八年级数学下册利用分段函数解决实际问题专项练习
八年级分段函数练习
(2)设一次购买零件x个时,销售单价为y元,求y 与x的函数关系式.
(3)当一次性购买500个或1000个零件时,利润 是多少元?
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
参知政事范仲淹等人遭谗离职,欧阳修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文顺字1.初读文章,结合工具书梳理文章字词。2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例
y 25x(0x20且x为整数) 252010x20( x20且x为整数)
某班54名学生去该风景区游览,购买门 票共花去___8_40__元。
6.为了缓解用电紧张的矛盾,电力公司
制定了新的用电收费标准,每月用电量x
(千瓦时)与应付电费y(元)的关系如
图所示:
y(元)
(1)根据图象求出 y与x的函数关系式;100
(1)求沙尘暴的最大风速;32
(2)用恰当的方法表示 沙尘暴风速与时间之间 的关系。
8 0 4 10 25
57 t(h)
8.某厂生产一种零件,每一个成本为40元,销售 单价为60元.该厂为了鼓励用户购买,决定当 一次性购买超过100个时,每多购买一个,全部 零件的销售单价均降低0.02元,但不能低于5逊于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江
初中数学复习——分段函数习题
65150O y x 1.A 、B 两地相距630千米,客车、货车分别从A 、B 两地同时出发,匀速相向行驶.货车2小时可到达途中C 站,14小时到达A 地,客车需6小时到达C 站.已知客车、货车到.C .站的距离....与它们行驶时间x (小时)之间的函数关系如图1所示,A 、B 两地与C 站的位置如图2所示,则图中的a = ,b = ,客车的速度为 千米/小时.2.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A 、B 两地之间的距离为 千米.3.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y (件)与工作时间t (时)的函数图象.图②分别表示甲完成的工作量y 甲(件)、乙完成的工作量y 乙(件)与工作时间t (时)的函数图象,则甲每小时完成 件,乙提高工作效率后,再工作 个小时与甲完成的工作量相等.4.某市在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的函数图象,根据图象提供的信息,则该公路的总长度为 .5.有甲,乙两个形状完全相同的容器都装有大小分别相同的一个进水管和一个出水管,两容器单位时间进、出的水量各自都是一定的.已知甲容器单开进水管第10分钟把空容器注满;y (吨)x (小时)126210然后同时打开进、出水管,第30分钟可把甲容器的水放完,甲容器中的水量Q (升)随时间t (分)变化的图象如图1所示.而乙容器内原有一部分水,先打开进水管5分钟,再打开出水管,进、出水管同时开放,第20分钟把容器中的水放完,乙容器中的水量Q (升)随时间t (分)变化的图象如图2所示,则乙容器内原有水 升.6.一个生产、装箱流水线,生产前没有积压产品,开始的2小时只生产,2小时后安排装箱(生产没有停止),6小时后生产停止只安排装箱,第12小时时生产流水线上刚好又没有积压产品,已知流水线的生产、装箱的速度保持不变,流水线上积压产品(没有装箱产品)y 吨与流水线工作时间x (小时)之间的函数关系如图所示,则流水线上产品装箱的速度为 吨/小时.7.某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y (元) 与用水量x (吨)之间的函数关系如图.按上述分段收费标准,小明家三、四月份分别交水费26和18元,则三月份比四月份节约用水_______吨.8..小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完。
人教版初中数学八下 小专题(十八) 一次函数的应用——分段函数问题
(3)问轿车比货车早多少时间到达乙地?
2.随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在 线学习交流已不再是梦.现有某教学网站策划了A,B两种上网学习的月收费方式: 费/元
7 m
包时上 网时间/h
25 n
超时费/ (元·min-1)
0.01
0.01
小专题(十八) 一次函数的应 用——分段函数问题
1.为工作需要,一辆货车先从甲地出发运送物资到乙地,稍后一辆轿车从甲地急送 专家到乙地.已知甲、乙两地间的路程是330 km,货车行驶时的速度是60 km/h.两 车离甲地的路程s(km)与时间t(h)的函数图象如图. (1)求出a的值;
(2)求轿车离甲地的路程s(km)与时间t(h)的函数解析式;(不要求写出自 变量的取值范围)
设每月上网学习时间为x h,A,B两种方式的收费金额分别为yA,yB.
(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= 10 ,n= 50 ; (2)写出yA与x之间的函数关系式;
(3)选择哪种方式上网学习划算,为什么?
解:(3)当0≤x≤50时,yB=10; 当x>50时,yB=10+(x-50)×0.01×60=0.6x-20. 令yA=10,则有0.6x-8=10, 解得x=30. 画图易得当0≤x<30时,选择A种方式上网学习划算; 当x=30时,选择A,B两种方式上网学习费用相同; 当x>30时,选择B种方式上网学习划算.
