三角函数概念、同角三角函数关系式和诱导公式归纳总结

合集下载

三角函数有关概念、同角三角函数关系式及诱导公式

三角函数有关概念、同角三角函数关系式及诱导公式

第四章 三角函数第1讲 三角函数的有关概念、同角三角函数的关系式及诱导公式考纲展示 命题探究考点 三角函数的概念、同角三角函数的关系和诱导公式1 三角函数的有关概念 (1)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合{β|β=α+2k π,k ∈Z }. (2)角度与弧度的互化①360°=2π rad ;②180°=π rad ;③1°=π180 rad ;④1 rad =⎝ ⎛⎭⎪⎫180π°≈57.30°.(3)弧长及扇形面积公式 ①弧长公式:l =|α|r ;②扇形面积公式:S =12lr =12|α|r 2.其中l 为扇形弧长,α为圆心角,r 为扇形半径. (4)任意角的三角函数的定义设α是一个任意角,α的终边上任意一点P (与原点不重合)的坐标为(x ,y ),它到原点的距离是r =x 2+y 2.(5)记忆口诀:一全正,二正弦,三正切,四余弦. (6)三角函数线2 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z . 3 诱导公式及记忆规律 (1)诱导公式①诱导公式可简记为:奇变偶不变,符号看象限.②“奇”“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 为奇数,则正、余弦互变;若k 为偶数,则函数名称不变.③“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限. 注意点 应用三角函数定义和平方关系求值时注意正负号选取(1)利用三角函数的定义求解问题时,认清角终边所在的象限或所给角的取值范围,以确定三角函数值的符号.(2)利用同角三角函数的平方关系求三角函数值,进行开方时要根据角的范围,判断符号后正确取舍.1.思维辨析(1)120°角的正弦值是12,余弦值是-32.( ) (2)同角三角函数关系式中的角α是任意角.( ) (3)六组诱导公式中的角α可以是任意角.( )(4)诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关.( )(5)锐角是第一象限角,反之亦然.( ) (6)终边相同的角的同一三角函数值相等.( ) 答案 (1)× (2)× (3)× (4)√ (5)× (6)√ 2.已知角α的终边经过点(-4,3),则cos α=( ) A.45B.35 C .-35D .-45 答案 D解读 由三角函数的定义知cos α=-4(-4)2+32=-45.故选D. 3.(1)角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限(2)弧长为3π,圆心角为135°的扇形半径为________,面积为________. 答案 (1)C (2)4 6π解读 (1)因为-870°=-2×360°-150°,又-150°是第三象限角,所以-870°的终边在第三象限.(2)弧长l =3π,圆心角α=34π,由弧长公式l =|α|·r ,得r =l |α|=3π34π=4,面积S =12lr =6π.[考法综述] 对于角的概念、三角函数的定义单独命题的概率很小,多与其他知识相结合.如三角恒等变换、同角关系式及诱导公式等,题型一般为选择题、填空题形式,属于中低档题目,考查学生的基本运算能力及等价转化能力.命题法 三角函数的概念,同角三角函数关系式,诱导公式的应用 典例 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( ) A .-32B.32 C .-34D.34(2)若角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,则cos θ的值为________. (3)已知扇形周长为40,当它的半径r =________和圆心角θ=________分别取何值时,扇形的面积取最大值?(4)已知cos ⎝ ⎛⎭⎪⎫π6-α=23,则sin ⎝ ⎛⎭⎪⎫α-2π3=________.[解读] (1)∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.(2)点P (-3,m )是角θ终边上一点,由三角函数定义可知sin θ=m 3+m 2.又sin θ=24m ,∴m 3+m 2=24m . 又m ≠0,∴m 2=5, ∴cos θ=-33+m 2=-64.(3)设圆心角是θ,半径是r ,则2r +rθ=40.又S =12θr 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100.当且仅当r =10时,S max =100,此时2×10+10θ=40,θ=2. ∴当r =10,θ=2时,扇形的面积最大. (4)∵⎝⎛⎭⎪⎫π6-α+⎝⎛⎭⎪⎫α-2π3=-π2,∴α-2π3=-π2-⎝ ⎛⎭⎪⎫π6-α,∴sin ⎝ ⎛⎭⎪⎫α-2π3=sin ⎣⎢⎡⎦⎥⎤-π2-⎝ ⎛⎭⎪⎫π6-α, =-cos ⎝⎛⎭⎪⎫π6-α=-23.[答案] (1)B (2)-64 (3)10 2 (4)-23【解题法】 同角关系式的应用技巧和诱导公式使用原则步骤 (1)同角关系式的应用技巧①弦切互化法:主要利用公式tan θ=sin θcos θ化成正弦、余弦函数.②和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. ③巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝ ⎛⎭⎪⎫1+1tan 2θ.(2)使用诱导公式的原则和步骤①原则:负化正、大化小、化到锐角为终了.②步骤:利用诱导公式可以把任意角的三角函数转化为0~π2之间角的三角函数,然后求值.1.若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( ) A .1 B .2 C .3 D .4 答案 C解读 cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫α-3π10+π2sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sin π5cos π5cos π5+sin π52·sin π5cos π5cos π5-sin π5=3sin π5sin π5=3,故选C. 2.设a =sin33°,b =cos55°,c =tan35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b 答案 C解读 ∵a =sin33°,b =cos55°=sin35°, c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.3.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的中心角的弧度数是( ) A .2 B .1 C.12D .3 答案 A解读 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.4.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.答案 -8解读 若角α终边上任意一点P (x ,y ),|OP |=r ,则sin α=y r ,cos α=x r ,tan α=yx .P (4,y )是角θ终边上一点,由三角函数的定义知sin θ=y 16+y 2,又sin θ=-255,∴y 16+y2=-255,且y <0,解得y =-8. 5.若α∈⎝⎛⎭⎪⎫0,π2,则sin2αsin 2α+4cos 2α的最大值为________. 答案 12解读 ∵α∈⎝⎛⎭⎪⎫0,π2,∴tan α>0,∴sin2αsin 2α+4cos 2α=2sin αcos αsin 2α+4cos 2α=2tan α4+tan 2α=2tan α+4tan α≤12,当且仅当tan α=2时取等号.6.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解 (1)∵m ⊥n ,∴m ·n =0. 故22sin x -22cos x =0,∴tan x =1.(2)∵m 与n 的夹角为π3,∴cos 〈m ,n 〉=m ·n|m |·|n |=22sin x -22cos x 1×1=12,故sin ⎝ ⎛⎭⎪⎫x -π4=12.又x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,x -π4=π6,即x=5π12,故x 的值为5π12.已知角α的终边在直线2x -y =0上,求角α的正弦、余弦和正切值. [错解][错因分析]直接在直线上取特殊点的方法,导致漏解.[正解]在直线2x+y=0上取点(m,2m)(m≠0)则r=5|m|,当m>0时,r=5m,sinα=yr=2m5m=255,cosα=xr=m5m=55,tanα=yx=2mm=2.当m<0时,r=-5m,sinα=yr=2m-5m=-255,cosα=xr=m-5m=-55,tanα=y x=2mm=2.[心得体会]………………………………………………………………………………………………时间:45分钟基础组1.[2016·冀州中学期中]已知角α的终边过点P(-a,-3a),a≠0,则sinα=() A.31010或1010B.31010C.1010或-1010D.31010或-31010答案 D解读当a>0时,角α的终边过点(-1,-3),利用三角函数的定义可得sinα=-31010;当a <0时,角α的终边过点(1,3),利用三角函数的定义可得sin α=31010.故选D.2. [2016·衡水中学仿真]若sin α+cos α=713(0<α<π),则tan α等于( ) A .-13B.125 C .-125D.13 答案 C解读 由sin α+cos α=713,两边平方得 1+2sin αcos α=49169,∴2sin αcos α=-120169, 又2sin αcos α<0,0<α<π. ∴π2<α<π.∴sin α-cos α>0.∵(sin α-cos α)2=1-2sin αcos α=289169, ∴sin α-cos α=1713. 由⎩⎪⎨⎪⎧sin α+cos α=713,sin α-cos α=1713,得⎩⎪⎨⎪⎧sin α=1213,cos α=-513,∴tan α=-125.3.[2016·枣强中学预测]设集合M =⎩⎨⎧x ⎪⎪⎪ x =k2·180°+45°,k ∈Z },N =⎩⎨⎧x ⎪⎪x =k 4·180°+45°,k ∈Z⎭⎬⎫,那么( ) A .M =N B .M ⊆N C .N ⊆M D .M ∩N =∅ 答案 B解读 M =⎩⎨⎧⎭⎬⎫x | x =k 2·180°+45°,k ∈Z =⎩⎨⎧ x | x =2k 4·⎭⎪⎬⎪⎫ 180°+45°,k ∈Z ,故当集合N 中的k 为偶数时,M =N ,当k 为奇数时,在集合M 中不存在,故M ⊆N .4.[2016·冀州中学一轮检测]已知角θ的顶点在坐标原点,始边与x 轴非负半轴重合,终边在直线2x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+cos (π-θ)sin ⎝⎛⎭⎪⎫π2-θ-sin (π-θ)=( )A .-2B .2C .0 D.23 答案 B解读 由角θ的终边在直线2x -y =0上,可得tan θ=2,原式=-cos θ-cos θcos θ-sin θ=-21-tan θ=2.5.[2016·武邑中学一轮检测]已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C.22D .1 答案 A解读 解法一:由sin α-cos α=2sin ⎝⎛⎭⎪⎫α-π4=2,α∈(0,π),解得α=3π4,∴tan α=tan 3π4=-1.解法二:由sin α-cos α=2及sin 2α+cos 2α=1,得(sin α-cos α)2=1-2sin αcos α=2,即2sin αcos α=-1<0,故tan α<0,且2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=-1,解得tan α=-1(正值舍).6.[2016·武邑中学月考]已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A.5π6B.5π3 C.11π6D.2π3 答案 B解读 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x=2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.7. [2016·衡水中学热身]已知函数f (x )=sin x -cos x ,且f ′(x )=2f (x ),则tan2x 的值是( )A .-43B.43 C .-34D.34 答案 C解读 因为f (x )=sin x -cos x ,所以f ′(x )=cos x +sin x ,于是有cos x +sin x =2(sin x -cos x ),整理得sin x =3cos x ,所以tan x =3,因此tan2x =2tan x 1-tan 2x =2×31-32=-34,故选C.8.[2016·衡水二中期中]已知sin(π-α)=log 814,且α∈⎝ ⎛⎭⎪⎫-π2,0,则tan(2π-α)的值为( )A .-255 B.255 C .±255 D.52 答案 B解读 sin(π-α)=sin α=log 814=-23,又因为α∈⎝ ⎛⎭⎪⎫-π2,0,则cos α=1-sin 2α=53,所以tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255.9.[2016·武邑中学预测]在三角形ABC 中,若sin A +cos A =15,则tan A =( ) A.34B .-43 C .-34D .±43 答案 B解读 解法一:因为sin A +cos A =15,所以(sin A +cos A )2=⎝ ⎛⎭⎪⎫152,所以1+2sin A cos A =125,所以sin A cos A =-1225.又A ∈(0,π),所以sin A >0,cos A <0.因为sin A +cos A =15,sin A cos A =-1225,所以sin A ,cos A 是一元二次方程x 2-15x -1225=0的两个根,解方程得sin A =45,cos A =-35,所以tan A =-43.故选B.解法二:由解法一,得sin A >0,cos A <0,又sin A +cos A =15>0,所以|sin A |>|cos A |,所以π2<A <3π4,所以tan A <-1,故选B.10.[2016·枣强中学模拟]已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________.答案 0解读 原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|,因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0.11. [2016·武邑中学猜题]设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α⎝ ⎛⎭⎪⎫sin α≠-12,则f ⎝ ⎛⎭⎪⎫-23π6=________. 答案 3解读 ∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-4π+π6 =1tan π6= 3. 能力组12.[2016·冀州中学仿真]已知扇形的面积为3π16,半径为1,则该扇形的圆心角的弧度数是( )A.3π16B.3π8C.3π4D.3π2答案 B解读 S 扇=12|α|r 2=12|α|×1=3π16,所以|α|=3π8.13.[2016·武邑中学预测]已知sin(3π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,则sin αcos α等于( ) A .-25B.25 C.25或-25D .-15 答案 A解读 因为sin(3π-α)=sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,所以sin α=-2cos α,所以tan α=-2, 所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-25. 14.[2016·衡水二中模拟]已知α∈(0,π)且sin α+cos α=m (0<m <1),则cos α-sin α的值( )A .为正B .为负C .为零D .为正或负 答案 B解读 若0<α<π2,如图所示,在单位圆中,P (cos α,sin α),OM =cos α,MP =sin α,所以sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1.由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α-sin α<0,故选B. 15.[2016·枣强中学期末]△ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sin A -cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( )A .1B .-1C .3D .4 答案 B解读 因为△ABC 是锐角三角形,所以A +B >90°,即A >90°-B ,则sin A >sin(90°-B )=cos B ,sin A -cos B >0,同理cos A -sin C <0,所以点P 在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1,故选B.。

