江苏省2020年中考数学模拟试题(含答案)
2020年江苏省常州市中考数学模拟考试试卷附解析
2020年江苏省常州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A .k >14-B .k >14-且0k ≠C .k <14-D .14k ≥-且0k ≠ 2. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( )A .0 个B .1 个C .2 个D .3 个3.在数轴上,表示数①-3;②2. 6;③35-;④0;⑤143;⑥223-;⑦- 1 的点中. 在原点右边的点有( )A .2 个B .3 个C .4 个D .5 个4.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.55.在NBA 的篮球队员中,有两位出色的中国球员,他们是姚明和易建联. 经调查,七(3)班44位学生中,喜欢姚明的有25人,喜欢易建联的有20人,两个都不喜欢的有8人,那么两个都喜欢的有( )人A . 9B . 11C . 13D . 8 6.化简(-2x )3·y 4÷12x 3y 2的结果是( ) A .61y 2 B .-61y 2 C .-32y 2 D .-32xy 2 7.如图是某镇中学七年级(3)班60名同学参加兴趣活动小组的扇形统计图.其中.S 1、S 2、S 3、S 4分别表示四个扇形的面积,如果S 1:S 2:S 3:S 4=4:3:2:1,那么参加数学活动小组的同学有( )A .24人B .18人C .12人D .6人8.从一 副扑克牌(除去大小王)中任取一张,抽到的可能性较小的是( )A .红桃B .6C .黑桃8D .梅花6或8 9.抛物线223y x x =--的顶点坐标是( )A .(-1,-4)B .(3,0)C .(2,-3)D .(1,-4) 10.在□ABCD 中∠A=50°,则∠A 的邻角∠D 的度数为( ) A .40° B .50° C .130°D .不能确定 11.如图,0是菱形ABCD 的对角线AC ,BD 的交点,E ,F 分别是 OA ,OC 的中点.下列结论:①ADE BOD S S ∆∆=;②四边形 BFDE 是中心对称图形;③△DEF 是轴对称图形;④∠ADE=∠EDO. 其中正确的结论有( )A .1个B .2个C .3个D . 4个12.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为( )A .22cmB .2cmC .22cmD .21cm 13.如图中,属于相似形的是( )A .①和②,④和⑥B .②和③,⑧和⑨C .④和⑤,⑦和⑨D .①和③,⑧和⑨ 14.二次函数2y ax bx c =++的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A .0ab <B .0bc <C .240b ac ->D .0a b c ++< A O B15.下列各种现象中不属于中心投影现象是()A.民间艺人表演的皮影戏B.在日常教学过程中教师所采用投影仪的图象展示C.人们周末去电影院所欣赏的精彩电影D.在皎洁的月光下低头看到的树影16.下列长度的三条线段,能组成三角形的是()A.1cm,2 cm,3cm B.2cm,3 cm,6 cmC.4cm,6 cm,8cm D.5cm,6 cm,12cm二、填空题17.已知数据2,3,4,5,6,x的平均数是4,则x的值是.18.某种药品的说明书贴有如下标签,则一次服用这种药品的剂量范围是 mg~ mg.19.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x米,则根据题意,可列出方程为 .20.如图,,已知OA=OB,OC=OD,D和BC相交于点E,则图中全等三角形有对.21.一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .三、解答题22.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(2)摸出的两个球上数字之和为多少时的概率最大?23.如图,在Rt △ABC 中,∠C= 90°,AC=5,BC=12,求B 的正弦、余弦和正切的值.24.写出下列假命题的一个反例:(1)有两个角是锐角的三角形是锐角三角形.(2)相等的角是对顶角.25.如图,1l 反映了某个体服装老板的销售收入与销售量之间的关系,2l 反映了该老板的销售成本与销售量的关系,根据图象回答下列问题:(1)分别求出1l 、2l 对应的函数解析式(不要求写出自变量的取值范围);(2)当销售量为30件时,销售收入为 元,销售成本为 元;(3)当销售量为60件时,销售收入为 元,销售成本为 元;(4)当销售量为 件时,销售收入等于销售成本;(5)当销售量 件时,该老板赢利.当销售量 件时.该老板亏本.26.如图,在△ABC 中,∠ABC= 50°,∠ACB=70°,延长 CB 至D 使 BD=BA ,延长 BC 至E 使 CE=CA. 连结 AD 、AE ,求△ADE 各内角的度数.27.星期六,小华同学到新华书店买了一套古典小说《水浒传》,共有上、中、下三册,回家后随手将三本书放在书架同一层上,问:(1)共有多少种不同的放法7 请画树状图分析;(2)求出按上、中、下顺序摆放的概率.28.A,B是平面上的两个固定点,它们之间的距离为5 cm,请你在平面上找一点C(1)要使点C到A,B两点的距离之和等于5 cm ,则C点在什么位置?(2)要使点C到A,B两点的距离之和大于5 cm ,则点C在什么位置?(3)能使点C到A,B两点的距离之和小于5 cm吗?为什么?29.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a-1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米.(1)用含a的代数式表示s;(2)已知a=11,求s的值.30.某商店将进货每个10元的商品按每个18元售出,每天可卖出60个,商店经理到市场上做了一翻调查发现,若将这种商品的售价(在每个18元的基础上)每个提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每个降低1元,则日销售就增加10个.为获得每日最大利润,此商品售价应定为多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.A5.A6.C7.B8.C9.D10.C11.C12.C13.D14.D15.D16.C二、填空题17.418.15,2019.312312126x x -=+20. 421.1120a +三、解答题22.解:(1)图略,摸出的两个球上数字之和为5的概率为16. (2)摸出的两个球上数字之和为6时概率最大. 23.5sin 13AC B AB ==,1213BC sB AB ∞==,5tan 12AC B BC == 24.(1)如直角三角形有两个锐角;(2)两直线平行,同位角相等(不唯一)25.(1)1l :100t x =,2l :751000t x =+;(2)3000,3250;(3)6000,5500;(4)40;(5)大于40,小于4026.∠D=25°,∠E=35°,∠DAF=120°27.(1)共有 6种不同摆放顺序 (2)1 628.(1)点C在线段AB上;(2)点C在线段AB外;(3)不能,因为两点之间线段最短(为5 cm) 29.解:(1)s=700(a-1)+(881a+2309)=1581a+1609.(2)a=11时,s=1581a+1609=1 581×11 +1 609=19000.30.设此商品每一个售价为x元,每日利润S最大.当x>18时,S=[60-5(x-18)](x-10)=-5(x-20)2+500;即商品提价,当x=20时,每日最大利润为500元.当x<18时,S=[60+10(18-x)](x-10)=-10(x-17)2+490;即商品降价,当x=17时,每日最大利润为490元.综上所述:此售价应定为每个20元,每日利润最大.。
2020年江苏省中考数学模拟检测试卷附解析
2020年江苏省中考数学模拟检测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.关于视线的范围,下列叙述正确的是()A.在轿车内比轿车外看到的范围大B.在船头比在船尾看到的范围大C.走上坡路比走平路的视线范围大D.走上坡路比走平路的视线范围小2.如图,已知△ABC,P是边AB上的一点,连结CP,以下条件中不能确定△ACP∽△ABC 的是()A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AC AB CP BC3.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是()A.45°B.60°C.90°D.180°4.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550 B.x(x-1)=2550C.2x(x+1)=2550 D.x (x-1)=2550×25.已知一组数据5,7,3,9,则它们的方差是()A. 3 B. 4 C. 5 D. 66.如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m/s,摩托车的速度为10 m/s,那么10 s后,两车大约相距()A.55 m B.l03 m C.125 m D.153 m7.等腰三角形一个角为 40°,则它的顶角是()A.40° B.70° C. 100°D. 40°或 100°8.如图所示,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠EAF的度数为()A.50°B.45°C.40°D.20°9.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,折叠后的C点落在B′M 或B′M的延长线上,那么∠EMF的度数是()A.85°B.90°C.95°D.100°10.一副三角板按如图方式摆放,且∠l比∠2大50°.若设∠1=x,则可列出方程()A.x+(x+500)=180° B.x+(x-50°)=180°C. x+(x+500)=90° D.x+(x-50°)=90°11.两数相加,其和小于其中一个加数而大于另一个加数,那么()A.这两个加数都是正数B.这两个加数都是负数C.这两个加数是一正一负D.这两个加数的符号不能确定二、填空题12.在Rt△ABC中,已知∠C=90°,若∠A=30°3,则∠B=______, b=______,c=______.13.扇形的圆心角是30°,半径是2cm,则扇形的周长是 cm.14.把函数y=x2-1的图象沿y轴向上平移1个单位长度,可以得到函数____________的图象.15.抛物线y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是_____________.16.若点(-4,m),(3,n)都在直线14y x t=-+上,则m与n的大小关系是 .17.已知点A坐标为(-1,-2),点B坐标为(1,-l),点C坐标为(5,1),其中在直线y=-x+6上的点是,在直线y=3x一4上的点是..18.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图:则这组金牌数的中位数是枚.奥运金牌榜前六名国家19.要使△ABC≌△A′B′C′,已知AB=A′B′,∠B=∠B′,如果利用“ASA”,要补充条件,如果利用“AAS”,要补充条件.20.一电冰箱冷冻室的温度是-18℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度比冷冻室的温度高℃.21.数轴上表示整数的点中,与原点距离最近的点所表示的数是.三、解答题22.如图,直线l的解析式为443y x l=+,与x轴,y轴分别交于点A B,.(1)求原点O到直线l的距离;(2)有一个半径为1的⊙C从坐标原点出发,以每秒1个单位长的速度沿y轴正方向运动,设运动时间为t(秒).当⊙C与直线l相切时,求t的值.23.随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)24.一个圆锥的底面半径为10cm ,母线长为20cm ,求:(1)圆锥的高;(2)•侧面展开图的圆心角.25.美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2003年底的绿地面积为 公顷,比2002年底增加了 公顷;(2)为满足城市发展的需要,计划到2005年底使城区绿地面积达到72.6公顷,试求04,05两年绿地面积的年平均增长率.26.求下列二次根式中字母x 的取值范围:⑴ 32+x ⑵52+x ⑶ 11-+x x27.解不等式,并把不等式的解在数轴上表示出来:(1)3(3)4(1)2y y -<++;(2)323228x x -≥-28.化简:(1)22)(9)(4y x y x --+ (2)4x 3 ÷(-2x )2-(2x 2-x )÷(21x ) (3)[(x -y )2-(x + y )2]÷(-4xy ) (4)(a+3)2-2(a+3)(a-3)+(a-3)229.