像或灰度图象转换成⼆值图像gray2ind() 将灰度图像(或⼆值图像)转换成索引图像grayslice() 通过设定的阈值将灰度图象转换成索引图像im2bw() 通过设定亮度阈值将灰度、真彩、索引图象转换成⼆值图像ind2gray() 将索引图象转换成灰度图象ind2rgb() 将索引图象转换成真彩⾊图像mat2gray() 将⼀个数据矩阵转换成⼀幅灰度图象rgb2gray() 将真彩转换成灰度图象rgb2ind() 将真彩转换成索引图象图像类型与类型间的转换1。

索引图像:包括⼀个数据矩阵X和⼀个⾊图阵MAP。

矩阵元素值指向MAP中的特定颜⾊向量。

2。

灰度图像:数据矩阵I,I中的数据代表了颜⾊灰度值。

矩阵中的元素可以是double类型、8位或16位⽆符号的整数类型。

3。

RGB图像:即真彩图像。

矩阵中每个元素为⼀个数组,数组的元素定义了像素的红、绿、蓝颜⾊值。

RGB数组可以是double类型、8位或16位⽆符号的整数类型。

4。

⼆值图像:⼀个数据阵列,每个象素只能取0或1。

矩阵的基本运算⾏列式求值:det(A)矩阵加减:+、-矩阵相乘:*矩阵左除:A/B %相当于inv(A)*B矩阵右除:A\B %相当于A*inv(B)矩阵的幂:^矩阵转置:'矩阵求共轭(实部相同,虚部相反):conj(X)矩阵求逆:inv(X)级数的求和与收敛symsum(fun,var,a,b):其中fun是通项表达式,var为求和变量,a为求和起点,b为求和终点例如:I为1/[n*(2n+1)]从1到正⽆穷的和,求Isyms n;f1=1/(n*(2*n+1));I=symsum(f1,n,1,inf)计算结果为:I =2-2*log(2)空间曲⾯mesh()函数语法:mesh(Z):mesh(X,Y,Z,C):其中C是⽤来定义相应点颜⾊等属性的数组例:求x^2+y^2=z的空间曲⾯x=-4:4;y=x;[X,Y]=meshgrid(x,y);%⽣成x,y坐标Z=X.^2+Y.^2;mesh(X,Y,Z)曲⾯图[x,y]=meshgrid(xa,ya) 当xa,ya分别为m维和n维⾏向量,得到x和y均为n⾏m列矩阵。

(2021年整理)图像拼接基于harris检测matlab代码

(2021年整理)图像拼接基于harris检测matlab代码

图像拼接基于harris检测matlab代码编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(图像拼接基于harris检测matlab代码)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为图像拼接基于harris检测matlab代码的全部内容。

自定义函数都在下面clcclear all% 读入图片pic1=imread(’lena1.jpg');pic2=imread('lena2。

jpg’);% Harris角点检测points1=myHarris(pic1);points2=myHarris(pic2);% 画出Harris角点figure(1)drawHarrisCorner(pic1,points1,pic2,points2);% 角点特征描述des1=myHarrisCornerDescription(pic1,points1);des2=myHarrisCornerDescription(pic2,points2);%角点粗匹配matchs=myMatch(des1,des2);%获取各自出匹配角点位置matchedPoints1=points1(matchs(:,1),:);matchedPoints2=points2(matchs(:,2),:);% 粗匹配角点连线figure(2)drawLinedCorner(pic1,matchedPoints1,pic2,matchedPoints2);%角点精匹配[newLoc1,newLoc2]=pointsSelect(matchedPoints1,matchedPoints2); % 精匹配角点连线figure(3)drawLinedCorner(pic1,newLoc1,pic2,newLoc2);%图像拼接im=picMatched(pic1,newLoc1,pic2,newLoc2);%显示拼接图像figure(4)imshow(im);set(gcf,’Color',’w’);function points=myHarris(pic)% 功能:寻找Harris角点% 输入:RGB图像或gray图%输出:角点所在的行、纵的N×2矩阵if length(size(pic))==3pic=rgb2gray(pic);endpic=double(pic);hx=[-1 0 1];Ix=filter2(hx,pic);hy=[—1;0;1];Iy=filter2(hy,pic);Ix2=Ix.*Ix;Iy2=Iy.*Iy;Ixy=Ix。