高中数学- 三角函数公式总结

高中数学- 三角函数公式总结

高中数学-三角函数公式总结一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:ry =αsin 余弦:rx =αcos 正切:xy=αtan 二、同角三角函数的基本关系式商数关系:αααcos sin tan =,平方关系:1cos sin 22=+αα三、诱导公式(奇变偶不变,符号看象限)⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)=sin α(k ∈Z )cos (2k π+α)=cos α(k ∈Z )tan (2k π+α)=tan α(k ∈Z )公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan α公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sin αcos (-α)=cos αtan (-α)=-tan α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)=sin αcos (π-α)=-cos αtan (π-α)=-tan α公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)=-sin αcos (2π-α)=cos αtan (2π-α)=-tan α微生筑梦公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin (π/2+α)=cos αsin (π/2-α)=cos αcos (π/2+α)=-sin αcos (π/2-α)=sin αtan (π/2+α)=-cot αtan (π/2-α)=cot αsin (3π/2+α)=-cos αsin (3π/2-α)=-cos αcos (3π/2+α)=sin αcos (3π/2-α)=-sin αtan (3π/2+α)=-cot αtan (3π/2-α)=cot α四、和角公式和差角公式βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=六、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a 其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,22sin b a b +=ϕ,22cos b a a +=ϕ,ab=ϕtan 。

同角三角函数的基本关系与诱导公式知识点

同角三角函数的基本关系与诱导公式知识点

同角三角函数的基本关系与诱导公式知识点[归纳·知识整合]1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.[探究] 1.如何理解基本关系中“同角”的含义?提示:只要是同一个角,基本关系就成立,不拘泥于角的形式,如sin 2α3+cos 2α3=1,tan4α=sin 4αcos 4α等都是成立的,而sin 2θ+cos 2φ=1就不成立.2.诱导公式即α+k ·2π(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.[探究] 2.有人说sin(k π-α)=sin(π-α)=sin α(k ∈Z ),你认为正确吗?提示:不正确.当k =2n (n ∈Z )时,sin(k π-α)=sin(2n π-α)=sin(-α)=-sin α; 当k =2n +1(n ∈Z )时,sin(k π-α)=sin[(2n +1)·π-α]=sin(2n π+π-α)=sin(π-α)=sin α. 3.诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”是否与α的大小有关? 提示:无关,只是把α从形式上看作锐角,从而2k π+α(k ∈Z ),π+α,-α,π-α,π2-α,π2+α分别是第一,三,四,二,一,二象限角. [自测·牛刀小试]1.(教材习题改编)已知cos(π+α)=12,则sin α的值为( )A .±12B.12C.32D .±32解析:选D cos(π+α)=-cos α=12,∴cos α=-12,∴sin α=±1-cos α2=±32.2.tan 690°的值为( ) A .-33B.33C. 3 D .- 3解析:选A tan 690°=tan(-30°+2×360°) =tan(-30°)=-tan 30°=-33. 3.(教材习题改编)若tan α=2,则sin α-cos αsin α+cos α的值为( )A .-13B .-53C.13D.53解析:选Csin α-cos αsin α+cos α=tan α-1tan α+1=2-12+1=13.4.(教材习题改编)已知tan α=3,π<α<32π,则cos α-sin α=________.解析:∵tan α=3,π<α<32π,∴α=43π,∴cos α-sin α=cos 43π-sin 43π=-cos π3+sin π3=-12+32=3-12.答案:3-125.计算sin 10π3-2cos ⎝⎛⎭⎫-19π4+tan ⎝⎛⎭⎫-13π3=________. 解析:原式=sin ⎝⎛⎭⎫2π+4π3-2cos ⎝⎛⎭⎫4π+3π4-tan ⎝⎛⎭⎫4π+π3=sin ⎝⎛⎭⎫π+π3-2cos ⎝⎛⎭⎫π-π4-tan π3 =-sin π3+2cos π4-3=-332+1.答案:-332+1[例1] 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[自主解答] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2α+cos 2α=1, ②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角,∴⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝⎛⎭⎫152,即1+2sin αcos α=125, ∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0,cos α<0,∴sin α-cos α>0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,sin α-cos α=75,得⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝⎛⎭⎫-432+11-⎝⎛⎭⎫-432=-257.保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知 tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝⎛⎭⎫-43+2=87. (2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825.———————————————————同角三角函数关系式及变形公式的应用(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.1.已知sin α=2sin β,tan α=3tan β,求cos α. 解:∵sin α=2sin β,tan α=3tan β, ∴sin 2α=4sin 2β,① tan 2α=9tan 2β.②由①÷②得:9cos 2α=4cos 2β.③ 由①+③得sin 2α+9cos 2α=4. 又sin 2α+cos 2α=1, ∴cos 2α=38,∴cos α=±64.[例2] (1)已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-72π的值. [自主解答] (1)∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33, 即cos ⎝⎛⎭⎫5π6-α=-33.(2)∵cos(α-7π)=cos(7π-α)=co s(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-72π =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫72π-α =sin α·tan ⎝⎛⎭⎫π2-α=sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin α·cos αsin α=cos α=35.——————————————————— 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2.(1)已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝⎛⎭⎫-α-3π2cos ⎝⎛⎭⎫3π2-αtan 2(π-α)cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α=( )A.916 B .-916C .-34D.34(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α⎝⎛⎭⎫sin α≠-12,则f ⎝⎛⎭⎫-23π6=________. 解析:(1)选B ∵方程5x 2-7x -6=0的根为x 1=2,x 2=-35,由题知sin α=-35,∴cos α=-45,tan α=34.∴原式=cos α(-sin α)tan 2αsin αcos α=-tan 2α=-916.(2)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案: 3[例3] 在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.[自主解答] 由已知得⎩⎪⎨⎪⎧sin A =2sin B ①3cos A =2cos B ②①2+②2得2cos 2A =1 即cos A =22或cos A =-22. (1)∵当cos A =22时,cos B =32, 又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=7π12.(2)∵当cos A =-22时,cos B =-32. 又A 、B 是三角形的内角, ∴A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.———————————————————1.三角形中的诱导公式在三角形ABC 中常用到以下结论: sin(A +B )=sin(π-C )=sin C , cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2, cos ⎝⎛⎭⎫A 2+B 2=cos ⎝⎛⎭⎫π2-C 2=sin C 2. 2.求角的一般步骤求角时,一般先求出该角的某一三角函数值,再确定该角的范围,最后求角.3.在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角. 解:∵sin A +cos A =2, ∴1+2sin A cos A =2,∴sin2A =1. ∵A 为△ABC 的内角, ∴2A =π2,∴A =π4.∵3cos A =-2cos(π-B ), ∴3cos π4=2cos B ,∴cos B =32. ∵0<B <π,∴B =π6.∵A +B +C =π,∴C =7π12.∴A =π4,B =π6,C =7π12.1个口诀——诱导公式的记忆口诀 奇变偶不变,符号看象限. 1个原则——诱导公式的应用原则 负化正、大化小、化到锐角为终了.3种方法——三角函数求值与化简的常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….3个防范——应用同角三角函数关系式与诱导公式应注意的问题(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.易误警示——应用同角三角函数平方关系的误区[典例] (2011·重庆高考)若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. [解析] 依题意得sin α=-1-cos 2α=-45,tan α=sin αcos α=43.[答案] 43[易误辨析]1.解答本题时,常会出现以下两种失误(1)忽视题目中已知条件α的范围,求得sin α的两个值而致误; (2)只注意到α的范围,但判断错sin α的符号而导致tan α的值错误. 2.由同角三角函数的平方关系求sin α或cos α时,要注意以下两点(1)题目中若没有限定角α的范围,则sin α或cos α的符号应有两种情况,不可漏掉. (2)若已给出α的范围,则要准确判断在给定范围内sin α或cos α的符号,不合题意的一定要舍去.[变式训练]1.(2013·福州模拟)已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. 解析:依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,因此cos α=-55. 答案:-552.(2013·泰州模拟)若θ∈⎝⎛⎭⎫π4,π2,sin 2θ=116,则cos θ-sin θ的值是________. 解析:(cos θ-sin θ)2=1-sin 2θ=1516.∵π4<θ<π2,∴cos θ<sin θ.∴cos θ-sin θ=-154. 答案:-154一、选择题(本大题共6小题,每小题5分,共30分) 1.α是第一象限角,tan α=34,则sin α=( )A.45 B.35 C .-45D .-35解析:选B tan α=sin αcos α=34,sin 2 α+cos 2α=1,且α是第一象限角,所以sin α=35.2.若sin ⎝⎛⎭⎫π6+α=35,则cos ⎝⎛⎭⎫π3-α=( ) A .-35B.35C.45D .-45解析:选B cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α=sin ⎝⎛⎭⎫π6+α=35. 3.(2013·安徽名校模拟)已知tan x =2,则sin 2x +1=( ) A .0 B.95 C.43D.53解析:选B sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.4.已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝⎛⎭⎫-313π的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin αcos α-cos αtan α=-cos α,∴f ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫10π+π3 =-cos π3=-12.5.(2013·西安模拟)已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:选B 由2tan α·sin α=3得,2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32. 6.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5D .-1- 5解析:选B 由题意知:sin θ+cos θ=-m2,sin θcos θ=m4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.二、填空题(本大题共3小题,每小题5分,共15分) 7.化简sin ⎝⎛⎭⎫π2+α·cos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)·cos ⎝⎛⎭⎫π2+αsin (π+α)=________.解析:原式=cos α·sin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 答案:08.若cos(2π-α)=53,且α∈⎣⎡⎦⎤-π2,0,则sin(π-α)=________.解析:由诱导公式可知cos(2π-α)=cos α,sin(π-α)=sin α,由sin 2α+cos 2α=1可得,sin α=±23,∵α∈⎣⎡⎦⎤-π2,0,∴sin α=-23. 答案:-239.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π.则sin α-cos α=________.解析:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23,① 将①两边平方得1+2sin α·cos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169. 又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43三、解答题(本大题共3小题,每小题12分,共36分) 10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ的值.解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13.∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18. 11.已知关于x 的方程2x 2-(3+1)x +m =0的两根sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12,故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ =(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θ·cos θ=34知⎩⎨⎧sin θ=32,cos θ=12,或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π6或θ=π3.12.是否存在α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝⎛⎭⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值,若不存在,请说明理由.解:假设存在α、β使得等式成立,即有⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β, ①3cos (-α)=-2cos (π+β), ②由诱导公式可得⎩⎪⎨⎪⎧sin α=2sin β, ③3cos α=2cos β, ④ ③2+④2得sin 2α+3cos 2α=2,解得cos 2α=12.又∵α∈⎝⎛⎭⎫-π2,π2,∴α=π4或α=-π4. 将α=π4代入④得cos β=32.又β∈(0,π),∴β=π6,代入③可知符合.将α=-π4代入④得cos β=32.又β∈(0,π).∴β=π6,代入③可知不符合.综上可知,存在α=π4,β=π6满足条件.1.记cos(-80°)=k ,那么tan 100°=( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析:选B ∵cos(-80°)=cos 80°=k , sin 80°=1-k 2,∴tan 80°=1-k 2k,tan 100°=-tan 80°=-1-k 2k. 2.sin 585°的值为( ) A .-22B.22C .-32D.32解析:选A 注意到585°=360°+180°+45°,因此sin 585°=sin(360°+180°+45°)=-sin 45°=-22. 3.若cos α+2sin α=-5,则tan α=( ) A.12 B .2 C .-12D .-2解析:选B ∵cos α+2sin α=-5,结合sin 2α+cos 2α=1得(5sin α+2)2=0,∴sin α=-255,cos α=-55,∴tan α=2.4.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050)°+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°· (-sin 1 050°)+tan 945°=-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 5.若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.解:∵由题意知:sin θ+cos θ=15,∴(sin θ+cos θ)2=125.∴sin 2θ=-2425,即2sin θcos θ=-2425<0,则sin θ与cos θ异号.又sin θ+cos θ=15>0,∴π2<θ<3π4,∴π<2θ<3π2.故cos 2θ=-1-sin22θ=-725.。