某体育场的环形跑道长 400米,甲、乙二人在跑道上,练习长跑,甲平均每分钟跑250米,乙平均每分钟跑290米,现在两人同时从同一起跑线同向出发,起跑后经过多长时间两人才能第一次相遇?30.|2|y -互为相反数,求y x 的平方根.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.C4.B5.C6.B7.D8.D9.B10.D11.C二、填空题12.60°,12,3813.143π+14. y=x 215.(1,0)16.m n >17.点C ,点B18.2119.∠A=∠A ′,∠=∠C ′20.2321.三、解答题22.解:(1)在443y x =+中,令0x =,得4y =,得4BO =. 令0y =,得3x =-,得3AO =,5AB ∴==. 设点O 到直线AB 的距离为h ,1122AOB S AO BO AB h ==△, ∴4.2=⋅=AB BO AO h . (2)如图,设⊙C 与直线l 相切于点D ,连CD ,则CD AB ⊥,90AO BO=⊥,ABO CBD ∠=∠BC CD ABO CBD AB AO ∴∴=,,△∽△由(1)得345AO BO AB ===,,, 1557453333BC BC OC ∴=∴=∴=-=,,,73t CO ∴==(秒). 根据对称性得53BC BC '==,517174333OC t OC ''∴=+=∴==,(秒). ∴当⊙C 与直线l 相切时,73t =秒或173秒. 23. 在 Rt △ADF 中,∠D=60°,tan AF D DF=,∴3933tan 3AF DF D ==⨯= 在 Rt △BEC 中,∵∠C=45°,∴△BEC 为等腰直角三角形∴EC= BE=9,在矩形 AFEB 中,FE=AB=10,∴DC DF FE EC ⋅=++331091933=++=+m24.解:(1)如右图所示,在Rt △SOA 中,SO=22222010SA OA -=-=103.(2)设侧面展开图扇形的圆心角度数为n ,则由2πr=180n l π,得n=180,• 故侧面展开图扇形的圆心角为180°. 25.(1)60;4(2)设年平均增长率为x ,则60(1+x )2=72.6,解得,x =0.1.26.⑴x 可取任何实数;⑵5->x ;⑶11≠-≥x x 且.27.(1)y>-15;(2)x ≤412图略 28.(1)225526y x xy --;(2)2-3x ;(3)1;(4) 36.29.设起跑后经过x 分钟两人第一次相遇,则甲跑过的路程是250x 米,乙跑过的路程为290x 米.根据题意,得290250400x x -=,解得10x =.答:起跑后经过10分钟两人第一次相遇.30.|2|y -.和|2|y -均为非负数,∴290x γ-+=,20y -=∴2y =,5x =-,于是2(5)25y x =-=,5=±,∴y x 的平方根是5±.。
2020年江苏省中考数学模拟试题(含答案)
2020年江苏省中考数学模拟试题含答案注 意 事 项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 计算(-4)+6的结果为A .-2B .2C .-10D .22. 我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A .3.5×106B .3.5×107C .35×105D .0.35×1083. 下列图形中,是中心对称图形的是A .B .C .D .4. 如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则图中表示绝对值最大的数对应的点是 A .点MB .点NC .点PD .点Q5. 如图是某个几何体的三视图,该几何体是A .三棱柱B .三棱锥C .圆锥D .圆柱6. 已知方程3x 2-4x -4=0的两个实数根分别为x 1,x 2.则x 1+x 2的值为A .4B .23C .43D .-43QP N M左视图主视图俯视图(第5题)7. 八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是 A.1010202x x -=B.1010202x x -=C.1010123x x -=D.1010123x x -= 8. 若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89. 如图,点A 为反比例函数y =8x (x ﹥0)图象上一点,点B 为反比例函数y =kx(x ﹤0)图象上一点,直线AB 过原点O ,且OA =2OB ,则k 的值为 A .2B .4C .-2D .-410.如图,在矩形ABCD 中,AB =4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF 的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲ °. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .ABCF(第10题)O xyy =8xAB y =kx(第9题)DCEBA (第15题)ABDOC(第14题)DCB A 1(第12题)216.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 的坐标为 ▲ . 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19. (本小题满分10分)(1)计算(x +y )2-y (2x +y ); (2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a =25.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表: 组别观点频数(人数)A 大气气压低,空气不流动 mB 地面灰尘大,空气湿度低40C 汽车尾气排放 nD工厂造成的污染120(第18题)y xB OCAC 10%B A20%DE调查结果扇形统计图E 其他 60请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离.(参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E .求DE 的长.(第23题)ABC EOBCA (第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)请用学过的方法研究一类新函数kyx=(k为常数,k≠0)的图象和性质.(第25题)FEDCBA(1)在给出的平面直角坐标系中画出函数6y x=的图象(可以不列表); (2)对于函数ky x=,当自变量x 的值增大时,函数值y 怎样变化? (3)函数k y x =的图象可以经过怎样的变化得到函数2k y x =+的图象?27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G .(1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值; (3)若P 为AB 的中点,求PG 的长.(第27题)(第26题)28.(本小题满分13分)已知二次函数y=ax2+bx+c(c≠4a),其图象L经过点A(-2,0).(1)求证:b2-4ac>0;(2)若点B(-c2a,b+3)在图象L上,求b的值;(3)在(2)的条件下,若图象L的对称轴为直线x=3,且经过点C(6,-8),点D(0,n)在y轴负半轴上,直线BD与OC相交于点E,当△ODE为等腰三角形时,求n的值.数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分 标准的精神给分.一、选择题(本大题共10小题,每小题3分,共30分.)11. 312.6513.3(2a +b )(2a -b )14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2................. 4分 =x 2 .. (5)分 (2)解:原式=221[](2)(2)4a a aa a a a ----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a +----- ··················· 7分=24(2)4a aa a a --- ························ 8分 =21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)★保密材料阅卷使用1 2 3 4 1 (1,2) (1,3) (1,4) 2 (2,1) (2,3) (2,4) 3 (3,1) (3,2) (3,4) 4(4,1)(4,2)(4,3)·································· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分 所以 P (数字之和大于4)=812=23. ·················· 8分22.(本小题满分8分)解:过B 作BE ⊥CD 垂足为E ,设BE =x 米, ·············· 1分在Rt△ABE 中,tan A =BEAE, ········· 2分AE =BEtan A=BEtan37° =43x , ········ 3分在Rt△ABE 中,tan∠BCD =BE CE, ······· 4分CE =BE tan∠BCD =xtan45°=x ,······· 5分∵AC =AE -CE ,∴43x -x =150解得x =450 ················ 7分答:小岛B 到河边公路AD 的距离为450米. ··············· 8分 23.(本小题满分8分)解:连接OD ,过点O 作OH ⊥AC ,垂足为H . ··············· 1分由垂径定理得AH =12AC =3.在Rt△AOH 中,OH =52-32=4. ········· 2分 ∵DE 切⊙O 于D ,∴OD ⊥DE ,∠ODE =90°. ············· 3分(第23题)A BC EOHEBCA(第22题)D∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.··········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,∴0≤m<1.··························· 9分25.(本小题满分8分)(1)由△ABC≌△ADE且AB=AC,得∴AE=AD=AC=AB,∠BAC=∠EAF,∴ ∠BAE=∠CAF.∴△ABE≌△ACF,························ 3分∴BE=CF.···························· 4分(2)∵四边形ABDF是菱形,∴AB∥DF,∴∠ACF=∠BAC=45°.····················· 5分∵AC=AF,∴∠CAF=90°,即△ACF是以CF为斜边的等腰直角三角形,∴CF=·························· 7分又∵DF=AB=2,∴CD=2.················· 8分26.(本小题满分10分)(1)图略;····························· 4分(2)若k>0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;················· 6分若k<0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;················· 8分(3)函数kyx=的图象向左平移2个单位长度得到函数2kyx=+的图象.··10分27.(本小题满分13分)(1)∵四边形ABDF 是矩形,∴AB ∥CD ,∴∠APD =∠QDP . ························ 1分 ∵∠APD =∠QPD ,∴∠QPD =∠QDP , ························ 2分 ∴DQ =PQ . ··························· 3分(2)过点Q 作QE ⊥DP ,垂足为E ,则DE =12D P . ············· 5分 ∵∠DEQ =∠PAD =90°,∠QDP =∠APD ,∴△QDE ∽△DPA ,∴DQ DP =DE AP , ··················· 6分∴AP ·DQ =DP ·DE =12DP 2. 在Rt△DAP 中,有DP 2=DA 2+AP 2=36+AP 2,∴AP ·DQ =12(36+AP 2). ····················· 7分 ∵点P 在AB 上,∴AP ≤4,∴AP ·DQ ≤26,即AP ·DQ 的最大值为26. ············· 8分(3)∵P 为AB 的中点,∴AP =BP =12AB =2, 由(2)得,DQ =14(36+22)=10. ················ 9分 ∴CQ =DQ -DC =6.设CG =x ,则BG =6-x ,由(1)得,DQ ∥AB ,∴CQ BP =CG BG, ·················· 11分 即62=x 6-x ,解得x =92, ····················· 12分 ∴BG =6-92=32, ∴PG =PB 2+BG 2=52. ······················ 13分 28.