北师大版八年级下册数学第三章《分式》单元测试题
北师大版八年级数学单元测试卷含答案
![北师大版八年级数学单元测试卷含答案](https://img.taocdn.com/s3/m/06468cecf90f76c661371ab7.png)
(2)针对其中一个给定的k值,写出因式分解的过程.
参考答案
1、x3+3x–1;2、b(a+2)(a–2);3、10m,5m;4、9960;5、±20;6、3m+4n;7、xn+1;8、3;
9、C;10、B;11、D;12、C;13、D;
14、–2(x–y)(a–b);15、(a+2b)2(a–2b)2;16、(3n–m)2;17、x(x+1)2(x–1)2;
200+0.85(x-200)=(0.85x+30)元;
(2)当0.8x+60=0.85x+30时,解得x=600,
∴当顾客购物600元时,到两家超市购物所付费用相同;
当0.8x+60>0.85x+30时,解得x<600,而x>300,
∴300<x<600,即顾客购物超过300元且不满600元时,到乙超市更优惠;
A.x>1 B.x<1 C.x>2 D.x<2
三、解答题
1.解下列不等式(组),并把它们的解集在数轴上表示出来:
(1)
(2)
(3)
(4)
2.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).
(A)800 m(B)8000 m
(C)32250 cm(D)3225 m
12.下面两个三角形一定相似的是()
(A)两个等腰三角形(B)两个直角三角形
(C)两个钝角三角形(D)两个等边三角形
北师大版八年级下第三章分式
![北师大版八年级下第三章分式](https://img.taocdn.com/s3/m/dd277145f7ec4afe04a1dfe8.png)
第三章 《分式》测试题一、填空:(每空2分,共计30分)1.下列各式:2x ,34(a+b ),25x x ,3x -π,2a a b+,其中是分式的有 2.当χ 时,分式211x x -+无意义。
3.若分式2(2)(3)m m m --+的值为零,则m= . 4.计算22a b ⎛⎫- ⎪⎝⎭·32b a ⎛⎫- ⎪⎝⎭÷b a ⎛⎫- ⎪⎝⎭= . 5.计算:2x x y--χ= . 6.当a= 时,关于χ的方程11x +-12a -=2的解为1. 7.若关于χ的分式方程5x x -=1-5m x -有增根,则m= ,此时增根χ= .8.油库有油aL ,计划每天用去bL ,实际用油每天节约了χL 。
这些油实际可以用 天。
9.若使分式232a-的值为负数,则a 的取值范围是 . 10.某商店以χ元的价格卖出某商品,能获利a %,此商品的进货价为 元。
11.若 υ=υ0+at,而υ,υ0,a(a ≠0)为已知数,则t= .12.已知χ=1-1y,又y=1-1z ,则用z 表示χ的代数式应是χ= . 13.已知:a=2b ,则3a b a b-+= .14.373x y x y ++=14,则x y = . 二、选择题:(每题2分,共计20分)15.在234x -,3b ,2x -π,1x -y,23x x y+,211x x -+各式中,分式的个数为( ) A.2个 B.3个 C.4个 D.5个16.下列分式一定有意义的是( ) A.224x x + B.422--x x C.22+-x x D.422++x x 17.计算22x x -÷(1-x 2),正确结果是 ( ) A.χ B.-x 1 C. x 1 D.-x x 2- 18.某县计划在一定时间内造林m 公顷,原计划每月造林a 公顷,现每月多造林b 公顷,则可比原计划少用( )月。
A.b a m + B.a m - b a m + C.b m D. b a m +-am 19.下列各式由左到右的变形正确的是 ( ) A.22)()(a b b a --=1 B.22b a b a ++=b a +1 C.a 1+b 1= b a +1 D.x 2+χ=2 20.下列关于分式的判断,正确的是 ( )A.当χ=2时,21-+x x 的值为零。
北师大八年级数学下册《分式的加减法》习题.docx
![北师大八年级数学下册《分式的加减法》习题.docx](https://img.taocdn.com/s3/m/dc9eea990740be1e640e9a3e.png)
初中数学试卷 桑水出品《分式的加减法》习题一、填空题1.计算:242+-x = .2.计算:aba b b a +=++________.3.分式25,34c abc a 的最简公分母是_________..4.计算:23124xy x +=________.5. 计算213122xx x ---- 的结果是____________..6.计算:abc ac ab 433265+-= .7.若222222m xy y x yx y x y x y --=+--+,则m =________.8.当分式2121111y y y ---+-的值等于零时,则x =_________.二、选择题:1.下若x x 1=,则分式36224+-+x x x 的值为( )A .0B . 1C .-1D .-22.分式x-y +22y x y +的值为( ) A. 22x y y x y -++ B .x+y C. 22x yx y ++D.以上都不对3. 如果分式b a b a +=+111,那么a bb a+的值( )A .1B .-1C .2D .-24.化简11(m )(n )n m -÷-的结果是( )A .1B .m nC .nm D .-15.化简11123x x x ++等于( )A .12xB .32xC .116xD .56x6.计算37444a a b b a b b a a b ++----得( ) A .264a b a b +-- B .264a b a b+- C .2- D .2 三、解答题1.计算(1)222)3(9)3(x y x y x ----- (2)211x x x --- (3)4412222+----+x x x x x x (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭2.已知21(y 1)(y 2)12y A B y y +=+-+-+,求A 、B 的值. 3.先化简,再求值:26333x x x x x x +-+--,其中32x =. 4. 一项工程,甲工程队单独完成需要m 天,乙工程队单独完成比甲队单独完成多需要n 天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?参考答案一、填空题1. 答案:2x x 2+ 解析:【解答】242+-x =2(x 2)42x 442x x 2x 2x 2x 2x 2++-=-=+++++ 【分析】根据分式加减的运算法则化简即可.2.答案:1;解析:【解答】1a b a b a b a b b a a b a b a b++=+==+++++ 【分析】根据分式加减的运算法则化简即可.3. 答案:15bc 2;解析:【解答】分式24a a 3bc 5c与的最简公分母是15bc 2 【分析】根据最简公分母的定义分析即可.4. 答案:264x y x y+; 解析:【解答】2223162444x y xy x x y x y +=+=264a b a b +【分析】根据分式加减的运算法则化简即可.5. 答案:32-; 解析:【解答】213122x x x ----=2313(1)3121212---=-=----()()x x x x x 【分析】根据分式加减的运算法则化简即可.6. 答案:10c 8b 912abc-+; 解析:【解答】abc ac ab 433265+-=10c 8b 910c 8b 912abc 12ac 12abc 12abc -+-+= 【分析】根据分式加减的运算法则化简即可.7. 答案:2x ;解析:【解答】2222222222222222()----=+=+=--+---m xy y x y xy y x y x x y x y x y x y x y x y,∴m=x 2. 【分析】把2222--+-+xy y x y x y x y化简即可. 8. 答案:23; 解析:【解答】2222212112(y 1)1321111111y y y y y y y y y -+---=--=--+-----,∴3y-2=0,y=23 【分析】把2121111y y y ---+-化简,然后根据给出的条件求出x 的值即可.二、选择题1. 答案:C ;解析:【解答】∵xx 1=即x 2=1,36224+-+x x x =2222(x 3)(x 2)x 2x 3+-=-+=1-2=-1,故选C. 【分析】根据xx 1=求出x 2=1,把分式36224+-+x x x 化简得x 2-2,把x 2=1代人即可. 2. 答案:C ;解析:【解答】原式=222222221x y y x y y x y x y x y x y x y--++=+=++++,故选C. 【分析】把x-y +22y x y+化简即可知答案. 3. 答案:B ;解析:【解答】∵11a b 1a b ab a b ++==+,∴(a+b)2=1即a 2+b 2+2ab=ab ,原式=a b b a +=22a b ab +=ab 1ab -=-,故选B.【分析】根据分式111a b a b +=+得a 2+b 2=-ab ,化简原式代人即可. 4. 答案:B. 解析:【解答】11111(m )(n )1mn mn mn m m n m n m n mn n----÷-=÷=⨯=-,故选B. 【分析】根据分式的混合运算法则把11(m )(n )n m -÷-化简即可. 5. 答案:C ;解析:【解答】11163211236666++=++=,x x x x x x x故选C. 【分析】根据分式加减的运算法则把11123++x x x 化简即可. 6. 答案:D ;解析:【解答】37373728244444444a a b b a a b b a a b b a b a b b a a b a b a y a b a b a b++----+-=--===--------,故选D. 【分析】根据分式加减的运算法则把37444a a b b a b b a a b ++----化简即可. 三、解答题1. 答案:(1)33+-x x ;(2)11x -;(3)2)2(4--x x x ;(4)12y -+; 解析:【解答】(1)222)3(9)3(x y x y x -----222x 9(x 3)(x 3)x 3(x 3)(x 3)x 3-+-+===---; (2)211x x x ---=222(1)(1)11111+---=-----x x x x x x x x x =11x -; (3)4412222+----+x x x x x x =222222x 2x 1x 4x x x 4x(x 2)(x 2)x(x 2)x(x 2)x(x 2)+-----=-=----- (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭=22(y 1)(y 1)32111114y y y y y y y y ⎛⎫-+---÷-=⨯ ⎪-----⎝⎭211(y 2)(y 2)y y y --=⨯-+-=12y -+ 【分析】根据分式加减的运算法则化简即可.2.答案:A=1,B=1;解析:【解答】21)2)(1(12++-=+-+x B x A x x x =()()A(x 2)B(x 1)x 1x 2++--+=()()A B x 2A B x 1x 2++--+(),所以:A+B=2,2A-B=1,解得A=1 ,B=1 【分析】把A B x 1x 2+-+化简得()()A B x 2A B x 1x 2++--+(),根据21)2)(1(12++-=+-+x B x A x x x求出A、B的值即可.3. 答案:13 3解析:【解答】原式=(x2-x-6+3x-9)/x(x-3)=(x2+2x-15)/x(x-3)=(x+5)(x-3)/x(x-3)=(x+5)/x=1+5/x=1+5/(3/2)=1+10/3=13/3【分析】根据分式加减的运算法则化简,然后把x的值代人即可.4. 答案:(m2+mn)/(2m+n)(天)解析:【解答】甲单独需m天完成,所以甲每天做1/m,乙单独完成比甲单独完成多需n天,所以乙每天做1/(m+n),所以二人每天共做:1/m+1/(m+n)=(2m+n)/m*(m+n)所以乙合作1/((2m+n)/m(m+n))=(m2+mn)/(2m+n)(天)完成【分析】根据题意列出相应的分式,然后化简即可.。
专题5.16 分式与分式方程(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)
![专题5.16 分式与分式方程(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)](https://img.taocdn.com/s3/m/fde5e42600f69e3143323968011ca300a7c3f668.png)
专题5.16分式与分式方程(全章复习与巩固)(知识讲解)【学习目标】1.理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系.5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.特别说明:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±=;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.特别说明:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式➽➼分式的意义✭✭分式的基本性质1.已知分式2x nx m+-(m ,n 为常数)满足表格中的信息,则下列结论中错误..的是()x 的取值-22pq分式的值无意义012A .2n =B .2m =-C .6p =D .q 的值不存在【答案】A【分析】根据分式有意义的条件可得m ,n 的值,进而可知p ,q 的值,选出符合要求的选项即可.解:∵x 为﹣2时方程无意义,∴x -m =0,解得:m =﹣2,故B 正确,故分式为:22x n x ++,当x =2时,分式的值为0,故2×2+n =0,n =﹣4,故A 错误,故分式为:242x x -+,当分式值为1时,2x -4=x +2,解得:x =6,故6p =,故C 正确,当2422x x -=+时,2x -4=2x +4,此等式不成立,则q 的值不存在,故D 正确,故选:A .【点拨】本题考查分式有意义的条件,方程思想,能够熟练掌握分式有意义的条件时解决本题的关键.举一反三:【变式1】若不论x 取何实数时,分式22ax x a-+总有意义,则a 的取值范围是()A .1a ≥B .1a >且0a ≠C .1a >D .1a <【答案】C 【分析】分式22ax x a-+总有意义,则分母永远不等于0,即22x x a -+的最小值大于0,据此解题即可.解:∵分式22ax x a-+总有意义,∴()22211x x a x a -+=-+-的最小值10a ->,解得1a >.【点拨】本题主要考查分式有意义的条件及二次函数的最值问题,能够熟练利用条件列不等式是解题关键.【变式2】若分式||3(3)(2)a a a --+的值为0,则a 满足的条件是()A .3a =B .3a =-C .3a =±D .3a =或2a =-【答案】B【分析】由分式的值为0的条件可得:()()30320a a a ì-=ïí-+¹ïî①②,再解方程与不等式即可.解:∵分式||3(3)(2)a a a --+的值为0,()()30320a a a ì-=ï\í-+¹ïî①②由①得:3,a =±由②得:3a ≠且2,a ≠-∴ 3.a =-故选B【点拨】本题考查的是分式的值为0的条件,掌握“分式的值为0,则分子为0,而分母不为0”是解本题的关键.2.不改变分式的值,下列各式变形正确的是()A .11x x y y +=+B .1x yx y-+=--C .22x y x y x y-=++D .22233x x y y ⎛⎫= ⎪⎝⎭【答案】B【分析】根据分式的基本性质即可一一判定.解:A.11x x y y ++≠,故该选项错误,不符合题意;B.()1x y x y x y x y---+==---,故该选项正确,符合题意;C.22x y x y x y-=-+,故该选项错误,不符合题意;D.22239x x y y ⎛⎫= ⎪⎝⎭,故该选项错误,不符合题意;【点拨】本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质.举一反三:【变式1】下列各式从左边到右边的变形正确的是()A .22x y y xx y x y--=++B .a b a bc c-+-=-C .0.220.22a b a ba b a b++=++D .1x yx y--=+【答案】B【分析】根据分式的基本性质作答.解:A 、22x y y xx y x y--=-++,此选项变形错误;B 、a b a bc c -+-=-,此选项变形正确;C 、0.22100.2102a b a ba b a b++=++,此选项变形错误;D 、1x yx y--=-+,此选项变形错误;故选B .【点拨】本题主要考查了分式的变形,解答此类题一定要熟练掌握分式的基本性质.【变式2】如果把分式xyx y+中的x 和y 都扩大10倍,则分式的值()A .扩大20倍B .扩大10倍C .不变D .缩小10倍【答案】B【分析】根据分式的基本性质即可求出答案;解:()x y xy xyx y x y x y==+++101010010101010 故选:B .【点拨】本题考查了分式的基本性质;解题的关键是熟练运用分式的基本性质进行化简比较.