分段函数应用题完整版
分段函数应用题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】分段函数应用题1.(四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2. (广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x的正比例函数; x≥15时,y是x的一次函数.3. (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元若该用户某月缴费105元时,则该用户该月用了多少度电4. 某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?5. 一名考生步行前往考场, 10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了多少分钟?6. 某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?7. 为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?8.有甲、乙两家通迅公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算如果她的月通话时间超过100分钟,又将如何选择9. 如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()10. 星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。
2024-2025学年初中数学74大招专题突破专题68分段函数在生活实际中的应用(原卷版)
【例1】.某公司专销产品A ,第一批产品A 上市40天内全部售完、该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(1)中的折线表示的是市场日销售量与上市时间的关系;图(2)中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)写出第一批产品A 的市场日销售量y 与上市时间t 的关系式; (2)写出每件产品A 的销售利润z 与上市时间t 的关系式;(3)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?➢变式训练【变1-1】.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是y =,销售单价p (元/件)例题精讲与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?【变1-2】.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?【例2】.心理学家通过实验发现:初中学生听讲的注意力随时间变化,讲课开始时,学生注意力逐渐增强,中间有一段平稳状态,随后开始分散.学生注意力指标数y随时间表t (分钟)变化的函数图象如下.当0≤t≤10时,图象是抛物线的一部分,当10≤t≤20时和20≤t≤40时,图象是线段.(1)当0≤t≤10时,求注意力指标数y与时间t的函数关系式;(2)一道数学探究题需要讲解24分钟,问老师能否经过恰当安排,使学生在探究这道题时,注意力指标数不低于45?请通过计算说明.➢变式训练【变2-1】.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.【变2-2】.东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (元/kg )与时间t (天)之间的函数关系式为p =,且其日销售量y (kg )与时间t (天)的关系如表: 时间t (天) 1 3 6 10 20 40 … 日销售量y (kg )1181141081008040…(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少? (2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润(n <9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.1.为了节约水资源,自来水公司按分段收费标准收费,如图所示反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系.按照分段收费标准,小颖家三、四月份分别交水费29元和19.8元,则四月份比三月份节约用水( )A .2吨B .2.5吨C .3吨D .3.5吨2.某市为鼓励市民节约使用燃气,对燃气进行分段收费,每月使用11立方米以内(包括11立方米)每立方米收费2元,超过部分按每立方米2.4元收取.如果某户使用9立方米燃气,需要燃气费为元;如果某户的燃气使用量是x立方米(x超过11),那么燃气费用y与x的函数关系式是.3.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价2元收费;若每月用水量超过14吨,则超过部分每吨按市场价3.5元收费.小明家2月份用水20吨,交水费49元;3月份用水18吨,交水费42元.(1)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(2)小明家5月份用水30吨,则他家应交水费多少元?4.某市近期公布的居民用天然气阶梯价格听证会方案如下:第一档天然气用量第二档天然气用量第三档天然气用量年用天然气量360立方米及以下,价格为每立方米2.53元年用天然气量超出360立方米,不超600立方米时,超过360立方米部分每立方米价格为2.78元年用天然气量600立方米以上,超过600立方米部分价格为每立方米3.54元例:若某户2019年使用天然气400立方米,按该方案计算,则需缴纳天然气费为:2.53×360+2.78×(400﹣360)=1022(元)(1)若小明家2019年使用天然气300立方米,则需缴纳天然气费为元(直接写出结果);(2)若小红家2019年使用天然气560立方米,则小红家2019年需缴纳的天然气费为多少元?5.在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米/分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.6.“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.5101618…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.7.电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电60度,则应缴费多少元?若该用户某月缴费125元时,则该用户该月用了多少度电?8.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?9.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题.(1)甲,乙两地的距离为km;慢车的速度为km/h.(2)求CD段的函数解析式.(不用写自变量的取值范围)(3)求当x为多少时,两车之间的距离为500km,请通过计算求出x的值.10.某水产市场经营一种海产品,其日销售量y(kg)与销售单价x(元/千克)的函数关系如图所示.(1)分别求出当20≤x≤30,30<x≤35时,y与x之间的函数关系式.(2)当单价为32元/千克时,日销售量是多少?(3)当日销售量为80kg时,单价是多少?11.