(本小题满分13分)(1)证明:由题意,得4a -2b +c =0,∴b =2a +12c . ·········· 1分 ∴b 2-4ac =(2a +12c )2-4ac =(2a -12c )2. ·············· 2分∵c ≠4a ,∴2a -12c ≠0,∴(2a -12c )2>0,即b 2-4ac >0. ······ 3分 (2)解:∵点B (-c2a ,b +3)在图象L 上, ∴22()342c c a b c b a a ⋅+⋅-+=+,整理,得(42)34c a b c b a-+=+. ···· 4分 ∵4a -2b +c =0,∴b +3=0,,解得b =-3. ············ 6分(3)解:由题意,得332a--=,且36a -18+c =-8,解得a =12,c =-8. ∴图象L 的解析式为y =12x 2-3x -8. ··············· 7分 设OC 与对称轴交于点Q ,图象L 与y 轴相交于点P ,则Q (3,-4),P (0,-8),OQ =PQ =5.分两种情况:①当OD =OE 时,如图1,过点Q 作直线MQ ∥DB ,交y 轴于点M ,交x 轴于点H , 则OM OQ OD OE=,∴OM =OQ =5. ∴点M 的坐标为(0,-5). 设直线MQ 的解析式为15y k x =-.∴1354k -=-,解得113k =. ∴MQ 的解析式为153y x =-.易得点H (15,0). 又∵MH ∥DB ,OD OB OM OH =. 即8515n -=,∴83n =-. ··················· 10分 ②当EO =ED 时,如图2,∵OQ =PQ ,∴∠1=∠2,又EO =ED ,∴∠1=∠3.∴∠2=∠3, ∴PQ ∥DB .设直线PQ 交于点N ,其函数表达式为28y k x =-∴2384k -=-,解得243k =. ∴PQ 的解析式为483y x =-. ∴点N 的坐标为(6,0). ∵PN ∥DB ,∴OD OB OP ON =,∴886n -=,解得323n =-. ······ 12分 综上所述,当△ODE 是等腰三角形时,n 的值为83-或323-. (13)。
2020年江苏省中考数学模拟试题与答案
2020年江苏省中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
) 1.-61的倒数是( ) A .6B .61 C .-61 D .﹣62.计算(﹣x 2)3的结果是( )A A .﹣x 6B .x 6C .﹣x 5D .﹣x 83. 一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( ) A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075. 如图,直线a ∥b ,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( ) A.20° B.40° C.30° D. 25°6. 已知坐标平面内点M(a ,b)在第三象限,那么点N(b,-a)在( )A.第一象限B.第二象限C.第三象限D.第四象限7. 如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A .18分,17分B .20分,17分C .20分,19分D .20分,20分9.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)10.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是()A.x>2 B.x>﹣1 C.﹣1<x<2 D.x<﹣111.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c =0(a≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定二、填空题(本题共6小题,满分18分。
【2020年】江苏省中考数学模拟试卷(含答案)
2020年江苏省中考数学模拟试卷含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣22.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a23.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>34.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.57.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πc m29.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为.12.(3分)分解因式:a3﹣2a2b+ab2=.13.(3分)已知正n边形的每一个内角为135°,则n=.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.20.(8分)解不等式组,并写出x的所有整数解.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m 的取值范围;(3)若∠ABM=45°时,求m的值.28.(14分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP 的长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣2【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.【点评】此题考查算术平方根问题,关键是根据4的算术平方根是2解答.2.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a2【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法逐一计算可得.【解答】解:A、a2•a3=a5,此选项正确;B、(a2)3=a6,此选项错误;C、a3、a2不能合并,此选项错误;D、a8÷a4=a4,此选项错误;故选:A.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>3【分析】根据二次根式有意义的条件;列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:A.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:,解得,,∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,故选:B.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.【解答】解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故选:C.【点评】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【分析】设该队获胜x场,则负了(6﹣x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积、底面积后即可求得其表面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为1×π×2=2π,底面积为π×(1)2=π.表面积为2π+π=3π;故选:B.【点评】此题考查由三视图判定几何体,本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.9.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.【分析】首先过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理求得AF,根据平行线分线段成比例定理求得OH,由相似三角形的性质求得AM与AF的长,根据相似三角形的性质,求得AN的长,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2,∵BF=FC,BC=AD=2,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==2,∴AN=2AF=,∴MN=AN﹣AM=﹣=.故选:C.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.13.(3分)已知正n边形的每一个内角为135°,则n=8.【分析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多边形的边数.【解答】解:多边形的外角是:180﹣135=45°,∴n==8.【点评】任何任何多边形的外角和是360°,不随边数的变化而变化.根据这个性质把多边形的角的计算转化为外角的计算,可以使计算简化.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160.【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.【点评】本题考查理解题意的能力,本题是个增长率问题,发生了两次变化,先找出一月份的产量和三月份的产量,从而可列出方程.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为2.【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;【解答】解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是2+.【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【解答】解:连接OA,AC′,如图,∵点O是BC中点,∴OC=BC=2,在Rt△AOC中,OA==,∵△ABC绕点O旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),∴AC′的最大值为2+,即在旋转过程中点A、C′两点间的最大距离是2+.故答案为2+.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是2<b<.【分析】根据y2大于y3,说明x=3时,﹣x+b<,再根据y1大于y2,说明直线l和抛物线有两个交点,即可得出结论.【解答】解:如图,当x=3时,y2=,y3=﹣3+b,∵y3<y2,∴﹣3+b<,∴b<,∵y1>y2,∴直线l:y=﹣x+b①与双曲线y=②有两个交点,联立①②化简得,x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b<﹣2(舍)或b>2,∴2<b<,故答案为:2<b<.【点评】此题主要考查了反比例函数和一次函数的交点问题,一元二次方程根的判别式,熟练掌握一次函数和双曲线的性质是解本题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣+1+3+=6;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.【分析】(1)由基本了解的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)由(1)可求得了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60人,扇形统计图中“了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90.(2)“了解很少”的人数为60﹣(15+30+5)=10人,补全图形如下:(3)估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数为1200×=900人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.【分析】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)列表得出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.【解答】解:(1)因为共有4张牌,其中点数是偶数的有3张,所以这张牌的点数是偶数的概率是;(2)列表如下:23482(2,3)(2,4)(2,8)3(3,2)(3,4)(3,8)4(4,2)(4,3)(4,8)8(8,2)(8,3)(8,4)从上面的表格可以看出,总共有12种结果,每种结果出现的可能性相同,其中恰好两张牌的点数都是偶数有6种,所以这两张牌的点数都是偶数的概率为=.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)【分析】作BH⊥AC于H,根据正弦的定义求出BH,根据余弦的定义计算即可.【解答】解:作BH⊥AC于H,由题意得,∠CBH=45°,∠BAH=60°,在Rt△BAH中,BH=AB×sin∠BAH=6,在Rt△BCH中,∠CBH=45°,∴BC==6(千米),答:B,C两地的距离为6千米.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握锐角三角函数的定义、正确标出方向角是解题的关键.24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.【分析】(1)欲证明AB=CF,只要证明△AEB≌△FEC即可;(2)想办法证明AC=BD,BF=AC即可解决问题;【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.【点评】本题考查平行四边形的判定和性质、矩形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【点评】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.。