类型二、分式➽➼相关概念➽➼最简分式✭✭约分✭✭最简公分母✭✭通分3.分式122m +与11m +的最简公分母是()A .22m +B .2m +C .1m +D .21m -【答案】A【分析】根据最简公分母的概念,求解即可.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.解:分式122m +与11m +的最简公分母22m +,故选:A【点拨】此题考查了最简公分母的概念,解题的关键是熟练掌握最简公分母的概念.举一反三:【变式】分式212x y 和216xy 的最简公分母是()A .2xyB .222x y C .226x y D .336x y 【答案】C【分析】根据最简公分母的确定方法解答即可.解:分式212x y 和216xy的最简公分母是226x y .故选:C .【点拨】本题主要考查了最简公分母的确定方法,确定最简公分母的一般方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.4.下列分式中,属于最简分式的是()A .2xB .22x x C .42xD .11x x --【答案】A【分析】根据最简分式的定义逐一判断即可.解:A.2x,是最简分式,符合题意;B.22x x =12x,不是最简分式,不合题意;C.422x x=,不是最简分式,不合题意;D.111xx -=--,不是最简分式,不合题意,故选:A .【点拨】本题考查最简分式的定义,一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.举一反三:【变式】下列分式中是最简分式的是()A .224x x B .22x y x y++C .2211x x x +++D .242x x -+【答案】B【分析】分子分母不含公因式的分式叫做最简分式,对四个选项逐一检查是否还能化简即可求得结果.解:A 选项22142x x x=,故不是最简分式;B 选项不能再化简,故是最简分式;C 选项()22121111x x x x x x +++==+++,故不是最简分式;D 选项()()2224222x x x x x x +--==-++,故不是最简分式.故选:B .【点拨】本题考查了分式的约分,解决本题的关键是找到分子分母中的公因式.类型三、解分式方程➽➼根的情况➽➼增根✭✭无解5.(1)通分:()22xyx y +和22x x y -;(2)约分:22416m mm --.【答案】(1)()()()()2222xy x y xyx y x y x y -=++-,()()()222x x y x x y x y x y +=-+-;(2)4m m +【分析】(1)找出两分母的最简公分母,通分即可;(2)原式变形后,约分即可得到结果.解:(1)()()()()2222xy x y xyx y x y x y -=++-,()()()222x x y xx y x y x y +=-+-;(2)()()()224416444m m m m m m m m m --==-+-+.【点拨】此题考查了通分及约分,通分的关键是找出各分母的最简公分母,约分的关键是找出分子分母的公因式.举一反三:【变式】(1)约分:236a bab;(2)通分:223b a 与abc 【答案】(1)2a ;(2)2223b c a bc 与3233a a bc【分析】(1)直接利用分式的性质化简,进而得出答案;(2)首先得出最简公分母,进而得出答案.解:(1)2336322a b ab a aab ab ⨯==⨯;(2)223b a与abc 最简公分母为:23a bc ,则:2222222333b b bc b ca a bc a bc ⨯==⨯,23223333a a a a bc bc a a bc⨯==⨯.【点拨】本题主要考查了通分与约分,正确掌握分式的性质是解题关键.6.若分式方程1x aa x -=+有增根,则a 的值为________.【答案】1-【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母10x +=,得到=1x -,然后代入整式方程算出a 的值即可.解:方程两边同时乘以1x +得,()1x a a x -=+,∵方程有增根,∴10x +=,解得=1x -.∴10a --=,解得1a =-.故答案为:1-.【点拨】本题考查了分式方程的增根,先根据增根的定义得出x 的值是解答此题的关键.举一反三:【变式】如果关于x 的方程2133mx x =---有增根,那么m 的值为________.【答案】2-【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根,得到最简公分母为0求出x 的值,最后代入整式方程求出k 的值即可.解:分式方程去分母得:23x m =--,由分式方程有增根,得到30x -=,即3x =,把3x =代入整式方程得:2m =-.故答案为:2-.【点拨】本题主要考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.类型四、解分式方程➽➼根的情况➽➼正(负)数解✭✭非负(正)数解7.若关于x的不等式组341227x xa x+⎧-≥⎪⎨⎪->⎩无解,且关于y的分式方程3122y a yy y+=---的解为非负整数,则符合条件的所有整数a的和为______.【答案】16【分析】首先根据不等式组无解求得a的取值范围,再解分式方程,根据分式方程的解为非负整数得出a为整数,23a+为非负整数,然后确定出符合条件的所有整数a,即可得出答案.解:341227x xa x+⎧-≥⎪⎨⎪->⎩①②,解不等式①得:3x≥,解不等式②得:7x a<-,∵不等式组341227x xa x+⎧-≥⎪⎨⎪->⎩无解,∴73a-≤,∴10a≤,分式方程3122y a yy y+=---去分母,得32y y a y-=---,∴23ay+=,∵分式方程3122y a yy y+=---的解为非负整数,∴0y≥且20y-≠,∴203a+≥且4a≠,∵a为整数,23a+为非负整数,∴2a=-,1,7,10,∴整数a的和为2171016-+++=.故答案为:16.【点拨】此题考查的是解分式方程、解一元一次不等式组,掌握分式方程、一元一次不等式组的解法是解决此题关键.举一反三:【变式】若关于x 的方程301ax x+=-无解,则a 的值为______.【答案】0或-3【分析】先去分母化为整式方程,根据分式方程无解得到x =0或x =1或3+a =0,将解代入整式方程求出a 即可.解:去分母,得3x +a (x -1)=0,∴(3+a )x-a =0,∵原分式方程无解,∴x =0或x =1或3+a =0,当x =0时,a =0;当x =1时,3+0=0,无解;∴a =0,当3+a =0时,解得a =-3,故答案为:0或-3.【点拨】此题考查了根据分式方程解的情况求参数,正确掌握解分式方程的解法是解题的关键.8.若关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是____.【答案】4m ≥-且3m ≠-【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是非负数”建立不等式求m 的取值范围.解:去分母得,m +3=2x ﹣1,∴x =42+m ,∵方程的解是非负数,∴m +4≥0即m ≥﹣4,又因为2x ﹣1≠0,∴x ≠12,∴42+m ≠12,∴m ≠-3,则m 的取值范围是m ≥﹣4且m ≠-3.故答案为:m ≥﹣4且m ≠-3.【点拨】本题考查了分式方程的解及分式有意义的条件,理解题意得出相应不等式求解即可.举一反三:【变式】关于x 的方程1233x m x x -=+--有正数解,则m 取值范围是______.【答案】5m <且2m ≠【分析】先解分式方程求出方程的解,再根据这个方程有正数解和3x ≠建立不等式,由此即可得.解:1233x m x x -=+--,方程两边同乘以()3x -,得()123x m x -=+-,去括号,得126x m x -=+-,移项、合并同类项,得5x m -=-,系数化为1,得5=-+x m ,关于x 的方程1233x m x x -=+--有正数解,50m ∴-+>,且53m -+≠,解得:5m <且2m ≠,故答案为:5m <且2m ≠.【点拨】本题考查了解分式方程,熟练掌握方程的解法是解题关键,需注意的是,分式方程有正数解隐含方程不能有增根.类型五、分式➽➼化简✭✭求值9.关于x 的分式方程334111ax x x x +-+=--的解为正整数,则满足条件的整数a 的值为____________.【答案】-3【分析】求得分式方程的解,利用方程的解的特征确定整数a 的值.解:分式方程334111ax x x x +-+=--的解为:24x a =+,∵分式方程有可能产生增根1,又∵关于x 的分式方程334111ax x x x +-+=--的解为正整数,且24x a =+≠1,∴满足条件的所有整数a 的值为:-3,∴a 的值为:-3,故答案为:-3.【点拨】本题主要考查了分式方程的解,方程的整数解,考虑分式方程可能产生增根的情况是解题的关键.举一反三:【变式】对于关于x 的分式方程()2141111k k x x x +=≠-+--①若k =1,则方程的解为________;②若方程有增根且无解,则k 的值为________;③若方程的解为负数,请你写出符合条件的且互为相反数的两个k 的值________.【答案】2x =k =2|k|>5即可,如6±【分析】①若k =1,得到分式方程为2114111x x x +=+--,解分式方程即可求解;②根据方程有增根且无解,可得x =±1,然后把x 的值代入整式方程中进行计算即可解答;③根据题意可得51k x k -=+,利用方程的解为负数求出k 的取值范围,再求出互为相反的两个k 值.解:①若k =1,得到分式方程为2114111x x x +=+--,去分母得114x x -++=,解得2x =.故答案为:2x =;②将()2141111k k x x x +=≠-+--去分母得()114x k x -++=,解得51k x k-=+.∵方程有增根且无解,∴210x -=,解得1x =±,当x =1时,511k k-=+,解得:2k =,当x =-1时,511k k -=-+无解,∴k 的值为2.故答案为:2k =;③∵方程的解为负数,∴x <0且x ≠±1,∴501k k-<+且511k k -≠±+,解得5k <-或5k >,∴符合条件的且互为相反数的两个k 的值可以是±6.故答案为:5k <-或5k >,如±6.【点拨】本题考查了分式方程的增根,分式方程的解法,根据题意求出x 的值后,代入整式方程中进行计算是解题的关键.10.计算:(1)211a a a ---;(2)4222⎛⎫⎛⎫+-÷ ⎪ ⎪--⎝⎭⎝⎭a a a a 【答案】(1)11a -(2)a 【分析】(1)先对原式通分变为同分母的分式,再相减即可解答本题;(2)先将括号内的进行计算,再将除法转换为乘法后,再约分即可得到答案.解:(1)211a a a ---=2(1)(1)11a a a a a +----=2(1)(1)1a a a a -+--=22(1)1a a a ---=22+11a a a --=11a -(2)4222⎛⎫⎛⎫+-÷ ⎪ ⎪--⎝⎭⎝⎭a a a a =4222a a a a ⎛⎫⎛⎫++÷ ⎪ ⎪--⎝⎭⎝⎭=24422a a a a -+⎛⎫÷ ⎪--⎝⎭=222a a a a-⨯-=a【点拨】本题主要考查了分式的混合运算,解题的关键是明确分式混合运算的计算方法.举一反三:【变式】计算:(1)22122x x x x-+÷;(2)2126339x x x x --++--.(3)22241123x x x x x ---÷+--.(4)2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭.【答案】(1)12x -;(2)2239x x --;(3)52x +;(4)22m m --+.【分析】(1)根据分式的加减运算以及乘除运算法则进行计算;(2)根据分式的加减运算以及乘除运算法则进行计算;(3)根据分式的加减运算以及乘除运算法则进行计算;(4)根据分式的加减运算以及乘除运算法则进行计算.解:(1)22122x x x x-+÷解:原式()()()1121x x x x x +-=⋅+12x -=;(2)2126339x x x x --++--解:原式()()1263333x x x x x -=+++-+-()()()()()()()()2336333333x x x x x x x x x -+-=+++--++-()()236633x x x x x -++-+=+-22239x x x +-=-()()()()3133x x x x +-=+-13x x -=-;(3)22241123x x x x x ---÷+--解:原式()()()()3121122x x x x x x -+-=-⋅+-+2322x x x x +-=-++()232x x x +--=++(4)2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭解:原式()()()22113111m m m m m m -+-⎡⎤=÷-⎢⎥---⎣⎦()()2231211m m m m ⎡⎤---⎢⎥=÷--⎢⎥⎣⎦()222411m m m m -⎡⎤-=-÷⎢⎥--⎣⎦()()()221122m m m m m --=-⋅--+22m m -=-+.【点拨】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.类型五、解分式方程➽➼运算✭✭化简✭✭求值11.先化简,再求值:2224124421x x x x x x x x ⎛⎫-+-÷--- ⎪-+--⎝⎭,然后从1-,0,1,2中选择一个合适的数作为x 的值代入求值.【答案】21--x x,1x =-时,12-【分析】先根据分式的运算法则把所给代数式化简,然后从所给数中取一个使分式有意义的数代入计算.解:原式()()()22222412212x x x x x x x x x ⎛⎫+--+-=÷- ⎪----⎝⎭()22224412212x x x x x x x x ⎛⎫-+--=÷-- ⎪----⎝⎭()2222441212x x x x x x x -+--+=÷----12121x x x x -=⋅---111x x =---21x x =--20x -≠ ,且10x -≠,且0x ≠2x ∴≠,且1x ≠,且0x ≠取=1x -时,原式12=-【点拨】本题考查了分式的计算和化简,解决这类题目关键是把握好通分与约分;关键是掌握分式加减的本质是通分,乘除的本质是约分,同时注意在进行运算前要尽量保证每个分式最简.举一反三:【变式】先化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,从不等式组()3421213212x x x x ⎧-≤-⎪⎪⎨+⎪-<⎪⎩的整数解中,选取一个你最喜欢的x 的值代入求值.【答案】82x +,1x =时,83【分析】根据分式的乘除法法则和约分法则把原式化简,根据解一元一次不等式组的步骤解出不等式组,从解集中选取使分式有意义的值代入计算即可.解:22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭22(2)22(2)(2)x x x x x x x ⎡⎤-=+÷⎢⎥-⎣⎦-++-22(2)(2)(2)(2)(2)2(2)x x x x x x x x ⎡⎤-=-÷⎢⎥-+-+-⎣⎦+2428x x x x =÷--2482x x x x -=⋅-82x =+,由()34212x x -≤-,2863x x -≤-,解得:54x ≥-;由13212x x +-<,4132x x --<,解得:3x <,故不等式组的解集为:534x -≤<,0,2,2x ≠- 当1x =时,原式83=.【点拨】本题考查的是分式的化简求值和一元一次不等式组的解法,掌握分式的乘除法法则和约分法则是解题的关键.12.解分式方程.(1)33122x x x-+=--;(2)214111x x x -+=+-【答案】(1)1x =(2)无解【分析】(1)分式方程两边同乘以(2)x -去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(1)(1)x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:(1)33122x x x-+=--323x x -+-=-3+23x x +=-22x =解得,1x =经检验,1x =是原方程的解,所以,原方程的解为:1x =(2)214111x x x-+=+-2(1)4(1)(1)x x x --=+-222141x x x -+-=-22x -==1x -经检验,=1x -是增根,原方程无解.【点拨】此题主要考查了解分式方程,正确找出分式方程的最简公分母是解答本题的关键.举一反三:【变式】解分式方程(1)432x x =+;(2)217133x x x+=---【答案】(1)6x =(2)无解【分析】(1)等号两边同时乘以(2)x x +将原方程转换为整式方程,然后求解验根即可;(2)等号两边同时乘以(3)x -将原方程转换为整式方程,然后求解验根即可.(1)解:432x x=+,去分母得:43(2)x x =+,解得:6x =,经检验6x =是原方程的解;(2)217133x x x+=---去分母得:2137x x +=-+,解得:3x =,经检验3x =是原方程的增根,故原方程无解.【点拨】本题考查了解分式方程,熟练掌握解分式方程的一般步骤是解本题的关键,注意解分式方程需要验根.类型五、分式方程的应用➽➼列方程✭✭解方程✭✭求值13.