同角三角函数基本关系式、三角函数的诱导公式

同角三角函数基本关系式、三角函数的诱导公式

一、知识概述1、同角三角函数的基本关系式同角三角函数基本关系可概括为平方关系,商数关系和倒数关系,如考虑sinα,cos α,tanα,cotα与secα,cscα六个函数,还可借助如下图表形象记忆:(1)对角线上两个函数的积为1(倒数关系)(2)任一顶点的函数等于与其相邻两个顶点的函数的积(商数关系)(3)阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系)由此图可得出公式的变形形式或其他同角函数关系式.平方关系:sin2α+cos2α=1,sec2α=1+tan2α,csc2α=1+cot2α.商数关系:倒数关系:tanα·cotα=1,sinα·cscα=1,cosα·secα=1.注:课本上只介绍了其中两个重要的关系式,事实上,掌握好其余的五个关系式能在有关解题中节省过程,带来方便.2、三角函数的诱导公式公式一:sin(α+k·)=sinαcos(α+k·)=cosαtan(α+k·)=tanα其中k∈Z.公式二:sin(+α)=-sinαcos(+α)=-cosαtan(+α)=tanα公式三:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα公式四:sin(-α)=sinαcos(-α)=-cosαtan(-α)=-tanα总结:α+k·2(k∈Z),-α,±α的三角函数,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

公式五:sin(-α)=cosαcos(-α)=sinα公式六:sin(+α)=cosαcos(+α)=-sinα总结:±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.二、重、难点知识归纳及讲解(一)利用诱导公式可以把任意角的三角函数转化为锐角三角函数,即:例1、求值:.分析:运用诱导公式,对于cot,可先求出sin,cos,然后由商数关系可求出cot.解:原式例2、设的值为()A.B.C.-1 D.1分析:利用诱导公式将条件等式和欲求式都化到α的同名三角函数上去,再利用同角三角函数基本关系式求解.解答:(二)同角三角函数关系式在求值、化简、证明中的应用.1、已知角α的某一三角函数值,可求出α的其余三角函数值.例3、已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.分析:由平方关系知1=sin2α+cos2α,可把式子的分母看成sin2α+cos2α,然后分子分母同除以cos2α,可得.解:2、利用同角三角函数关系式进行化简:化简结果的基本要求:(1)函数个数尽可能少;(2)次数尽可能低;(3)项数尽可能少;(4)尽可能地去掉根号;(5)尽可能地不含分母;(6)能求出值的要求出值来.例4、若sinαcosα<0,sinαtanα<0,化简:.分析:要想去掉根号,就应考虑将被开方数配成完全平方的形式.解:∵sinαcosα<0,sinαtanα<0.∴α是第二象限角.故是第一或第三象限角.原式若是第一象限角,此时1±sin>0,cos>0. 原式=若是第三象限角,此时1±sin>0,cos<0. 原式=.3、利用同角关系式进行三角恒等式的证明.证明三角恒等式的方法较多,既可由一边证向另一边,也可先证得另一个等式成立,从而得出要证的等式,还可用比较法证明等,关键是要依题而定。

三角函数的概念同角三角函数的关系和诱导公式 (2)

三角函数的概念同角三角函数的关系和诱导公式 (2)

知识点精讲 一、基本概念⎪⎩⎪⎨⎧--射线没有旋转而成的角零角顺时针旋转而成的角负角逆时针旋转而成的角正角任意角-)1( 角α(弧度)()+∞∞-∈,(2)在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

(3)与角α(弧度)终边相同的角的集合为}{Z k k ∈+=,2παββ,其意义在于α的终边正向、反向转整数圈,终边位置不变。

(4)弧度制的定义:半径为r 的圆心角α所对弧长为l ,则rl=α(弧度或rad ) 【注】弧度或rad 可省略 (5)两制互化:一周角=360=ππ22=rr (弧度),即180=π 故在进行两制互化时,只需要记忆180°=π,rad 1801π=两个换算单位即可,如:1501806565=⨯=π;51803636ππ=⨯= (6)弧长公式:r l ⋅=α⎪⎪⎭⎫⎝⎛⎥⎦⎤ ⎝⎛∈2,0πα 扇形面积公式:211||22s lr r α==⋅扇形 【注】关于扇形面积公式的记忆,我们可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比三角形的高,则有⋅=21S 底⋅高r l ⋅=21如图4-1所示 二、任意角的三角函数1.定义设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么s i n,c o s y x r rαα==,()tan ,0yx xα=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0ry yα=≠。

三角函数值只与角的大小有关,而与终边上点P 的位置无关。

2.单位圆中的三角函数线roxya 的终边P (x,y )以α为第二象限角为例。

角α的终边交单位圆于点P ,PM 垂直于M ,α的终边或其反向延长交单位圆切线AT 于点T,如图4-3所示,由于取α为第二象限角,0sin >=P M α,0cos <=M O α,0tan <=T Aα3.三角函数象限符号与单调性 (1)在单位圆中,122=+=y x r ,则:如图有向线段AT OM MP ,,分别叫做角α的正弦线,余弦线、正切线,即AT OM MP ===αααtan ,cos ,sin . (2)三角函数符号:各三角函数的值在各象限符号示意图如下图正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yxy在各象限的符号可用记忆口诀“一正全,二正弦,三两切,四余弦”表述。

同角三角函数的基本关系及诱导公式-高考复习

同角三角函数的基本关系及诱导公式-高考复习
(
)
√2
A.6
(2)已知 sin
√2
B.
6
2√5
α= 5 ,则
2
C.3

+)
2

cos ( -)
2
sin (
tan(π+α)+
=
2
D.
3
.
答案 (1)D
5
5
(2) 或2
2
解析 (1)sin2θ+sin(3π-θ)cos(2π+θ)-√2cos2θ
sin
θ-2cos2θ=
=
,
2
2
2
sin +cos
tan +1
4+2-2
θ=2,故原式=
4+1
=
4
.
5
解题心得 1.利用 sin2α+cos2α=1 可以实现角 α 的正弦、余弦的互化,利用
tan
sin
α=cos
≠ π +
π
,∈Z
2
可以实现角 α 的弦切互化.
2.“1”的灵活代换:1=cos α+sin α=(sin α+cos α) -2sin αcos
解题心得1.利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择
恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.
2.化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可
能低,结构尽可能简单,能求值的要求出值.
3.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简
【例 1】 (1)若
1

三角函数概念、同角三角函数关系式和诱导公式归纳总结

三角函数概念、同角三角函数关系式和诱导公式归纳总结

三角函数概念、同角三角函数关系式和诱导公式归纳总结三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念角的概念包括正角、负角和零角。

其中正角是逆时针旋转而成的角,负角是顺时针旋转而成的角,零角是射线没旋转而成的角。

角α的弧度范围为(−∞,+∞)。

角α的始边与x轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等)。

弧度制度是半径为r的圆心角α所对弧长为l,则α=l/r(弧度或rad)。

与角α(弧度)终边相同的角的集合为β=α+2kπ,k∈Z,其意义在于α的终边逆时针旋转整数圈,终边位置不变。

弧度或rad可省略。

两制互化时,只需记忆π=180,1=π/180两个换算单位即可。

6)弧长公式:l=αr(α∈(0,2π]),扇形面积公式:S=1/2lr=αr2/2.底高=lr,如图4-1所示。

注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有S=l*r/2.二、任意角的三角函数1.定义已知角α终边上的任一点P(x,y)(非原点O),则P到原点O的距离r=OP=sqrt(x^2+y^2)。

sinα=y/r,cosα=x/r,tanα=y/x。

此定义是解直三角形内锐角三角函数的推广。

类比,对∠y,邻∠x,斜∠r,如图4-2所示。

2.单位圆中的三角函数线以α为第二象限角为例。

角α的终边交单位圆于P,PM垂直x轴于M,α的终边或其反向延长线交单位圆切线AT于T,如图4-3所示,由于取α为第二象限角,sinα=MP>0,cosα=OM<0,tanα=AT<0.3.三角函数象限符号与单调性在单位圆中r=sqrt(x^2+y^2)=1,则sinα=y,cosα=x,tanα=y/x。

在第一、二象限,三角函数值为正;在第三、四象限,sinα为负,cosα和tanα为正。

高考数学理科 复习 第四章三角函数 §4.1三角函数的概念、同角三角函数的关系式和诱导公式

高考数学理科 复习 第四章三角函数  §4.1三角函数的概念、同角三角函数的关系式和诱导公式

A.a>b>c B.b>c>a C.c>b>a D.c>a>b
(2)(2014成都一模)已知sin(π-α)=log8
1 4
,且α∈
2
,
0
,则tan(2π-α)的值为
.
25
答案 (1)C (2) 5
解析 (1)∵b=cos 55°=sin 35°>sin 33°=a,∴b>a.
∵c=tan
35°=
、 R、
α α≠ 2 +kπ,k∈Z .
5.三角函数线 设角α的终边与单位圆交于点P,过点P作PM⊥x轴于点M,则有向线段MP 叫做角α的正弦线,有向线段 OM 叫做 角α的余弦线;过点A(1,0)作单位圆的切线交 角α的终边或其反向延长线于点T,则有向线 段AT叫做角α的 正切 线.
6.三角函数的符号规律 第一象限全“+”,第二象限正弦“+”,第三象限正切“+”,第四象限余 弦“+”.简称:一全、二正、三切、四余. 7.同角三角函数的基本关系 (1)平方关系: sin2α+cos2α=1 ;
(2)商数关系: 8.诱导公式
sin α =tan α .
cos α
组数 角
正弦
一 2kπ+α (k∈Z)
sin α
余弦
cos α
二 π+α
-sin α -cosα
三 -α
-sin α cos α
正切
tan α
tan α -tan α
四 π-α
sin α -cos α -tan α




α的值为
(

高三文科数学三角函数概念、同角关系、诱导公式

高三文科数学三角函数概念、同角关系、诱导公式
三角函数的概念 同角三 角函数的关系 诱导公式
汇报人姓名
考纲要求
cos2 x 1, (x R), 能进行弧度与角度的互 化,理解任意角的三角 函数的定义,会推导并 应用诱导公式。 理解同角三角函数的基
tan x(x k 1.任意角的概念的推广 2.弧度制. 3.三角函数线 4.任意角的三角函数的定义 5.同角三角函数的关系
典例分析
2,则 2sin cos 的 sin 2 cos
1.齐次式的问题
一、同角关系的应用
典例分析
2.已知一个 角的三角函 数值,求其 它的
三角函数值
1.齐次式的问题 一、同角关系的应用 第103页例2
二、三角函数定义的应用
第104页第4题,第11题 第103页例1