2020年江苏省中考数学模拟试题(含答案)
2020年江苏省中考数学模拟试题含答案考试时间120分钟 试卷满分150一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上 ) 1. ﹣5的相反数是( ) 【 ▲ 】 A.﹣5 B.5 C.﹣ D.2.下面运算正确的是 【 ▲ 】 A.7a 2b﹣5a 2b=2 B.x 8÷x 4=x 2 C.(a﹣b)2=a 2﹣b 2 D.(2x 2)3=8x 6 3. 某同学在“百度”搜索引擎中输入“魅力东台”,能搜索到与之相关的结果是3930000,这个数用科学记数法表示为【 ▲ 】 A.0.393×107B.393×104 C.3.93×106D.39.3×1054. 下列实数中,是无理数的为 【 ▲ 】 A.﹣3 B.0.303003 C. D.5.下列调查中,适合采用普查方式的是【 ▲ 】A .调查市场上婴幼儿奶粉的质量情况B .调查泰东河质情况C .对科学通信卫星上某种零部件的调查D .调查《东台新闻》栏目在东台市的收视率6. 如图1,已知a 、b 、c 、d 四条直线,a ∥b ,c ∥d ,∠1=112°,则∠2等于【 ▲ 】A.58° B.68° C.78° D.112°7. 如图2,点F 在平行四边形ABCD 的边CD 上,射线AF 交BC 的延长线于点E ,在不添加辅助线的情况下,图中相似的三角形有【 ▲ 】A.1对 B.2对 C.3对D.4对8.若a、b、c为△ABC的三边长,且满足|c ﹣3|+=0,则a 的值不可以为【▲】A.2 B.3C.4D.5二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上) 9. 分解因式:x 2﹣xy=____▲ __ ; 10. 当x=___▲___时,分式232-+x x 的值为0;11.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设第6题图第7题图学校: 班级: 姓名: 座位号:装订线内请勿答题沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于___▲___;12.如图,正六边形ABCDEF内接于半径为4的圆,则劣弧AB的长度为____▲____;13. 如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为____▲____;14.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是____▲__;15.△ABC中∠A=30°,tanB=,AC=,则AB=____▲___;16.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需______分钟.17. 如果方程3)1(2=-xa的解是x=5,则a=▲;18. 如图,已知四边形PABN在坐标系中位置如图,则四边形PABN周长最小时,a= ▲;三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.(本题满分12分)(1)计算:()01260cos2214π-+︒-⎪⎪⎭⎫⎝⎛+-.(2)解不等式组:⎪⎩⎪⎨⎧≤>-422xx.20.(本题满分8分)先化简,再求值:41221122-+-÷⎪⎭⎫⎝⎛-+mmmm,其中m = 4.21.(本题满分9分)为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A、B两组捐款户数的比为1 : 5.第11题图第12题图第13题图捐款户数分组统计表组别捐款额(x)元户数A 1≤x<100 aB 100≤x<200 10C 200≤x<300D 300≤x<400E x≥400捐款户数分组统计图1 捐款户数分组统计图2第18题图请结合以上信息解答下列问题.(1) a=,本次调查样本的容量是;(2)补全“捐款户数分组统计图1”,“捐款户数分组统计图2”中B组扇形圆心角度数为;(3)若该社区有500户住户,请根据以上信息,估计全社区捐款不少于300元的户数.22.(本题满分8分)在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机取出一个小球,记下数字为x;小红在剩下的三个小球中随机取出一个小球,记下数字为y.小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明你的理由;若不公平,怎样修改游戏规则才对双方公平?23.(本题8分)如图,已知△ABC中,∠ACB=90°P是AC的中点.实践与操作:尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①以BC为直径作⊙O,交AB于点D;②连接PD.推理与运用:求证:PD是⊙O的切线.24.(本题满分9分)实验数据显示:一般成人喝半斤低度白酒后,1.5小时内(包括1.5小时)其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=–200x2+400x表示;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)表示(如图所示).(1) 喝酒后多长时间血液中的酒精含量达到最大值?最大值为多少?(2) 求k的值.(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.25.(本题满分8分)如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式.26.(本题满分10分)如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)27.(本题满分12分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图1,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC ∥BC.若AD=2,AE=1,DF=6,则EG=, = .(2)如图2,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF ,MD=DF);以AE、EG、GC为边构造△AE N(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图3,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)28.(本题满分12分)在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0),抛物线y=33-x2+bx+c 经过点A、B、C.(1)请直接写出点B、C的坐标:B(▲,▲)、C(▲,▲);(2)求经过A、B、C三点的抛物线的函数表达式;(3)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E y yFD图3放在线段AB 上(点E 是不与A 、B 两点重合的动点),并使ED 所在直线经过点C . 此时,EF 所在直线与(1)中的抛物线交于第一象限的点M . ①设AE =x ,当x 为何值时,△OCE∽△OBC ; ②在①的条件下:抛物线的对称轴上是否存在点P 使△PEM 是等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一.选择题三.解答题19.(1) 4 (2) 2<x ≤820. 化简原式= 结果为2 21.一、选择题(每题3分,计24分) 题号 1 2 3 4 5 6 7 8 答案B DCD C BCD二、填空题(每题3分,计30分) 9.x(x-y) ; 10._-2 ; 11. 3/8; 12. 4/3π; 13. 4__ ; 14. 8π__; 15. 5 ; 16.40 _______; 17.1/6; 18. 7/4; 12-+m m22、23.72°24.25.26. 解:过点C作CF∥DA交AB于点F.∵MN∥PQ,CF∥DA,∴四边形AFCD是平行四边形.∴AF=CD=50,∠CFB=35°.∴FB=AB﹣AF=120﹣50=70.根据三角形外角性质可知,∠CBN=∠CFB+∠BCF,∴∠BCF=70°﹣35°=35°=∠CFB,∴BC=BF=70. 在Rt△BEC中,sin70°=,∴CE=BC•sin70°≈70×0.94=65.8≈66.答:河流的宽是66米.27.28.。
2020年江苏省中考数学模拟试卷附解析
2020年江苏省中考数学模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题下列图形中,不是正方体平面展开图的是( )2.如图,为了测量河的宽度,王芳同学在河岸边相距200m 的M 和N 两点分别测定对岸一棵树P 的位置,P 在M 的正北方向,在N 的北偏西30的方向,则河的宽度是( ) A .2003mB .20033m C .1003m D .100m3.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( ) A .x y 5=B .x y 54=C .x y 45= D .x y 209=4.下列函数中,当 x>0 时,y 随x 的增大而减小的是( ) A .y x = B .1y x=C .1y x=-D .21y x =-5. 用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781()416t -=D .23420y y --=化为2210()39y -=6.下列各组条件中,能判定△ABC 为等腰三角形的是 ( ) A .∠A=60°,∠B=40° B .∠A=70°,∠B=50° C .∠A=90°,∠B=45° D .∠A=120°,∠B=15° 7.以下列各组数为长度的线段,能组成三角形的是( )A .1cm, 2cm , 3cmB .2cm , 3cm , 6cmC .4cm , 6cm , 8cmD .5cm , 6cm , 12cm 8.若(3x 2y -2xy 2)÷A=-3x+2y ,则单项式A 为( )A .xyB .-xyC .xD .-y9.形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132 的结果为( )A .11B .-11C .5D .-210.相传有个人不讲究说话艺术常引起误会.一天他摆宴席请客,他看到还有几个人没来,就自言自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是有一半客人走了,他一看十分着急,又说:“不该走的倒走了!”剩下的人一听,是我们该走啊!又有剩下的三分之二的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是最后剩下的四个人也都告辞走了,聪明的你能知道开始来了几位客人吗? ( ) A .15B .16C .18D .24二、填空题11.矩形的面积为2,一条边长为x ,另一条边长为y ,则y 与x 的函数关系式为(不必写出自变量取值范围)________________.12.在□ABCD 中,AB=2cm ,BC=4cm ,∠B=45°,则□ABCD 的面积等于 cm 2. 13.如图,在方格纸上有一个顶点都在格点上的△ABC ,则这个三角形是________三角形. 14.如图,平面镜A 与B 之间的夹角为 120°,光线经平面镜A 反射到平面镜B 上,再反射出去.若∠1=∠2,则∠1 的度数为 .15.如图是一个以点 0为旋转中心的旋转对称图形.能使旋转后的图形与原图形重合的旋转角是 .16.驴子和骡子驮着货物并排在路上走着,驴子不停地理怨主人给它驮的货物太重,压得实在受不了. 骡子说:“你发什么牢骚啊 ! 我比你驮得多 ! 如果你给我一袋,我驮的袋数就是你的两倍.”驴子反驳说:“没那么回事,只要你给我一袋,我们就一样多了 !”你能算出驴子和骡子各驮几袋货物吗?设驴子驮x 袋货物,骡子驮y 袋货物,则可列出方程组 .17.如图所示,已知点D ,E ,F 分别是BC ,AC ,DC 的中点,△EFC 的面积为6 cm 2,则△ABC 的面积为 .三、解答题18.已知菱形的周长为 16 cm,两邻角的比为 1:.2,求较短的对角线的长及一组对边的距离.19.