(1)解方程:411233x x x -=+--;(2)先化简,再求值:222(2)5242x x x x x x ++-÷---+,其中x 从2-,2和3中选一个合适的值.【答案】(1)2x =-(2)72x +,75【分析】(1)将分式方程化为整式方程,再解整式方程,最检验整式方程的解是不是分式方程的解即可;(2)根据分式的运算法则化简,再代入一个使原方式有意义的值求解即可.(1)解:411233x x x -=+--,方程两边同乘3x -,得()41231x x -=-+,解得2x =-,检验:当2x =-时,30x -≠,∴原分式方程的解是2x =-;(2)解:222(2)5242x x x x x x ++-÷---+()()222252(2)2x x x x x x x +-+-=⋅--++512x x -=-+252x x x +-+=+72x =+,2x =- 或2时,原分式无意义,3x ∴=,当3x =时,原式77325==+.【点拨】本题考查了解分式方程,分式的化简求值,分式有意义的条件,熟练掌握知识点是解题的关键.举一反三:【变式】解方程:(1)2232122x x x x x --+=--(2)()32011x x x x +-=--【答案】(1)1x =(2)无解【分析】(1)根据解分式方程的步骤求解即可;(2)根据解分式方程的步骤求解即可.解:(1)2232122x x x x x--+=--去分母,得()22322x x x x ---=-,解得1x =,经检验,1x =是原方程的根,∴原方程的解为:1x =;(2)()32011x x x x +-=--去分母,得()320x x -+=,解得1x =,经检验,1x =是原方程的增根,∴原方程无解.【点拨】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键,注意验根.14.小状元书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、15元,甲种图书每本的售价是乙种图书每本售价的1.5倍,若用1800元在该店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(假设购进的两种图书全部销售完)【答案】(1)甲种图书售价每本30元,乙种图书售价每本20元(2)甲种图书进货400本,乙种图书进货800本时利润最大【分析】(1)根据题意,列出分式方程即可;(2)先用进货量表示获得的利润,求函数最大值即可.(1)解:设乙种图书售价每本x 元,则甲种图书售价为每本1.5x 元,,由题意得:14001800101.5x x-=,解得:20x =,经检验,20x =是原方程的解,∴甲种图书售价为每本1.52030⨯=元,答:甲种图书售价每本30元,乙种图书售价每本20元;(2)设甲种图书进货a 本,总利润W 元,则(30203)(20152)(1200)48400W a a a =--+---=+∵2015(1200)20000a a +⨯-≤,解得400a ≤,∵W 随a 的增大而增大,∴当a 最大时W 最大,∴当400a =本时,W 最大,此时,乙种图书进货本数为1200400800-=(本),答:甲种图书进货400本,乙种图书进货800本时利润最大.【点拨】本题分别考查了分式方程和一次函数最值问题,注意研究利润最大分成两个部分,先表示利润再根据函数性质求出函数最大值.举一反三:【变式1】为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多5元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液,(1)求甲、乙两种消毒液的零售价分别是每桶多少元?(2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共100桶,且甲种消毒液的桶数不少于乙种消毒液桶数的12,由于是第二次购买,商家给予八折优惠.求甲种消毒液购买多少桶时,所需资金总额最少最少总金额是多少元?【答案】(1)甲种消毒液的零售价为25元/桶,乙种消毒液的零售价为20元/桶(2)当甲种消毒液购买34桶时,所需资金总额最少,最少总金额是1736元【分析】(1)设乙种消毒液的零售价为x 元/桶,则甲种消毒液的零售价为()+5x 元/桶,结合该单位分别用900元和720元采购相同桶数的甲、乙两种消毒液,即可列出关于x 的分式方程,进而求解即可.(2)设购买甲种消毒液m 桶,则购买乙种消毒液为()100m -桶,根据甲种消毒液的桶数不少于乙种消毒液的桶数的12,即可得出关于m 的一元一次不等式,解得m 的取值范围,然后设所需资金总额为w 元,根据题意列出函数关系式,再利用函数性质即可解决最值.(1)解:设乙种消毒液的零售价为x 元/桶,则甲种消毒液的零售价为()5+x 元/桶,依题意得:9007205x x =+,解得:=20x ,经检验,=20x 是原方程的解,且符合题意,525x ∴+=.答:甲种消毒液的零售价为25元/桶,乙种消毒液的零售价为20元/桶:(2)解:设购买甲种消毒液m 桶,则购买乙种消毒液()100m -桶,依题意得:()11002m m ≥-,解得:1003m ≥,设所需资金总额为w 元,则()250.8201000.841600w m m m =+-=+ ,40> ,w ∴随m 的增大而增大,∴当34m =时,w 取得最小值,最小值43416001736=⨯+=,答:当甲种消毒液购买34桶时,所需资金总额最少,最少总金额是1736元.【点拨】此题考查了分式方程的运用、一元一次不等式以及一次函数运用,解题关键是找准等量关系,正确列出方程.【变式2】某水果店一次购进了若干箱水蜜桃和李子,已知购进水蜜桃花费800元,购进李子花费1680元,所购李子比水蜜桃多10箱,李子每箱的进价是水蜜桃每箱进价的1.4倍.(1)水蜜桃和李子每箱进价分别为多少元?水蜜桃和李子各多少箱?(2)根据市场情况,每箱李子可以比每箱水蜜桃的利润多5元,这批水果全部售完后,店家若想获得不少于800元的利润,应该如何确定每箱水蜜桃和李子的售价?【答案】(1)水蜜桃和李子每箱进价分别为40元和56元,各20箱和30箱(2)每箱水蜜桃和李子的售价分别不少于53元和74元【分析】(1)设水蜜桃每箱x 元,则李子每箱1.4x 元,由题意列出分式方程,解之,再根据进货费用算出多少箱即可;(2)设水蜜桃每箱利润y 元,则李子每箱利润(5)y +元,由题意列出不等式,解不等式即可.(1)解:设水蜜桃每箱x 元,则李子每箱1.4x 元,根据题意得:1680800101.4x x -=,解得:40x =,经检验40x =是原方程的解,则1.4 1.44056x =⨯=,8004020÷=,16805630÷=,答:水蜜桃和李子每箱进价分别为40元和56元,各20箱和30箱;(2)设水蜜桃每箱利润y 元,则李子每箱利润(5)y +元,根据题意得:8001680(5)8004056y y ++≥,解得:13y ≥,134053+=,1355674++=,答:每箱水蜜桃和李子的售价分别不少于53元和74元.【点拨】本题考查了分式方程的应用以及一元一次不等式的应用;理解题意,列出分式方程和一元一次不等式是解题的关键.【变式3】为预防新冠疫情的反弹,桐君阁大药房派采购员到厂家去购买了一批A 、B 两种品牌的医用外科口罩.已知每个B 品牌口罩的进价比A 品牌口罩的进价多0.7元,采购员用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌每个口罩的进价分别为多少元?(2)若B 品牌口罩的售价是A 品牌口罩的售价的1.5倍,要使桐君阁大药房销售这批A 、B 两种品牌口罩的利润不低于8800元,则A 品牌口罩每个的售价至少定为多少元?【答案】(1)A 品牌每个口罩的进价为1.8元,则B 品牌每个口罩的进价为2.5元(2)3元【分析】(1)设A 品牌每个口罩的进价为x 元,则B 品牌每个口罩的进价为()0.7x +元,根据用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍列分式方程解答;(2)先求出两种品牌口罩购买的数量,设每个A 品牌口罩的售价定为y 元,则每个B 品牌口罩的定价为1.5y 元,列不等式求解即可.(1)解:设A 品牌每个口罩的进价为x 元,则B 品牌每个口罩的进价为()0.7x +元,720050020.7x x =⨯+,解得 1.8x =,经检验, 1.8x =是原方程的解,且符合题意,∴0.7 2.5x +=,答:A 品牌每个口罩的进价为1.8元,则B 品牌每个口罩的进价为2.5元;(2)购进B 品牌口罩的数量为5000 2.52000÷=(个),购进A 品牌口罩的数量为200024000⨯=(个),设每个A 品牌口罩的售价定为y 元,则每个B 品牌口罩的定价为1.5y 元,依题意得:()()4000 1.82000 1.5 2.58800y y ⨯-+⨯-≥,解得3y ≥,答:A 品牌口罩每个的售价至少定为3元.【点拨】此题考查了分式方程的应用,一元一次不等式的应用,正确理解题意列得方程或不等式是解题的关键.。
北师大版数学_八年级下《第3章_分式》单元测试
![北师大版数学_八年级下《第3章_分式》单元测试](https://img.taocdn.com/s3/m/c9f0156f4431b90d6d85c76c.png)
北师大版数学 八年级下《第3章 分式》单元测试班级---------- 姓名-------------一、选择题(每小题2分,共24分)1.在下列各式ma m x xb a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个2 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A . 72xyz 2 B . 108xyz C. 72xyz D . 96xyz2 3. 如果把分式yx x 232-中的x,y 都扩大3倍,那么分式的值( ) A 扩大3倍 B 不变 C 缩小3倍 D 扩大2倍4.若分式4242--x x 的值为零,则x 等于( ) A.2 B.-2 C.2± D.05.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、()222y x y x +- D 、2222xy y x y x ++ 6.如果分式x+16 的值为正整数,则整数x 的值的个数是( ) A.2个 B.3个 C.4个 D.5个 7.把a 千克盐溶于b 千克水中,得到一种盐水,若有这种盐水x 千克,则其中含盐( )A.b a ax +千克 B.b a bx +千克 C.b a x a ++千克 D.bax 千克 8 .把分式方程12121=----x x x ,的两边同时乘以x-2,约去分母,得( ) A. 1-(1-x)=1 B.1+(1-x)=1 c. 1-(1-x)=x-2 D. 1+(1-x)=x-29.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走。
怎样调配劳动力才能使挖出的土能及时运走且不窝工。
解决此问题,可设派x 人挖土,其他人运土,列方程为①3172=-x x ②72-x=3x ③x+3x=72 ④372=-x x 上述所列方程正确的有( ) A.1个 B.2个 C.3个 D.4个10、若0414=----xx x m 无解,则m 的值是( )=+-+3932a a a 11.若a -b =2ab ,则ba 11-的值为( ) A. 21 B.-21 C.2 D.-2 12.若111312-++=--x N x M x x ,则M 、N 的值分别为( ) A.M =-1,N =-2B.M =-2,N =-1C.M =1,N =2D.M =2,N =1二、填空题(每小题3分,共18分)13.写出一个分母至少含有两项且能够约分的分式14.已知当x=-2时,分式ax b x -- 无意义,x=4时,此分式的值为0,则a+b= . 15、计算:__________。
数学(北师大版八年级下):第三章分式同步测试
![数学(北师大版八年级下):第三章分式同步测试](https://img.taocdn.com/s3/m/6d70bc60caaedd3383c4d3fc.png)
数学单元测试题——分式(时间:90分钟,满分120分)一、选择题(每小题2分,共20分): 1.下列式子(1)yx yx y x -=--122;(2)ca b a ac a b --=--;(3)1-=--ba ab ; (4)yx y x yx y x +-=--+-中正确的有:A . 1个 B. 2个 C. 3 个 D. 4 个 2. 关于x 的方程11=+x a 的解是负数,则a的取值范围是:A. 1<aB. 1<a 且0≠a C. 1≤a D. 1≤a 且0≠a .3.若使式子62312--+=-x x x x 从左到右变形成立,应满足的条件是:A. 02>+xB. 02=+xC. 02<+xD. 02≠+x 4.不改变分式的值,将下列各分式中的分子、分母的系数化为整数,其结果不正确的为:A.ba b a ba b a 232331213121-+=-+ B.yx yx y x yx 7208137.028.03.1--=-- C.yx y x yx y x 726487414321+-=+- D.xy x xy x 5355.0321-=-5. 下列等式成立的是: A.22mn m n = B.)0(≠++=a a m a n m nC. )0(≠--=a a m a n m nD.)0(≠=a ma nam n 6.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值:A. 扩大5倍B. 不变C. 缩小5倍D. 扩大4倍7.小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时 A.2n m + B.nm mn + C.nm mn +2 D.mnn m +8.关于x 的方程4332=-+xa ax 的解为x=1,则a 的值为:A. 1B. 3C. -1D. -3 9.下列等式成立的是: A.cb b a cb b a -+=--+- B.b a ba b a +=++22 C.xy xy yx xy 22-=-- D.cb a cb a --=--10.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,问实际每天应多做多少件?若设每天应多做x 件,则x 应满足的方程为: A. x+48720─548720= B.x+=+48720548720 C.572048720=-x D. -48720x+48720=5二、填空题(每小题3分,共30分): 11. 当x 时,分式42-x x有意义.12.)1(1--x x x =x1成立的条件是 . 13. 已知2+x a与2-x b 的和等于442-xx,则b a = .14. 写一个含有字母x 的分式,要求不论x 取何实数,该分式总有意义;这样的分式可以 是 . 15. 化简:211x x x -÷= .16. 分式方程211=+x x 的解是 .17. 已知,311=-yx,则代数式yxy x y xy x ----22142的值是 .18. 已知0≠x ,则xxx31211++= .19. 能使分式22--x x 的值为零的所有x 的值是 .20. 已知:0132=+-x x ,则221xx -的值为 .三、解答题(共70分):21. 计算与化简:(每小题6分,共12分) (1). 212244632--+-÷+++x x x x x x (2).1112+---x x x23.请你先化简x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222,再从0,-2,2,1中选择一个你喜欢的数代入,求出这个代数式的值.(8分)24.化简求值:1112421222-÷+--⋅+-x x x x x x ;其中02=-x x (10分)25.解方程:(每小题7分,共14分)(1)013522=--+xx xx (2)xx x-=+--2122126.列方程解应用题:(每小题9分,共18分)(1)从甲地到乙地有两条公路:一条是全长600km 的普通公路,另一条是全长480km 的高速公路。
北师大版八年级数学下册第三章分式测试题及答案
![北师大版八年级数学下册第三章分式测试题及答案](https://img.taocdn.com/s3/m/642bfb42852458fb760b560e.png)
第三章分式综合测试题一、选择题(每题3分,共30分)1.代数式4-x 1是( )A.单项式B.多项式C.分式D.不能确定2.有理式x 2,31(x+y),3-ππ,x a -5,42yx -中分式有( )个.A.1B.2C.3D.43.若分式2122-+-x x x 的值为0,则x 的值是( ).A.1或-1B.1C.-1D.-24.下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.45.如果x =a -b ,y =a +b ,计算-xy x y 2)(-的值为( ) A .222b a b- B .-222b a b - C .-2224b a b - D .2224b a b - 6.将b a b a --||约分,正确的结果是( )A .1B .2C .±1D .无法确定7.下列运算正确的个数是( ) ①m÷n·n 1=m÷1=m ②x·y÷x·y=xy÷xy=1 ③11111=⋅⋅⋅=÷⋅÷a a a a a a a a ④22224)2(y x x yx x +=+ A .2 B .1 C .3 D .48.如果x <32,那么23|32|--x x 的值是( )A .-1B .0C .1D .329.若a -b =2ab ,则b a 11-的值为( ) A .21 B .-21C .-2D .210.若a 1+a =4,则(a 1-a )2的值是( )A .16B .9C .15D .12二、填空题(每题3分,共30分)1.已知代数式:3,x 1,3+x 1,222y x -,π1(x+y),y 1(z+x),11+x ,x x 212+,32122+++x x x 整式有: 分式有:2. 已知分式122--x x ,当x 时分式值为0. 3.如果32=b a ,且a ≠2,那么51-++-b a b a =4.某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为5.已知y =32)1(6126-+-x x x ,x 取 时,y 的值为正整数. 6.计算:______)2()32(23232---÷-a b a b7.把分式))((11)(3b a b a b a -+-约分得)(113b a +时,a 、b 必须满足的条件为_______。