matlab字符串拼接函数

matlab字符串拼接函数

matlab字符串拼接函数Matlab是一种功能强大的编程语言和数值计算环境,提供了丰富的字符串处理函数,其中包括字符串拼接函数。

本文将深入探讨Matlab中的字符串拼接函数,并介绍其使用方法和一些实际应用场景。

在Matlab中,字符串拼接函数主要有两种,分别是strcat和strjoin。

首先我们来介绍strcat函数。

strcat函数用于将两个或多个字符串进行拼接,并返回拼接后的结果。

它的基本语法如下:```matlabresult = strcat(str1, str2, str3, ...)```其中,str1、str2、str3等参数表示要拼接的字符串,可以是字符数组或字符向量。

这些参数可以有多个,用逗号隔开。

拼接后的结果存储在result变量中。

在使用strcat函数时,需要注意的是,参数中的字符串必须是同一类型,即要么都是字符数组,要么都是字符向量。

如果参数中有一个或多个是空字符串或空字符向量,则函数会自动忽略它们。

下面是一个示例:```matlabstr1 = 'Hello, ';str2 = 'world!';result = strcat(str1, str2);disp(result);```运行上述代码,输出结果为"Hello, world!"。

可以看到,strcat 函数将str1和str2拼接在一起,并输出结果。

除了strcat函数,Matlab还提供了strjoin函数来进行字符串的拼接。

strjoin函数的语法如下:```matlabresult = strjoin(str_array, delimiter)```其中,str_array参数表示要拼接的字符串数组,delimiter参数表示拼接时的分隔符。

函数会将str_array中的字符串按照delimiter指定的分隔符进行拼接,并返回拼接后的结果。

下面是一个使用strjoin函数的示例:```matlabstr_array = {'apple', 'banana', 'orange'};delimiter = '-';result = strjoin(str_array, delimiter);disp(result);```运行上述代码,输出结果为"apple-banana-orange"。

碎纸片的拼接复原算法及MATLAB实现之欧阳道创编

碎纸片的拼接复原算法及MATLAB实现之欧阳道创编

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):楚雄师范学院参赛队员(打印并签名) :1.陈志明2.施明杰3. 阮秀婷指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:3013年9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原算法及MATLAB实现摘要:对于只有纵切的情形,文章通过比较当前待拼碎片与剩余碎片的信噪比psnr[1,3,4]的值来确定两碎片是否为邻接碎片;拼接算法首先连续调用右拼函数直到拼接到原图右边界,然后连续调用左拼函数直到拼接到原图左边界,从而得到整幅复原图像;对于单面纵横交错切的情形,文章对首先采用纵切拼接算法将碎片拼接成多幅横条图片,然后将各横条图片矩阵转置[2],再次采用纵切拼接算法拼接;两种情形的拼接,都存在人为参与;实验证明,我们的算法对纵切情形是有效的,对纵横切情况是可行的。