写出命题“等腰三角形底边上的中点到两腰的距离相等.”的逆命题,并证明它是真命题.20.把汽油以均匀的速度注入容积为60 L的桶里,注入的时间和注入的油量如下表:注入的时间t(min)123456注入的油量q(L) 1.53 4.567.59(1)求q与t的函数解析式,并判断q是否是t的正比例函数;(2)求变量t的取值范围;(3)求t=1.5,4.5时,q的对应值.21.如图,已知BE=CF,AB=CD,∠B=∠C,则AF=DE吗?请说明理由.22.从A、B、C、D四位同学中任选2人参加学校演讲比赛,一共有几种不同的可能性?并列举各种可能的结果.23.计算 2222211111(1)(1)(1)(1)(1)23420052006-⋅-⋅--⋅-的值,从中你可以发现什么规律?24.三峡一期工程结束后,当年发电量为 5. 5×109千瓦时,某区有 100 万户居民,若平均每户每年用电32.7510⨯千瓦时,那么该年所发的电能供该区居民使用多少年?25.已知有含盐 20% 与含盐 8% 的盐水,若需配制含盐 15%的盐水 300 kg ,则两种盐水 需各取多少 kg ?26.已知边长为l cm 的等边三角形ABC ,如图所示.(1)将这个三角形绕它的顶点C 按顺时针方向旋转30°,作出这个图形; (2)再将已知三角形分别按顺时针方向旋转60°,90°,l20°,作出这些图形.(3)继续将三角形向同一方向旋转150°,180°,210°,240°,270°,300°,330°,作出这些图形.你将会得到一个美丽的图案.27.请任意画一个角,设法将它平均分成四个相等的角,并说出你是如何做的.28222524-= .29.已知矩形 ABCD 的周长为 12,面积为 8,设∠ACB=α, 求tanα的值.30.如图所示是一个正三角形区域的土地,中间的每一个点都是中点,所以每个三角形都是正三角形. 3 月 12 日植树节,同学们一起到这块地里植树,有一棵名贵的树要植在中间最小的三角形内,而同学们在不知道的情况下,随意地种,则这棵树种对地方的概率是多少?116【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.C4.B5.B6.C7.C8.B9.A10.D二、填空题xy 2=12..等腰14.30°15.120°16.2(1)111x y x y -=+⎧⎨+=-⎩17. 48cm 2三、解答题 18.较短对角线的长为 4 cm ,一组对边的距离19.略20.(1)q=1.5t ,是;(2)0≤t ≤40;(3)2.25,6.7521.利用SAS 说明△ABF ≌△DCE22.6种 AB AC AD BC BD CD .23.20074012.规律:22221111(1)(1)(1)(1)234n -⋅-⋅--化简后剩下两项,首项是(112-),最后一项是(11n +),结果即为12n n+ 24.2年25.含盐 20% 的盐水需 175 kg ,含盐 8%的盐水需 125 kg26.27.略28.729.68AB BC AB BC +=⎧⎨⋅=⎩,可得24AB BC =⎧⎨=⎩或42AB BC =⎧⎨=⎩,∴1tan 2AB a AC ==或 2. 30.116。
2020年江苏省中考模拟测试数学试题(附答案)
江苏省中考模拟测试数学试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.23的倒数是2.计算a 6b 2÷(ab )2的结果是3.无理数a 满足: 2<a <3,那么a 可能是4.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,摸到红球的概率是 A .12 B .13 C .25 D .15 5.半径为1,圆心角为60°的扇形的面积是A .π3B .16C .π6D .136.如图,在平面直角坐标系中,x 轴上一点A 从点(-3,0)出发沿x 轴向右平移,当以A 为圆心,半径为1的圆与函数y =33x 的图像相切时,点AA .(-2,0)B .(-3,0) 或(3,0)C .(-3,0)D .(-2,0)或(2,0)二、填空题(本大题共10小题,每小题2分,共20A .23B .-23C .-32D .32A .a 3B .a 4C .a 3bD .a 4bA .10B .6C .2.5D .207(第6题)填写在答题卡相应位置.......上) 7.(-2)2+(-2)-2= ▲ .8.南京奥林匹克体育中心位于南京市区西部,总占地面积896000平方米,是2014年南京青奥会主要场馆.数据896000用科学计数法表示为: ▲ . 9.如图,在正六边形ABCDEF 中,连接AE ,则tan ∠1= ▲ .10.写出一个公因式为2ab 且次数为3的多项式: ▲ . 11.2a =12,则a = ▲ .12.如图, CD ∥AB ,CB ⊥AB ,∠1=60o ,∠2=40o ,则∠3= ▲ .13.已知如图所示的图形是一无盖长方体的铁盒平面展开图,若铁盒的容积为3m 3,则根据图中的条件,可列出方程: ▲ .14.平行四边形ABOC 在平面直角坐标系中,A 、B 的坐标分别为(-3,3),(-4,0).则 过C 的双曲线表达式为: ▲ .15.如图,在Rt △ABC 中,AC =8,BC =6,直线l 经过C ,且l ∥AB ,P 为l 上一个动点,若△ABC 与△PAC 相似,则PC = ▲ . 16. 如图,△OA 1B 1在直角坐标系中,A 1(-1,0),B 1(0,2),点C 1与点A 1关于OB 1的对称.对△A 1B 1C 1 进行图形变换,得到△C 1B 2C 2,使得B 2(3,2),C 2(5,0);再进行第二次变换,得到△C 2B 3C 3 ,使得B 3(9 ,2 ),C 3(13 ,0 );第三次将△C 2B 3C 3变换成△C 3B 4C 4,B 4(21, 2),C 4(29 ,0 )…按照上面的规律,若对△A 1B 1C 1进行第四次次变换,得到△C 4B 5C 5,则C 5(第15题)CABEF D 1 (第9题)13 2EABCD (第12题)(第13题) (第14题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (6分)解不等式组⎩⎪⎨⎪⎧ 2x -3>5, 2+x 3-1≤2.18.(6分)先化简,再求值a 2-b 2ab ÷(1a + 1b ).其中a =-2,b =1.19.(8分)如图,在矩形ABCD 中,点F 是CD 中点,连接AF 并延长交BC 延长线于点E ,连接AC .(1)求证:△ADF ≌△ECF ;(2)若AB =1,BC =2,求四边形ACED 的面积.20.(8分)王老师对初三年级四个班级上学期期末数学成绩进行统计分析,以下是根据数据制成的统计图表的一部分:请你根据以上信息解答下列问题:CAB D EF (第19题)初三各班参考人数统计表0﹪﹪分比统计图初三各班数学合格人数统计图图(2)(1)图(1)中,甲班参考人数占 ▲ ﹪,丙班有 ▲ 人参考; (2)若经计算得出丙班的合格率为90%,将图(2)补充完整; (3)求上学期期末初三年级数学成绩的平均合格率.21.(8分)甲、乙、丙三个篮球队用抽签方法来决定参加第一场比赛的两个球队.请用树状图或列表法求出甲、乙两队在第一场进行比赛的概率.22.(8分)如图,延长等边三角形ABC 一边CB 到D ,连接AD .以A 为圆心,AC 为半径画弧交AD 于E .已知AC =2,∠D =20o ,求DE 的长(精确到0.1).(参考数据:3≈1.73,tan20o ≈0.36,sin20o ≈0.34,cos20o ≈0.94)23. (8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价....为x 元(x >40),请你分别用x 的代数式来表示销售量y (件)和销售该品牌玩具获得利润w (元),并把结果填写在表格中:(2)若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元?DB AEC(第22题)24.(8分)请用尺规..作出符合下列要求的图形(不写作法,保留作图痕迹): (1)已知线段AB ,试确定一点C ,使得∠ACB =90o ; (2)已知△ABD ,试确定一点C ,使得∠ACB +∠ADB =180o .25.(8分)快、慢两车分别从相距120千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,立即按原路返回,返回时的速度是去时速度的2倍,结果与慢车同时回到甲地.慢车距出发地的路程y 1(千米)与出发后所用的时间x (小时)的关系如图所示. 请结合图象信息解答下列问题:(1)慢车的速度是 ▲ 千米/小时,快车的返回时速度是 ▲ 千米/小时; (2)画出快车距出发地的路程y 2(千米)与出发后所用的时间x (小时)的函数图象; (3)在快车返回途中,快、慢两车相距的路程为50千米时,慢车行驶了多少小时?DABAB(第25题)y 120O 1 2 3 x26.(9分)已知,如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,动点E 、F 同时从B 点出发,点E 沿射线BC 方向以5cm /s 运动,点F 沿线段BD 方向以4cm /s 运动,当点F 到达D 时,运动停止,连接DE ,设运动时间为t (s ). (1)请判断△DEF 的形状,并说明理由; (2)线段DE 的中点O 的运动路径长 ▲ cm ;(3)当t 为何值时,△DEF 的外接圆与矩形ABCD 的边相切?27.(11分)函数图象有一个公共点,我们就称两个函数图象“共一点”,有两个公共点,则称它们“共两点”…(1)若函数y =-x +b 图像和y =-x 2+2x 图像“共一点”P ,求P 点坐标;(2)若函数y =-x +1图像和y =ax 2+2x 图像“共两点”,则a 的取值范围是: ▲ ; (3)若函数y =2x 与y =ax 2+bx 图像在第一象限“共两点”A 、B (A 在B 左侧),且A 、B 两点之间水平距离为2,两点之间垂直距离是A 到y 轴距离的倒数,设函数y =ax 2+bx 图像(第26题)的顶点为C .求顶点C 的坐标.参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.174 8.8.96 105 9.3310.答案不唯一,如2ab -4ab 211.1212.65o 13.x (x +1)=3 14.y =3x 15. 6.4或10 16.(61,0) 三、解答题(本大题共11小题,共88分) 17. (本题6分)解:解不等式2x -3>5,得 x >4. …………………………………………………………………2分 解不等式2+x3-1≤2,得 x ≤7. ………………………………………………………………4分 ∴原不等式组解集为4<x ≤7. ………………………………………………………………… 6分 18.(本题6分)解:原式=a 2-b 2ab ÷ a +bab ………………………………………………………………………… 1分=(a -b )(a +b )ab ·aba +b………………………………………………………………3分 =a -b . ………………………………………………………………………4分 当a =-2,b =1时,原式=-2-1=-3. ………………………………………………………6分 19.(本题8分) (1)证明: ∵F 是CD 中点, ∴DF =CF .∵四边形ABCD 是矩形, ∴AD ∥BC ,即AD ∥CE .∴∠ADF =∠ECF . ………………………………………………………………………………2分 在△ADF 和△ECF 中,∠ADF =∠ECF ,DF =CF ,∠AFD =∠EFC .∴△ADF ≌△ECF . ………………………………………………………………………………4分 (2)解:∵四边形ABCD 是矩形, ∴AD =BC =2,AB =CD =1,CD ⊥AD . 由(1)知,△ADF ≌△ECF . ∴AD =CE . ∵AD ∥CE ,∴四边形ACED 是平行四边形. ………………………………………………………………6分 ∴四边形ACED 的面积=AD ×DC =2. ………………………………………………………8分 20.(本题8分)(1)28,30; ………………………………………………………3分(2)图(2)中丙班合格人数为27,图略; ……………………………………………5分(3)42+35+27+40150=96﹪. ∴上学期期末数学成绩各班的平均合格率为96﹪. …………………………………………8分 21.(本题8分)解:列表如下(或画树状图正确)……………………………………………………5分 共有6种等可能的结果.…………………………………………………………………………………6分CABD EF∴ P (甲,乙)=26=13. …………………………………………………………………………………8分 22.(本题8分)解:如图,过A 作AF ⊥BC ,交点为F .…………………………………………………………………1分 ∵△ABC 为等边三角形,∴AB =BC =AC =2,∠ABC =60o . 在△ABF 中,sin ∠ABC =AFAB , ∵∠ABC =60o ,AB =2, ∴sin60o =AF 2,即32=AF2.∴AF =3.