北师大版八年级数学下册分式的加减法练习试题及答案
![北师大版八年级数学下册分式的加减法练习试题及答案](https://img.taocdn.com/s3/m/ebb94f9584868762caaed5db.png)
3.3 分式的加减法(1)一、目标导航1.同分母的分式的加减法的运算法则及其应用;2.简单的异分母的分式相加减的运算.二、基础过关1.计算:(1)ab ab c ab c 743+-= ;(2)ab b b a a -+-= ; (3)=+-+3932a a a __________;(4)abcac ab 433265+-= . 2.下列计算正确的是( )A .m m m 312=-+B .1=---ab b b a a C .212122++=++-+y y y y y D .b a a b b b a a -=---1)()(22 3.分式25,34ca bc a 的最简公分母是_________. 4.计算:242+-x = . 5.计算213122x x x ---- 的结果是____________. 6.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.7.计算:(1)ab a b 1+- (2) ab b a ab b a 22)2()2(+--(3)222)3(9)3(x y x y x ----- (4)22225421a a a a a a --+--8.先化简,再求值:))(())((2222a c b a b c c a b a b a ---+---,其中3=a ,2-=b ,1-=c .三、能力提升9.若222222M xy y x y x y x y x y--=+--+ ,则M=___________. 10.化简131224a a a -⎛⎫-÷ ⎪--⎝⎭ 的结果是___________. 11.化简11x y y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .1 B .x y C .y x D .-1 12.计算:(1)969392222++-+++x x x x x x x (2)23111x x x x -⎛⎫÷+- ⎪--⎝⎭13. 已知03461022=+--+b a b a ,求ab a b ab a ab b a b a b a -++⨯-÷⎪⎭⎫ ⎝⎛+-2222222的值.四、聚沙成塔已知x +y 1=z +x 1=1,求y +z 1的值.3.3分式的加减法(1)1.⑴abc -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.。
专题35 分式与分式方程(常考知识点分类专题)(巩固篇)八年级数学下册基础知识专项讲练(北师大版)
![专题35 分式与分式方程(常考知识点分类专题)(巩固篇)八年级数学下册基础知识专项讲练(北师大版)](https://img.taocdn.com/s3/m/4f7740f1f424ccbff121dd36a32d7375a417c697.png)
专题5.35分式与分式方程(常考知识点分类专题)(巩固篇)(专项练习)一、单选题【考点一】构成分式的条件➼➻有意义★★无意义★★值为零1.若1x -有意义,则()A .32x ≤-B .32x ≥-且1x ≠C .23x ≤-D .32x ≤-且0x ≠2.对于分式2x x a--来说,当=1x -时,无意义,则a 的值是()A .1B .2C .1-D .2-3.若分式132x x +-的值为零,则x 的取值范围是()A .x =0B .x =-1且x ≠23C .x =-1D .x ≠23【考点二】分式相关概念➼➻最简分式★★约分★★最简公分母★★通分4.下列分式是最简分式的是()A .22x xy x-;B .222a ab b a b-+-;C .2211x x +-;D .211x x +-5.下列各式计算正确的是()A .33x x y y=B .632m m m =C .22a b a b a b+=++D .32()()a b a b b a -=--6.分式2x,21x x -,31x +的最简公分母是()A .21x -B .()21x x -C .2x x-D .()()11x x +-【考点三】分式方程相关概念➼➻增根★★无解7.已知关于x 的分式方程2111mx x x -=--无解,则m 的值是()A .1B .1或2C .0或2D .0或18.若关于x 的分式方程1122x n x x -+=++无解,则n =()A .1-B .0C .1D .329.若分式方程211x m x x-=--有增根,则m 的值为()A .1B .1-C .2D .2-【考点四】分式的运算➼➻分式的乘除法10.化简222222a ab a ab ab b a b b a ⎛⎫-÷÷ ⎪-+--⎝⎭的结果为()A .1B .abC .b aD .211.已知m ,n 是非零实数,设3m m n k n m+==,则()A .23k k=-B .23k k =-C .23k k =--D .23k k =+【考点五】分式的运算➼➻分式的加减法12.数学课上,老师让计算23a a b a b a b -+--.佳佳的解答如下:解:原式23a a b a b+-=-①33a ba b -=-②()3a b a b-=-③=3④对佳佳的每一步运算,依据错误的是()A .①:同分母分式的加减法法则B .②:合并同类项法则C .③:逆用乘法分配律D .④:等式的基本性质13.已知116a b a b+=+,则a b b a +的值为()A .4B .3C .2D .1【考点六】分式的运算➼➻分式的混合运算14.分式23111x x x x -⎛⎫÷-- ⎪--⎝⎭化简结果是()A .12x -+B .12x +C .12x --D .12x -15.若112()a b -÷的运算结果为整式,则“ ”中的式子可能为()A .a b -B .a b +C .abD .22a b -【考点七】分式的运算➼➻分式的化简求值16.若2310x x ++=,则221x x +=()A .4B .5C .6D .717.若12xy x=-,则232x xy y y xy x --+-的值为()A .13B .-1C .53-D .73-【考点八】分式方程➼➻解分式方程18.若21a aa-=,则222022a a -+的值为().A .2020B .2021C .2022D .202319.分式方程61222x x x-=---的解是()A .3x =-B .2x =-C .0x =D .3x =【考点九】分式方程➼➻正(负)数解★★非正(负)数解20.已知关于x 的分式方程412222m x x -=--的解为整数,则符合条件的整数m 可以是()A .1B .2C .3D .521.关于x 的分式方程22224x x m x x x +-=+--的解为正数,则m 的取值范围是()A .4m <-B .4m >-C .4m <-且16m ≠-D .4m >-且8m ≠22.若关于x 的方程2111m x x -=++的解为负数,则m 的取值范围是()A .2m <B .3m <C .2m <且31m ≠D .3m <且2m ≠【考点十】分式方程★★不等式(组)➼➻求参数23.若a 使得关于x 的不等式组12332145xa x a ⎧-≤-+⎪⎨⎪-+≥-⎩有解,且使得关于y 的分式方程42133a y y y --=--有非负整数解,则所有满足条件的a 的值的和是()A .24B .25C .34D .3524.已知关于x 的不等式组2521322x x x a +⎧>-⎪⎨⎪≥-⎩至少有三个整数解,且关于y 的分式方程99233y ay y y +-=---有正整数解,则所有满足条件的整数a 的和为()A .5-B .6-C .7-D .8-二、填空题【考点一】构成分式的条件➼➻有意义★★无意义★★值为零25.函数y x 的取值范围是_____.26.若32a +无意义,且分式11b b --的值等于零,那么a b =_____.27.若分式()()223m m m +-+的值为零,则m =______.【考点二】分式相关概念➼➻最简分式★★约分★★最简公分母★★通分28.约分:2336mnm n =-____________________.29.分式234x y -,212x y 的最简公分母是_________.30.21?11x x x -=+-,则?处应填上_________,其中条件是__________.【考点三】分式方程相关概念➼➻增根★★无解31.分式方程24111x k x x +-=--若有增根,则k 的值是_____________.32.若关于x 的方程3111mx x x=---无解,则m 的值是______.33.若关于x 的分式方程213339m mx x x ++=-+-无解,则m =___________.【考点四】分式的运算➼➻分式的乘除法34.计算:23423b a aa b b⎛⎫⎛⎫÷-⋅= ⎪ ⎪⎝⎭⎝⎭______.35.已知3a b =,2a c =,则32a b c a b c+++-的值为______.【考点五】分式的运算➼➻分式的加减法36.计算:2241442x x x x -+=-++__________.37.已知m >n >0,分式n m的分子分母都加上1得到分式11n m ++,则分式11n m ++_____n m.(填“<、>或=”)【考点六】分式的运算➼➻分式的混合运算38.化简:22211221x x x x x x x ++--÷++-的结果是___________.39.化简2121212a a a a a a +÷-=--++______.【考点七】分式的运算➼➻分式的化简求值40.已知115a b -=,则2325a ab b a ab b+---的值是________.41.已知16a a+=,且42321222a ma a ma a -+=++,则m =___________.【考点八】分式方程➼➻解分式方程42.代数式23x x -的值比代数式232x-的值大4,则x =______.43.定义一种新运算:()()aa b a ba b b a b b a⎧>⎪⎪-=⎨⎪-<⎪-⎩※,若52x =※,则x 的值为______.【考点九】分式方程➼➻正(负)数解★★非正(负)数解44.关于x 的分式方程3211m x x +=--有正数解,则符合条件的负整数m 的和是______.45.若关于x 的分式方程33122x m mx x --=-+的解是负数,则m 的取值范围是_______.46.已知关于x 的分式方程3121m x -=+的解为负数,则m 的取值范围是______________.【考点十】分式方程★★不等式(组)➼➻求参数47.若关于x 的一元一次不等式组1231x x x a -⎧≥⎪⎨⎪+<⎩有解,且关于y 的分式方程1122a y y y --=--的解是正数,则所有满足条件的整数a 的值之和是__________.48.如果关于x 的不等式组()03321x mx x -⎧<⎪⎨⎪->-⎩的解集为x m <,且关于x 的分式方程2333m xx x-+=--有非负整数解,所有符合条件的m 的和是___________.参考答案1.B【分析】根据二次根式的被开方数是非负数,分式的分母不等于0即可得出答案.解:根据题意得:23010x x +≥⎧⎨-≠⎩,解得,32x ≥-且1x ≠,故选:B【点拨】本题考查了二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数,分式的分母不等于0是解题的关键.2.C【分析】根据分式无意义的条件求解即可.解:当分式2x x a--无意义时,x-a=0,而此时x=-1所以,-1-a=0解得,a=-1故选:C【点拨】本题考查了分式无意义的条件,能得出关于a 的方程是解此题的关键.3.C【分析】根据分式的值为0,就是分式的分子为0,分母不为0,即可以求解.解:∵132x x +-=0,∴10x +=,且320x -≠解得x =-1且x ≠23,∴x =-1,故选C ,【点拨】本题主要考查了分式的意义及解分式方程,掌握分式的值为0,就是分式的分子为0,分母不为0,是解题的关键.4.C【分析】直接利用最简分式的定义进而判断得出答案.解:A 、22x xy x-=()22x x y x yx --=,不是最简分式,不合题意;B 、222a ab b a b -+-=2()a b a b a b -=--,不是最简分式,不合题意;C 、2211x x +-无法化简,是最简分式,符合题意;D 、211x x +-=11(1)(1)1x x x x +=+--,不是最简分式,不合题意.故选:C【点拨】此题主要考查了最简分式,正确把握最简分式的定义是解题关键.5.D【分析】根据分式的基本性质进行判断即可得到结论.解:A 、33x y 是最简分式,所以33x x y y≠,故选项A 不符合题意;B 、624m m m=,故选项B 不符合题意;C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意;D 、3322()()()()a b a b a b b a a b --==---,正确,故选:D .【点拨】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.6.B【分析】依据最简公分母的含义和确定公分母的方法即可解答.解:∵2x 的分母是x ,21x x -的分母是(x 2-1),即(x +1)(x -1);31x +的分母是x +1,∴分式2x,21x x -,31x +的最简公分母是x (x +1)(x -1),即为x (x 2﹣1).故应选:B【点拨】本题考查了最简公分母的定义及求法,准确地将各个分式中的分母进行因式分解是解题的关键.7.B【分析】去分母,化分式方程为整式方程()11m x -=,根据分式方程产生增根1x =或10m -=,即可求解.解:2111mx x x -=--,方程两边同时乘以()1x -,得21mx x -=-,移项、合并同类项,得()11m x -=,∵方程无解,∴10x -=或10m -=,∴11m -=或1m =,∴2m =或1m =,故选:B .【点拨】本题考查了分式方程无解问题,分两种情况:一种是把分式方程化成整式方程后,整式方程无解;一种是把分式方程化成整式方程后,整式方程有解,但这个解使分式方程的分母为0,是增根,熟练掌握理解这两种情况是解题关键.8.A【分析】解分式方程,可得32n x -=,根据题意可知分式方程的增根为2x =-,即有322n -=,求解即可获得答案.解:1122x n x x -+=++,去分母,得21x x n ++=-,合并同类项、系数化为1,得32n x -=,由题意可知,分式方程的增根为2x =-,即有322n -=-,解得1n =-.故选:A .【点拨】本题主要考查了解分式方程以及分式方程的增根的知识,通过分析确定该分式方程的增根为2x =是解题关键.9.B【分析】先化分式方程为整式方程,令分母10x -=,代入整式方程计算m 的值.解:因为211x m x x-=--,去分母得:()21x m x +=-,解得:2m x =-因为分式方程211x m x x-=--有增根,所以10x -=,即:1x =是方程增根,所以21m x =-=-,故选B .【点拨】本题考查了分式方程的增根问题,解题的关键是熟练掌握分式方程中关于增根的解题方法.10.D【分析】先对式子的分子和分母因式分解,再将括号里的除号变为乘号运算,最后同样进行除法运算化简即可.解:原式2(2)2()2a a b a b a b a b a b ab ⎛⎫--=÷⨯ ⎪---⎝⎭(2)(2)()2()a ab a b a b a b b a b --=÷---(2)2()2()(2)a ab b a b b a b a b a --=⨯=---.故选:D .【点拨】本题主要考查分式的化简运算,属于基础题,注意计算的细节即可,熟练掌握运算法则是解题的关键.11.D【分析】根据分数除法的运算法则解答,用k 、n 表示出m 代入等式化简,即可得到关于k 的等式.解:∵=mk n,∴m kn =∵3=m nk m+,∴+33kn n k k kn k+==,∴2=+3k k ,故选:D .【点拨】本题主要考查了分式的乘除法,熟练掌握分式的乘除法法则是解答本题的关键.12.D【分析】根据分式的加减法法则计算即可.解:①:同分母分式的加减法法则,正确;②:合并同类项法则,正确;③:提公因式法,正确;④:分式的基本性质,故错误;故选:D .【点拨】此题考查了分式的加减,熟练掌握法则及运算律是解本题的关键.13.A【分析】先把分式进行化简,得到2()6a b ab+=,然后再把要求的分式化简,代入计算即可得到答案.解:∵116a b a b+=+,∴6a b ab a b+=+,∴2()6a b ab+=,∴2222()2()2624a b a b a b ab a b b a ab ab ab++-++===-=-=;故选:A .