图像分裂合并的matlab实现

图像分裂合并的matlab实现

图像分裂合并的matlab实现包含四段程序CODE1:clear;I=imread('xingshi32.bmp');if(isgray(I)==0)disp('请输入灰度图像,本程序用来处理128 *128的灰度图像!');elseif (size(I)~=[128,128])disp('图像的大小不合程序要求!');elseH.color=[1 1 1]; %设置白的画布figure(H);imshow(I);title('原图像');zeroImage=repmat(uint8(0),[128 128]);figure(H); %为分裂合并后显示的图设置画布meansImageHandle=imshow(zeroImage);title('块均值图像');%%%%%设置分裂后图像的大小由于本图采用了128像素的图blockSize=[128 64 32 16 8 4 2];%%设置一个S稀疏矩阵用于四叉树分解后存诸数据S=uint8(128);S(128,128)=0;threshold=input('请输入分裂的阈值(0--1):');%阈值threshold=round(255*threshold);M=128;dim=128;tic%%%%%%%%%%%%%%%%% 分裂主程序%%%%%%%%%%% while (dim>1)[M,N] = size(I);Sind = find(S == dim);numBlocks = length(Sind);if (numBlocks == 0)%已完成break;endrows = (0:dim-1)';cols = 0:M:(dim-1)*M;rows = rows(:,ones(1,dim));cols = cols(ones(dim,1),:);ind = rows + cols;ind = ind(:);tmp = repmat(Sind', length(ind), 1);ind = ind(:, ones(1,numBlocks));ind = ind + tmp;blockValues= I(ind);blockValues = reshape(blockValues, [dim dim numBlocks]);if(isempty(Sind))%已完成break;end[i,j]=find(S);set(meansImageHandle,'CData',ComputeMeans(I,S));maxValues=max(max(blockValues,[],1),[],2);minValues=min(min(blockValues,[],1),[],2);doSplit=(double(maxValues)-double(minValues))>threshold;dim=dim/2;Sind=Sind(doSplit);Sind=[Sind;Sind+dim;(Sind+M*dim);(Sind+(M+1)*dim)];S(Sind)=dim;end[i,j]=find(S); % 用来寻找四叉机分解结果中大小为S的块的位置set(meansImageHandle,'CData',ComputeMeans(I,S)); % 显示分解结果块均值图像Numberofbloks=length(i); %计算块数%sizev=size(v);endendtocCODE2:function means = ComputeMeans(I, S)% 用来计算给定图像和稀疏矩阵的块均值% I: 为给定的图像% S: 为稀疏矩阵means = I;for dim = [128 64 32 16 8 4 2 1];values = getblk(I, S, dim);if (~isempty(values))%%%%%以下的句子是将小块的平均值来代替原图像中相应的块处的像素%%%% if (min(min(values))>=60)means = setblk(means, S, dim, 0); %用于合并时的阈值else%means = setblk(means, S, dim, sum(sum(values,1),2) ./ dim^2+std2(values));%means = setblk(means, S, dim, sum(sum(values,1),2) ./ dim^2);%means = setblk(means, S, dim, mean2(values));means = setblk(means, S, dim, max(max(values,1),2));endendendCODE3:function [val,r,c] = getblk(A,S,dim)% I:为待处理的图像% S:为四叉树分解后返回的稀疏矩阵包含四叉树结构% Val是dim * dim*k数组, 包含图像I的四叉树分解中的每个dim *dim 块% k是四叉树分解的dim *dim块的数量% 如果没有指定大小的块那么返回一个空矩阵[M,N] = size(A);Sind = find(S == dim);numBlocks = length(Sind);if (numBlocks == 0) % 没有找到任何模块val = zeros(dim,dim,0); % 返回空矩阵r = zeros(0,1);c = zeros(0,1);return;end% 为dim *dom的块计算索引%%%%%%%%%%%%%%%%%rows = (0:dim-1)';cols = 0:M:(dim-1)*M;rows = rows(:,ones(1,dim));cols = cols(ones(dim,1),:);ind = rows + cols;ind = ind(:);% 计算索引矩阵tmp = repmat(Sind', length(ind), 1);ind = ind(:, ones(1,numBlocks));ind = ind + tmp;val = A(ind);val = reshape(val, [dim dim numBlocks]);CODE4:function B = setblk(A,S,dim,val)% I 为待处理的图像% S:为四叉树分解后的稀疏矩阵包含四叉树结构% Val:是dim * dim *k数组% K :是四叉树分解的dim * dim 大小块的个数% setblk : 用val中相应的dim * dim块的值取代图像A 的四叉树分解中的每个% dim *dim 块[M,N] = size(A);blocks = find(S == dim)';numBlocks = length(blocks);if (~isequal([size(val,1) size(val,2) size(val,3)], [dim dim numBlocks]))if (prod(size(val)) == numBlocks)val = repmat(val(:)',[dim^2 1]);endendval = val(:);% 为每一个块算出一个索引rows = (0:dim-1)';cols = 0:M:(dim-1)*M;rows = rows(:,ones(1,dim));cols = cols(ones(dim,1),:);ind = rows + cols;ind = ind(:);% 依照索引进行替换%%%%%blocks = blocks(ones(length(ind),1),:);ind = ind(:, ones(1,numBlocks));ind = ind + blocks;B = A;B(ind) = val;。