高考复习数学B版考点考法讲解:三角函数的概念、同角三角函数的关系和诱导公式

高考复习数学B版考点考法讲解:三角函数的概念、同角三角函数的关系和诱导公式

三角函数的概念㊁同角三角函数的关系和诱导公式㊀㊀1.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合{β|β=α+2kπ,kɪZ}.2.弧长及扇形面积公式(1)弧长公式:㊀l=|α|r㊀;(2)扇形面积公式:㊀S=12lr=12|α|r2㊀.其中l为扇形弧长,α为圆心角,r为扇形半径.3.任意角的三角函数(1)定义:设角α的终边与单位圆交于点P(x,y),则sinα=㊀y㊀,cosα=㊀x㊀,tanα=㊀yx㊀(xʂ0).(2)三角函数线如图,设单位圆与x轴的正半轴交于点A,与角α的终边交于点P.过点P作x轴的垂线PM,垂足为M,过A作单位圆的切线交OP的延长线(或反向延长线)于T点,则有向线段OM㊁MP㊁AT分别叫做角α的余弦线㊁正弦线㊁正切线.sinα=MP,cosα=OM,tanα=AT.由三角函数线得出的重要结论:①②特别地:当α为第一象限角时,sinα+cosα>1.③角的终边越靠近y轴非负半轴,正弦值越大;角的终边越靠近x轴非负半轴,余弦值越大.4.同角三角函数的基本关系(1)平方关系:㊀sin2x+cos2x=1㊀;(2)商数关系:㊀sinxcosx=tanx㊀xʂπ2+kπ,kɪZ().5.诱导公式㊀㊀㊀函数角㊀㊀㊀㊀㊀正弦余弦正切2kπ+α(kɪZ)sinα㊀cosα㊀tanα-α㊀-sinα㊀cosα-tanαπ2ʃαcosα㊀∓sinα㊀πʃα∓sinα-cosα㊀ʃtanα㊀3π2ʃα-cosα㊀ʃsinα㊀2πʃα㊀ʃsinα㊀cosαʃtanα㊀㊀若把α看成锐角,则角2kπ+α(kɪZ),π-α,π+α,-α分别可看成第㊀一㊁二㊁三㊁四㊀象限的角,这几组角的三角函数公式的记忆口诀:函数名不变,符号看象限.若把α看成锐角,则角π2-α,π2+α,3π2-α,3π2+α分别可看成第㊀一㊁二㊁三㊁四㊀象限的角,这几组角的三角函数公式的记忆口诀:函数名改变,符号看象限.ʌ知识拓展ɔ(1)利用平方关系求三角函数值,在进行开方时,要根据角的象限或范围判断符号后,正确取舍.(2)三角求值㊁化简是三角函数的基础,在求值与化简时,常用方法有:①弦切互化法:利用公式tanx=sinxcosx进行转化;②和积转换法:如利用(sinθʃcosθ)2=1ʃ2sinθ㊃cosθ进行变形㊁转化;③巧用 1 的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=sin2θ㊃1+1tan2θæèçöø÷.注意求值与化简后的结果要尽可能有理化㊁整式化.(3)已知tanα=m,求解关于sinα㊁cosα的齐次式问题必须注意以下几点:①一定是关于sinα㊁cosα的齐次式(或能化为关于sinα㊁cosα齐次式的三角函数式).②因为cosαʂ0,所以可用cosnα(nɪN∗)除之,这样可以将被求式化为关于tanα的表达式,进而将tanα=m代入,从而完成被求式的求值运算.③注意1=sin2α+cos2α的应用.方法1㊀同角三角函数的基本关系的应用㊀㊀利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用㊁逆用㊁变形用.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程(组),通过解方程组达到解决问题的目的.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.㊀(1)已知tanθ=2,则sin2θ+sinθcosθ-2cos2θ=(㊀㊀)A.-43B.54C.-34D.45(2)已知α是三角形的内角,且sinα+cosα=15,则tanα=㊀㊀㊀㊀.解析㊀(1)sin2θ+sinθcosθ-2cos2θ=sin2θ+sinθcosθ-2cos2θsin2θ+cos2θ=tan2θ+tanθ-2tan2θ+1,把tanθ=2代入得,原式=4+2-24+1=45.故选D.(2)由sinα+cosα=15,sin2α+cos2α=1,{消去cosα整理,得25sin2α-5sinα-12=0,解得sinα=45或sinα=-35.因为α是三角形的内角,所以sinα=45,又由sinα+cosα=15,得cosα=-35,所以tanα=-43.答案㊀(1)D㊀(2)-43㊀若角α的终边在直线x-y=0上,则cosα1-sin2α+1-cos2αsinα=㊀㊀㊀㊀.答案㊀ʃ2解析㊀依题意,角α的终边在第一象限或第三象限.当角α的终边在第一象限时,在其终边上取一点P1(1,1),则r=2,sinα=22,cosα=22,ʑ1-sin2α=1-cos2α=1-12=12,ʑcosα1-sin2α+1-cos2αsinα=2222+2222=2.同理,当角α的终边在第三象限时,在其终边上取一点P2(-1,-1),则r=2,sinα=-22,cosα=-22,ʑ1-sin2α=1-cos2α=1-12=12,ʑcosα1-sin2α+1-cos2αsinα=-2.综上所述,cosα1-sin2α+1-cos2αsinα=ʃ2.方法2㊀诱导公式及其应用㊀㊀利用诱导公式求解问题时,应先观察角,后看函数名.一般是先将负角化成正角,再化为0ʎ 360ʎ的角,最后化成锐角求其函数值.在化简过程中应牢记 奇变偶不变,符号看象限 的原则.㊀若sin(π+x)+sinπ2+x()=12,则sin2x=㊀㊀㊀㊀.解析㊀因为sin(π+x)+sinπ2+x()=12,所以-sinx+cosx=12,两边平方,得1-sin2x=14,解得sin2x=34.答案㊀34㊀已知f(α)=cosπ2+α()sin3π2-α()cos(-π-α)tan(π-α),则f-25π3()的值为㊀㊀㊀㊀.答案㊀12解析㊀因为f(α)=cosπ2+α()sin3π2-α()cos(-π-α)tan(π-α)=-sinα(-cosα)(-cosα)-sinαcosα()=cosα,所以f-25π3()=cos-25π3()=cosπ3=12.㊀已知sin(π-α)-cos(π+α)=23π2<α<π(),则sinα-cosα=㊀㊀㊀㊀.答案㊀43解析㊀由sin(π-α)-cos(π+α)=23,得sinα+cosα=23.①将①两边平方,得1+2sinαcosα=29,故2sinαcosα=-79.又π2<α<π,ʑsinα>0,cosα<0.ȵsinα-cosα>0,(sinα-cosα)2=1-2sinαcosα=1--79()=169,ʑsinα-cosα=43.。

同角三角函数基本关系式与诱导公式知识点讲解+例题讲解(含解析)

同角三角函数基本关系式与诱导公式知识点讲解+例题讲解(含解析)

同角三角函数基本关系式与诱导公式一、知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tanα.2.三角函数的诱导公式总结:1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.()(2)六组诱导公式中的角α可以是任意角.()(3)若α∈R,则tan α=sin αcos α恒成立.()(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 解析 (1)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13. 答案 (1)× (2)√ (3)× (4)×2.已知tan α=-3,则cos 2α-sin 2α=( ) A.45B.-45C.35D.-35解析 由同角三角函数关系得cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-91+9=-45.答案 B3.已知α为锐角,且sin α=45,则cos (π+α)=( ) A.-35B.35C.-45D.45解析 因为α为锐角,所以cos α=1-sin 2α=35, 故cos(π+α)=-cos α=-35. 答案 A4.(2017·全国Ⅲ卷)已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79 解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝ ⎛⎭⎪⎫432=-79.答案 A5.(2019·济南质检)若sin α=-513,且α为第四象限角,则tan α=( ) A.125B.-125C.512D.-512解析 ∵sin α=-513,α为第四象限角,∴cos α=1-sin 2α=1213,因此tan α=sin αcos α=-512. 答案 D6.(2018·上海嘉定区月考)化简:sin 2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin 3⎝ ⎛⎭⎪⎫π2+α·sin(-α-2π)=________.解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案 1考点一 同角三角函数基本关系式 角度1 公式的直接运用【例1-1】 (2018·延安模拟)已知α∈⎝⎛⎭⎪⎫-π,-π4,且sin α=-13,则cos α=( ) A.-223 B.223 C.±223 D.23解析 因为α∈⎝ ⎛⎭⎪⎫-π,-π4,且sin α=-13>-22=sin ⎝ ⎛⎭⎪⎫-π4,所以α为第三象限角,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223. 答案 A角度2 关于sin α,cos α的齐次式问题 【例1-2】 已知tan αtan α-1=-1,求下列各式的值.(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.解 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53. (2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.角度3 “sin α±cos α,sin αcos α”之间的关系 【例1-3】 已知x ∈(-π,0),sin x +cos x =15. (1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.解 (1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425.所以(sin x -cos x )2=1-2sin x cos x =4925. 由x ∈(-π,0),知sin x <0,又sin x +cos x >0, 所以cos x >0,则sin x -cos x <0, 故sin x -cos x =-75.(2)sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练1】 (1)(2019·烟台测试)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A.-32B.32C.-34D.34(2)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35B.-35C.-3D.3解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34, ∴cos α-sin α=32.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.答案 (1)B (2)A考点二 诱导公式的应用【例2】 (1)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫76π=________. (2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________. 解析 (1)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝ ⎛⎭⎪⎫76π=1tan 76π=1tan π6= 3. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=-a +a =0.答案 (1)3 (2)0【训练2】 (1)(2019·衡水中学调研)若cos ⎝ ⎛⎭⎪⎫π2-α=23,则cos(π-2α)=( )A.29B.59C.-29D.-59 (2)(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________. 解析 (1)由cos ⎝ ⎛⎭⎪⎫π2-α=23,得sin α=23.∴cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×29-1=-59. (2)α与β的终边关于y 轴对称,则α+β=π+2k π,k ∈Z ,∴β=π-α+2k π,k ∈Z .∴sin β=sin(π-α+2k π)=sin α=13. 答案 (1)D (2)13考点三 同角三角函数基本关系式与诱导公式的综合应用【例3】 (1)(2019·菏泽联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=( ) A.427B.±225C.±427D.225(2)(2019·福建四地六校联考)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355B.377C.31010D.13解析 (1)∵α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,tan α=sin αcos α=-2 2.∴tan(π+2α)=tan 2α=2tan α1-tan 2α=-421-(-22)2=427. (2)由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 答案 (1)A (2)C(3)已知-π<x <0,sin(π+x )-cos x =-15. ①求sin x -cos x 的值; ②求sin 2x +2sin 2 x 1-tan x的值.解 ①由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练3】 (1)(2019·湖北七州市联考)已知α∈(0,π),且cos α=-513,则sin ⎝ ⎛⎭⎪⎫π2-α·tan α=( ) A.-1213 B.-513C.1213D.513(2)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析 (1)∵α∈(0,π),且cos α=-513,∴sin α=1213,因此sin ⎝ ⎛⎭⎪⎫π2-α·tan α=cos α·sin αcos α=sin α=1213.(2)由题意,得cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴tan ⎝ ⎛⎭⎪⎫θ+π4=34.∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-43. 答案 (1)C (2)-43三、课后练习1.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A.1+ 5 B.1-5 C.1± 5D.-1-5解析 由题意知sin θ+cos θ=-m 2,sin θ·cos θ=m4.又()sin θ+cos θ2=1+2sin θcos θ,∴m 24=1+m2,解得m =1± 5.又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 答案 B2.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析 sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.∵0<α<π4,∴0<sin α<cos α.又∵sin 2α+cos 2α=1,∴sin α=35,cos α=45. 答案 35 453.已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)=________.解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1. 综上,原式=-1. 答案 -14.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解 假设存在角α,β满足条件,则由已知条件可得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2. ∴sin 2α=12,∴sin α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.5.已知sin α=23,α∈⎝ ⎛⎭⎪⎫0,π2,则cos(π-α)=________,cos 2α=________.解析 cos(π-α)=-cos α=-1-sin 2α=-73,cos 2α=cos 2α-sin 2α=⎝ ⎛⎭⎪⎫-732-⎝ ⎛⎭⎪⎫232=59.答案 -73 59。

(完整版)三角函数知识点归纳

(完整版)三角函数知识点归纳

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。

三角函数的基本关系及诱导公式

三角函数的基本关系及诱导公式

解:原式

sin

(cos cos
sin
)

sin cos
sin cos
1
sin
sin sin
(三)例题分析:
例3.已知: 2 ,cos( 9 ) 3
求 cot( 11 ) 的值
形的中心角的弧度数是
.
回顾:任意角的正弦,余弦,正切,余切,正割,余割是如何定义的?
(一)知识点:
1.同角三角函数的基本关系式:
(1)倒数关系: tan cot 1
(2)商数关系: tan sin , cot cos
cos
sin
(3)平方关系:sin2 cos2 1
5
2
解: 因为
cos( ) cos( 9 ) 3
5
所以 cos 3
5
2 sin 4
5
所以 cot( 11 ) cot(3 ) tan 4
2
2
3
(三)例题分析:
例4.若 tan 2 ,求值① cos sin ; cos sin
同角三角函数的基本关系 与诱导公式
xxxx
小测验:
1.已知点 P(tan, cos) 在第三象限,则角 的终边
在第
象限.
2.若cos 0,sin 2 0 ,则角 的终边所在的象限