【点拨】本题考查了分式的化简求值,分式的加减混合运算,解题的关键是熟练掌握运算法则进行计算.14.A【分析】利用分式加减乘除混合运算计算即可.解:23111x x x x -⎛⎫÷-- ⎪--⎝⎭()()311211x x x x x x -----=÷--22114x x x x --=⨯--224x x -=-224x x -=--()()222x x x -=-+-12x =-+,故选A .【点拨】本题考查了分式的混合运算,熟练掌握运算顺序是解题的关键.15.C【分析】先代入,再根据分式的运算法则进行计算,最后根据求出的结果得出选项即可.解:A .221122==22b a a b a ab b a b a bab ab ---+⎛⎫-÷⋅- ⎪-⎝⎭,是分式,不是整式,故本选项不符合题意;B .22112==22b a a b b a a b a bab ab -+-⎛⎫-÷ ⎪+⎝⎭,是分式,不是整式,故本选项不符合题意;C .112==22b a ab b a a b ab ab --⎛⎫-÷⋅ ⎪⎝⎭,是整式,故本选项符合题意;D .()()()()222112==22a b a b a b a b b a a b a bab ab +-+--⎛⎫-÷⋅- ⎪-⎝⎭是分式,不是整式,故本选项不符合题意;故选:C .【点拨】本题考查了分式的混合运算和整式,能正确根据分式的运算法则进行计算是解此题的关键.16.D【分析】根据题意可得0x ≠,将已知等式两边同时除以x ,得到13x x+=-,进而根据完全平方公式的变形即可求解.解:∵2310x x ++=,且由题意可得0x ≠,∴2310x x x x x ++=,∴13x x +=-,∴()2222112327x x x x ⎛⎫+=+-=--= ⎪⎝⎭,故选D .【点拨】本题主要考查了等式,完全平方公式,分式求值,熟练掌握等式的性质,完全平方公式变形是解题的关键.17.D【分析】将12x y x =-变形得2y x xy -=,然后整体代入232x xy y y xy x --+-即可求解.解:∵12x y x=-,∴2y x xy -=,∵2322()3()x xy y x y xy y xy x y x xy----=+--+,∴()22323277233xy xy x xy y xy y xy x xy xy xy -----===-+-+故答案为:D .【点拨】本题考查代数式求值,解题关键是正确变形整体代入求解.18.C 【分析】由21a a a-=可得220a a -=,采用整体代入法,即可求解.解:21a a a-= ,220a a ∴-=,2220222022a a ∴-+=,故选:C .【点拨】本题考查了代数式求值问题,采用整体代入法是解决本题的关键.19.D【分析】解此方程即可判定.解:去分母,得:()6122x x -=---,去括号,得:6124x x -=--+,移项、合并同类项,得:39x =,解得:3x =,经检验:3x =是原方程的解,所以,原方程的解为3x =,故选:D .【点拨】本题考查了解分式方程,熟练掌握和运用解分式方程的步骤与方法是解决本题的关键.20.B【分析】解该分式方程得22m x --=,结合该分式方程的解为整数和分式有意义的条件,即得出m 为2的倍数且4m ≠-,即选B .解:412222m x x -=--,方程两边同时乘22x -,得:422m x --=-,解得:22m x --=,∵该分式方程的解为整数,∴2m --为2的倍数,∴m 为2的倍数.∵220x -≠,∴1x ≠,∴212m --≠,∴4m ≠-,综上可知m 为2的倍数且4m ≠-.∴只有B 选项符合题意.故选B .【点拨】本题考查解分式方程,分式方程有意义的条件.掌握解分式方程的步骤和注意分式的分母不能为0是解题关键.21.C 【分析】先解分式方程得46m x +=-,然后令406m +->,且426m +-≠±,计算求解即可.解:22224x x m x x x +-=+--,两边同时乘以()()22x x +-得,()()222x x x m --+=,去括号得,22244x x x x m ----=,移项合并得,64x m -=+,系数化为1得,46m x +=-,令406m +->,且426m +-≠±,解得4m <-,且16m ≠-,8m ≠,综上,4m <-,且16m ≠-,故选:C .【点拨】本题考查了解分式方程.解题的关键在于正确的运算并检验.22.D【分析】先银分式方程求得解为3x m =-,再根据方程银为负数和分式有意义条件列不等式求解即可.解:2111m x x -=++,21m x -=+,3x m =-,∵原方程解为负数,∴30m -<,∴3m <,∵10x +≠,∴310m -+≠,∴2m ≠,∴3m <且2m ≠,故选:D .【点拨】本题考查解分式方程,熟练掌握根据分式方程解的情况求参是解题的关键.23.B 【分析】先根据不等式组12332145x a x a ⎧-≤-+⎪⎨⎪-+≥-⎩有解,得出a 的取值范围,再解分式方程42133a y y y --=--,得出13a y -=,10a ≠,再根据y 为非负整数找出满足条件的a 的值,最后求和即可.解:解不等式1233x a -≤-+,得36x a ≥-,解不等式2145x a -+≥-,得32x a ≤-,解关于x 的不等式组12332145x a x a ⎧-≤-+⎪⎨⎪-+≥-⎩有解,∴3236a a -≥-,解得13a ≤;将分式方程42133a y y y --=--化为整式方程,得423a y y -+=-,解得13a y -=, 30y -≠,∴133a y -=≠,解得10a ≠,又 关于y 的分式方程42133a y y y --=--有非负整数解,∴当a 取13,7,4,1时,该分式方程有非负整数解,1374125+++=,∴所有满足条件的a 的值的和是25,故选B .【点拨】本题考查解一元一次不等式组、解分式方程,解题的关键是根据不等式组有解得出a 的取值范围,注意分式的分母不能为0.24.C【分析】先解两个不等式,再根据不等式组至少有3个整数解得到0a ≤,再解分式方程确定a 的值即可得到答案.解:解不等式25213x x +>-得:2x <,解不等式22x a ≥-得:22a x -≥,∵关于x 的不等式组2521322x x x a +⎧>-⎪⎨⎪≥-⎩至少有三个整数解,∴212a -≤-,∴0a ≤;99233y ay y y +-=---去分母得:()()9239y y ay +=---,去括号得:9269y y ay +=--+,移项得:2699y y ay -+=-+-,合并同类项得:()16a y -=-,∴61y a -=-,∵关于y 的分式方程99233y ay y y +-=---有正整数解,∴601a ->-,∴11a -=-或12a -=-或13a -=-或16a -=-,∴0a =或1a =-或2a =-或5a =-,又∵631y a -=≠-,∴1a ≠-∴()()257-+-=-,故选C .【点拨】本题主要考查了解分式方程,解一元一次不等式组,正确计算是解题的关键.25.2x >或1x ≤【分析】根据二次根式有意义的条件与分式有意义的条件,得出不等式组,解不等式组即可求解.解:由题意得,102x x -≥-,则1020x x -≥⎧⎨->⎩或1020x x -≤⎧⎨-<⎩,解得,2x >或1x ≤,故答案为:2x >或1x ≤.【点拨】本题考查了求自变量的取值范围,掌握二次根式有意义的条件与分式有意义的条件是解题的关键.26.2【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.解:∵32a +无意义,∴a+2=0,∴a =﹣2∵分式11b b --的值等于零,∴|b|﹣1=0,b ﹣1≠0,∴b =﹣1,∴a b =21--=2,故答案为2.【点拨】此题主要考查了分式的值为零的条件,正确解方程是解题关键.27.-2【分析】根据分式的值为零的条件(分子为零、分母不为零)可以求出m 的值.解:根据题意,得20m +=,且20m -≠、30m +≠;解得2m =-;故答案是:2-.【点拨】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为0;②分母不为0.这两个条件缺一不可,熟记分式值为0的条件是解题的关键.28.212mn -【分析】首先确定分子与分母的公因式,系数是分子与分母的系数的最大公约数,相同的字母,取最小的次数作为公因式的字母的次数,确定公因式以后,把公因式约去即可.解:原式=221332-=-2mn mn m n mn ⋅.故答案是:212mn -【点拨】此题考查约分,解题关键在于掌握运算法则.29.12x 2y 2【分析】根据最简公分母的定义求解.解:分式234x y -,212x y的最简公分母为2212x y .故答案为:2212x y .【点拨】本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.30.2(1)x -1x ≠【分析】将已知等式右边的分母利用平方差公式分解因式,观察两分母发现等式左边的分子分母同时乘以x ﹣1,即可得到?处应填的式子,条件是所乘的因式不能为0.解:∵x 2﹣1=(x +1)(x ﹣1),∴等式左边的分子分母同时乘的是x ﹣1,则?处应填(x ﹣1)2.∵x -1≠0,∴x ≠1.故答案为(x ﹣1)2,x ≠1.【点拨】本题考查了分式的约分逆运算,利用了分式的基本性质,即分式分子分母同时乘以或除以同一个不为0的数,分式的值不变.31.1【分析】首先根据解分式方程的方法求出方程的解,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行检验即可得解解:24111x k x x +-=--,()()41111x k x x x +-=-+-,公分母为:()()11x x +-,两边同时乘以()()11x x +-得:()()()()1114x k x x x ++-+-=,解得:31k x k -+=+,分式方程有增根,()()110x x ∴+-=,1x ∴=或=1x -,当1x =时,311k k -+=+,解得:1k =,此时方程有增根,当=1x -时,311k k -+=-+,得:31=-,无解,综上所述,1k =,故答案为:1.【点拨】本题考查对分式方程增根的理解和掌握,理解分式方程的增根的意义是解题关键.32.1或3/3或1【分析】将分式方程化为整式方程,可得21x m =-,根据分式方程无解,可得10x -=,或10m -=,分情况求解即可.解:3111mx x x =---,去分母,得13mx x =-+,解得21x m =-, 方程无解,∴10x -=,或10m -=,当10x -=时,211m =-,解得3m =;当10m -=时,1m =,即m 的值为1或3,故答案为:1或3.【点拨】本题主要考查了根据分式方程无解求参数的值,解题的关键是掌握分式方程无解的条件:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于零.33.1-或3或37-【分析】分式方程无解分两种情况分析:(1)原方程存在增根;(2)原方程去掉分母后,整式方程无解.解:213339m m x x x ++=-+-方程两边都乘()(33)x x +-,得(3)(3)3x m x m ++-=+,化简得,得:(1)4m x m +=,当1m =-时,方程无解;当3x =±时,分母为零,分式方程无解,把3x =代入整式方程,3m =;把3x =-代入整式方程,得37m =-;综上可得:1m =-或3或37-.故答案是:1-或3或37-.【点拨】本题考查了分式方程无解问题,解题关键是分情况分析:当分式方程有增根的情况和分式方程化简后的整式方程无解的情况.34.23a -/23a -【分析】根据分式的乘除运算法则即可求出答案.解:原式223344b b a a a b⎛⎫=⋅-⋅ ⎪⎝⎭333344b a a b=-⋅23a =-,故答案为:23a -.【点拨】本题考查分式的乘除运算,解题的关键是熟练运用分式的乘除运算法则,本题属于基础题型.35.157【分析】分别用含a 的代数式表示出b ,c ,再代入求值即可.解:∵3a b =,2a c =,∴3a b =,2a c =,∴32a b ca b c+++-332232a a a a a a +⨯+=+⨯-2232aa a a a a ++=+-22643666a a a a a +=+-422643666a a a a a +=+-5276a a =157=.故答案是:157.【点拨】此题主要考查了分式的化简,熟练掌握运算法则是解答此题的关键.36.22524x x x ++-【分析】先分子分母因式分解约分后,再通分并利用同分母分式的加法法则计算,即可得到结果.解:2241442x x x x -+-++2(2)(2)1(2)2x x x x +-+-+=2122x x x ++-+=2(2)2(2)(2)(2)(2)x x x x x x +-++-+-=2442(2)(2)(2)(2)x x x x x x x ++-++-+-=22524x x x ++-=.故答案为:22524x x x ++-.【点拨】本题考查了分式的加减混合运算,熟练掌握运算法则是解本题的关键.37.>【分析】根据题意,比较11n m ++﹣n m 的差与0的大小即可,然后根据m >n >0和分式的减法即可得到11n m ++﹣n m 的差与0的大小情况,从而可以解答本题.解:()()()11111m n n m n n m m m m +++=++﹣﹣()()=11mn m nm n m n m m m m +=++﹣﹣﹣∵m >n >0,∴m ﹣n >0,1m +>0,∴()01m n m m +﹣,即11n m ++>n m,故答案为:>.【点拨】本题考查分式的混合运算,熟练掌握分式混合运算的运算法则是解答本题的关键.38.12x -+【分析】首先把分式的分子进行因式分解,把除法转化成乘法,然后进行约分,最后根据同分母分式减法法则进行计算即可.解:22211221x x x x x x x ++--÷++-=()()()2111221x x x x x x x ++--÷++-=()()()2112211x x x x x x x +--⋅+++-=122x x x x +-++=12x -+,故答案为:12x -+【点拨】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.39.12a -+【分析】由题意利用分式约分化简的方法与技巧进行化简计算即可.解:2121212a a a a a a +÷---++()211122a a a a a -=⨯--++122a a a a -=-++12a aa --=+12a =-+,故答案为12a -+.【点拨】本题考查分式的化简,利用变除为乘、分式加减法则以及分式的约分化简是解题的关键.40.710/0.7【分析】由已知115a b -=得到5a b ab -=-,把这个式子代入所求的式子,进行化简就得到所求式子的值.解:由已知115a b -=得,5a b ab -=-,2325a ab b a ab b +-∴--()()235a b aba b ab-+=--()25355ab abab ab⨯-+=--710abab-=-710=,故答案为:710.【点拨】本题主要考查了分式的化简,发现已知与未知式子之间的联系是解题的关键.41.103【分析】根据16a a +=求出的值,4232122a ma a ma a -+++上下同时除以2a ,整理代入解方程即可.解: 16a a +=∴22211236a a a a ⎛⎫+=++= ⎪⎝⎭∴22134a a +=4232122a ma a ma a-+++上下同时除以2a 得:22422232111212222a m a m a ma a a a ma a a m a m a a -++--+==++⎛⎫++++ ⎪⎝⎭,将16a a +=,22134a a +=代入以上式子得:2213421122a m m a m a m a +--==+⎛⎫++ ⎪⎝⎭,解得:103m =.故答案为:103【点拨】本题考查了分式的化简求值,相关知识点有:完全平方公式,整体思想的利用是解题关键.42.2【分析】根据题意可得:242332x x x-=--,然后按照解分式方程的步骤,进行计算即可解答.解:由题意得:242332x x x -=--,去分母得:()2423x x +=-,解得:2x =,检验:当2x =时,230x -≠,2x ∴=是原方程的根,故答案为:2.【点拨】本题考查了解分式方程,一定要注意解分式方程必须检验.43.52【分析】根据题中所给新定义运算可分类进行求解.解:由题意可知:当5x <时,则525x =-,解得:52x =,经检验当52x =时,50x -≠,∴52x =是原方程的解;当5x >时,则25x x -=-,解得:103x =,经检验当103x =时,50x -≠,∵1053<,∴103x =不是原方程的解;故答案为52.【点拨】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.44.7-【分析】解出关于x 的分式方程3211m x x +=--的解为52m x +=,解为正数解,进而确定m 的取值范围,注意增根时m 的值除外,再根据m 为负整数,确定m 的所有可能的整数值,求和即可.解:去分母得,2(1)3m x -+-=,解得,52m x +=, 关于x 的分式方程3211m x x +=--有正数解,∴502m +>,5m ∴>-,又1x = 是增根,当1x =时,512m +=,即3m =-,3m ∴≠-,∴5m >-且3m ≠-,∴符合条件的负整数m 有4-,2-,1-,其和为4217---=-,故答案为:7-.