最新MATLAB图像拼接算法及实现

最新MATLAB图像拼接算法及实现

M A T L A B图像拼接算法及实现图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。

图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。

一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。

本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。

在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。

首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。

然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。

最后用正确的特征点匹配对实现图像的配准。

本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。

Abstract:Image mosaic is a technology that carries on the spatial matching to aseries of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensingimage processing, medical image analysis, computer graphic and so on. 。

Matlab中的图像拼接与合成方法

Matlab中的图像拼接与合成方法

Matlab中的图像拼接与合成方法图像拼接和合成是数字图像处理中的重要技术,在许多领域都有广泛的应用,如计算机视觉、图形学、遥感和医学图像等。

在Matlab中,我们可以利用一些强大的工具和函数来实现图像拼接与合成。

一、图像的基本处理在进行图像拼接与合成之前,我们需要先对待处理的图像进行一些基本的预处理,比如图像的读取、转换、调整和裁剪等。

Matlab提供了丰富的函数和工具箱来完成这些任务。

1. 图像读取与转换Matlab中可以使用imread函数来读取图像,支持多种图像格式,如JPEG、PNG和BMP等。

读取后的图像可以保存在一个矩阵中,每个像素的值代表该位置的颜色信息。

读取图像示例代码:image = imread('image.jpg');对于彩色图像,可以使用rgb2gray函数将图像转换成灰度图像,方便后续处理。

转换为灰度图像示例代码:gray_image = rgb2gray(image);2. 图像调整与裁剪Matlab中提供了imresize函数来调整图像大小,可以根据比例因子或指定的尺寸来调整图像。

另外,还可以使用imcrop函数来裁剪图像,根据指定的位置和尺寸来截取感兴趣的部分。

调整图像大小示例代码:resized_image = imresize(image, 0.5); % 缩小为原来的一半裁剪图像示例代码:cropped_image = imcrop(image, [x, y, width, height]); % 截取位置为(x, y),尺寸为width x height的图像二、图像拼接方法图像拼接是将多幅图像按照一定的规则拼接在一起,构成一幅更大的图像。

Matlab中有多种方法可以实现图像的拼接,常用的方法包括简单的几何变换、局部特征匹配和全局优化方法等。

1. 简单的几何变换最简单的图像拼接方法是通过几何变换将多幅图像对齐,然后将它们合并在一起。

在Matlab中,可以使用imtransform函数来进行几何变换,常见的变换包括平移、旋转、缩放和翻转等。

在Matlab中进行图像配准和形状匹配的技术

在Matlab中进行图像配准和形状匹配的技术

在Matlab中进行图像配准和形状匹配的技术一、引言图像配准和形状匹配是计算机视觉领域中的重要研究方向,主要用于解决图像处理中的对应、定位和识别问题。

在Matlab中,有许多强大的工具和函数可用于图像配准和形状匹配的实现。

本文将介绍Matlab中常用的图像配准和形状匹配技术,并给出相应的代码实现和示例。

二、图像配准技术1. 基本概念图像配准是将两幅或多幅图像进行对齐,使得它们在空间中具有相同的位置和尺度。

图像配准技术的应用非常广泛,如医学影像、地图制作、机器视觉等领域。

2. 像素级配准像素级配准是通过对图像中的像素进行变换和校正,实现两幅图像的对齐。

Matlab中的imregister函数可用于图像的像素级配准。

以下是一个示例代码:```matlabimage1 = imread('image1.jpg');image2 = imread('image2.jpg');transform = imregtform(image1, image2, 'similarity');registeredImage = imwarp(image1, transform);figure;subplot(1, 2, 1), imshow(image1), title('Original Image');subplot(1, 2, 2), imshow(registeredImage), title('Registered Image');```3. 特征点配准特征点配准是通过检测和匹配两幅图像中的特征点,实现图像的对齐。

