利用导数证明不等式的常见题型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数证明不等式的常见题型及解题技巧
技巧精髓
1、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点
也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得
不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
一、利用题目所给函数证明
例1】已知函数f (x) =ln(x • 1) -X ,求证:当x • -1时,恒有
分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数
1
g(x) = ln(x • 1)1,从其导数入手即可证明。
x十1
1 x
绿色通道】f(X) 1 =
x+1 x+1
•••当T:::x”:0时,f(x)・0,即f (x)在x・(T,0)上为增函数
当x 0时,f (x) :::0,即f (x)在x • (0/::)上为减函数
故函数f(x)的单调递增区间为(-1,0),单调递减区间(0,
于是函数f (x)在(-1「:)上的最大值为f (x),因此,当X • -1时,
f (x) _ f (0) =0 ,即ln(x 1) -x _0 •••In(x 1) _ x (右面得证),
1 1 1 现证左面,令g(x)二ln(x 1) 1, 则g (xp
x+1 x+1 (x + 1)
x
2 (x 1)
当x (-1,0)时,g(x) ::0;当x (0,::)时,g (x) 0 ,即g(x)在(-1,0)上为减函数,在X- (0, V)上为增函数,
故函数g(x)在(-1, •::)上的最小值为g(x)min二g(0) =0 ,
. 1 •••当x -1 时,g(x) - g(0) =0 ,即ln(x 1)
1
警示启迪】如果f (a)是函数f (x)在区间上的最大 (小)值,则有f (x)込f (a)(或f (x)亠f (a)),
那么要证不等式,只要求函数的最大值不超过
0就可得证.
2、直接作差构造函数证明
象的下方;
分析:函数f (x)的图象在函数g(x)的图象的下方二 不等式f (X )::: g(x)问题,
1 2 2 3 1 2 2 3
即一 x I n x x ,只需证明在区间(1, ■二)上,恒有一 x I n x x 成立,设 2 3 2 3
1
F(x)二 g(x) - f (x) , x (1,二),考虑到 F(1) 0
6
要证不等式转化变为:当x 时,F(x) .F(1),这只要证明:g(x)在区间(1,・::)是增函数即可。
2
1 (x -1)(2x x 1)
-x —一=
x
x
2
(x - 1)(2x x 1)
当 x 1 时,F (x) =
x
1
从而F(x)在(1, •::)上为增函数,二F(x) F(1)
0 6
••当 x 1 时 g(x) - f(x) 0,即 f(x) < g(x),
2 3
故在区间(1, •::)上,函数f(x)的图象在函数g(x) x 3的图象的下方。
3
警示启迪】本题首先根据题意构造出一个函数
(可以移项,使右边为零,将移项后的左式设为函数 ),
并利用导数判断所设函数的单调性
,再根据函数单调性的定义
,证明要证的不等式。读者也可
以设F (x) = f (x) - g (x)做一做,深刻体会其中的思想方法
。
3、换元后作差构造函数证明
1 1 1
例31 (2007年,山东卷)证明:对任意的正整数 n ,不等式In(- 1)
都成立.
n n n 1
分析:本题是山东卷的第
(II )问,从所证结构出发,只需令 x ,则问题转化为:当x 0时,恒
n
2
3 3 2
有In(x 1) x -x 成立,现构造函数h(x)=x - x Tn(x ■ 1),求导即可达到证明。
绿色通道 1令 h(x) = x 3 -X 2 In(x 1),
•••In(x 1) _1
,综上可知,
x 1 当…1时,有X1
—1 乞 ln(x 1)乞 X
例2】已知函数
f(x^-x 2 In x.求证:
2
在区间(1, •::)上,函数f (x)的图象在函数g(x)=
绿色通道】设F (x)二g (x) - f (x),
即 F(x) =2x 3」x 2 一1 nx ,
3 2
则 F (x) =2x 2
所以函数h(x)在(0,::)上单调递增,二x (0,::)时,恒有h(x) h(0)=0, 即 X ’ -X 2 In(x • 1) . 0 ,二1 n(x 1) . x 2 - x 3
1
i
11
对任意正整数n ,取x
(0「:),则有ln( 1) 2
3
n n n n
警示启迪】我们知道,当F(x)在[a,b ]上单调递增,则x a 时,有F(x) ・F(a).如果f(a)= 「(a),要证明当x ■ a 时,f(x) •「(x),那么,只要令F(x) = f (x) — : (x),就可以利用F(x)的单 调增性来推导.也就是说,在
F(x)可导的前提下,只要证明F'(x) .0即可.
4、从条件特征入手构造函数证明
例4】若函数 y f (x)在R 上可导且满足不等式
x f (x) > — f (x)恒成立,且常数a ,b 满足a >b ,求
证:.a f (a) >b f(b)
绿色通道】由已知x f (x) + f (x) >0 ••构造函数 F(x)二xf(x),
则F ‘(x)工x f (x) + f (x) >0,从而F(x)在R 上为增函数。
a b /.F(a) F(b)即 a f(a)>b f (b)
警示启迪】由条件移项后xf (x) f (x),容易想到是一个积的导数
,从而可以构造函数 F(x)二xf(x),
求导即可完成证明。若题目中的条件改为 xf (x) f (x),则移项后xf (x) - f (x),要想到 是一个商的导数的分子,平时解题多注意总结。
思维挑战】
1、 (2007 年,安徽卷)设 a _ 0, f (x) = x -1 -1n 2 x 2a In x 求证:当x 1时,恒有x • ln 2 x - 2a ln x T ,
2、 (2007年,安徽卷)已知定义在正实数集上的函数
1
5
f (x)=尹2 2ax, g(x) = 3a 2 ln x b,其中 a >0,且
b
= ? a - 3a ?ln a ,
求证:f (x)丄g(x)
x
3、已知函数f(x)=ln(1 x)
,求证:对任意的正数a 、b ,
1 +x
则 h (x)二 3x 2
3x 3 (x-1)2 在
x +1
x ,(0/::
)上恒正,