公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间t(h)之间的函数关系式如图1中线段AB所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE ﹣EF所示.(1)小丽和小明骑车的速度各是多少?(2)求点E的坐标,并解释点E的实际意义.12.为加强公民的节水意识,合理利用水资源,某市对居民用水实行阶梯水价.居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系.其中线段AB 表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式,并写出自变量x的取值范围;(3)某户5月份按照阶梯水价应缴水费108元,其相应用水量为多少立方米?13.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距d(cm)20212223身高h(cm)160169178187(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)(2)某人身高为196cm,一般情况下他的指距应是多少?14.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小王4月份上网20小时,他应付多少元的上网费用?(3)若小王5月份上网费用为98元,则他在该月份的上网时间是多少.15.为提高校园绿化率,美化校园,某示范高中准备购买一批樟树和樱花树,一共100棵,其中樟树不少于10棵.园林部门称樟树成活率为70%,樱花树的成活率为90%,学校要求这批树的成活率不低于80%.樟树的单价y1和购买数量x的函数关系以及樱花树的单价y2和购买数量x的函数关系如图所示.(1)写出y1关于x的函数关系式;(2)请你帮学校作个预算,购买这批树最少需要多少钱?16.A,B两地相距300km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回.如图是两车离A地的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围.(2)若两车行驶5h相遇,求乙车的速度.17.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲、乙两种水果进行销售.水果种植专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按2元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤500和x>500时,y与x之间的函数关系式.(2)若经销商计划一次性购进甲、乙两种水果共1200千克,且甲种水果不少于400千克,但又不超过乙种水果的两倍.问经销商要确保完成收购计划,至少准备多少资金?18.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时血液中含药量为每毫升3微克,每毫升血液中含药量y微克随时间x小时主变化如图所示,当成人按规定剂是服药后,(1)分别求出x<2和x>2时y与x的函数关系式,(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?19.甲骑电瓶车,乙骑自行车从西山漾公园丝绸小镇门口出发沿同一路线匀速前往太湖龙之梦乐园,设乙行驶的时间为x(h),甲、乙两人距出发点的路程s甲、s乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?20.某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)甲步行的速度,乙出发时甲离小区的距离;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,求出当25≤x≤30时s关于x的函数关系式.。
北师大版八年级数学 一次函数中分段函数问题【解析】
一次函数中的分段函数一、分段计费问题例1.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元(b>a)收费.设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示.(1)求的值;某户居民上月用水8吨,应收水费多少元?(2)求的值,并写出当时,与之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?解析:(1)当时,有.将代入,得.∴y=1.5x当x=8时,y=8×1.5=12(元).(2)当时,有将,代入,得.∴.故当时,.(3)因,∴甲、乙两家上月用水均超过10吨.设甲、乙两家上月用水分别为吨,吨,则解之,得故居民甲上月用水16吨,居民乙上月用水12吨.二、行程中的分段函数例2。
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?解析:(1)900;(2)图中点的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图象可知,慢车12h行驶的路程为900km,所以慢车的速度为;当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为,所以快车的速度为150km/h.(4)根据题意,快车行驶900km到达乙地,所以快车行驶到达乙地,此时两车之间的距离为,所以点的坐标为.设线段所表示的与之间的函数关系式为,把,代入得解得所以,线段所表示的与之间的函数关系式为.自变量的取值范围是.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.把代入,得.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是,即第二列快车比第一列快车晚出发0.75h.三、与几何图形有关的分段函数例3。
人教版八年级数学下册-19.2-一次函数应用题-分段函数的应用-分类和练习-学案(无答案)
一次函数的实际应用——分段函数应用题一、分段函数应用题例1:某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系__________例2:某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨元收费.如果超过20吨,未超过的部分按每吨元收费,超过的部分按每吨元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户5月份水费平均为每吨元,求该户5月份用水多少吨(一)表格类例3:为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)超过30平方米不超过m(平方米)部分(45≤m≤60)超过m平方米部分根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.变式练习:为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:(1)若甲用户3月份的用气量为60m3,则应缴费元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少(二)图象类例4:为了响应国家节能减排的号召,鼓励市民节约用电,我市从7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是元,这个月他家用电多少千瓦时每月用气量单价(元/m3)不超出75m3的部分超出75m3不超出125m3的部分a超出125m3的部分a+变式练习:我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元收费,超过10吨的部分,按每吨b 元(b a >)收费.