Matlab 中的detectSURFFeatures和matchFeatures函数可用于特征点的检测和匹配。

以下是一个示例代码:```matlabimage1 = imread('image1.jpg');image2 = imread('image2.jpg');points1 = detectSURFFeatures(image1);points2 = detectSURFFeatures(image2);[features1, validPoints1] = extractFeatures(image1, points1);[features2, validPoints2] = extractFeatures(image2, points2);indexPairs = matchFeatures(features1, features2);matchedPoints1 = validPoints1(indexPairs(:, 1), :);matchedPoints2 = validPoints2(indexPairs(:, 2), :);tform = estimateGeometricTransform(matchedPoints1, matchedPoints2, 'similarity');registeredImage = imwarp(image1, tform);figure;showMatchedFeatures(image1, image2, matchedPoints1, matchedPoints2);title('Matched Features');figure;subplot(1, 2, 1), imshow(image1), title('Original Image');subplot(1, 2, 2), imshow(registeredImage), title('Registered Image');```三、形状匹配技术1. 基本概念形状匹配是指在图像处理中,通过计算和比较两个物体或图像之间的形状特征,判断它们是否相似或相匹配的技术。

基于MATLAB的图像拼接技术

基于MATLAB的图像拼接技术

基于MATLAB的图像拼接技术实验报告学院:数信学院专业班级: 12级信息工程1班姓名学号:一、 实验名称:基于MATLAB 的图像拼接技术二、 实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。

三、 实验原理:基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频域上是相位相关特点来找到特征位置,从而进行图像拼接。

其基本原理是基于傅氏功率谱的相关技术。

该方法仅利用互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,而且所获得的相关峰尖突出,具有一定的鲁棒性和较高的配准精度。

基于相位相关法进行图像拼接的基本原理如下:假设f (x ,y )表示尺寸 为M ⨯N 的图像,该函数的二维离散傅里叶变换(DFT )为:112(//)001(,)(,)M N j ux M vy N x y F u v f x y eM Nπ---+===⨯∑∑其中,F (u ,v )是复变函数;u 、v 是频率变量,u=0,1,…,M-1,v=0,1,…,N-1;x 、y 是空间或图像变量。

二维离散傅里叶逆变换(IDFT )为:112(//)0(,)(,)N M j ux M vy N y x f u v e F x y π---+===∑∑其中,x=0,1,…,M-1;y=0,1,…,N-1。

设两幅图像1I 、2I 的重叠位置为(0x ,0y ),则图像1I 、2I 的互功率谱为:00*2()1212(,)(,)(,)(,)j x y I I e I I πξηξηξηξηξη-+⨯=⨯其中,*为共轭符号,对上式两边进行傅里叶逆变换将在(0x ,0y )处产生一个 函数。

因此,只要检测上式傅里叶逆变换结果最大值的位置,就可以获得两幅图像间的评议量(0x ,0y 。

具体算法步骤如下: ①读入两幅图片1I 、2I (函数输入),并转换为灰度图像; ②分别对1I 、2I 做二维傅里叶变换,即: A=2fft (1I ) B=2fft (2I )则通过A 、B 的简单的矩阵运算得到另一矩阵3C ,即: 3C =B*.conj (A )/norm (B*.conj (A ),1)矩阵3C 的二维傅里叶逆变换C 在(0x ,0y )处取得最大,可通过遍历比较C (i ,j )大小即可找到该位置,并作为函数返回值。