【点拨】本题考查分式方程的解法,以及分式方程产生增根的条件等知识,理解正数解,负整数m 的意义是正确解答的关键.45.13m <且0m ≠【分析】首先求出关于x 的分式方程的解,然后根据解为负数,求出m 的取值范围即可.解:33122x m m x x --=-+去分母得:()()()()()3m 22232x x x x m x -+-+-=-,去括号得:22326436x mx x m x mx m -+--+=-,移项得:22323664x mx x x mx m m -+--=-+-合并同类项得:()264m x -=-,解得:231x m =-,∵分式方程的解是负数,2031x m =<-,310m ∴-<,∴13m <,20x -≠ 且20x +≠,即2x ≠±,2231x m =≠±- 解得:0m ≠且23m ≠∴13m <且0m ≠.故答案为:13m <且0m ≠.【点拨】此题主要考查了分式方程的解,要熟练掌握;解答此题的关键是正确得出分母不为0.46.4m <且3m ≠【分析】直接解分式方程,然后根据分式方程的解为负数,结合210x +≠求出答案.解:3121m x -=+,去分母得:321m x -=+,解得:42m x -=,∵分式方程的解是负数,∴0x <且210x +≠,即40m -<且410m -+≠,解得:4m <且3m ≠,故答案为:4m <且3m ≠.【点拨】本题考查了分式方程的解,正确解分式方程是解题的关键.47.1-【分析】先解不等式组,确定a 的取值范围3a <,再把分式方程去分母转化为整式方程,解得32a y +=,由分式方程有正数解,确定出a 的值,相加即可得到答案.解:1231x x x a -⎧≥⎪⎨⎪+<⎩①②,解不等式①得:2x ≥-解不等式②得:1x a <-,关于x 的一元一次不等式组1231x x x a -⎧≥⎪⎨⎪+<⎩有解,12a ∴->-,解得:3a <,分式方程1122a y y y--=--去分母得:12a y y +-=-,解得:32a y +=,y 是正数,且2y ≠,3a ∴>-且1a ≠,∴满足条件的整数a 的和为21021--++=-,故答案为:1-.【点拨】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.48.15-【分析】根据不等式组的解法及分式方程的解法求解即可得到答案.解:()03321x m x x -⎧<⎪⎨⎪->-⎩①②由①得x m <;由②得1x <-;关于x 的不等式组()03321x m x x -⎧<⎪⎨⎪->-⎩的解集为x m <,1m ∴≤-;由2333m x x x-+=--,解得72m x +=, 关于x 的分式方程2333m x x x -+=--有非负数解,∴702m +≥,且732m +≠,7m ∴≥-,1m ≠-;综上所述,71m -≤<-,关于x 的分式方程2333m x x x-+=--有非负整数解,7m ∴=-或5-或3-,∴所有符合条件的m 的和是75315---=-,故答案为:15-.【点拨】本题考查解一元一次不等式组及分式方程求参数,熟练掌握一元一次不等式组的解集求法及分式方程解法是解决问题的关键.。
北师大版八年级数学下册类比归纳专题:分式运算中的技巧 精品试题
![北师大版八年级数学下册类比归纳专题:分式运算中的技巧 精品试题](https://img.taocdn.com/s3/m/60ade422767f5acfa0c7cd2d.png)
类比归纳专题:分式运算中的技巧——观特点,定顺序,灵活计算◆类型一 按常规步骤运算1.计算1x -1x -y的结果是( ) A .-y x (x -y ) B .2x +y x (x -y )C .2x -y x (x -y )D .y x (x -y )2.化简m m +3+6m 2-9÷2m -3的结果是________. 3.先化简,再求值:2a +1a 2-1·a 2-2a +1a 2-a -1a +1,其中a =-12.◆类型二 先约分再化简4.化简:a 2-1a 2+2a +1÷a 2-a a +1=________. 5.化简求值:(a -3)·9-a 2a 2-6a +9=________,当a =-3时,该代数式的值为________. 6.先化简,再求值:x 2-2x +1x 2-1÷⎝⎛⎭⎫1-3x +1,其中x =0.◆类型三 混合运算中灵活运用分配律7.计算⎝ ⎛⎭⎪⎫2x x 2-1+x -1x +1÷1x 2-1的结果是( ) A .1x 2+1 B .1x 2-1C .x 2+1D .x 2-18.化简:⎝⎛⎭⎫2a -1-1a +1·(a 2-1)=________. 9.先化简,再求值:12x -1x +y ·⎝⎛⎭⎫x 2-y 2+x +y 2x ,其中x =2,y =3.◆类型四 分式化简求值注意整体代入10.若xy -x +y =0且xy ≠0,则分式1x -1y的值为( ) A .1xyB .xyC .1D .-1 11.已知a 2-3a +1=0,则a +1a-2的值为( ) A .5+1 B .1 C .-1 D .-512.先化简,再求值:⎝⎛⎭⎪⎫x -1x -x -2x +1÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.参考答案与解析1.A 2.13.解:原式=2a +1(a +1)(a -1)·(a -1)2a (a -1)-1a +1=2a +1a (a +1)-1a +1=a +1a (a +1)=1a.当a =-12时,原式=-2. 4.1a5.-a -3 0 6.解:原式=x -1x +1÷x -2x +1=x -1x -2.当x =0时,原式=12. 7.C 8.a +39.解:原式=12x -x 2-y 2x +y -12x=-x +y .当x =2,y =3时,原式=1. 10.D 11.B12.解:原式=x 2-1-x 2+2x x (x +1)·(x +1)2x (2x -1)=x +1x 2.∵x 2-x -1=0,∴x 2=x +1,∴原式=1.。
北师大版八下第三章分式单元测试及答案
![北师大版八下第三章分式单元测试及答案](https://img.taocdn.com/s3/m/8260c411aa00b52acec7ca83.png)
北师大版八下第三章分式单元测试及答案一、选择题(每小题2分,共16分)A .x ≠0B .y ≠0C .x ≠0或y ≠0D .x ≠0且y ≠0A .--1B .--1或2C .2D .--2A .x >3B .x <3C .x <3且x ≠0D .x >--3且x ≠04.假如正数x 、y 同时扩大10倍,那么下列分式中值保持不变的是( ) A .11--y x B .11++y x C .32yxD .yx x + 5.下列化简结果正确的是( )A .222222z y z x y x -=+-B .))((22b a b a b a -+--=0C .yx yx 263=3x 3D .12-+m m aa =a 3A .--22nmB .--3n m C .--4m n D .--nA .x =4B .x =3C .x =0D .无解 8.甲从A 地到B 地要走m 小时,乙从B 地到A 地要走n 小时,若甲、乙二人同时从A 、B 两地动身,通过几小时相遇( ) A .(m +n )小时B .2nm +小时 C .mnnm +小时D .nm mn +小时二、填空题(每小题2分,共16分)16.甲、乙两地相距48千米,一艘轮船从甲地顺流航行至乙地,又赶忙从乙地逆流返回甲地,共用时9小时,已知水流的速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则依照题意列出的方程为_________.三、解答题(17、18小题各12分,19小题14分,20小题10分,21小题20分,共68分)17.运算: (1)acac bc c b ab b a -+-+-(2)22232332a b b ab ab b a a b b a b -+÷+-+-18.化简求值:(1)222222484yx y xy x -+-,其中x =2,y =3.(2)(a --b +b a ab -4)(a +b --b a ab +4) 其中a =23,b =--21.19.解下列分式方程: (1)12112++-x x =0 (2)xx x 25552-+-=120.已知:22)2(2)2(3-+-=-+x Bx A x x ,求A 、B 的值.21.列方程解应用题(1)甲、乙二人分别加工1500个零件.由于乙采纳新技术,在同一时刻内,乙加工的零件数是甲加工零件数的3倍,因此,乙比甲少用20小时加工完,问他们每小时各加工多少个零件?(2)A 、B 两地相距160千米,甲车从A 地开出2小时后,乙车也从A 地开出,结果乙车比甲车迟40分钟到达B 地,已知甲车的速度是乙车的32,求甲、乙两车的速度.参考答案一、1.D 2.C 3.C 4.D 5.D 6.A 7.A 8.D二、9.5 10.4 11.ax ax -+ 12.22141a a -- 13.--5 14.10 15.x =4 16.448448-++x x =9三、17.(1)0 (2)ab 18.(1)51(2)2 19.(1)x =21(2)x =020.A =1,B =521.(1)50个 150个 (2)40千米/时 60千米/时。
专题5.23 分式与分式方程(全章基本概念与性质专题)八年级数学下册基础知识专项讲练(北师大版)
![专题5.23 分式与分式方程(全章基本概念与性质专题)八年级数学下册基础知识专项讲练(北师大版)](https://img.taocdn.com/s3/m/612d9c08814d2b160b4e767f5acfa1c7aa00820d.png)
专题5.23分式与分式方程(全章基本概念与性质专题)(专项练习)一、单选题【性质】分式基本性质1.如果将分式xx y2+中的字母x 与y 的值分别扩大为原来的5倍,那么这个分式的值()A .扩大为原来的5倍B .扩大为原来的10倍C .缩小为原来的15D .不改变2.如果把分式22x x y-中的x ,y 的值都扩大2倍,那么此分式的值()A .扩大2倍B .扩大4倍C .扩大6倍D .不变【概念一】分式3.下列代数式中,属于分式的是()A .23-x B .xπC .23x +D .124.在式子1a ,2xy π,2334a b c,56x +,109x y +,78x y +中,分式的个数是()A .2B .3C .4D .5【概念二】最简分式5.下列分式中是最简分式的是()A .221x x +B .42xC .211x x --D .11x x --6.下列各分式中是最简分式的是()A .()()1215x y x y -+B .2222x y x y xy ++C .()222x y x y -+D .22x y x y-+【概念三】约分7.化简222a b a ab--的结果为()A .2a b a-B .a b a-C .a b a+D .a b a b-+8.将分236x xy-约分的结果是()A .12y-B .2x y-C .2xy-D .x y-【概念四】最简公分母9.分式1x y +、1x y-、221x y -的最简公分母是()A .()()x y x y +-B .()()()22x y x y x y +--C .()()22x y x y +-D .()()22x y x y --10.212a b与2a b ab c +的最简公分母为()A .222a b cB .abC .222a b D .2abc【概念五】通分11.把12x -,1(2)(3)x x -+,22(3)x +通分的过程中,不正确的是()A .最简公分母是2(2)(3)x x -+B .221(3)2(2)(3)x x x x +=--+C .213(2)(3)(2)(3)x x x x x +=-+-+D .22222(3)(2)(3)x x x x -=+-+12.把2121a a a -++与211a -通分后,2121a a a -++的分母为()()211a a -+,则211a -的分子变为()A .1a -B .1a +C .1a --D .1a-+【概念六】分式方程的增根13.若分式方程311x mx x -=--有增根,则m 等于()A .3B .3-C .2D .2-14.关于x 的方程31111x mx x --=++有增根,则方程的增根是()A .1-B .4C .4-D .2【概念七】分式方程的无解15.关于x 的方程6122=---ax x x无解,则a 的值为()A .1B .3C .1或3-D .1或316.已知关于x 的分式方程2322x mm x x+=--无解,则m 的值是()A .1或13B .1或3C .13D .1二、填空题【性质】分式基本性质17.已知32m n =,则m n n+的值为__________.18.不改变分式10.4210.35-+a ba b 的值,若把其分子与分母中的各项系数都化成整数,其结果为______.【概念一】分式19.下列各式:2a b -,3x x -,5y π+,a ba b+-,1()m x y -中,是分式的共有____个.20.将分式121x x ++写成除法的形式:____________________.【概念二】最简分式21.将分式2244x x +-化为最简分式,所得结果是_______.22.下列分式:①233a a ++;②22x y x y --;③22m m n;④21m +,最简分式有______(填序号).【概念三】约分23.约分:222315a ba b =________.24.约分:22abc b c=____________.【概念四】最简公分母25.分式22a b ,1ab ,3abc的最简公分母是______________;26.分式212a b 与31ab 的最简公分母是________.【概念五】通分27.2121a a a -++与251a -通分的结果是_______.28.把分式22111221(1)x x x ⋅⋅+--通分,最简公分母是_________________.【概念六】分式方程的增根29.若关于x 的分式方程5233x mx x +=---有增根,则常数m 的值是_________.30.若关于x 的分式方程1222x mx x-=---有增根,则m 的值是_______.【概念七】分式方程的无解31.已知关于x 的分式方程11235a xx x --=+-无解,则a 的值为_____.32.若关于x 的方程301ax x+=-无解,则a 的值为______.参考答案1.D 【分析】将xx y2+的字母x 与y 的值分别扩大为原来的5倍,与原式比较即可.【详解】解:xx y2+的字母x 与y 的值分别扩大为原来的5倍得:()25522555x x xx y x y x y⨯⨯==+++所以,分式的值不变.故选D【点拨】本题考查了分式的基本性质,熟练运用分式的基本性质是解题关键.2.A【分析】根据分式的基本性质进行计算即可得出结果.【详解】解:由题意得:()()2222822==2222x x x x y x yx y ⨯---,∴把x ,y 的值都扩大2倍,分式的值扩大了2倍,故选:A .【点拨】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.3.C【分析】根据分式的定义逐个判断即可.【详解】解:A .23-x 分母中不含字母,不是分式,故本选项不符合题意;B .xπ分母中不含字母,不是分式,故本选项不符合题意;C .23x +分母中含字母,是分式,故本选项符合题意;D .12分母中不含字母,不是分式,故本选项不符合题意;故选:C .【点拨】本题考查了分式的定义,能熟记分式的定义是解此题的关键,式子AB(A 、B 是整式)中,分母B 中含有字母,则AB叫分式.4.B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】式子2xyπ,2334a b c,78x y +中的分母中均不含有字母,因此它们是整式,而不是分式;1a ,56x+,109x y +中分母中含有字母,因此是分式.故选B .【点拨】本题主要考查分式的定义,注意π不是字母,是常数,所以2xyπ不是分式,是整式,掌握分母里含有字母是分式区别于整式的标志是解题的关键.5.A【分析】直接利用最简分式的定义,一个分式的分子与分母没有公因式时叫最简分式,进而分析得出答案.【详解】解:A .221xx +的分子、分母都不能再分解,且不能约分,是最简分式,故此选项符合题意;B .422x x=,故此选项不符合题意;C .()()21111111x x x x x x +---==-+,故此选项不符合题意;D .()11111x x x x ---==---,故此选项不符合题意.故选:A .【点拨】本题考查最简分式,正确掌握最简分式的定义是解题的关键.6.B【分析】最简分式是分子,分母中不含有公因式,不能再约分的分式.判断的方法是把分子、分母分解因式,并且观察有无公因式.如果有互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】解:A 、()()()()124155x y x y x y x y --=++,不是最简分式,不符合题意;B 、2222x y x y xy ++是最简分式,符合题意;C 、()()()()2222x y x y x y x yx y x y x y +---==+++,不是最简分式,不符合题意;D 、()()22x y x y x y x y x y x y+--==-++,不是最简分式,不符合题意;故选B .【点拨】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.C【分析】分子、分母分别因式分解,约分即可得到结论.【详解】解:()()()222a b a b a b a ba ab a a b a+--+==--,故选:C .