设一户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图13所示.(1)求a 的值;某户居民上月用水8吨,应收水费多少元(2)求b 的值,并写出当10x >时,y 与x 之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨二、反馈练习1.为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客. 门票定价为50元/人,非节假日打a 折售票,节假日按团队人数分段定价售票,即m 人以下(含m 人)的团队按原价售票;超过m 人的团队,其中m 人仍按原价售票,超过m 人部分的游客打b 折售票. 设某旅游团人数为x 人,非节假日购票款为y 1(元),节假日购票款为y 2(元). y 1,y 2与x 之间的函数图象如图8所示.(1)观察图象可知:a =______;b =______;m = ; (2)直接写出y 1,y 2与x 之间的函数关系式;(3)某旅行社导游王娜于5月1日带A 团,5月20日(非节假日)带B 团都到该景区旅游,共付门票款1900元,A ,B 两个团队合计50人,求A ,B 两个团队各有多少人2.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x (元)表示商品价格,y (元)表示支出金额,分别写出两种购物方案中y 关于x 的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱3.在“老年节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加.旅行前,旅行社承诺每车保证有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,甲种客车载客量为40人/辆,乙种客车载客量为30人/辆. ⑴请帮助旅行社设计租车方案.⑵若甲种客车租金为350元/辆,乙种客车租金为280元/辆,旅行社按哪种方案租车最省钱此时租金是多少⑶旅行社在充分考虑团内老人的年龄结构特点后,为更好的照顾游客,决定同时租45座和30座的大小两种客车.大客车上至少配两名随团医生,小客车上至少配一名随团医生,为此旅行社又请了4名医生.出发时,旅行社先安排游客坐满大客车,再依次坐满小客车,最后一辆小客车即使坐不满也至少要有20座上座率,请直接写出旅行社的租车方案.4.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。
八下19.2.2 分段函数综合训练 (1)
后10分钟速度不变
新授
y
20x 200
300
(5
(0 x
x 15)
5)
y(米/分) 300 200
y 300 y 20x 200
100
0
5 10 15 x(分)
归纳
根据实际意义求分段函数的方法: (1)分析文字,确定函数类型; (2)用列方程方法求解析式; (3)注明各解析式自变量取值范围;
y(米/分) 300 200
y 300 y 20x 200
100
0
5 10 15 x(分)
范例
例1、小芳以200米/分的速度起跑后,先匀加速 跑5分钟,每分钟提高速度20米/分,又匀速跑 10分钟。写出这段时间里她的跑步速度y (单位: 米/分)随跑步时间x (单位:分)变化的函数关系式, 并画出函数图象。
6t (0≤t≤2)
s=
12 ( 2<t≤3)
-4t+24( 3<t≤6)
小结:今天你有什么收获?
作业: 课本99页 第2题
1、如图,折线ABC是某地向北京打长途电话所 需话费y(元)与通话时间x(分)之间的函数关系图。
(1)根据图象求
y(元)
出函数解析式; 6
C
3.6 A 0
B
3
6 x(分)
巩固
1、如图,折线ABC是某地向北京打长途电话所 需话费y(元)与通话时间x(分)之间的函数关系图。
(2)求通话2分钟所
y(元)
付话费;
6
(3)求通话5分钟所
付话费;
3.6 A
B
0
3
C 6 x(分)
八年级分段函数练习
分段函数的单调性
定义
分段函数在其定义域内某区间的 单调性是指在该区间内,函数值 随自变量的增大而增大或减小。
判断方法
分别检查各段函数在各自定义域 内的单调性,并注意连接点处的
变化趋势。
举例
分段函数$f(x) = begin{cases} x, & x leq 0 x, & x > 0
end{cases}$在$(-infty, 0]$上单 调递减,在$(0, +infty)$上单调
分段函数的计算方法
方法一
方法二
方法三
举例
分段处理:根据自变量所在 的区间选择相应的函数表达 式进行计算。
连续性处理:利用连续性, 将分段函数视为一个整体进 行计算。
极限和连续性处理:在连接 点处利用极限和连续性的性 质进行计算。
计算分段函数$f(x) = begin{cases} x^2 - 2x, & x leq 1 x^2 + 2x, & x > 1 end{cases}$在$x=1$处的 值,由于连续性,可以直接 代入$x=1$得到结果1。
题目三解析与答案
根据题目三给出的分段函数,当$x = 0$时,属于$x < 2$的范围,所以应该使用第二个 分段进行计算。代入得$f(0) = 0 + 1 = 1$。
THANKS FOR WATCHING
感谢您的观看
它根据不同的x值范 围,有不同的函数表 达式。
分段函数的特点
分段函数具有不连续性。 在分段点上,分段函数可能不连续、不光滑或者不可微。
分段函数在定义域内可以有多个不同的函数表达式。
分段函数的应用场景
分段函数在现实生活中有着广 泛的应用,例如气温变化、股 票价格波动、人口统计等。
人教版八年级数学下册第十九章一次函数 分段一次函数的应用及一次函数和几何综合 专题复习和训练(无答案
分段一次函数的应用及一次函数与几何综合 专题复习与训练一、分段函数的应用例1:如图,是某汽车行驶的路程S (km )与时间t (min )的函数关系图象。
根据图象,求出S 与t 函数关系式。
例2:某地区的电力资源丰富,并且得到了较好的开发。
该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费,月用电量x (度)与相应电费y (元)之间的函数图象如图所示。
(1)填空:月用电量为100度时,应交电费________元; (2)求y 与x 之间的函数关系式;(3)月用电量为260度时,应交电费多少元? (4)利用图象说明供电公司采取的收费标准。
例3:“五一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩,该小汽车离家的距离S(千米)与时间t (时)的关系可以用图9—12的折线表示.根据图象提供的有关信息,解答下列问题:(1)小刚全家在旅游景点游玩了多少小时?(2)求出返程途中S(千米)与时间t (时)的函数关系式,并求出自变量t 的取值范围.(3)小刚何时离家90千米?练习:1、如图,长方形ABCD 中,AB=6,BC=8,点P 从A 点出发沿A-B-C-D 的路线在长方形的边上运动。
设点P 运动的路程为x ,△PAD 的面积为y 。
(1)写出y 与x 的函数关系式;(2)当x 为何值时,y=20?并说明此时点P 在位置。
2、某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量y 与 时间t 之间近似满足如图所示图象: (1)求出y 与t 之间的函数关系式;(2)经研究发现,当每毫升血液中含药量不少于4微克,且持续时间不少于2.5小时时治疗有效,请问本次治疗是否有效?说明理由。