.
3.角 的终边过点
则X的值是
P(x,1)
.
,且 cos

2 5
5,
4.已知扇形的周长是6厘米,面积是2平方厘米,则扇
2.诱导公式:
奇变偶不变,符号看象限

同角三角函数基本关系式及诱导公式-2025年高考数学大一轮复习

同角三角函数基本关系式及诱导公式-2025年高考数学大一轮复习
4
5
2
4
π
π
- <2 k π- , k ∈Z,所以
4
4
π
sin(− 4 )
π
cos(− 4 )
4
3
=- .
sin
π
(θ- )=-
4
1
3
4
π
2
− ( ) =- ,所以tan(θ- )=
5
5
4
π
4
3
5
π
4
解法二
因为θ是第四象限角,且 sin (θ+ )= ,所以θ+ 为第一象限角,
所以 cos
π
4
sin[(2n+2)π+θ]·cos [(2n+2)π-θ]
sin θ·cos θ
原式=

=-1.
sin[(2n+1)π-θ]·cos[(2n+1)π+θ] sin θ·(-cos θ)
综上,原式的值为-1.
易错点5
不能确定角之间的特殊关系导致诱导公式应用失误
2
π
2
2π -


3
1.已知 cos -α = ,则 sin(α- )=________.
命题点2
诱导公式的应用
应用诱导公式的一般思路
(1)化负角为正角,化大角为小角,直到化到锐角;
(2)统一角,统一名;
π
2
π
2
(3)角中含有 的整数倍时,用公式去掉 的整数倍.
1
π
π
例2 (1)[全国卷Ⅲ]函数 f ( x )= sin ( x + )+ cos ( x - )的最大值为( A
5
3
6
A.sin 2+cos 2
B.sin 2-cos 2

同角三角函数的基本关系式与诱导公式-高考数学复习课件

同角三角函数的基本关系式与诱导公式-高考数学复习课件
4
2
sin2
1
cos2
α= · 2
+ · 2
2
3 sin +cos
4 sin +cos2
2 tan2
1
1
2
22
1
1
7
= · 2
+ · 2
= × 2 + × 2 = .
3 tan +1
4 tan +1
3
2 +1
4
2 +1
12
考点三
例3
(
sin α± cos α, sin α cos α之间的关系问题
[知识梳理]
知识点一 同角三角函数的基本关系式
1. 平方关系: sin 2α+ cos 2α= 1 .
sin
π
(α≠ + k π, k ∈Z)
2
2. 商数关系:tan α= cos

.

知识点二 诱导公式
公式

余弦
正切


π+α
-α
π-α
- sin α
- sin α
sin α
2 k π+α

1
θ= ,
25
∴ sin θ- cos θ= 1 − 2sincos = 1 −
∴ sin
4
θ= ,
5
∴tan
4
θ=- ,∴A,B,D正确.
3
cos
3
θ=- ,
5
24

25

49
7
= ,
25
5
方法总结
对于 sin α+ cos α, sin α- cos α, sin α cos α这三个式子,知一可

三角函数的基本关系和诱导公式要点概括

三角函数的基本关系和诱导公式要点概括

三角函数的基本关系和诱导公式要点概括1. 同角三角函数的基本关系(1)平方关系:sin α2+cos α2=1; (2)商的关系:αααcos sin tan =。

2. 三角函数的诱导公式(2)诱导公式的规律诱导公式概括为:“k π2±α,(k ∈Z )的正弦、余弦值,当k 为偶数时,得角α的同名三角函数值;当k 为奇数时,得角α相应的余名函数值。

然后添上把角α看成锐角时原函例题2 化简:sin (k π-α)·cos [(k -1)π-α]sin [(k +1)π+α]·cos (k π+α),k ∈Z 。

解析:当k 为偶数时,记k =2n (n ∈Z ),原式=sin (2n π-α)·cos [(2n -1)π-α]sin [(2n +1)π+α]·cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α·(-cos α)-sin α·cos α=-1;当k 为奇数时,记k =2n +1(n ∈Z ), 原式=sin [(2n +1)π-α]·cos [(2n +1-1)π-α]sin [(2n +1+1)π+α]·cos [(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α·(-cos α)=-1。

综上所述:原式=-1。

点拨:利用诱导公式化简三角函数表达式,要特别注意函数名是否改变以及符号的确定。

可通过“奇变偶不变,符号看象限”这一简便记法理解记忆。

例题3 化简:ααααsin 1sin 1sin 1sin 1+---+。

解析:原式ααααααααααcos sin 2cos sin 1cos sin 1sin 1)sin 1(sin 1)sin 1(2222=--+=+---+= , 当α在Ⅰ、Ⅳ象限时,原式αtg 2=;当α在Ⅱ、Ⅲ象限时,原式αtg 2-= 。

三角函数的有关概念、同角三角函数的关系式和诱导公式

三角函数的有关概念、同角三角函数的关系式和诱导公式

第四章 三角函数第1讲 三角函数的有关概念、同角三角函数的关系式及诱导公式考纲展示 命题探究考点 三角函数的概念、同角三角函数的关系和诱导公式1 三角函数的有关概念 (1)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合{β|β=α+2k π,k ∈Z }.(2)角度与弧度的互化①360°=2π rad ;②180°=π rad ;③1°=π180 rad ;④1 rad =⎝ ⎛⎭⎪⎫180π°≈57.30°.(3)弧长及扇形面积公式 ①弧长公式:l =|α|r ;②扇形面积公式:S =12lr =12|α|r 2.其中l 为扇形弧长,α为圆心角,r 为扇形半径. (4)任意角的三角函数的定义设α是一个任意角,α的终边上任意一点P (与原点不重合)的坐标为(x ,y ),它到原点的距离是r =x 2+y 2.记忆口诀:一全正,二正弦,三正切,四余弦. (6)三角函数线2 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z . 3 诱导公式及记忆规律 (1)诱导公式①诱导公式可简记为:奇变偶不变,符号看象限.②“奇”“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 为奇数,则正、余弦互变;若k 为偶数,则函数名称不变.③“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.注意点 应用三角函数定义和平方关系求值时注意正负号选取(1)利用三角函数的定义求解问题时,认清角终边所在的象限或所给角的取值范围,以确定三角函数值的符号.(2)利用同角三角函数的平方关系求三角函数值,进行开方时要根据角的范围,判断符号后正确取舍.1.思维辨析(1)120°角的正弦值是12,余弦值是-32.( )(2)同角三角函数关系式中的角α是任意角.( ) (3)六组诱导公式中的角α可以是任意角.( )(4)诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关.( )(5)锐角是第一象限角,反之亦然.( ) (6)终边相同的角的同一三角函数值相等.( ) 答案 (1)× (2)× (3)× (4)√ (5)× (6)√ 2.已知角α的终边经过点(-4,3),则cos α=( ) A.45B.35C .-35D .-45答案 D解析 由三角函数的定义知cos α=-4-2+32=-45.故选D. 3.(1)角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限(2)弧长为3π,圆心角为135°的扇形半径为________,面积为________.答案 (1)C (2)4 6π解析 (1)因为-870°=-2×360°-150°,又-150°是第三象限角,所以-870°的终边在第三象限.(2)弧长l =3π,圆心角α=34π,由弧长公式l =|α|·r ,得r =l |α|=3π34π=4,面积S =12lr =6π.[考法综述] 对于角的概念、三角函数的定义单独命题的概率很小,多与其他知识相结合.如三角恒等变换、同角关系式及诱导公式等,题型一般为选择题、填空题形式,属于中低档题目,考查学生的基本运算能力及等价转化能力.命题法 三角函数的概念,同角三角函数关系式,诱导公式的应用典例 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B.32 C .-34D.34(2)若角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,则cos θ的值为________.(3)已知扇形周长为40,当它的半径r =________和圆心角θ=________分别取何值时,扇形的面积取最大值?(4)已知cos ⎝ ⎛⎭⎪⎫π6-α=23,则sin ⎝⎛⎭⎪⎫α-2π3=________.[解析] (1)∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.(2)点P (-3,m )是角θ终边上一点,由三角函数定义可知sin θ=m3+m2.又sin θ=24m , ∴m3+m 2=24m . 又m ≠0,∴m 2=5, ∴cos θ=-33+m2=-64. (3)设圆心角是θ,半径是r ,则2r +rθ=40.又S =12θr 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100.当且仅当r =10时,S max =100,此时2×10+10θ=40,θ=2. ∴当r =10,θ=2时,扇形的面积最大.(4)∵⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫α-2π3=-π2,∴α-2π3=-π2-⎝ ⎛⎭⎪⎫π6-α,∴sin ⎝ ⎛⎭⎪⎫α-2π3=sin ⎣⎢⎡⎦⎥⎤-π2-⎝ ⎛⎭⎪⎫π6-α,=-cos ⎝ ⎛⎭⎪⎫π6-α=-23.[答案] (1)B (2)-64 (3)10 2 (4)-23【解题法】 同角关系式的应用技巧和诱导公式使用原则步骤 (1)同角关系式的应用技巧①弦切互化法:主要利用公式tan θ=sin θcos θ化成正弦、余弦函数.②和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.③巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝ ⎛⎭⎪⎫1+1tan 2θ. (2)使用诱导公式的原则和步骤①原则:负化正、大化小、化到锐角为终了.②步骤:利用诱导公式可以把任意角的三角函数转化为0~π2之间角的三角函数,然后求值.1.若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝⎛⎭⎪⎫α-π5=( )A .1B .2C .3D .4答案 C解析 cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α-3π10+π2sin⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsinπ5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sinπ5cos π5cos π5+sinπ52·sin π5cosπ5cos π5-sinπ5=3sinπ5sinπ5=3,故选C.2.设a =sin33°,b =cos55°,c =tan35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.3.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的中心角的弧度数是( ) A .2 B .1 C.12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.4.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上答案 -8解析 若角α终边上任意一点P (x ,y ),|OP |=r ,则sin α=y r ,cos α=xr ,tan α=y x .P (4,y )是角θ终边上一点,由三角函数的定义知sin θ=y 16+y2,又sin θ=-255, ∴y16+y2=-255,且y <0,解得y =-8. 5.若α∈⎝ ⎛⎭⎪⎫0,π2,则sin2αsin 2α+4cos 2α的最大值为________. 答案 12解析 ∵α∈⎝⎛⎭⎪⎫0,π2,∴tan α>0,∴sin2αsin 2α+4cos 2α=2sin αcos αsin 2α+4cos 2α=2tan α4+tan 2α=2tan α+4tan α≤12,当且仅当tan α=2时取等号.6.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.解 (1)∵m ⊥n ,∴m ·n =0. 故22sin x -22cos x =0,∴tan x =1. (2)∵m 与n 的夹角为π3,∴cos 〈m ,n 〉=m ·n |m |·|n |=22sin x -22cos x 1×1=12,故sin ⎝⎛⎭⎪⎫x -π4=12.又x ∈⎝⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,x -π4=π6,即x =5π12,故x 的值为5π12.已知角α的终边在直线2x -y =0上,求角α的正弦、余弦和正切值. [错解][错因分析] 直接在直线上取特殊点的方法,导致漏解. [正解] 在直线2x +y =0上取点(m,2m )(m ≠0) 则r =5|m |,当m >0时,r =5m ,sin α=y r =2m 5m =255,cos α=x r =m 5m =55,tan α=y x =2mm =2.当m <0时,r =-5m ,sin α=y r =2m -5m =-255,cos α=x r =m -5m =-55,tan α=y x =2mm=2. [心得体会]………………………………………………………………………………………………时间:45分钟基础组1.[2016·冀州中学期中]已知角α的终边过点P (-a ,-3a ),a ≠0,则sin α=( )A.31010或1010B.31010C.1010或-1010D.31010或-31010答案 D解析 当a >0时,角α的终边过点(-1,-3),利用三角函数的定义可得sin α=-31010;当a <0时,角α的终边过点(1,3),利用三角函数的定义可得sin α=31010.故选D.2. [2016·衡水中学仿真]若sin α+cos α=713(0<α<π),则tan α等于( )A .-13B.125 C .-125D.13 答案 C解析 由sin α+cos α=713,两边平方得1+2sin αcos α=49169,∴2sin αcos α=-120169,又2sin αcos α<0,0<α<π. ∴π2<α<π.∴sin α-cos α>0. ∵(sin α-cos α)2=1-2sin αcos α=289169,∴sin α-cos α=1713.由⎩⎪⎨⎪⎧sin α+cos α=713,sin α-cos α=1713,得⎩⎪⎨⎪⎧sin α=1213,cos α=-513,∴tan α=-125.3.[2016·枣强中学预测]设集合M =⎩⎪⎨⎪⎧x ⎪⎪⎪ x =k 2·180°+45°,k ∈Z },N=⎩⎨⎧x ⎪⎪x =k4·180°+45°,k ∈Z ⎭⎬⎫,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案 B 解析M =⎩⎨⎧⎭⎬⎫x | x =k2·180°+45°,k ∈Z =⎩⎨⎧x | x =2k4·⎭⎪⎬⎪⎫ 180°+45°,k ∈Z ,故当集合N 中的k 为偶数时,M =N ,当k 为奇数时,在集合M中不存在,故M ⊆N .4.[2016·冀州中学一轮检测]已知角θ的顶点在坐标原点,始边与x 轴非负半轴重合,终边在直线2x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+-θsin ⎝ ⎛⎭⎪⎫π2-θ--θ=( )A .-2B .2C .0 D.23答案 B解析 由角θ的终边在直线2x -y =0上,可得tan θ=2,原式=-cos θ-cos θcos θ-sin θ=-21-tan θ=2.5.[2016·武邑中学一轮检测]已知sin α-cos α=2,α∈(0,π),则tan α=( )C.22 D .1答案 A解析 解法一:由sin α-cos α=2sin ⎝⎛⎭⎪⎫α-π4=2,α∈(0,π),解得α=3π4,∴tan α=tan 3π4=-1.解法二:由sin α-cos α=2及sin 2α+cos 2α=1,得(sin α-cos α)2=1-2sin αcos α=2,即2sin αcos α=-1<0,故tan α<0,且2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=-1,解得tan α=-1(正值舍). 6.[2016·武邑中学月考]已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x的最小正值为( )A.5π6 B.5π3 C.11π6D.2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝⎛⎭⎪⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.7. [2016·衡水中学热身]已知函数f (x )=sin x -cos x ,且f ′(x )=2f (x ),则tan2x 的值是( )A .-43B.43 C .-34D.34答案 C解析 因为f (x )=sin x -cos x ,所以f ′(x )=cos x +sin x ,于是有cos x +sin x =2(sin x -cos x ),整理得sin x =3cos x ,所以tan x =3,因此tan2x =2tan x 1-tan 2x =2×31-32=-34,故选C. 8.[2016·衡水二中期中]已知sin(π-α)=log 8 14,且α∈⎝ ⎛⎭⎪⎫-π2,0,则tan(2π-α)的值为( )A .-255B.255C .±255D.52答案 B解析 sin(π-α)=sin α=log 814=-23,又因为α∈⎝ ⎛⎭⎪⎫-π2,0,则cos α=1-sin 2α=53,所以tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255.9.[2016·武邑中学预测]在三角形ABC 中,若sin A +cos A =15,则tan A =( )A.34 B .-43C .-34D .±43答案 B解析 解法一:因为sin A +cos A =15,所以(sin A +cos A )2=⎝ ⎛⎭⎪⎫152,所以1+2sin A cos A=125,所以sin A cos A =-1225. 又A ∈(0,π),所以sin A >0,cos A <0.因为sin A +cos A =15,sin A cos A =-1225,所以sin A ,cos A 是一元二次方程x 2-15x -1225=0的两个根,解方程得sin A =45,cos A =-35,所以tan A =-43.故选B.解法二:由解法一,得sin A >0,cos A <0,又sin A +cos A =15>0,所以|sin A |>|cos A |,所以π2<A <3π4,所以tan A <-1,故选B.10.[2016·枣强中学模拟]已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________.答案 0解析 原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|,因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0.11.[2016·武邑中学猜题]设f (α)=+α-α-+α1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α⎝ ⎛⎭⎪⎫sin α≠-12,则f ⎝⎛⎭⎪⎫-23π6=________.答案 3解析 ∵f (α)=-2sin α-cos α+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α+2sin αsin α+2sin α=1tan α,∴f ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-4π+π6=1tanπ6= 3.能力组12.[2016·冀州中学仿真]已知扇形的面积为3π16,半径为1,则该扇形的圆心角的弧度数是( )A.3π16B.3π8 C.3π4 D.3π2答案 B解析 S 扇=12|α|r 2=12|α|×1=3π16,所以|α|=3π8.13.[2016·武邑中学预测]已知sin(3π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,则sin αcos α等于( )A .-25B.25 C.25或-25 D .-15答案 A解析 因为sin(3π-α)=sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,所以sin α=-2cos α,所以tan α=-2, 所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-25.14.[2016·衡水二中模拟]已知α∈(0,π)且sin α+cos α=m (0<m <1),则cos α-sin α的值( )A .为正B .为负C .为零D .为正或负答案 B解析 若0<α<π2,如图所示,在单位圆中,P (cos α,sin α),OM =cos α,MP =sin α,所以sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1.由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α-sin α<0,故选B.15.[2016·枣强中学期末]△ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sin A -cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( )A .1B .-1C .3D .4答案 B解析 因为△ABC 是锐角三角形,所以A +B >90°,即A >90°-B ,则sin A >sin(90°-B )=cos B ,sin A -cos B >0,同理cos A -sin C <0,所以点P 在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1,故选B.。