【点拨】本题考查了分式的化简,解决问题的关键是熟练应用平方差公式.8.C【分析】依据分式的性质约分即可.【详解】解:2362x xxy y-=-故选:C .【点拨】本题考查了分式的约分;熟练掌握分式的性质是解题的关键.9.A【分析】先把分母因式分解,再找出最简分母即可.【详解】解:221x y-的分母为:()()22x y x y x y -=+-,∴最简公分母为:()()x y x y +-,故选:A .【点拨】本题主要考查最简公分母的定义,熟练掌握最简公分母的定义是解决本题的关键.10.A【分析】根据最简公分母的确定方法:各分母系数的最小公倍数与字母因式的最高次幂的积,进行判断即可.【详解】解:212a b与2a b ab c +的最简公分母为222a b c ;故选A .【点拨】本题考查最简公分母.熟练掌握最简公分母的确定方法,是解题的关键.11.D【分析】按照通分的方法依次验证各选项,找出不正确的答案.【详解】A 、最简公分母为2(2)(3)x x -+,正确,该选项不符合题意;B 、221(3)2(2)(3)x x x x +=--+,通分正确,该选项不符合题意;C 、213(2)(3)(2)(3)x x x x x +=-+-+,通分正确,该选项不符合题意;D 、通分不正确,分子应为()222224(3)(2)(3)x x x x x --=+-+,该选项符合题意;故选:D .【点拨】本题考查根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.解题的关键是通分保证(1)各分式与原分式相等;(2)各分式分母相等.12.B【分析】直接利用已知进行通分运算,进而得出答案.【详解】解∶221111(1)(1)(1)(1)aa a a a a +==--+-+,故211a -的分子为1a +.故选∶B .【点拨】此题主要考查了通分,正确进行通分运算是解题关键.13.D【分析】方程两边都乘以最简公分母,把分式方程化为整式方程,再求出分式方程的增根,然后代入整式方程,解关于m 的方程即可得解.【详解】解:311x mx x -=--,去分母,得3x m -=,由分式方程有增根,得到10x -=,即1x =,把1x =代入3x m -=,并解得2m =-.故选:D .【点拨】本题考查了分式方程的增根问题,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.C【分析】由分式方程有增根,得到10x +=,求出x 的值,将原方程去分母化为整式方程,将x 的值代入即可求出m 的值.【详解】由分式方程有增根,得到10x +=,解得:=1x -,分式方程31111x m x x --=++,去分母得311x m x --=+,将=1x -代入311x m x --=+中,得:3111m ---=-+,解得:4m =-,故选:C .【点拨】本题考查了分式方程的增根,关键是求出增根的值,代入到分式方程化简后的整式方程中去求未知数参数的值.15.D【分析】分式方程去分母转化为整式方程,再分整式方程无解和整式方程的解是分式方程的增根两种情况进行讨论,即可得出答案.【详解】解:分式方程去分母得:26ax x =-+,整理得:()14a x -=,当a −1=0,即a =1时,此时整式方程无解,分式方程无解;当a −1≠0,即a ≠1时,由()14a x -=得x =41a -,若此时分式方程无解,则分式方程有增根,即20x -=,增根为x =2,∴421a =-,解得:a =3,∴关于x 的方程6122=---ax x x无解时,则a 的值为1或3,故选:D .【点拨】本题考查了分式方程无解问题,理解分式方程无解有整式方程无解和整式方程的解是分式方程的增根两种情况是解决问题的关键.16.A【分析】根据分式方程无解,需要对化简之后的整式进行讨论,可能是整式方程无解,也可能是整式方程的解是原分式方程的增根,即可求解.【详解】解:去分母得,23(2)x m m x -=-,去括号得,236x m mx m -=-,移项得,326x mx m m -=-,合并同类项得,(13)4m x m -=-,∵分式方程2322x m m x x+=--无解,∴1-3m =0或x =2,∴13m =,将x =2代入(13)4m x m -=-,得2(13)4m m -=-,解得m =1,综上,m 的值是1或13.故选A .【点拨】本题主要考查的是利用分式方程无解求参数的值,理解分式方程无解的解题方法是解题关键.17.52【分析】设3,2m k n k ==,代入m nn+约分化简.【详解】∵32m n =,∴设3,2m k n k ==,∴32522m n k k n k ++==.故答案为:52.【点拨】本题考查了分式的约分,设3,2m k n k ==是解答本题的关键.18.4523a b a b-+【分析】根据分式的性质“分子分母同时扩大或缩小相同的倍数,分式的值不变”,分子和分母同时乘以10,即可获得答案.【详解】解:分式2110.45221130.35510a b a ba b a b --=++,分子、分母同时乘以10,则有原式4523a b a b -=+.故答案为:4523a ba b-+.【点拨】本题主要考查了分式的性质,理解并掌握分式的性质是解题关键.19.3【详解】解析:判断式子是否是分式就是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.由此可知3x x -,a ba b+-,1()m x y -是分式,共3个.答案:3易错:4错因:误认为π是字母,错误判断5yπ+是分式.满分备考:区分整式与分式的唯一标准就是看分母,分母中不含字母的是整式,分母中含有字母的是分式.注意π是一个数,而不是字母.20.()()121x x +÷+【分析】根据分式的意义将分式写成除法形式即可.【详解】解:将分式121x x ++写成除法的形式为()()121x x +÷+.故答案为:()()121x x +÷+【点拨】本题考查了分式的意义,AB表示A B ÷,其中分数线表示相除的意思.21.22x -【分析】先把分式的分子、分母因式分解,再约分即可.【详解】解:2244x x +-()()()2222x x x +=+-22x =-.故答案为:22x -.【点拨】本题考查的是最简分式,掌握分式的约分法则是解题的关键.22.①④##④①【分析】根据最简分式的定义逐式分析即可.【详解】①233a a ++是最简分式;②22x y x y --=1x y +,不是最简分式;③22m m n =12mn,不是最简分式;④21m +是最简分式.故答案为:①④.【点拨】本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.23.15b【分析】根据分式的基本性质解答即可.【详解】解:22231155a b a b b=;故答案为:15b.【点拨】本题考查了分式的约分,属于基础题型,熟练掌握分式的基本性质是解题的关键.24.acb【分析】根据分式的性质,分子分母同时乘以或除以相同因式时分式的值不变即可解题解答.【详解】解:22abc ac bc ac b c b bc b== 故答案为:acb【点拨】本题考查了分式的约分,熟悉分式的性质是解题关键,约分的方法是:若分子分母都是单项式,则直接求取分子分母的公因式再化简;若分子或分母是多项式,需要将分子分母因式分解后求取分子分母的公因式再化简25.2a bc【分析】各分母系数的最小公倍数和所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母,据此即可求解.【详解】解:22a b ,1ab ,3abc的最简公分母是2a bc ,故答案为:2a bc .【点拨】本题考查了最简公分母,解题的关键是掌握最简公分母.26.232a b 【分析】根据确定最简公分母的步骤找出最简公分母即可.【详解】解:2、1的最小公倍数为2,a 的最高次幂为2,b 的最高次幂为3,所以最简公分母为232a b .故答案为:232a b .【点拨】本题考查了分式的基本性质,掌握分式的基本性质是关键.27.222(1)5(1),(1)(1)(1)(1)a a a a a a --++-+-【分析】找到最简公分母,根据分式的结伴行知进行通分即可;【详解】221121(1)a a a a a --=+++ ,225511a a -==--5(1)(1)a a -+-,∴最简公分母为()()211a a +-,∴通分后分别为222(1)5(1),(1)(1)(1)(1)a a a a a a --++-+-.故答案为:222(1)5(1),(1)(1)(1)(1)a a a a a a --++-+-.【点拨】本题主要考查了分式的通分,准确计算是解题的关键.28.22(1)(1)x x +-【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】解:∵()2221x x +=+()()2111x x x -=-+,故22x +,21x -,()21x -的最简公分母为:22(1)(1)x x +-.故答案为22(1)(1)x x +-.【点拨】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.29.8【分析】首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到30x -=,据此求出x 的值,代入整式方程求出m 的值即可.【详解】解:去分母,得:() 523x x m+=-+由分式方程有增根,得到30x -=,即3x =,把3x =代入整式方程,可得: 8m =.故答案为:8.【点拨】此题主要考查了分式方程的增根,解答此题的关键是要明确:(1)化分式方程为整式方程;(2)把增根代入整式方程即可求得相关字母的值.30.1【分析】先把分式方程去分母变为整式方程,然后把2x =代入计算,即可求出m 的值.【详解】解:∵1222x m x x-=---,去分母,得:12(2)x m x -=---;∵分式方程有增根,∴2x =,把2x =代入12(2)x m x -=---,则122(22)m -=---,解得:1m =;故答案为:1.【点拨】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.31.5或112【分析】根据分式方程的解法步骤,结合分式方程无解的情况即可得到参数a 的值.【详解】解:11235a x x x --=+-,去分母得()()()()()523235x x a x x x --+-=+-,∴()112310a x a -=-,关于x 的分式方程11235a x x x --=+-无解,∴①当1120a -=时,即112a =,此时()112310a x a -=-无解;②当1120a -≠时,即112a ≠,解()112310a x a -=-得310112a x a -=-,此时分式方程无解,必须有32x =-或5x =,则31031122a x a -==--或3105112a x a-==-,i 当31031122a x a -==--时,方程无解;ii 当3105112a x a-==-时,解得5a =;综上所述,a 的值为5或112,故答案为:5或11 2.【点拨】本题考查解分式方程及由分式方程无解求参数问题,熟练掌握分式方程的解法步骤以及无解情况的分类讨论是解决问题的关键.32.0或-3【分析】先去分母化为整式方程,根据分式方程无解得到x=0或x=1或3+a=0,将解代入整式方程求出a即可.【详解】解:去分母,得3x+a(x-1)=0,∴(3+a)x-a=0,∵原分式方程无解,∴x=0或x=1或3+a=0,当x=0时,a=0;当x=1时,3+0=0,无解;∴a=0,当3+a=0时,解得a=-3,故答案为:0或-3.【点拨】此题考查了根据分式方程解的情况求参数,正确掌握解分式方程的解法是解题的关键.。
[北师大版]八年级数学下册《分式》单元测试1(含答案)
![[北师大版]八年级数学下册《分式》单元测试1(含答案)](https://img.taocdn.com/s3/m/8dad0b4c8e9951e79a89271d.png)
第三章 分式单元测试A 卷(基础层 共100分)一、选择题:(每小题3分,共30分)1、若a ,b 为有理数,要使分式ba 的值是非负数,则a ,b 的取值是 ( ) (A)a ≥0,b ≠0; (B)a ≥0,b>O ;(C)a ≤0,b<0; (D)a ≥0,b>0或a ≤0,b<02、下列各式:()x x x x y x xx 2225 ,1,2 ,34 ,151+---π其中分式共有()个。
(A)2 (B)3 (C)4 (D)53、下列各式,正确的是 ( ) (A)326x x x =; (B)b ax b x a =++; (C))(1y x y x yx ≠-=-+-; (D)b a b a b a +=++22;4、要使分式2||1-x 有意义,x 的值为 ( )(A)x ≠2; (B)x ≠-2;(C)-2<x<2; (D)x ≠2且x ≠-2;5、下列判断中,正确的是( )(A)分式的分子中一定含有字母;(B)对于任意有理数x ,分式252+x 总有意义(C)分数一定是分式;(D)当A=0时,分式B A的值为0(A 、B 为整式)6、如果x>y>0,那么x yx y -++11的值是 ( )(A)零; (B)正数; (C)负数; (D)整数;7、若a b ba s -+=,则b 为 ( )(A)1++s as a ; (B)1+-s as a ; (C)2-+s as a ; (D)1-+s as a ; 8、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
(A)221v v +千米; (B)2121v v v v +千米; (C)21212v v v v +千米; (D)无法确定 9、若把分式xyy x 2+中的x 和y 都扩大3倍,那么分式的值( ) (A)扩大3倍; (B)缩小3倍; (C)缩小6倍; (D)不变;10、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) (A)9448448=-++x x ; (B)9448448=-++xx ; (C)9448=+x ; (D)9496496=-++x x ; 二、填空题:(每小题3分,共30分)1.在分式11||+-x x 中,x =_______时,分式无意义;当x =_________时,分式的值为零. 2、①())0(,10 53≠=a axy xy a ②约分:=+--96922x x x __________。
2020-2021学年八年级数学北师大版下册 5.4分式方程解答题专项练习(应用题篇)(二 )
![2020-2021学年八年级数学北师大版下册 5.4分式方程解答题专项练习(应用题篇)(二 )](https://img.taocdn.com/s3/m/15e110cb4b73f242326c5f7a.png)
八年级数学北师大版下册5.4分式方程解答题专项(应用题篇)(二)1.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?2.我县为了改善县区内交通环境,对解放路进行了改造,需要铺设排污管道,其中一段长300米,铺设120米后,为了尽可能减少施工对交通所造成的影响,后来每天的工作量比原计划增加20%,结果完成这一任务共用了27天,求原计划每天铺设排污管道多少米.3.甲、乙两个工程队承担了福州市今年的旧城改造工作中的一个办公楼项目,若乙队单独工作3天后,再由两队合作7天就可以完成这个项目,已知乙队单独完成这个项目所需天数是甲队单独完成这各项目所需天数的2倍.(1)求甲,乙两个工程队单独完成这个项目各需多少天;(2)甲工程队一天的费用是7万元,乙工程队一天的费用是3万元,若甲乙合作5天后剩余工作由乙队单独完成,求这个项目总共要支出的工程费用.(单位:万元)4.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?5.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?6.受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?7.某一工程可以由甲、乙两个工程队进行施工.如果甲队单独完成这项工程刚好如期完成;如果乙队单独完成这项工程要比甲队多用4天;如果甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.请列分式方程求出规定工期为多少天?8.某扶贫干部决定引进改良的中药种子帮助贫困户脱贫.他先花8000元购买了桔梗种子,又花6000元购买了白术种子,已知他购买的这两种种子质量相等,且桔梗种子比白术种子每千克多20元,求白术种子每千克多少元?9.为了响应打赢“蓝天保卫战”的号召,张老师上下班的交通方式由驾车改为骑自行车,张老师的家距学校的路程是8千米;在相同的路线上,驾车的平均速度是骑自行车平均速度的3倍,这样,张老师每天上班要比开车早出发小时,才能按原驾车时间到达学校.(1)求张老师骑自行车的平均速度;(2)据测算,张老师的汽车在上下班行驶过程中平均每小时碳排放量约为12千克,这样张老师一天(按一个往返计算)可以减少碳排放量多少千克.10.为全面改善公园环境,现招标建设某全长960米绿化带,A,B两个工程队的竞标,A 队平均每天绿化长度是B队的2倍,若由一个工程队单独完成绿装化,B队比A队要多用6天.(1)分别求出A,B两队平均每天绿化长度.(2)若决定由两个工程队共同合作绿化,要求至多4天完成绿化任务,两队都按(1)中的工作效率绿化完2天时,现又多出180米需要绿化,为了不超过4天时限,两队决定从第3天开始,各自都提高工作效率,且A队平均每天绿化长度仍是B队的2倍,则B队提高工作效率后平均每天至少绿化多少米?11.