变式:据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假如某病人一天中第一次服药为7:00,那么服药后几点到几点有效?)3、小张在暑期社会实践活动中,以每千克0.8元一定的价格从批发市场购进若干千克水果到市场上去销售,在销售了40千克水果之后,余下的每千克降价0.4元,全部售完.销售金额与售出水果的千克数之间的关系如图9—13所示.请你根据图像提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出水果x(千克)之间的函数关系式.(2)小张从批发市场共购进多少千克水果? (3)小张这次卖水果赚了多少钱?4、甲乙两人同时登西山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图3所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟 米,乙在地提速时距 地面的高度为 米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度(米)与登山时间(分)之间的函数关系式.(3)登山多长时间时,乙追上了甲?此时乙距地的高度为多少米?二、一次函数与几何综合题例1:如图,直线6+=kx y 与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
八年级数学下册利用分段函数解决实际问题专项练习
八年级数学下册利用分段函数解决实际问题专项练习类型1 判断实际问题中的分段函数图象1.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A-C-B-A 匀速运动,则CP的长度s与时间t之间的函数关系用图象描述大致是()2.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P 从点A 出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间变化的函数图象大致为()类型根据实际闭题确定分段函数的解析式3.某城市自来水实行阶梯水价,收费标准如下表所示,则该市居民每月水费y(元)与该月用水量x(吨)间的函数关系式为__________4.某液化气站有一储存量为40 吨的液化气储存罐,开始一段时间内打开进气管,不开出气管,在随后一段时间内既开进气管又开出气管,直到装满储存罐时关闭进管,储存罐中液化气储存量y(吨)关于时间x(分钟)的函数关系如图所示,则y与x之间函数关系式为__________5.一旅游团到黄冈某旅游景点,看到售票处旁边的告栏如图所示,请根据公告栏内容回答下列问题公告栏(1)若人数为9人,门票费是____元,若人数为30人,门票费是____元;(2)设人数为x人,写出该门票费y(元)与人数x的函数关系式.(直接填写在下面的横线上)__________类型3 (根据分段函数的图象解决实际问题)6.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计).一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计).小明与家的距离s(单位:米)与他所用的时间t:(单位:分钟)之间的函数关系如图所示.已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:正确的是_________①小明从家出发5分钟时乘上公交车;②公交车的速度400km/分钟;③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到;7.钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好推点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是_________8.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,己从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=____分钟时甲、乙两人相遇,甲的速度为40米/分钟;(2)求出线段AB所表示的函数表达式.9.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300 和x> 300 时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共12002m,若甲种花卉的z 种植面积不少于2002m,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?10.在长方形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②所示,试回答下列问题:(1)图①中AB=___ ,BC=___ ;(2)图②中a=___ ,b=___ ;(3)求出y与x之间的函数关系式.巧用一次函数的最值问题解决方案设计问题(2)类型1购买方案1.新农村社区改造中,有一部分楼盘要对外销售某楼盘共23层,销售价格如下:第八层楼房售价为4000元/平方米.从第八层起每上升一层每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120平方米若购买者一次性付清所有房款,开发商有两种优惠方案:方案降价8%,另外每套楼房赠送元装修基金;方案二:降价10%,没有其他赠送(1)请写出售价y(元/平方米)与楼层x(1≤x≤23,x取整数)之间的函数关系式(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算2.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系.已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是( )A 24天的销售量为200件B第10天销售一件产品的利润是15分C第12天与第30天这两天的日销售相等D第30天的日销售利润是750元3.某商店销售A型和B型两种型号电脑,每台A型电脑的销售利润为100元,每台B型电脑的销售利润为150元,现该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍(1)设购进A型电脑x台,这100台电脑的销售总利润为y元,求y与x 的关系式;(2)该商店购进A型、B型各多少台,才能使销售利润最大?类型3选择分配方案2018,天津)某游泳馆每年夏李推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元,设小明计划今年夏季游泳次数为x(x为正整数)(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由5.某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A,B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A,B两种产品总利润为y元,其中A种产品的生产件数是x(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,是总利润y有最大值,并求出y的最大值。
湘教版八年级下册数学第4章4.5.1利用分段函数及交点坐标解决问题习题课件
基础巩固练 5.【中考•金华】元朝朱世杰的《算学启蒙》一书记载: “今有
良马日行二百四十里,驽马日行一百五十里.驽马先行一 十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t的函数图象,则两图象交点P的坐标是 _(_3_2_,__4_8_0_0_)_.