…………………………………………………………………………………………………4分 在△ADF 中,sin D =AFAD , ∵∠D =20o ,AF =3, ∴sin20o =AF 3,即3AD ≈0.34, ∴AD ≈5.1,…………………………………………………………………………………………………7分 由题知,∴AE =AC =2,∴DE =3.1. …………………………………………………………………………8分 23.(本题8分) 解:(1)……………………………………………………………………………………4分 (2)-10x 2+1300x -30000, 解之得:x 1=50,x 2=80. 答:玩具销售单价为50元或80元时,可获得10000元销售利润.……………………………………………………………………………………8分 24.(本题8分)(1)画图正确; ……………………………………………………………………………………4分 (提示:借助以AB 为直径画圆,圆上除A 、B 之外的点均可为C 点)(2)画图正确. ……………………………………………………………………………………8分(提示:作出△ABD 的外接圆,以圆内接四边形对角互补为依据,在优弧上取一点为C ) 25.(本题8分)(1)40,120; ……………………………………………………………………………………2分 (2)如图:DBAECF……………………………………………………………………………………4分 (3)解:OA 的函数关系式为y =40x ,BC 的函数关系式为y =120-120(x -2)=-120x +360; 根据题意,得:-120x +360+40x =120+50,解得:x =198.所以,慢车行驶198小时,快、慢两车相距的路程为50千米. …………………………………………8分 26.(本题9分) 解:(1)△DEF 是直角三角形理由 ∵四边形ABCD 为矩形,∴∠C =90°. 又∵AB =6cm ,BC =8cm ,根据勾股定理得∴BD =10.Q 点E 的运动速度为5cm/s ,点F 的运动速度为4cm/s ,运动时间为t (s), ∴BE =5t ,BF =4t . ∴BF BC =BEBD .又∵∠DBC 为公共角,∴△BEF ∽△BDC .∴∠ BFE =∠ C =90°.∴△DEF 是直角三角形. …………………………………………………………………………………3分 (2)254; …………………………………………………………………………………5分 (3)∵∠ DFE =90°,∴DE 为△DEF 的外接圆直径,点O 为圆心,①当⊙O 与AB 边相切于点G 时,连接GO 并延长交BC 于H 点, ∴GH ∥AD ∥BC . ∴BG AG =BM MD =DO EO =DH CH .又∵点O 是DE 的中点,∴点G 、M 、H 分别为AB 、DB 、CD 的中点,∴OH =12EC =12(8-5t )=4-52t ,OG =8-12(8-5t )=4+52t .ABFEOGM DCEB A H又∵OD 2=OH 2+DH 2=(4-52t )2+32,∴由OD 2=OG 2,得(4-52t )2+32=(4+52t )2,解得t =940. …………………………………………7分②当点E 运动到点C 时,⊙O 与AD 、BC 边相切,由5t =8,得t =85 .所以,当t =940或t =85时,△DEF 的外接圆⊙O 与矩形ABCD 的边相切. (9)分27.(本题11分)解:(1)∵函数y =-x +b 图像和y =-x 2+2x 图像“共一点”,∴-x +b =-x 2+2x ,且b 2-4ac =9-4b =0.∴b =94.………………………………………………………………………………………………………2分当b =94时,y =-x +94,-x +94=-x 2+2x .解得x =32,把x =32代入y =-x +94中,得y =34.∴P 坐标为(32,34). ……………………………………………………………………………………4分(2)a>-94,且a ≠0. ………………………………………………………………………………6分(3)设A 的横坐标为m ,则B 的横坐标为m +2,∵A 、B 在y =2x 图像上,∴A 、B 分别表示为(m ,2m ),(m +2,2m +2). ∵两点之间垂直距离是A 到y 轴距离的倒数,∴2m -2m +2=1m . 解得m =2, (4)经检验,m =2是原方程的根.………………………………………………………………………8分当m =2时,A 、B 分别为(2,1),(4,12),∵A 、B 在函数y =ax 2+bx 图像上,∴1=4a +2b ,12=16a +4b .解得a =-316,b =78.………………………………………………………10分∴y =-316x 2+78x ,其顶点坐标C 为(73,4948).………………………………………………………11分。
最新2020年江苏省中考数学模拟试卷解析版
2020年江苏省中考数学模拟试卷一.选择题(满分30分,每小题3分)1.若反比例函数y=(k≠0)的图象经过点P(2,﹣3),则该函数的图象不经过的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)2.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.3.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y1=y2>y3B.y1>y2>y3C.y3>y2>y1D.y3>y1=y24.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.5.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm26.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=()A.1B.3C.﹣1D.﹣37.在⊙O中,弦AB的长为2cm,圆心O到AB的距离为1cm,则⊙O的半径是()A.2B.3C.D.8.在不透明的袋子里装有16个红球和若干个白球,这些球除颜色不同外无其它差别.每次从袋子里摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.6,则袋中白球有()A.12个B.20个C.24个D.40个9.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,CD=3,则AB的值是()A.3B.C.6D.10.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1B.m C.m2D.二.填空题(满分24分,每小题3分)11.已知正六边形的边心距为,则它的周长是.12.若抛物线C1:y=x2+mx+2与抛物线C2:y=x2﹣3x+n关于y轴对称,则m+n=.13.如图,已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是.14.已知⊙O的半径为4cm,点P在直线l上,且点P到圆心O的距离为4cm,则直线l与⊙O.15.反比例函数y=的图象满足:在所在象限内,y随x的增大而减小,则n的取值范围是.16.如图,在长方形ABCD中,AB=4cm,BC=8cm.E、F分别是AB、BC的中点.则E 到DF的距离是cm.17.抛物线y=ax2+(a﹣1)(a≠0)经过原点,那么该抛物线在对称轴左侧的部分是的.(填“上升”或“下降”)18.如图,A,B,C三点在正方形网格线的交点处,将△ACB绕着点A逆时针旋转得到△AC′B′,若A,C,B′三点共线,则tan∠B′CB=.三.解答题(共10小题,满分96分)19.(10分)已知反比例函数的图象经过点A(2,6).(1)求这个反比例函数的解析式;(2)这个函数的图象位于哪些象限?y随x的增大如何变化?(3)点B(3,4),C(5,2),D(﹣2,﹣4)是否在这个函数图象上?为什么?20.(8分)如图所示,Rr△ABC中,∠C=90°,点D、E分别在AC、AB上,BD平分∠ABC,DE⊥AB,cot A=,求tan∠DBC的值.21.(6分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.22.(9分)已知△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC绕点A按逆时针方向旋转90°后的△A′B′C′;(2)在(1)的条件下,求点C旋转到点C′所经过的路线长及线段AC旋转到新位置时所划过区域的面积.23.(8分)如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.(1)求证:△ADE∽△BEC.(2)若AD=1,BC=3,AE=2,求AB的长.24.(8分)如图,AB是⊙O的直径,点C在⊙O上,CE⊥AB于E,BD交CE于点F,CF =BF.(1)求证:C是的中点;(2)若CD=4,AC=8,则⊙O的半径为.25.(10分)矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.26.(10分)某农户承包荒山种植某产品种蜜柚.已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?27.(14分)已知锐角∠MBN的余弦值为,点C在射线BN上,BC=25,点A在∠MBN 的内部,且∠BAC=90°,∠BCA=∠MBN.过点A的直线DE分别交射线BM、射线BN于点D、E.点F在线段BE上(点F不与点B重合),且∠EAF=∠MBN.(1)如图1,当AF⊥BN时,求EF的长;(2)如图2,当点E在线段BC上时,设BF=x,BD=y,求y关于x的函数解析式并写出函数定义域;(3)联结DF,当△ADF与△ACE相似时,请直接写出BD的长.28.(13分)已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).(1)求二次函数的解析式;(2)如图,过点E(0,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B 点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D.①当CD=3时,求该一次函数的解析式;②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,说明理由.参考答案一.选择题1.解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6∴解析式y=当x=3时,y=﹣2当x=1时,y=﹣6当x=﹣1时,y=6∴图象不经过点(﹣1,﹣6)故选:D.2.解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选:B.3.解:二次函数y=﹣x2+2x+c的图象的对称轴为直线x=﹣=1,而P1(﹣1,y1)和P2(3,y2)到直线x=1的距离都为2,P3(5,y3)到直线x=1的距离为4,所以y1=y2>y3.故选:A.4.解:∵线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,∴∠CBD=α,BC=BD,∴∠BCD=∠BDC,∴∠BCD=(180°﹣α)=90°﹣α,∵∠ACB=90°,∴∠ACE=90°﹣∠BCD=90°﹣(90°﹣α)=α,∵AE⊥CE,∴∠CAE=90°﹣∠ACE=90°﹣α.故选:C.5.解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.6.解:∵反比例函数y=图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选:C.7.解:过点O作OD⊥AB于点D,连接OA,∵AB=2cm,OD⊥AB,∴AD=AB=×2=cm,在Rt△AOD中,OA==2(cm),故选:A.8.解:设袋中白球有x个,根据题意得:=0.6,解得:x=24,经检验:x=24是分式方程的解,故袋中白球有24个.故选:C.9.解:连接OD,∵∠DOC=2∠A=2×30°∴∠DOC=60°∵CD是⊙O的切线,∴∠ODC=90°∴tan∠DOC==∴OD===∴AB=2OD=2故选:B.10.解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.二.填空题(共8小题,满分24分,每小题3分)11.解:如图,连接OA,OB,∵六边形ABCDEF是正六边形,∴∠AOB=×360°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠OAH=60°,∵OH⊥A,OH=,∴OA==2,∴AB=OA=2,∴它的周长是:2×6=12.故答案为:12.12.【解答】解:因为抛物线C1:y=x2+mx+2与y轴的交点为(0,2),对称轴为直线x=﹣,而抛物线C1:y=x2+mx+2与抛物线C2:y=x2﹣3x+n关于y轴对称,所以抛物线C2:y=x2﹣3x+n与y轴的交点为(0,2),对称轴为直线x=,所以n=2,=,解得m=3,所以m+n=3+2=5.故答案为5.13.解:∵直线a∥b∥c,AC=4,CE=6,BD=3,∴,即,解得DF=4.5.故答案为:4.514.解:∵点P在直线l上,且点P到圆心O的距离为4cm=4cm,∴点P在⊙O上∴直线l与⊙O相交或相切故答案为:相交或相切15.