某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共160件进行试销,其中A型商品的件数不大于B型的件数,且不小于78件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,则共有哪几种进货方案?(3)在第(2)问条件下,哪种方案利润最大?并求出最大利润.12.甲、乙两地相距300千米,一辆货车和一辆小汽车同时从甲地出发开往乙地,小汽车的速度是货车的1.2倍,结果小汽车比货车早半小时到达乙地,求两辆车的速度.13.甲、乙两人做某种机器零件,每小时乙比甲多做8个.已知甲做240个零件的时间与乙做300个零件的时间相同,求甲、乙每小时各做多少个零件.14.某校为积极响应垃圾分类的号召,从商场购进了A、B两种品牌的垃圾桶用于回收不同种类垃圾.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用3000元购买A品牌垃圾桶的数量是用1500元购买B品牌垃圾桶数量的4倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学准备再次用不超过3000元购进A、B两种品牌垃圾桶共50个,恰逢商场对两种品牌垃圾桶的售价进行了调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?15.利华机械厂为海天公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B 种产品多2件,甲车间生产的A种产品30件的天数与乙车间生产的B种产品24件天数相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)海天公司每天付给甲车间600元的工时费,每天付给乙车间400元的工时费,现海天公司一次性购买A、B两种产品共800件,海天公司购买A、B两种产品付给甲、乙两车间的总工时费用不超过42000元.求购进A种产品至多多少件.参考答案1.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.2.解:设原计划每天铺设排污管道x米,由题意可得:,解得:x=10,经检验,x=10是原方程的解,答:原计划每天铺设排污管道10米.3.解:(1)设甲工程队单独完成这个项目需要x天,则乙工程队单独完成这个项目需要2x天,依题意得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲工程队单独完成这个项目需要12天,乙工程队单独完成这个项目需要24天.(2)设甲乙两队合作5天后乙队还要再单独工作y天,依题意得:+=1,解得:y=9,∴7×5+3×(5+9)=77(万元).答:这个项目总共要支出的工程费用为77万元.4.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.5.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.6.解:(1)设该商场购进的第一批“84”消毒液单价为x元/瓶,依题意得:2×=.解得,x=10.经检验,x=10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(+﹣200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.7.解:设规定工期为x天,则甲队单独完成这项工程需x天,乙队单独完成这项工程需(x+4)天,依题意得:+=1,整理得:x﹣12=0,解得:x=12,经检验,x=12是原方程的解,且符合题意.答:规定工期为12天.8.解:设白术种子每千克x元,根据题意,得,解得x=60,经检验,x=60是原方程的解且符合题意.答:白术种子每千克60元.9.解:(1)设张老师骑自行车的平均速度为x千米/小时,依题意有,﹣=,解得x=16,经检验,x=16是原方程的解.故张老师骑自行车的平均速度为16千米/小时,(2)由(1)可得张老师开车的平均速度为16×3=48(千米/小时),×2×12=4(千克).故可以减少碳排放量4千克.10.解:(1)设B队平均每天绿化x米,则A队平均每天绿化2x米.依题意,得:﹣=6,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴2x=160.答:A队平均每天绿化160米,B队平均每天绿化80米.(2)设B队提高工作效率后平均每天绿化y米,则A队提高工作效率后平均每天绿化2y米,依题意,得:(160+80)×2+(2y+y)×(4﹣2)≥960+180,解得:y≥110.答:B队提高工作效率后平均每天至少绿化110米.11.解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元,依题意得:=×2,解得:x=150,经检验,x=150是原方程的解且符合题意,∴x+10=160.答:一件A型商品的进价为160元,一件B型商品的进价为150元.(2)设购进A型商品m件,则购进B型商品(160﹣m)件,依题意得:,解得:78≤m≤80,又∵m为整数,∴m可以为78,79,80,∴共有3种进货方案,方案1:购进A型商品78件,B型商品82件;方案2:购进A型商品79件,B型商品81件;方案1:购进A型商品80件,B型商品80件.(3)方案1获得的利润为(240﹣160)×78+(220﹣150)×82=11980(元);方案2获得的利润为(240﹣160)×79+(220﹣150)×81=11990(元);方案3获得的利润为(240﹣160)×80+(220﹣150)×80=12000(元).∵11980<11990<12000,∴方案3购进A型商品80件,B型商品80件获得利润最大,最大利润为12000元.12.解:设货车的速度为x千米/小时,则小汽车的速度为1.2x千米/小时,依题意得:﹣=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴1.2x=120.答:货车的速度为100千米/小时,小汽车的速度为120千米/小时.13.解:设甲每小时做x个零件,乙每小时做(x+8)个零件,由题意可得:,解得:x=32,经检验,x=32是原方程的解,∴x+8=40(个),答:甲每小时做32个零件,乙每小时做40个零件.14.解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,由题意得:=4×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+50=100,答:购买一个A品牌垃圾桶需50元,购买一个B品牌垃圾桶需100元;(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,由题意得:50×0.9×(50﹣m)+100×(1+20%)m≤3000,解得:m≤10,∴m最大值是10.答:该学校此次最多可购买10个B品牌垃圾桶.15.解:(1)设乙车间每天生产x件B种产品,则甲车间每天生产(x+2)件A种产品,由题意得:=,解得:x=8,经检验,x=8是原方程的解,且符合题意,则x+2=10,答:甲车间每天生产10件A种产品?乙车间每天生产8件B种产品;(2)设购进A种产品a件,则购进B种产品(800﹣a)件,由题意得:×600+×400≤42000,解得:a≤200,答:购进A种产品至多200件.。
5.4 分式方程(第3课时 列分式方程解应用题)北师大版八年级数学下册课时作业基础卷(含答案)
![5.4 分式方程(第3课时 列分式方程解应用题)北师大版八年级数学下册课时作业基础卷(含答案)](https://img.taocdn.com/s3/m/01881fc8fbb069dc5022aaea998fcc22bdd14349.png)
5.4 第3课时 列分式方程解应用题知识点 分式方程的应用1.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .80(1+35%)x-80x =40B .80(1+35%)x -80x =40C .80x -80(1+35%)x =40D .80x -80(1+35%)x =402.甲、乙两船从相距300 km 的A,B 两地同时出发,相向而行,甲船从A 地顺流航行180 km 时与从B 地逆流航行的乙船相遇,水流的速度为6 km/h .若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为( )A .180x +6=120x -6B .180x -6=120x +6C .180x +6=120x D .180x =120x -63.某市为治理污水,需要铺设一条全长为550 m 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工作效率比原计划增加10%,结果提前5天完成这一任务.则原计划每天铺设 m .4.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.5.刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40 kg .这种大米的原价是每千克多少元?6.在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进,这样120 t水可多用3天,求现在每天用水量是多少后,现在每天用水量是原来每天用水量的45吨.7.某学校食堂需采购部分餐桌,现有A,B两个商家,A商家每张餐桌的售价比B商家每张餐桌的售价优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为( )A.117元B.118元C.119元D.120元8.某校学生去距学校20 km的白水寺参观,一部分学生骑自行车先走,过了40 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,则骑车学生的速度是 km/h.9.某公司会计欲查询乙商品的进价,发现进货单已被墨水污染(如下表).进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.10.为厉行节能减排,倡导绿色出行,2018年3月“共享单车”登陆某市中心城区.某公司拟在甲、乙两个街道社区投放一批“共享单车”,这批“共享单车”包括A,B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A,B两种款型“共享单车”各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元/辆,A,B两种款型“共享单车”的成本单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“共享单车”,乙街区每1000人投放8a+240辆“共享单车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两a个街区共有15万人,试求a的值.参考答案1.A2.A3.10 [解析] 设原计划每天铺设x m,实际施工时每天铺设(1+10%)x m,由题意,得550x -550(1+10%)x=5,解得x=10.经检验,x=10是原分式方程的根,且符合题意,所以原计划每天铺设10 m .4.解:设乙每小时做x 个零件,则甲每小时做(x+6)个零件.根据题意,得90x +6=60x ,解得x=12.经检验,x=12是原方程的根,且符合题意,故乙每小时做12个零件.5.解:设这种大米的原价是每千克x 元.根据题意,得105x +1400.8x =40,解得x=7.经检验,x=7是原方程的根,且符合题意.故这种大米的原价是每千克7元.6.解:设原来每天用水量是x t,则现在每天用水量是45x t .依题意,得12045x -120x =3,解得x=10.经检验,x=10是原方程的根,且符合题意,∴45x=8.故现在每天用水量是8 t .7.A [解析] 设A 商家每张餐桌的售价为x 元,则B 商家每张餐桌的售价为(x+13)元.根据题意,得20000x +13=18000x ,解得x=117.经检验,x=117是原方程的根,且符合题意.故选A .8.15 [解析] 设骑车学生的速度为x km/h,则汽车的速度为2x km/h .根据题意,得20x -202x =4060,解得x=15.经检验,x=15是原方程的根,且符合题意.故答案为15.9.解:设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件.依题意,得7200(1+50%)x -3200x =40,解得x=40.经检验,x=40是原方程的根,且符合题意,∴(1+50%)x=60,3200x=80,7200(1+50%)x =120.故甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.补全进货单略.10.解:问题1:设A 型车的成本单价为x 元/辆,则B 型车的成本单价为(x+10)元/辆.依题意,得50x+50(x+10)=7500,解得x=70,所以x+10=80.故A,B 两种款型“共享单车”的单价分别是70元/辆和80元/辆.问题2:由题意,得1500a ×1000+ 1200 8a +240a×1000=150000,解得a=15.经检验,a=15是所列方程的根,且符合题意.故a 的值为15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章《分式》单元测试
注意事项:
本试题共两卷,第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,共36分;第Ⅱ卷为非选择题,共64分。
Ⅰ、Ⅱ共100分,考试时间为90分钟。
第Ⅰ卷(选择题共36分)
一、
一、选择题:(每题3分,共36分) 1.各式中,分式的个数有( )
31x+21y , xy
1
, a +51 , -4xy , 2x x , πx A 、1个 B 、2个 C 、3个 D 、4个 2、如果把
y
x y
322-中的x 和y 都扩大5倍,那么分式的值( )
A 、扩大5倍
B 、不变
C 、缩小5倍
D 、扩大4倍 3、下列分式中一定有意义的是( )
A 、112+-x x
B 、21x x +
C 、1
122-+x x D 、12
+x x
4、下列分式中与
y
x x
--的值相等的是 A 、
y x x --- B 、x
y x -- C 、y x x + D 、x y x
-
5、分式
b
a b a b a --+1
,1,122的最简公分母是( ) A 、(a+b )(a 2-b 2) B 、(a 2-b 2)2 C 、a 2-b 2 D 、(a-b)(a 2-b 2) 6、计算
a a -1÷(1-a
1
)的正确结果为( ) A 、a+1 B 、 1 C 、a-1 D 、 -1 7、关于x 的方程
4
3
32=-+x a ax 的解为x=1,则a=( )
A 、1
B 、3
C 、-1
D 、-3 8、关于x 的方程
)
2(4
23-+=-x x x m x 有增根,则增根有可能是( )
A 、0
B 、 2
C 、0或2
D 、1 9、若分式方程
a x a
x =-+1
无解,则a=( ) A 、-1 B 、 1 C 、-1或1 D 、-2 10、把分式方程
015
353=+---+x x x 去分母可得( ) A 、3(x-5)-(x-5)(x-3)+1=0 B 、3x-5+(x+5)(x-3) +(x+5)(x-5)=0 C 、3(x-5)-(x+5)(x-3)+(x+5)(x-5)=(x+5)(x-5) D 、3(x-5)-(x+5)(x-3)+(x+5)(x-5)=0
11、小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时 A 、
2n m + B 、 n
m mn
+ C 、 n m mn +2 D 、mn n m + 12、某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )
A 、
x +48720─548720= B 、x +=+48720
548720
C 、 572048720=-x
D 、-48720x
+48720
=5 选择题答题栏
第Ⅱ卷(非选择题,共64分)
二、填空:(每题3分,共18分)
13、x 时,分式
4
2
-x x
有意义. 14、当x= 时,分式
2
152x x --的值为零.
15、
∙-+)1(1
x x x __________=221x
x -. 16、
)1(1
--x x x =x
1成立的条件是
17、已知
2+x a 与2-x b 的和等于4
42-x x ,则a= , b = 18、分式方程3-x x +1=3
-x m
有增根,则m=
三、解答题(本大题共6小题,满分46分)
19、化简:(每题3分,共6分) (1)、m
m -+-32
9122
(2) 、262--x x ÷ 4
43
2+--x x x
20、若a 2-a-1=0,求a 2+
21
a
的值 (本题7分)
21、解方程:(每题4分,共8分) (1)、164412-=-x x (2)、0)
1(2
13=-+--x x x x
22、(本小题8分)关于 x 的方程
12
2-=-+x a
x 的解为正数,求a 的范围。
23、列分式方程解应用题:(本小题9分)
八年级(1)班的学生周末乘汽车到游览区游览,游览区距学校120km ,一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达游览区,。
已知快车的速度是慢车速度的1.5倍求慢车的速度。