如何使用MATLAB进行图像拼接和合成

如何使用MATLAB进行图像拼接和合成

如何使用MATLAB进行图像拼接和合成概述:图像拼接和合成是一种将多张图片融合成一张完整图片的技术。

MATLAB作为一种功能强大的科学计算软件,提供了许多方便易用的工具包,使得图像拼接和合成变得更加简单。

本文将介绍如何使用MATLAB进行图像拼接和合成的方法和技巧。

一、图像预处理:在进行图像拼接和合成之前,首先需要对原始输入进行一系列的预处理。

这包括图像的尺寸统一、色彩平衡和去噪等操作。

MATLAB提供了许多内置函数和工具箱,可以轻松完成这些预处理工作。

1. 图像尺寸统一:由于不同图片可能具有不同的尺寸和比例,为了实现拼接和合成的目标,我们需要将所有输入图片的尺寸统一。

MATLAB中的imresize函数可以很方便地实现图像的缩放操作,使得所有图像具有相同的尺寸。

2. 色彩平衡:当合成图像中不同部分的色彩不匹配时,我们需要进行色彩平衡操作,使得整体图像具有统一的色调。

MATLAB提供了imadjust函数,可以对图像的亮度和对比度进行调整,以达到色彩平衡的效果。

3. 去噪:在拼接和合成图像时,由于图片在拍摄和处理过程中可能会出现噪点和不完整的部分,我们需要使用去噪算法来提高图像质量。

MATLAB中的imfilter函数可以实现常见的去噪算法,如中值滤波和高斯滤波等。

二、图像拼接:图像拼接是将多个图片按照一定规则拼接成一张完整图片的过程。

MATLAB 提供了多种实现图像拼接的函数和技术,下面列举其中几种常见的方法。

1. 水平拼接:水平拼接是将多张图片按照水平方向排列,形成一张更宽的图片。

MATLAB 中的imresize和imwrite函数可以实现此功能。

首先,将所有输入图片调整为相同的高度和宽度,然后调用imwrite函数将它们水平排列在一起。

2. 垂直拼接:垂直拼接是将多张图片按照垂直方向排列,形成一张更高的图片。

与水平拼接类似,需要先调整所有输入图片为相同的高度和宽度,然后使用imwrite函数将它们垂直排列在一起。

案例9 图像拼接和图像融合

案例9  图像拼接和图像融合
◦ 特征级
与处理和特征提取后获得的景物信息如边缘,形状,纹理和区域等信息 进行综合与处理。
中间层次信息融合,即保留了足够数量的重要信息,有可对信息进行压 缩,有利于实时处理
◦ 决策级
根据一定的准则以及每个决策的可信度做出最优决策。 最高层次的信息融合,实时性好,并且具有一定的容错能力。 基于认知模型的方法,需要大型数据库和专家决策系统进行分析、推断、
识别。
2021/10/10
9
图像融合预处理
1. 图像增强
◦ 空间域增强
点运算:线性变换,非线性变换,直方图均衡化,归一化。 邻域运算:图像平滑,锐化
◦ 频域增强
塔式分解增强,Fourier变换增强,滤波
◦ 彩色增强
伪彩色增强,假彩色增强,彩色变换
◦ 图像代数运算
插值法,比值法,混合运算法,分辨率融合
2021/10/10
3
图像融合是以图像为研究对象的信息融合,它把对 同一目标或场景的用不同传感器获得的不同图像, 或用同种传感器以不同成像方式或在不同成像时间 获得的不同图像,融合为一幅图像,在一幅融合图 像中能反应多重原始图像的信息,已达到对目标和 场景的综合描述,使之更适合视觉感知或计算机处 理。
◦ 多光谱图像增强
主成分分析,K-T变换
2021/10/10
10
2. 图像矫正和配准
◦ 基于灰度信息的图像配准
基于灰度的一些统计信息来度量图像的相似度。 优点简单易行,缺点计算量大,对噪声敏感。 三种方法
互相关法 序贯相似度检测匹配 交互信息法
◦ 基于变换域图像配准方法
图像间的平移,旋转,缩放在频域上有对应,对抗噪声有一 定的鲁棒性
2021/10/10
16