解:根据题意得n+1>0,解得n>﹣1.故答案为n>﹣1.16.解:∵四边形ABCD是矩形,∴CD=AB=4cm,AD=BC=8cm,∠A=∠B=∠C=∠D=90°,∵E、F分别是AB、BC的中点,∴AE=BE=AB=2cm,BF=CF=BC=4cm,∴DF==4(cm),∴△DEF的面积=矩形ABCD的面积﹣△BEF的面积﹣△CDF的面积﹣△ADE的面积=8×4﹣×4×2﹣×4×4﹣×8×2=12(cm2),作EG⊥DF于G,如图所示:则△DEF的面积=DF•EG=12,∴EG==3(cm),即E到DF的距离是3cm,故答案为:3.17.解:∵抛物线y=ax2+(a﹣1)(a≠0)经过原点,∴0=a×02+(a﹣1),得a=1,∴y=x2,∴该函数的顶点坐标为(0,0),函数图象的开口向上,∴该抛物线在对称轴左侧的部分是下降的,故答案为:下降.18.解:如图,过点B作BE⊥AB'于点E,设小正方形的边长为a,∵AB=4a,∠CAB=45°,BE⊥AE,∴AE=BE=2a,∵AC=a,∴CE=AE﹣AC=a,∴tan∠B′CB==2,故答案为:2三.解答题(共10小题,满分96分)19.解:(1)设反比例函数解析式y=(k为常数,k≠0),把A(2,6)代入得k=2×6=12,所以反比例函数解析式y=;(2)这个函数的图象位于第一、三象限,在每一象限内,y随x的增大而减小;(3)因为3×4=12,5×2=10≠12,﹣×(﹣)=12,所以点B、D在这个函数图象上,点C不在这个函数图象.20.解:∵cot A=,∴设AE=3x,ED=4x,∴由勾股定理可知:AD=5x,∵BD平分∠ABC,DE⊥AB,∠C=90°,∴ED=CD=4x,在RtABC中cot A==,∴BC=12x,∴tan∠DBC==,21.解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为=.22.解:(1)如图所示,△A′B′C′即为所求:(2)由题意可得A(1,3),C(5,1),∴AC=,∴点C旋转到C′所经过的路线长,∴线段AC旋转到新位置时所划过区域的面积.23.(1)证明:∵AD∥BC,AB⊥BC,∴AB⊥AD,∠A=∠B=90°,∴∠ADE+∠AED=90°.∵∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC.(2)解:∵△ADE∽△BEC,∴=,即=,∴BE=,∴AB=AE+BE=.24.解:(1)∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBE=90°,∵CE⊥AB,∴∠ECB+∠CBE=90°,∴∠CAB=∠ECB,∵∠CAB=∠CDB,∴∠CDB=∠ECB,又∵CF=BF,∴∠FCB=∠FBC,∴∠CDB=∠FBC,∴=,∴C是的中点;(2)由(1)知C是的中点,∴BC=CD=4,∵∠ACB=90°,∴AB===4,∴⊙O的半径为2,故答案为:2.25.解:(1)∵四边形OACB是矩形,OB=8,OA=4,∴C(8,4),∵AE=EC,∴E(4,4),∵点E在y=上,∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC===2,在Rt△ACB中,tan∠ABC==2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,∴EF∥AB.(3)如图,设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,∴∠EGF=∠C=90°,EC=EG,CF=GF,∴∠MGE+∠FGB=90°,过点E作EM⊥OB,∴∠MGE+∠MEG=90°,∴∠MEG=∠FGB,∴Rt△MEG∽Rt△BGF,∴=,∵点E(,4),F(8,),∴EC=AC﹣AE=8﹣,CF=BC﹣BF=4﹣,∴EG=EC=8﹣,GF=CF=4﹣,∵EM=4,∴=,∴GB=2,在Rt△GBF中,GF2=GB2+BF2,即:(4﹣)2=(2)2+()2,∴k=12,∴反比例函数表达式为y=.26.解:(1)设y与x的函数关系式为y=kx+b,将点(10,200),(15,150)代入y=kx+b,得:,解得:,∴y=﹣10x+300.当y=0时,﹣10x+300=0,解得:x=30.∴y与x的函数关系式为y=﹣10x+300(8≤x<30).(2)设每天获得的利润为w元,根据题意得:w=y(x﹣8)=(﹣10x+300)(x﹣8)=﹣10x2+380x﹣2400=﹣10(x﹣19)2+1210.∵a=﹣10<0,∴当x=19时,w取最大值,最大值为1210.答:当蜜柚定价为19元/千克时,每天获得的利润最大,最大利润是1210元.27.解:(1)∵在Rt△ABC中,∠BAC=90°,∴cos∠BCA=cos∠MBN==,∴∴AC=15∴AB==20∵S=×AB×AC=×BC×AF,△ABC∴AF==12,∵AF⊥BC∴cos∠EAF=cos∠MBN==∴AE=20∴EF==16(2)如图,过点A作AH⊥BC于点H,由(1)可知:AB=20,AH=12,AC=15,∴BH==16,∵BF=x,∴FH=16﹣x,CF=25﹣x,∴AF2=AH2+FH2=144+(16﹣x)2=x2﹣32x+400,∵∠EAF=∠MBN,∠BCA=∠MBN∴∠EAF=∠BCA,且∠AFC=∠AFC,∴△F AE∽△FCA∴,∠AEF=∠F AC,∴AF2=FC×EF∴x2﹣32x+400=(25﹣x)×EF,∴EF=∴BE=BF+EF=∵∠MBN=∠ACB,∠AEF=∠F AC,∴△BDE∽△CF A∴∴∴y=(0<x≤)(3)如图,若△ADF∽△CEA,∵△△ADF∽△CEA,∴∠ADF=∠AEC,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠ADF=∠AEC=∠ABF,∴AB=AE,∵∠BAC=90°,∴∠ABC+∠ACB=90°,且∠ABF=∠AEC,∠ACB=∠MBN=∠EAF,∴∠AEC+∠EAF=90°,∠AEC+∠MBN=90°,∴∠BDE=90°=∠AFC,∵S=×AB×AC=×BC×AF,△ABC∴AF==12,∴BF==16,∵AB=AE,∠AFC=90°,∴BE=2BF=32,∴cos∠MBN=,∴BE=,如图,若△ADF∽△CAE,∵△ADF∽△CAE,∴∠ADF=∠CAE,∠AFD=∠AEC,∴AC∥DF∴∠DFB=∠ACB,且∠ACB=∠MBN,∴∠MBN=∠DFB,∴DF=BD,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠CAE=∠ABF,且∠AEC=∠AEC,∴△ABE∽△CAE∴==设CE=3k,AE=4k,(k≠0)∴BE=k,∵BC=BE﹣CE=25∴k=∴AE=,CE=,BE=∵∠ACB=∠F AE,∠AFC=∠AFE,∴△AFC∽△EF A,∴=,设AF=7a,EF=20a,∴CF=a,∵CE=EF﹣CF=a=,∴a=,∴EF=,∵AC∥DF,∴,∴,∴DF=,综上所述:当BD为或时,△ADF与△ACE相似28.解:(1)由题意得:,解得:,故:二次函数的表达式为:y=x2+1;(2)①设过点E的一次函数表达式为:y=kx+2,将一次函数表达式与二次函数表达式联立并整理得:x2﹣kx﹣1=0,设点A、B的坐标分别为(x1,y1)、(x2,y2)(x1<x2),则:x1+x2=k,x1x2=﹣1,x2﹣x1===3,解得:k=,∴该一次函数表达式为:y=x+2或y=﹣x+2;②S1=AC•OC=﹣x1y1,S2=,S3=BD•OD=x2y2,x1+x2=k,x1x2=﹣1,则:S1•S2=﹣x1x2[k2x1x2+2k(x1+x2)+4]=(k2+4)=4S2,∴t=4.。
2020年江苏省中考数学模拟试题(含答案)
2020年江苏省中考数学模拟试题含答案注意事项:1、本试卷共2页,共27题,满分150分,考试时间120分钟。
2、请在答题卡规定的区域作答,在其他位置作答一律无效。
一、选择题(本大题共有6小题,每小题3分,共18分。
在每小题所给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. 下列四个图形中,不是轴对称图形的是( )2、下列计算正确的是( ) A.a 2+a 3=a 5B.(ab 2)3=a 2b 5C.2a-a=2D.2a 2×a -1=2a3.如图,AB//CD ,∠A=50°,则∠的大小是( )A.50°B. 120°C.130°D.150°4.在下列几个几何体中,主视图与俯视图都是圆的是( )5.若63 x 在实数范围内有意义,则x 的取值范围是( ) A. x>2B. x ≥2C. x ≥3D. x ≠26.如图,已知顶点为(-3,-6)的抛物线y= ax 2+bx+c 经过点(-1,-4),则下列结论中错误的是( ) A. b 2>4ac B. ax 2+bx+c ≥-6C. 若点(-2,m ),(-5,n ) 在抛物线上,则D. 关于的一元二次方程ax2+bx+c=-4的两根为-5和-1二、填空题(本大题共有10小题,每小题3分,共30分。
不需要写出解答过程,请把答案直接写在答题卡相应位置)7.分解因式:m2-3m=8.9的平方根是9.据统计,2017年“五一节”期间,东台黄海森林公园共接待游客164000人。
将164000用科学计数法表示为10.圆锥的底面半径为2,母线长为4,圆锥的侧面积为11.若一组数据2、-1、0、2、-1、a的众数为a,则这组数据的平均数为12.如图,⊙o是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是13.若3a2-a-2=0,则5+2a-6a2=14.如图,点G是△ABC的重心,GE//BC,如果BC=12 ,那么线段GE的长为15.无论m取什么实数,点A(m+1,2m-2)都在直线l上,若点B(a,b)是直线l上的动点,则(2a-b-6)3的值等于16.在△ABC中,∠BAC=30°,AD是BC边上的高,若BD=3,CD=1,则AD的长为第12题图第14题图三、解答题(本大题共11小题,共102分。
2020年江苏省中考数学模拟试题(含答案)
2020年江苏省中考数学模拟试题含答案一、填空题(本大题共有12小题,每小题2分,共计24分)1. 的倒数是______. 2.计算:38=______.3.分解因式:2x 2﹣12x +18=______. 4.函数3xy -=中,自变量x 的取值范围是 . 5.若一个多边形的内角和等于720o ,则这个多边形的边数是 . 6.关于x 的方程0122=-+x kx 有两个实数根,则k 的取值范围是 . 7.△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD =1,BD=3,则△ADE 与△ABC 的面积之比为 .8.如图,四边形ABCD 是⊙O 的内接四边形,∠B =148°24′,则∠AOC 的角度为 .(第7题) (第8题)9.如图,PA 、PB 切⊙O 于点A 、B ,已知⊙O 半径为2,且∠APB = 60o ,则AB = . 10.圆锥底面圆的半径为3,高长为4,它的表面积等于______(结果保留π). 11.如图,已知点C (1,0),直线y = -x +7与两坐标轴分别交于A 、B 两点,D 、E 分别是AB ,OA 上的动点,当△CDE 周长最小时,点D 坐标为 .第11题12.抛物线)0( 32≠++=a bx ax y 过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离ED 21-记为d ,满足10≤<d ,则实数m 的取值范围是 . 二、选择题(本大题共有5小题,每小题3分,共计15分)13.下图是一些完全相同的小正方体搭成的几何体的三视图 ,这个几何体只能是( )14.如图,数轴上的四个点A 、B 、C 、D 位置如图所示,它们分别对应四个实数a 、b 、c 、d ,若a +c =0,AB <BC ,则下列各式正确的是( ) A . B . 0b d -> C .0bc +>D .a d >15.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,顶点C 的坐标为(-3,3),反比例函数ky x=的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是( ) A .4 3B .-4 3C .2 3D .-2 316.已知二次函数,函数y 与自变量x 的部分对应值如下表: x … —4 —3 —2 —1 0 … y…3—2—5—6—5…则下列判断中正确的是( )A .抛物线开口向下B .抛物线与y 轴交于正半轴C .方程02=++c bx ax 的正根在1与2之间 D . 当3x =-时的函数值比 1.5x =时的函数值大c bx ax y ++=2A B CD(第14题) (第15题)第13题0bc >17.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为( )A .B .C .D .三、解答题(本大题共有11小题,共计81分) 18(本题满分8分)(1)计算: (2)化简:19(本题满分10分)(1)解方程:21(1)11x x x ÷+--4131=-+-x xx x 22)145(sin 230tan 3121-︒+︒--(2)解不等式组 ,并把它们的解集在数轴上表示出来.20.