同角三角函数的基本关系与诱导公式

同角三角函数的基本关系与诱导公式

同角三角函数的基本关系与诱导公式一、基础知识1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z).2.诱导公式诱导公式可简记为:奇变偶不变,符号看象限.“奇”“偶”指的是“k ·π2+α(k ∈Z )”中的k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α(k ∈Z )”中,将α看成锐角时,“k ·π2+α(k ∈Z )”的终边所在的象限.二、常用结论同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z .考点一 三角函数的诱导公式[典例] (1)已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________. (2)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. [解析] (1)因为f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α) =-sin α(-cos α)(-cos α)⎝⎛⎭⎫-sin αcos α=cos α, 所以f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos π3=12. (2)sin ⎝⎛⎭⎫α-2π3=-sin ⎝⎛⎭⎫2π3-α=-sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-sin ⎝⎛⎭⎫π3+α=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. [答案] (1)12 (2)-23[题组训练]1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=________. 解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,解得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-552. sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°=________.解析:原式=sin(-3×360°-120°)cos(3×360°+180°+30°)+cos(-3×360°+60°) sin(-3×360°+30°)+tan(2×360°+180°+45°)=sin 120°cos 30°+cos 60°sin 30°+tan 45°=34+14+1=2. 答案:23.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-tan ⎝⎛⎭⎫π6-α=-33. 答案:-33考点二 同角三角函数的基本关系及应用[典例] (1)若tan α=2,则sin α+cos αsin α-cos α+cos 2α=( )A.165 B .-165C.85D .-85(2)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12[解析] (1)sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α =tan α+1tan α-1+1tan 2α+1,将tan α=2代入上式,则原式=165.(2)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0,所以cos α-sin α=-12.[答案] (1)A (2)D[题组训练]1.(2018·甘肃诊断)已知tan φ=43,且角φ的终边落在第三象限,则cos φ=( )A.45 B .-45C.35D .-35解析:选D 因为角φ的终边落在第三象限,所以cos φ<0,因为tan φ=43,所以⎩⎪⎨⎪⎧sin 2φ+cos 2φ=1,sin φcos φ=43,cos φ<0,解得cos φ=-35.2.已知tan θ=3,则sin 2θ+sin θcos θ=________. 解析:sin 2θ+sin θcos θ=sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θtan 2θ+1=32+332+1=65.答案:653.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.解析:由已知可得sin α+3cos α=5(3cos α-sin α), 即sin α=2cos α,所以tan α=sin αcos α=2, 从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:254.已知-π<α<0,sin(π+α)-cos α=-15,则cos α-sin α的值为________.解析:由已知,得sin α+cos α=15,sin 2α+2sin αcos α+cos 2α=125, 整理得2sin αcos α=-2425.因为(cos α-sin α)2=1-2sin αcos α=4925,且-π<α<0,所以sin α<0,cos α>0, 所以cos α-sin α>0,故cos α-sin α=75.答案:75[课时跟踪检测]A 级1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34. 2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值为( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13. 3.计算:sin 11π6+cos 10π3的值为( ) A .-1 B .1 C .0D.12-32解析:选A 原式=sin ⎝⎛⎭⎫2π-π6+cos ⎝⎛⎭⎫3π+π3 =-sin π6-cos π3=-12-12=-1.4.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ的值为( )A .1B .-1C .3D .-3解析:选D 因为sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=12,所以2(sin θ+cos θ)=sin θ-cos θ, 所以sin θ=-3cos θ,所以tan θ=-3.5.(2018·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值为( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15, 得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴sin α>0,cos α<0, ∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43.6.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:选B 将3sin ⎝⎛⎭⎫π2-A =3sin(π-A )化为3cos A =3sin A ,则tan A =33,则A =π6,将cos A =-3cos(π-B )化为 cos π6=3cos B ,则cos B =12,则B =π3,故△ABC 为直角三角形.7.化简:1-cos 22θcos 2θtan 2θ=________.解析:1-cos 22θcos 2θtan 2θ=sin 22θcos 2θ·sin 2θcos 2θ=sin 2θ.答案:sin 2θ8.化简:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)=________. 解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos α=sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α =sin αcos α·(-sin α)·cos α=-sin 2α. 答案:-sin 2α9.sin 4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值为________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3 =⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-33410.(2019·武昌调研)若tan α=cos α,则1sin α+cos 4α=________.解析:tan α=cos α⇒sin αcos α=cos α⇒sin α=cos 2α,故1sin α+cos 4α=sin 2α+cos 2αsin α+cos 4α=sin α+cos 2αsin α+cos 4α=sin α+sin αsin α+sin 2α=sin 2α+sin α+1=sin 2α+cos 2α+1=1+1=2.答案:211.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.12.已知sin α=255,求tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α的值.解:因为sin α=255>0,所以α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α =tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α.①当α为第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α为第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.B 级1.已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C.3D .-3解析:选A 因为sin α+cos α=12,所以(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又因为α∈(0,π),所以sin α>0,cos α<0,所以cos α-sin α<0,因为(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-38=74,所以cos α-sin α=-72, 所以1-tan α1+tan α=1-sin αcos α1+sin αcos α=cos α-sin αcos α+sin α=-7212=-7.2.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.解析:∵sin θ-2cos θ=-25,∴sin θ=2cos θ-25,∴⎝⎛⎭⎫2cos θ-252+cos 2θ=1, ∴5cos 2θ-85cos θ-2125=0,即⎝⎛⎭⎫cos θ-35⎝⎛⎭⎫5cos θ+75=0. 又∵θ为第一象限角,∴cos θ=35,∴sin θ=45,∴sin θ+cos θ=75.答案:753.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2,因为1+2sin θcos θ=(sin θ+cos θ)2, 所以1+2×m 2=⎝ ⎛⎭⎪⎫3+122,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.故当sin θ=32,cos θ=12时,θ=π3; 当sin θ=12,cos θ=32时,θ=π6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念(1)任意角---------⎧⎪⎨⎪⎩正角逆时针旋转而成的角;负角顺时针旋转而成的角;零角射线没旋转而成的角.角α(弧度)(,)∈-∞+∞.(2)角α的始边与x 轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等) (3)弧度制度:半径为r 的圆心角α所对弧长为l ,则lrα=(弧度或rad ). (4)与角α(弧度)终边相同的角的集合为{}2,k k Z ββαπ=+∈,其意义在于α的终边逆时针旋转整数圈,终边位置不变. 注:弧度或rad 可省略(5)两制互化:一周角=036022rrππ==(弧度),即0180π=. 1(弧度)00018057.35718π⎛⎫'=≈= ⎪⎝⎭故在进行两制互化时,只需记忆0180π=,01180π=两个换算单位即可:如:005518015066π=⨯=;036361805ππ=⨯=. (6)弧长公式:l r α=((0,2])απ∈, 扇形面积公式:21122S lr r α==. 注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有11=22S lr =底高,如图4-1所示.二、任意角的三角函数1.定义已知角α终边上的任一点(,)P x y (非原点O ),则P到原点O的距离0r OP ==>.sin ,cos ,tan y x y r r xααα===.此定义是解直三角形内锐角三角函数的推广.类比,对y ↔,邻x ↔,斜r ↔, 如图4-2所示.2.单位圆中的三角函数线以α为第二象限角为例.角α的终边交单位圆于P ,PM 垂直x 轴于M , α的终边或其反向延长线交单位圆切线AT 于T ,如图4-3所示,由于取α为第二象限角,sin α=MP>0, cos α=OM<0, tan α=AT<0.3.