Matlab中的图像拼接与矩阵计算技术详解

Matlab中的图像拼接与矩阵计算技术详解

Matlab中的图像拼接与矩阵计算技术详解Matlab是一款用于数值计算和可视化的软件。

在图像处理领域,Matlab提供了丰富的函数和工具箱,其中包括图像拼接和矩阵计算技术。

本文将详细介绍Matlab中的图像拼接与矩阵计算技术,并探讨其在实际应用中的作用和优势。

一、图像拼接技术的基本原理图像拼接是将多张图像合并成一张大图的技术。

在Matlab中,图像拼接主要通过矩阵计算来实现。

首先,需要将每张图像转换为矩阵的形式,然后对这些矩阵进行相应的运算,最后再将运算结果转换为图像的形式。

图像拼接的基本原理包括以下几个步骤:1. 加载图像:在Matlab中,可以使用imread函数加载图像。

通过指定图像的文件路径,可以将图像读取为一个矩阵。

2. 处理图像:在进行图像拼接之前,通常需要对图像进行一些预处理操作,例如调整图像的大小、裁剪、旋转等。

Matlab提供了一系列函数和工具箱来进行图像处理,可以根据实际需求选择合适的方法。

3. 图像对齐:在将多张图像拼接成一张大图之前,需要确保它们在空间上对齐。

通常情况下,图像对齐可以通过特征点匹配来实现。

Matlab中的图像拼接工具箱提供了多种特征点匹配算法,例如SIFT、SURF等。

4. 图像拼接:一旦完成了图像对齐,就可以开始进行图像拼接了。

在Matlab中,可以使用矩阵计算技术来对图像进行拼接。

具体来说,可以将多个图像的矩阵按照一定的规则进行组合,然后通过矩阵运算来生成新的矩阵,最后再将新的矩阵转换为图像。

二、矩阵计算技术在图像拼接中的应用在Matlab中,矩阵计算技术在图像拼接中发挥着重要的作用。

通过矩阵计算,可以对图像进行精确的位置调整、旋转、缩放等操作,在保证图像对齐的同时,还能保持图像的质量和清晰度。

1. 位置调整:通过对图像进行平移操作,可以将它们对齐在同一个平面上。

在Matlab中,可以使用矩阵加法来实现图像的平移,即将图像的矩阵与一个平移矩阵相加,从而改变图像的位置。

matlab 结构体拼接

matlab 结构体拼接

matlab 结构体拼接MATLAB结构体是一种便于管理和组织数据的数据类型。

它通常用于储存多个变量(类似于Python的字典),每个变量都有一个唯一的名称。

结构体非常适合储存有关一个实体(例如一个人或一辆车)的各种属性。

在MATLAB中,可以通过多种方式创建结构体,包括手动添加字段和值,使用load函数从文件中读取数据,以及使用struct函数将各种变量转换为结构体。

不过本文主要围绕如何实现结构体拼接进行介绍。

一、结构体的拼接MATLAB中有许多可以用来进行结构体的拼接的方法,这里介绍两种常用方法。

1、使用setfield函数setfield是MATLAB中一个用来设置结构体字段值的函数。

该函数可以接受四个输入参数——第一个是待修改的结构体、第二个是要修改的字段名称、第三个是要修改的新值、第四个是一个可选的索引号。

通过循环遍历每个待拼接的结构体,将其字段和相应的值添加到新结构体中,即可实现结构体的拼接。

以下是一个示例代码:%创建第一个结构体car1.make = 'Toyota';car1.model = 'Camry';car1.year = 2019;car1.color = 'white';%创建空结构体cars = struct;%拼接结构体fields = fieldnames(car1); %获取字段名for i = 1:length(fields) %遍历字段cars = setfield(cars, fields{i}, []); %从第一个结构体中添加字段名end%输出新结构体disp(cars);输出结果如下:cars =make: {'Toyota' 'Honda' }model: {'Camry' 'Accord' }year: [ 2019 2017 ]color: {'white' 'blue' }2、使用struct2cell和cell2struct函数struct2cell函数可将结构体转变为一个单元数组。

碎纸片的拼接复原算法及MATLAB实现

碎纸片的拼接复原算法及MATLAB实现

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):楚雄师范学院参赛队员(打印并签名) :1. 陈志明2. 施明杰3. 阮秀婷指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 3013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原算法及MATLAB实现摘要:对于只有纵切的情形,文章通过比较当前待拼碎片与剩余碎片的信噪比psnr[1,3,4]的值来确定两碎片是否为邻接碎片;拼接算法首先连续调用右拼函数直到拼接到原图右边界,然后连续调用左拼函数直到拼接到原图左边界,从而得到整幅复原图像;对于单面纵横交错切的情形,文章对首先采用纵切拼接算法将碎片拼接成多幅横条图片,然后将各横条图片矩阵转置[2],再次采用纵切拼接算法拼接;两种情形的拼接,都存在人为参与;实验证明,我们的算法对纵切情形是有效的,对纵横切情况是可行的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档