基础巩固练
1.某城市出租车的起步价为10元(即行驶路程在4千米及以内付
10元车费),超过4千米后,每行驶1千米加3元(不足1千米按
1千米计).小张在该市乘出租车从甲地到乙地,支付车费28
元,从甲地到乙地的路程最多有( B )
A.11千米 B.10千米
C.9千米
D.8千米
Hale Waihona Puke 基础巩固练2.某水果超市以每千克3元的价格购进某种水果若干千克,销
能力提升练
A.降价后西瓜的单价为2元 B.小李一共进了50千克西瓜 C.小李这次社会实践活动赚的钱可以买到43元的书 D.降价前的单价比降价后的单价多0.6元
能力提升练 【点拨】降价前西瓜的单价为80÷40=2(元),故选项A不合题意; 降价后售出西瓜的质量为(110-80)÷(2×0.75)=20(千克),40+ 20=60(千克),即小李一共进了60千克西瓜,故选项B不合题意; 110-60×1.1=44(元),即小李这次社会实践活动赚的钱为44元, 可以买到43元的书,故选项C符合题意; 降价后西瓜的单价为2×0.75=1.5(元),2-1.5=0.5(元),即降价 前的单价比降价后的单价多0.5元,故选项D不合题意.故选C. 【答案】C
售一部分后,根据市场行情降价销售,销售额 y(元)与销售
分段函数应用题带答案
分段函数应用题带答案分段函数应用题带答案1解:(1)24分钟(1分)(2)设水流速度为千米/分,冲锋舟速度为千米/分,根据题意得解得答:水流速度是千米/分.(3)如图,因为冲锋舟和水流的速度不变,所以设线段所在直线的函数解析式为把代入,得线段所在直线的函数解析式为由求出这一点的坐标答:冲锋舟在距离地千米处与救生艇第二次相遇.2.甲:从100米高度出发,均速前进,20分钟登高300-100=200米,速度是200/20=10米/分钟,但为了和乙的时间相关,x要扣除2分钟,高度就是100+2*10=120米y=10x+120(0≤x≤18)乙:从2分钟登高30米(因为b=15X2=30),从2分钟到t分钟登高到300米,所以y=30+[270/(t-2)]x(0≤x≤18,2(1)甲登山的速度是每分钟10米,乙在A地提速时距地面的高度b为30米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.甲:y=10x+120(0≤x≤18)乙:y=30+30x(0≤x≤9)(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?就是求当x为何值时,10x+120=30+30x可解得x=4.5分,登山时间等于x+2=6.5分,即6分30秒.此时乙的高度是y=30+30*4.5=165米(甲的高度是y=10*6.5+100=165,或y=10*4.5+120=165)距A地的高度是165-30=135米3解:(1)y=150+m+(x-150)n%····················3分(2)由表2知,小陈和大李的医疗费超过150元而小于10000元,因此有:150+m+(300-150)n%=280······················5分150+m+(500-150)n%=320m=100解得:·····························6分n=201∴y=150+100+(x-150)20%=x+220.5∴y=1x+220(150(3)个人实际承担的费用最多只需2220元.················10分4.解:(1)锅炉内原有水96升,接水2分钟后,锅炉内的余水量为80升,接水4分钟,锅炉内的余水量为72升;2分钟前的水流量为每分钟8升等.(2)当0≤x≤2时,设函数解析式为y=k1x+b1,把x=0,y=96和x=2,y=80代入得:∴y=-8x+96(0≤x≤2),、当x>2时,设函数解析式为y=k2x+b2,把x=2,y=80和x=4,y=72代入得:∴y=-4x+88(x>2).∵前15位同学接完水时余水量为96-15×2=66(升),∴66=-4x+88,x=5.5.答:前15位同学接完水需5.5分钟.(3)①若小敏他们是一开始接水的,则接水时间为8×2÷8=2(分),即8位同学接完水,只需要2分钟,与接水时间恰好3分钟不符.②若小敏他们是在若干位同学接完水后开始接水的,设8位同学从t分钟开始接水,挡0则8(2-t)+4[3-(2-t)]=8×2,16-8t+4+4t=16,∴t=1(分),∴(2-t)+[3-(2-t)]=3(分),符合.当t>2时,则8×2÷4=4(W发),即8位同学接完水,需7分钟,与接水时间恰好3分钟不符.(1)由图3可得,当0≤t≤30时,市场日销售量y与上市时间t 的关系是正比例函数,所以设市场的.日销售量:y=kt,∵点(30,60)在图象上,∴60=30k.∴k=2.即y=2t,当30≤t≤40时,市场日销售量y与上市时间t的关系是一次函数关系,所以设市场的日销售量:y=k1t+b,因为点(30,60)和(40,0)在图象上,60=30k1+b所以,0=40k+b1解得k1=-6,b=240.∴y=-6t+240.综上可知,当0≤t≤30时,市场的日销售量:y=2t,当30≤t≤40时,市场的日销售量:y=-6t+240。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