三角函数象限符号与单调性在单位圆中1r ==,则:(1)sin yy rα==,即α终边与单位圆交点的纵坐标y 即为α的正弦值sin α. 如图4-4(a )所示,sin α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩上正、下负;上(90),下(270),左、右都为;按逆时针方向旋转,向上(一、四)象限为增,从增到,向下(二,三象限)为减,从减到 (2)cos xx rα==,即α终边与单位圆交点的横坐标x 即为的余弦值cos α. 如图4-4(b )所示,cos α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩右正、左负;右(0),左(180),上、下都为;按逆时针方向旋转,向右(三、四)象限为增,从增到,向左(一,三象限)为减,从减到 (3)tan yxα=.如图4-4(c )所示,tan α的特征为: 0.⎧⎪⎨⎪⎩一、三正,二、四负;上、下是(即不存在),左、右都是;逆时针方向旋转,各象限全增三、同角三角函数的基本关系、诱导公式 1. 同角三角函数的基本关系 平方关系:22sin cos 1αα+= 商数关系:sin tan cos ααα=2. 诱导公式(1)sin ()sin()sin ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数cos ()cos()cos ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数tan()tan ()n n απα+=为整数.(2)奇偶性.()()()sin -=-sin cos -=cos tan -=-tan αααααα,,.(3)1sin -=cos cos -=sin tan -=222tan πππαααααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可. 例如(1)sin +2πα⎛⎫⎪⎝⎭,因为+22ππαπ<<,所以sin +>02πα⎛⎫⎪⎝⎭,即sin +=cos 2παα⎛⎫⎪⎝⎭, (2)()sin +πα,因为3+2ππαπ<<,所以()sin +<0πα,即()sin +=-cos παα, 简而言之即“奇变偶不变,符号看象限”.题型归纳及思路提示题型1终边相同的角的集合的表示与区别 思路提示(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.例4.1终边落在坐标轴上的角的集合为( ) A. {},k k Zααπ=∈ B. ,2k k Z παα⎧⎫=∈⎨⎬⎩⎭C. ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D.,2k k N παα⎧⎫=∈⎨⎬⎩⎭分析 表示终边相同的角的集合,必有k Z ∈,而不是k N ∈.解析 解法 一:排除法.终边在坐标轴上的角有4种可能,x 轴正、负半轴,y 轴正、负半轴,取1,2,3,4,,k =可知只有选项B占有4条半轴,故选B. 解法二;推演法.终边在坐标轴上的角的集合为3113",2,,,,0,,,,2,",2222ππππππππ----可以看作双向等差数列,公差为2π,取初始角0α=,故0()2k k Z πα=+∈,故0()2k k Z πα=+∈⇒,2k k Z παα⎧⎫=∈⎨⎬⎩⎭故选B. 评注 终边在x 轴的角的集合,公差为π,取初始角0α=⇒{},k k Z ααπ=∈;终边在y 轴的角的集合,公差为π,取初始角2πα=⇒,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭.例4.2 请表示终边落在图4-5中阴影部分的角的集合.分析 本题是关于区域角的表示问题,需要借助终边相同角的集合表示知识求解,只需要把握区域角初始角的范围和终边相同角的集合的公差的大小即可顺利求解.解析 (1)如图4-5(a )所示阴影部分的角的集合表示为22,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭;(2)如图4-5(b )所示阴影部分的角的集合表示为222,63k k k N ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭; (3)如图4-5(c )所示阴影部分的角的集合表示为21122,36k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭; (4)如图4-5(d )所示阴影部分的角的集合表示为,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 评注 任一角α与其终边相同的角,都可以表示成α与整数个周角的和,正确理解终边相同的角的集合中元素组成等差数列,公差为2π,即集合的周期概念,是解决本题的关键.变式1设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么( ) A .M ⊆N B . N ⊆M C .M =ND .M ∩N =∅例4.3 下列命题中正确的是( )A. 第一象限角是锐角B. 第二象限角是钝角C.()0,απ∈,是第一、二象限角D. ,02πα⎛⎫∈-⎪⎝⎭,α是第四象限角,也叫负锐角 解析 第一象限角的集合为022,2k k k Z παπαπ⎧⎫+<<+∈⎨⎬⎩⎭,锐角的集合是是其真子集(即当0k =时)故选项A 错;同理选项B 错;选项C 中(0,)2ππ∈,但2π不是象限角,选项C 也错,故选D. 题型2 等分角的象限问题 思路提示先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示. 例4.4 α 是第二象限角,2α是第 象限角解析 解法一:α与终边相同的角的集合公差为2π,该集合中每个月的一半组成的集合公差为π,取第二象限的一个初始集合,2ππ⎛⎫ ⎪⎝⎭,得2α的初始集合,42ππ⎛⎫⎪⎝⎭,对比集合以π公差旋转得2α的分布,如图4-6所示,得2α是第一、三象限角.解法二:如图4-7所示,α是第二象限角,2α是第一、三象限角,又若α是第四象限角,2α是第二、四象限角.解法三:取α=0120,000012036060,2402α+⇒=,即2α是第一、三象限角.评注 对于2α是第几象限角的问题,做选填题以记住图示最为便捷,解法三是一种只要答案的特值方法;解法一能准确找出2α的分布. 对于3α是第几象限角可使用象限分布图示的规律,如图4-8所示,那么对于“nα是第几象限角”的象限分布图示规律是什么?只需要把第一个象限平均分成n 部分,并从x 轴正向起,逆时针依次标注1,2,3,4,1,2,3,4,1,2,3,4…..,则数字(α终边所在象限)所在象限即为nα终边所在象限.例如:3α的象限分布图示如图4-8所示,若α为第一象限角,则3α为第一、二、三象限角.变式1 若α是第二象限角,则3α是第 象限角;若α是第二象限角,则3α的取值范围是 题型3 弧长与扇形面积公式的计算 思路提示(1) 熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2) 掌握简单三角形,特别是直角三角形的解法例4.5 有一周长为4的扇形,求该扇形面积的最大值和相应圆心角的大小. 解析:设扇形的半径为r ,弧长为l ,圆心角为α(弧度),扇形面积S.依题意0024r l r l >⎧⎪>⎨⎪+=⎩,12S lr =,则12S lr =11(42)(42)224r r r r =-=-32π 2π4π O yx 54π 图 4-62 3 1 4 x 4 13 2 y图 4-7O21422()142r r -+≤=,(当且仅当422r r -=时,即1r =时取“=”,此时2l =)故扇形的面积最大值为1,此时lrα==2(弧度).评注本题亦可解作21112212442l r S lr l r +⎛⎫==⋅≤= ⎪⎝⎭,当且仅当22l r ==,即2l =,1r =时“=”成立,此时lr α==2.本题可改为扇形面积为1,求周长的最小值,2C l r =+≥且112lr =得2lr =,故4C ≥(当且仅当22l r ==时“=”成立),扇形周长的最小值为4.变式1 扇形OAB 的圆心角∠OAB=1(弧度),则AB =() A. 1sin2 B. 6π C. 11sin 2D. 21sin 2变式2 扇形OAB ,其圆心角∠OAB=0120,其面积与其内切圆面积之比为 题型4 三角函数定义题 思路提示(1) 任意角的正弦、余弦、正切的定义; (2) 诱导公式;(3) 理解并掌握同角三角函数基本关系.例4.6 角α终边上一点(2sin 5,2cos5)P -,(0,2)απ∈,则α=( ) A. 52π-B. 35π-C. 5D.5+2π 解析 解法一:排队法. 005557.3286.5≈⨯=,是第四象限角,2sin50x =<,2cos50y =-<,2r ==,α是第三象限角.选项C 中,5是第四象限角,选项D 中,5+2π是第一象限角,故排除C 、D ;选项B 中, ()cos cos 35cos5απ=-=-,与cos sin 5xrα==矛盾,排除B ,故选A.解法二:推演法.由解法一,35,2πθαπθ'=+=+,,(0,)2πθθ'∈(这样设的原因是cos sin5α=),cos cos()απθ'=+=cos θ'-,3sin 5sin()cos 2πθθ=+=-⇒cos cos θθ'-=-⇒cos cos θθ'=,,(0,)2πθθ'∈⇒352πθθ'==-, ⇒35522ππαπ⎛⎫=+-=- ⎪⎝⎭故选A.变式1 已知角α终边上一点(2sin 2,2cos 2)P -,(0,2)απ∈,则α=( )A.2B.-2C.22π-D. 22π- 变式2 已知角α终边上一点22(2sin ,2cos )77P ππ-,则α=变式3 已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线2y x =上,则cos2θ=( ) A. 45-B. 35-C. 35D. 45题型5 三角函数线及其应用 思路提示正确作出单位圆中正弦、余弦、正切的三角函数线 一,利用三角函数线证明三角公式 例4.7 证明(1)()sin -=sin παα, (2)sin -=cos 2παα⎛⎫⎪⎝⎭(3)31tan =-2tan παα⎛⎫+⎪⎝⎭解析 (1)如图4-9所示,角-πα与α的终边关于y 轴对称,MP MP '=⇒()sin -=sin παα. (2)如图4-10所示,角-2πα与α的终边关于直线y x =对称.OM M P ''=⇒sin -=cos 2παα⎛⎫⎪⎝⎭(3) 如图4-11所示,.2311tan =k =--2tan tan OT πααα⎛⎫+=⎪⎝⎭评注 用单位圆中的三角函数线证明诱导公式是新课标的要求,必须掌握,重点在(),,2ππααα±-±.在(1)证明中易得()cos -=-cos παα,,相除得()tan -=-tan παα,,在(2)证明 中易得cos -=sin 2παα⎛⎫⎪⎝⎭,相除得1tan =2tan παα⎛⎫-⎪⎝⎭.角α与-πα的终边关于终边(即y 轴)对称,角-2πα与α的终边关于终边所在的直线y x =轴对称.一般地,角α,β的终边关于终边所在直线2αβ+轴对称二.利用三角函数线比较大小 例4.8 ,42ππα⎛⎫∈⎪⎝⎭,比较sin ,cos ,tan ααα的大小. 解析 如图4-12所示,,42ππα⎛⎫∈⎪⎝⎭,在单位圆中作出α的正弦线MP ,余弦线OM 和正切线AT ,显然有OM<MP<A T,故cos sin tan ααα<<.评注 由本例可看出,三角函数线可直观、形象地处理三角函数中的大小比较问题变式1 求证:(1)当角α的终边靠近y 轴时,cos sin αα<及tan 1α>; (2)当角α的终边靠近x 轴时,cos sin αα>及tan 1α<;变式2 (1)α为任意角,求证:cos sin 1αα+>; (2)0,2πα⎛⎫∈ ⎪⎝⎭,比较sin ,cos ,tan ααα的大小 变式3 比较大小 (1)sin 2,sin 4,sin 6 (2)cos 2,cos 4,cos6(3)tan 2,tan 4,tan 6 变式4 1sin tan ()tan 22ππαααα>>-<< ,则α∈() A. ,24ππ⎛⎫-- ⎪⎝⎭ B. ,04π⎛⎫- ⎪⎝⎭C. 0,4π⎛⎫⎪⎝⎭D. ,42ππ⎛⎫ ⎪⎝⎭三、利用三角函数线求解特殊三角方程例4.9 利用单位圆中的三角函数线求解下列三角方程: (1)1sin 22x =;(2)2cos 22x =;(3)tan 23x =.解析 (1)在单位圆中作为正弦为12的正弦线,如图4-13所示,得正弦为12的两条终边,即16πα=,256πα=,故226x k ππ=+或5226x k ππ=+,k Z ∈. 解得12x k ππ=+或512x k ππ=+,k Z ∈.(2)如图4-14所示14πα=,24πα=-,故224x k ππ=+或224x k ππ=-+,k Z ∈,解得8x k ππ=+或8x k ππ=-+,k Z ∈.(3)如图4-15所示,得13πα=,243πα=,公差为π,故23x k ππ=+,k Z ∈. 解得6x k ππ=+,k Z ∈.评注(1)sin 1α≤ ,cos 1α≤,tan x R ∈;(2)当1k <时,方程sin ,cos x k x k ==在[0,2)π有两解. 四、利用三角函数线求解特殊三角不等式例4.10利用单位圆,求使下列不等式成立 的角的集合. (1)1sin 2x ≤;(2)2cos 2x ≥;(3)tan 1x ≤.分析 这是一些较简单的三角函数不等式,在单位圆中,利用三角函数线作出满足不等式的角所在的区域,由此写出不等式的解集.解析 (1)如图4-16所示,作出正弦线等于12的角:5,66ππ,根据正弦上正下负,得在图4-16中的阴影区域内的每一个角均满足1sin 2x ≤,因此所求的角x 的集合为 51322,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭.(2)如图4-17所示,由余弦左负右正得满足2cos 2x ≥的角的集合为 22,44x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭. (3)如图4-18所示,在[0,2]π内,作出正切线等于1的角5,44ππ:则在如图4-18所示的阴影区域内(不含y 轴)的每一个角均满足tan 1x ≤,因此所求的角的集合为,24x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭.评注 解简单的三角不等式,可借助于单位圆中的三角函数线,先在[0,2]π内找出符合条件的角,再利用终边相同的角的表达式写出符合条件的所有角的集合,借助关于单位圆中的三角函数线,还可以比较三角函数值的大小.例4.11利用单位圆解下列三角不等式: (1)2sin 10α+>; (2)23cos 30α+≤; (3)sin cos αα>;(4)若02απ≤<,sin 3cos αα>,则则α∈() A. ,32ππ⎛⎫⎪⎝⎭ B. ,3ππ⎛⎫⎪⎝⎭ C. 4,33ππ⎛⎫⎪⎝⎭D. 3,32ππ⎛⎫ ⎪⎝⎭解析 (1)由题意1sin 2α>-,令1sin 2α=-,如图4-19所示,在单位圆中标出第三、四象限角的两条终边,这两条终边将单位圆分成上、下两部分,根据正弦上正下负,取α终边上面的部分,按逆时针从小到大标出16πα=-,2766ππαπ=+=,故不等式的解集为 722,66k k k Z ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭.(2)如图4-20所示,3cos α≤标出3cos α=的角在单位圆中第二、三象限的两条终边,这两条终边将单位圆分成左,右两部分,根据余弦左负右正,取α终边在左侧的部分,按逆时针从小到大标出1566ππαπ=-=,2766ππαπ=+=,.故不等式的解集为 5722,66k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. (3)sin cos αα>y x y x r r ⇒>⇒>.如图4-21所示,在单位圆中作出y x =所对的两个角14πα=,254πα=.这两个角的终边将单位圆分成上、下两部分.在上面的部分取2πα=,sin cos 22ππ>成立 ,故不等式的解集为522,44k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 注 本题也可通过线性规划的知识直接判断出表示y x >的平面区域为如图4-21所示的阴影部分.(4)sin 3cos αα>,得33y x y x r r>⇒>,如图4-22所示,在单位圆中标出3y x =所对的角13πα=,243πα=.,.这两个角的终边把单位圆分为上、下两部分,因为02απ≤<,在上面的部分取2πα=,sin 3cos αα>成立 ,所以取α终边上面的部分,故不等式的解集为433ππαα⎧⎫≤≤⎨⎬⎩⎭,故选C.评注 三角函数线的应用(1)证明 三角公式;(2)比较大小;(3)解三角方程;(4)求解三角不等式. 变式1 已知函数()3cos ,,()1f x x x x R f x =-∈≥若,则x 的取值范围() A. ,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. 22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ C. 5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D. 522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭题型6 象限符号与坐标轴角的三角函数值思路提示正弦函数值在第一、二象限为正,第三、四象限为负;. 余弦函数值在第一、四象限为正,第二、三象限为负;. 正切函数值在第一、三象限为正,第二、四象限为负.例4.12(1)若()0,2απ∈,sin cos 0αα<,则α的取值范围是 ; (2)3tan 0sincos sincos 222ππππ+---= ; 解析:(1)由sin cos 0αα<得sin 0cos 0αα>⎧⎨>⎩或sin 0cos 0αα<⎧⎨<⎩,得α为第二象限角或第四象限角⇒α的取值范围是3,,222ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭. (2)01(1)(1)12+-----=.变式1 sin 0α>是α为第一、二象限的( )A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D.既不充分也不必要条件 变式2 ,43sin,cos 2525αα==-,2α是第 象限角,α是第 象限角. 变式3若sin cos 1=-,则α的取值范围是 .变式4 已知tan cos 0αα<,则α是第( )象限角.A.一或三B. 二或三C.三或四D.一或四 变式5 若α为第二象限角,则tan2α的符号为变式6 若点(tan ,cos )P αα在第三象限,则角α的终边在第 象限角变式7 函数cos sin tan sin tan x x xy x cox x=++的值域为 . 题型7 同角求值-----条件中出现的角和结论中出现的角是相同的思路提示(1) 若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2) 若无象限条件,一般“弦化切”. 例4.13 (1)已知3,22παπ⎛⎫∈ ⎪⎝⎭,1sin 3α=-,cos α= , tan α=(2)已知tan α=2, 1. 3,2παπ⎛⎫∈ ⎪⎝⎭,sin α= , cos α= 2.2sin cos 3sin 4cos αααα-+= ,3. 22sin 2sin cos 3cos αααα--= , (3)已知2sin cos αα-= 1. sin cos tan ααα+= ; 2. sin cos αα-= . 解析 (1)因为3,22παπ⎛⎫∈⎪⎝⎭,cos 0,tan 0αα><,故cos α==.sin tan cos ααα==(2)1.因为3,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 0,cos 0αα<<,22sin tan cos sin cos 1ααααα⎧=⎪⎨⎪+=⎩, 得22sin 2cos sin cos 1αααα=⎧⎨+=⎩,得21cos 5α=.cos 5α=-,sin 5α=-2.无象限条件,弦化切.2sin cos 3sin 4cos αααα-+=2tan 122133tan 432410αα-⨯-==+⨯+3. 22sin 2sin cos 3cos αααα--=2222sin 2sin cos 3cos sin cos αααααα--=+22tan 2tan 3tan 1ααα--=+35- (3)无象限条件,弦化切.,两边平方,得()()2222sin cos 5sin cos αααα-=+222sin 4sin cos 4cos (sin 2cos )0αααααα⇒++⇒+=sin 2cos 0αα⇒+=,tan 20α+=⇒tan 2α=-.1. sin cos tan ααα+=22sin cos tan sin cos ααααα+=+2tan 12tan tan 15ααα+=-+2. 2sin cos αα-=()αϕ+=可知当x α=时,2sin cos x x -取最小值.()2sin cos sin 2cos 0x x x ααα='-=+=.2sin cos sin 2cos 0αααα⎧-=⎪⎨+=⎪⎩⇒cos 5sin αα⎧=⎪⎪⎨⎪=⎪⎩,sin cos αα-=5-. 评注 本题给出同角求值的几种基本题型..(1)及(2)中的1体现了有象限条件的任意角三角函数与锐角三角函数的本质联系(只多了一个象限符号);(2)中的2体现了无象限条件弦化切的解题策略.(3)中无象限条件,2sin cos αα-=()αϕ+=表示函数2sin cos y x x =-在处取得极小值,导数0x y α='=,故有更简便做法:()2sin cos sin 2cos 0x x x ααα='-=+=.如已知sin cos αα-=()0,απ∈,则tan α= .答案为-1,与本题(3)同理可解.变式1 若tan α=2,则2212sin cos cos sin αααα+=-=( ) A. 13 B.3 C. 13- D.-3变式2 当x θ=时,函数sin 2cos y αα=-取得最大值,则cos θ= ; 例4.14 已知1sin cos 5αα+=-时,,22ππα⎛⎫∈-⎪⎝⎭,则tan α=( )A. 34-B. 43-C. 34D.- 43解析 解法一:已知角的象限条件,将方程两边平方得112sin cos 25αα+=12sin cos 025αα⇒=-<,,22ππα⎛⎫∈- ⎪⎝⎭,tan 0α<,排除C 和D., sin 0,cos 01sin cos 05αααα<>⎧⎪⎨+=-<⎪⎩⇒sin cos ,αα>tan 1α>,故排除A ,故选B. 解法二:将方程两边平方得,()22221sin 2sin cos cos sin cos 25αααααα++=+ 2212sin 25sin cos 12cos 0αααα⇒++=212tan 25tan 120αα⇒++=43tan 34α⇒=--或由解法一知tan 1α>,得4tan 3α=-,故选B. 变式1 已知R α∈,sin 2cos αα+=,则tan 2α=( ) A.43 B. 34 C. 34- D. 43- 变式2 已知3sin cos 8αα=,42ππα<<,则cos sin αα-=( )A. 12B. 12-C. 14D. 14-题型8 诱导求值与变形 思路提示(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数. (2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化例4.15 求下列各式的值.(1)0sin(3000)-; (2)41cos 3π⎛⎫-⎪⎝⎭; (3)51tan 4π⎛⎫-⎪⎝⎭解析 (1)0sin(3000)-=0sin(8360120)sin120-⨯+=-000sin(18060)sin 602=--=-=-;(2)41cos 3π⎛⎫-⎪⎝⎭=411cos cos 14cos 3332ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)5151tan tan tan(13)tan 14444πππππ⎛⎫-=-=--== ⎪⎝⎭. 评注 利用诱导公式化简或求值,可以参照口决“负角化正角,大角化小角,化为锐角,再计算比较”.变式1 若()cos 2-3πα=,且,02πα⎛⎫∈- ⎪⎝⎭,则()sin -πα= ; 变式2 若3,22ππα⎛⎫∈⎪⎝⎭,()3tan 74απ-=,则cos sin αα+=( ) A. 15± B. 15- C.15 D. 75- 变式3 若cos-80°= k ,则tan 100°的值为( )A.B. D.变式4 已知1sin 64x π⎛⎫+= ⎪⎝⎭,则25sin sin ()63x x ππ⎛⎫-+- ⎪⎝⎭= ; 最有效训练题A. 15± B. 15- C. 15 D. 75-2.已知点33(sin ,cos )44P ππ落在角θ的终边上,且[]0,2θπ∈,则θ的值为( )A. 4πB. 34πC. 54πD. 74π3.若角α的终边落在直线0x y +==( )A. 2B. 2-C. 1D. 0 4.若角A 是第二象限角,那么2A 和2A π-都不是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5.已知sin -=cos ,cos -=sin 22ππαααα⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,对于任意角α均成立.若(sin )cos 2f x x =,则(cos )f x =( )A. cos2x -B. cos2xC. sin 2x -D. sin 2x6.已知02x π-<<,1cos sin 5αα+=-,则sin cos 1αα-+=( ) A. 25- B. 25 C. 15 D. 15-7.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若(4,)P y 是角θ终边上一点,且25sin 5θ=-,则y = .8.函数2lgsin 29y x x =+-的定义域为 .9.如图4-23所示,已知正方形ABCD 的边长为1,以A 为圆心,AD 长为半径画弧,交BA 的延长线于1P ,然后以B 为圆心,1BP 长为半径画弧,交CB 的延长线于2P ,再以C 为圆心,2CP 长为半径画弧,交DC 的延长线于3P ,再以D 为圆心,3DP 长为半径画弧,交AD 的延长线于4P ,再以A 为圆心,4AP 长为半径画弧,…,如此继续下去,画出的第8道弧的半径是 ,画出第n 道弧时,这n 道弧的弧度之和为 .10.在平面直角坐标系xOy 中,将点3,1)A 绕点O 逆时针旋转090到点B ,那么点B 的坐标为 ;若直线OB 的倾斜角为α,则sin 2α的值为 . 11.一条弦的长度等于半径r ,求: (1)这条弦所对的劣弧长;(2)这条弦和劣弧所围成的弓形的面积.12.已知001tan(720)3221tan(360)θθ++=+--. 求2221cos ()sin()cos()2sin ()cos (2)πθπθπθπθθπ⎡⎤-++-++⎣⎦--的值.。

相关文档
最新文档