划准点到达的时刻是_________ 8.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,己从图 书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地. 两人之间的距离 y(米)与时间 t(分钟)之间的函数关系如图所示. (1)根据图象信息,当 t=____分钟时甲、乙两人相遇,甲的速度为
(2)如果装运每种鱼的车辆数都不少于 2 辆人那,么怎样安排车辆能 使此次销售获利最大?并求出最大的利润
性付清所有房款,开发商有两种优惠方案:方案降价 8%,另外每套楼房 赠送元装修基金;方案二:降价 10%,没有其他赠送 (1)请写出售价 y(元/平方米)与楼层 x(1≤x≤23,x 取整数)之间的函数关 系式 (2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他 计算哪种优惠方案更加合算
15
20
···
x
方式一的总 150
175
···
费用(元)
方式二的总 90
135
···
费用(元)
(2)若小明计划今年夏季游泳的总费用为 270 元,选择哪种付费方式, 他游泳的次数比较多?
(3)当 x>20 时,小明选择哪种付费方式更合算?并说明理由
5.某工厂现有甲种原料 380 千克,乙种原料 290 千克,计划用这两种原 料生产 A,B 两种产品共 50 件.已知生产一件 A 产品需要甲种原料 9 千克,乙种原料 3 千克,可获利 700 元;生产一件 B 产品需要甲种原料 4 千克,乙种原料 10 千克,可获利 1200 元.设生产 A,B 两种产品总利润 为 y 元,其中 A 种产品的生产件数是 x (1)写出 y 与 x 之间的函数关系式; (2)如何安排 A、B 两种产品的生产件数,是总利润 y 有最大值,并 求出 y 的最大值。 (2)如何安排 A,B 两种产品的生产件数,使总利润 y 有最大值,并求出 y 的最大值
10. 在长方形 ABCD 中,动点 P 从点 B 出发,沿 BC,CD,DA 运 动至点 A 停止,设点 P 运动的路程为 x,△ABP 的面积为 y,如果 y 关于 x 的函数图象如图②所示,试回答下列问题:
(1)图①中 AB=___ ,BC=___ ; (2)图②中 a=___ ,b=___ ; (3)求出 y 与 x 之间的函数关系式.
5.一旅游团到黄冈某旅游景点,看到售票处旁边的告栏如图所示, 请根据公告栏内容回答下列问题公告栏 各位游客 本景点门票价格如下: 1.一次购买 10 张以下(含 10 张)。每张门票 180 元. 2.一次购买 10 张以上,超过 10 张的部分,每张门票 6 折优惠. (1)若人数为 9 人,门票费是____元,若人数为 30 人,门票费是 ____元; (2)设人数为 x 人,写出该门票费 y(元)与人数 x 的函数关系式. (直接填写在下面的横线上)__________ 类型 3 (根据分段函数的图象解决实际问题) 6.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到 这条公路的距离忽略不计).一天,小明从家出发去上学,沿这条公 路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行 驶,小明下车时发现还有 4 分钟上课,于是他沿这条公路跑步赶到 学校(上、下车时间忽略不计).小明与家的距离 s(单位:米)与他
类型 3 选择分配方案
2018,天津)某游泳馆每年夏李推出两种游泳付费方式,方式一:先购买 会员证,每张会员证 100 元,只限本人当年使用,凭证游泳每次再付
费 5 元;方式二:不购买会员证,每次游泳付费 9 元,设小明计划今年 夏季游泳次数为 x(x 为正整数)
(1)根据题意,填写下表:
游泳次数 10
所 用的时间 t:(单位:分钟)之间的函数关系如图所示.已知小明从 家出发 7 分钟时与家的距离为 1200 米,从上公交车到他到达学校共 用 10 分钟,下列说法:正确的是_________
① 小明从家出发 5 分钟时乘上公交车; ① 公交车的速度 400km/分钟; ① 小明下公交车后跑向学校的速度为 100 米/分钟 ① 小明上课没有迟到;
40 米/分钟; (2)求出线段 AB 所表示的函数表达式.
9.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、 乙两种花卉,经市场调查,甲种花卉的种植费用 y(元)与种植面
积 x(m)之间的函数关系如图所示,乙种花卉的种植费用为每平方米
100 元. (1)直接写出当 0≤x≤300 和 x> 300 时,y 与 x 的函数关系式; (2)广场上甲、乙两种花卉的种植面积共 1200 m2 ,若甲种花卉的 z 种植面积不少于 200 m2 ,且不超过乙种花卉种植面积的 2 倍,那 么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最 少?最少总费用为多少元?
6.某渔业公司组织 20 辆汽车装运鲢鱼、草鱼、青鱼共 120 吨去外地 销售,按计划 20 辆车都要装运,每辆汽车只能装运同一种鱼,且必须装 满,根据下表提供的信息,解答下列问题:
鲢鱼
草鱼
青鱼
每辆汽车载鱼量(吨) 8
6
5
每吨鱼获利(万元) 0.25
0.3
0.2
(1)设装运鲢鱼的车辆数为 x 辆,装草鱼的车辆数为 y 辆,求 y 与 x 之 间的函数关系式;
2.如图是本地区一种产品 30 天的销售图象,图①是产品日销售量 y(单 位:件)与时间(单位:天)的函数关系,图 ②是一件产品的销售利润 z(单位:元)与
时间 t(单位:天)的函数关系.已知日销售利润=日销售量×一件产品的 销售利润.下列结论错误的是( ) A 24 天的销售量为 200 件 B 第 10 天销售一件产品的利润是 15 分 C 第 12 天与第 30 天这两天的日销售相等 D 第 30 天的日销售利润是 750 元 3.某商店销售 A 型和 B 型两种型号电脑,每台 A 型电脑的销售利润为 100 元,每台 B 型电脑的销售利润为 150 元,现该商店计划一次购进两 种型号的电脑共 100 台,其中 B 型电脑的进货量不超过 A 型电脑的 2 倍 (1)设购进 A 型电脑 x 台,这 100 台电脑的销售总利润为 y 元,求 y 与 x 的关系式; (2)该商店购进 A 型、B 型各多少台,才能使销售利润最大?
7. 钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻. 某天,为按计划准点到达指定海域,某巡逻艇凌晨 1:00 出发,匀 速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除 后,该艇加快速度仍匀速前进,结果恰好推点到达.如图是该艇行驶 的路程 y(海里)与所用时间 t(小时)的函数图象,则该巡逻艇原计
八年级数学下册利用分段函数解决实际问题专项练习 类型 1 判断实际问题中的分段函数图象 1.如图,在△ABC 中,AC=BC,有一动点 P 从点 A 出发,沿 A-CB-A 匀速运动,则 CP 的长度 s 与时间 t 之间的函数关系用图象描述 大致 是( )
2. 如图,在边长为 2 的正方形 ABCD 中剪去一个边长为 1 的小正方 形 CEFG,动点 P 从点 A 出发,沿 A→D→E→F→G→B 的路线绕 多边形的边匀速运动到点 B 时停止(不含点 A 和点 B),则△ABP 的面积 S 随着时间变化的函数图象大致为 ( )
类型 根据实际闭题确定分段函数的解析式
Байду номын сангаас
3. 某城市自来水实行阶梯水价,收费标准如下表所示,则该市居民 每月水费 y(元)与该月用水量 x(吨)间的函数关系式为 __________
月用水量
收费标准(元/吨)
不超过 12 吨部分
2
超过 12 吨不超过 18 吨部分 2.5
超过 18 吨部分
3
4. 某液化气站有一储存量为 40 吨的液化气储存罐,开始一段时间 内打开进气管,不开出气管,在随后一段时间内既开进气管又开出 气管,直到装满储存罐时关闭进管,储存罐中液化气储存量 y (吨)关于时间 x(分钟)的函数关系如图所示,则 y 与 x 之间函 数关系式为__________