(本题6分) 王华、张伟两位同学分别将自己10次数学自我检测的成绩绘制成如下统计图:(1)根据上图中提供的数据列出如下统计表:⎪⎩⎪⎨⎧<+-+--≤+137621)3(410)8(2x x xx则a = ,b = ,c = ,d = ,(2)将90分以上(含90分)的成绩视为优秀,则优秀率高的是 .(3)现在要从这两个同学选一位去参加数学竞赛,你可以根据以上的数据给老师哪些建议?21.(本题6分)如图,在ABC △和△BC D 中,,,AB DC AC DB AC ==、DB 交于点M. (1)求证:ABC △≌△DCB ;(2)作//,//,CN BD BN AC CN 交BN 于点N ,求证:四边形BNCM 是菱形.22. (本题6分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉当前题的一个错误选项,然后选手在剩下选项中作答).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是__________. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表分析小明顺利通关..的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)23.(本小题满分6分)NBC如图,已知ABC △的三个顶点的坐标分别为(2,2)A -、(5,0)B -、(10)C -,,P (a ,b )是△ABC 的边AC 上一点:(1)将ABC ∆绕原点O 逆时针旋转90°得到111A B C ∆,请在网格中画出111A B C ∆,旋转过程中点A 所走的路径长为 .(2)将△ABC 沿一定的方向平移后,点P 的对应点为P 2(a +6,b +2),请在网格画出上述平移后的△A 2B 2C 2,并写出点A 2、的坐标:A 2( ). (3)若以点O 为位似中心,作△A 3B 3C 3与△ABC 成2:1的位似,则与点P 对应的点P 3位似坐标为 (直接写出结果).24.(本小题满分7分)如图,一次函数11b y k x =+与反比例函数22k y x=的图象交于点 (4,)A m 和(8,2)B --,与y 轴交于点C .(1)m = ,1k = ;(2)当x 的取值是 时,1b k x +>2k x; (3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP与线段AD 交于点E ,当ODAC S 四边形:ODE S ∆=3:1时,求点P 的坐标.OxyAC B25. (本小题满分6分)如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离AB =1.7m ,看旗杆顶部M 的仰角为45o;小红的眼睛与地面的距离CD =1.5m ,看旗杆顶部M 的仰角为30o .两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上).请求出旗杆MN 的高度.(参考数据:2 1.4≈,3 1.7≈,结果保留整数)26.(本小题满分7分)如图,AB 是⊙O 直径,OD ⊥弦BC 与点F ,且交⊙O 于点E , 且∠AEC =∠ODB .(1)判断直线BD 和⊙O 的位置关系,并给出证明;(2)当tan ∠AEC=,BC =8时,求OD 的长.MN B A DC30° 45°DB OAC E F (第26题)3427.(本小题满分9分)已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD 与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA 与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•A B.28.(本小题满分10分)已知抛物线2y x bx c =++的顶点为P ,与y 轴交于点A ,与直线OP 交于点B .(1)如图1,若点P 的横坐标为1,点(3B ,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M 是直线AB 下方抛物线上的一点,且S △ABM =3,求点M 的坐标; (3)如图2,若P 在第一象限,且PA PO =,过点P 作PD x ⊥轴于点D ,将抛物线2y x bx c =++平移,平移后的抛物线经过点A 、D ,该抛物线与x 轴的另一个交点为C ,请探索四边形OABC 的形状,并说明理由.图1图2数学试卷参考答案一、填空题二、选择题三、解答题(共5道小题,共25分)18. 解(1) 原式……3分 =2……4分(2) 原式 = ……2分= ……4分19.解(1)……1分化简得……3分……4分经检验是原方程的根……5分(2)(1)221⎛+⎝⎭⎝⎭()()111x xx x x÷+--11x+()()221341x x x x-+=-21x=-12x=-12x=-⎪⎩⎪⎨⎧<+-+--≤+137621)3(410)8(2xxxx(2)不等式(1)的解集为 ……1分 不等式(2)的解集为 ……3分 ∴原不等式组的解集为 ……4分 数轴表示正确……5分20.(1)a= 80 ,b= 80 ,c= 90 ,d= 60 ,……4分 (2)____张伟____。
2020年江苏省扬州市中考数学模拟测试试卷附解析
2020年江苏省扬州市中考数学模拟测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.王英同学从A地沿北偏西60方向走100m到B地,再从B地向正南方向走200m到C 地,这时王英同学离A地的距离是()A.150m B.503m C.100m D.1003m2.下列事件中,不可能事件是()A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,•向上一面的点数是“5”B.任意选择某个电视频道,正在播放动画片C.肥皂泡会破碎D.在平面内,度量一个三角形的内角度数,其和为360°3.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像 CD 的长()A.16cm B.13cm C.12cm D.1 cm4.下列语句中,不是命题的是()A.三角形的内角和等于l80°B.有两边和一角对应相等的两个三角形全等C.如果∠1+∠2=90°,∠1+∠3=90°,那么∠2=∠3D.画△ABC和△A′B′C′,使△ABC≌△A′B′C′5.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:金额(元)20303550100学生数(人)3751510A.30元B.35元C.50元D.100元6.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有()A .b >a >cB .c >a >bC .a >b >cD .b >c >a7.立方体的六个面标有数字:1,2,3,4,5,6,而且相对两个面的数之和相等,下列各图是它的展开图的是 ( )8.已知等腰三角形的周长为 12,一边长为 3、则它的腰长为( ) A . 3B . 4.5C .3或4.5D . 以上都不正确9.如图 ,在Rt △ABC 中,∠C = 90°,E 是BC 上的一点,DE ⊥AB ,点0为垂足,则∠A 与∠CED 的关系是( ) A . 相等B . 互余C . 互补D .以上都有可能10.已知方程组42ax by ax by -=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则2a-3b 的值为( )A .4B .6C .-6D .-411.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A .AD >1B .AD <5C .1<AD <5D .2<AD <1012.下列方程中属于一元一次方程的是( ) A .x-y=3B .-x+1=1C .11x x+=D .2210x x -+=二、填空题13.从两副拿掉大、小王的扑克牌中,各抽取一张牌,这两张牌都是红桃的概率是 . 14.已知函数5y x =-,令 x=12、1、32、2、52、3、72、4、92、5,可得函数图象上的十个点,在这十个点中随机取两个点 P(x 1,y 1)、Q(x 2,y 2),则 P 、Q 两点在同一个反比例函数图象上的概率是 .15.小明托人从商店购买铅笔和钢笔,他喜欢的是红色或绿色铅笔和白色钢笔,而小明没有向捎带的人说明要购买什么颜色的,商店有红、蓝、黄、绿四种颜色的铅笔和黑、白两种颜色的钢笔. 那么那个人带回的铅笔和钢笔正好都是小明喜欢的颜色的概率是 .16.圆上各点到圆心的距离都等于 ;到圆心的距离等于半径的点都在 上. 17.如图,在等腰三角形ABC 中,AB=AC ,BC=2cm ,∠A=120°,将△ABC 绕着点A 旋转,当点B 落在点C 的位置时,点C 落在点D 处,则BD 的长为 cm .18.把直线y=-2x 一2向上平移3个单位的直线是 . 19.当12x =-,1y =时,分式1x yxy --= . 20.写出一个解为32p q =⎧⎨=⎩的二元一次方程组: . 21.从A 村到B 村有三种不同的路径,再从 B 村到C 村又有两种不同的路径.因此若从A 村经B 村去C 村,则A 村到C 村有 种可能路径.22.两个数的积是-1,其中一个数是135-,则另一个数是 .三、解答题23.如图,P 为抛物线4123432+-=x x y 上对称轴上右侧的一点,且点P 在x 轴上方,过点P 作PA 垂直x 轴与点A ,PB 垂直y 轴于点B ,得到矩形PAOB .若AP =1,求矩形PAOB 的面积.24.如图,在矩形 ABCD 中,AB =6 cm ,BC=12 cm ,点P 从点A 出发,沿 AB 边向点 B 以1cm/s 的速度移动,同时点 Q 从点B 出发沿 BC 边向点C 以2cm/s 的速度移动,回答下列 问题:(1)设运动后开始第 t(s)时,五边形 APQCD 的面积为 S(m 2),写出 S 与t 的函数关系式,并指出自变量 t 的取值范围;(2)t 为何值时S 最小?求出 S 的最小值.25.已知一次函数y=3x-2k 的图象与反比例函y=k-3x 的图象相交,其中一个交点的纵坐标为6,求一次函数的图象与x 轴、y 轴的交点坐标. (-103,0),(0,10).26.如图所示,把边长为2的正方形剪成四个全等的直角三角形,•请你用这四个直角三角形拼成符合下列要求的图形各一个,并标上必要的记号: (1)不是正方形的菱形; (2)不是正方形的矩形; (3)梯形;(4)不是矩形和菱形的平行四边形; (5)不是梯形和平行四边形的凸四边形.27.解下列方程:(1)28)32(72=-x (2)039922=--y y(3)x x 52122=+; (4))1(332+=+x x28.如图,∠AOB=60°,AO=10,点P 在OB 上,根据以下条件,分别求出OP 的长(或范围).(1)△AOP是等边三角形;(2)△AOP是直角三角形;(3)△AOP是钝角三角形.29.取出一张长方形的纸,沿一条对角线折叠,如图所示,问:重叠部分是一个什么三角形?并说明理由.30.如图所示,已知△ABE≌△ACE,D是BC的中点,你能说明△BDE≌△CDE吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.D5.C6.A7.A8.B9.C10.B11.C12.B二、填空题 13. 11614. 44515. 0.2516.半径,圆17.218.y=-2x+119.120.不唯一,如55p q p q +=⎧⎨-=⎩21.622.516三、解答题 23.∵PA ⊥x 轴,AP =1,∴点P 的纵坐标为1.当y =1时,23311424x x -+=,即2210x x --=,解得11x =,21x =.∵抛物线的对称轴为1x =,点P 在对称轴的右侧,∴1x =∴矩形PAOB 的面积为(1+个平方单位.24.(1) PBQ ABCD S S S ∆=-矩形=1126(6)22t t ⨯--⋅=2672t t -+, t 的取值范围为 0≤t<6.(2) 2672s t t =-+2(3)63t =-+,∴当 t=3 时,63s =最大值cm 2.25.26. 略 .27.⑴21,2521==x x ;⑵19,2121-==x x ;⑶235,23521+=-=x x ; ⑷ 3,021==x x .28.(1)OP=10 (2)OP=5或20 (3)0<OP<5或 OP>2029.等腰三角形,说明∠ABD=∠C ′DB=∠BDC30.略。
江苏省2020年中考数学模拟试题含答案
江苏省2020年中考数学模拟试题含答案一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的。
)1. 2017的相反数是……………………………………………………………………( ) A .2017B .-2017C .20171D .20171-2. 下列计算正确的是 ………………………………………………………………( ) A .a 2+a 2=a 4B .(a 2)3=a 5C .a +2=2aD .(ab )3=a 3b 33. 已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示0.0089为…………( ) A .8.9×103B .8.9×10-4C .8.9×10-3D .89×10-24.若分式1xx +有意义,则x 的取值范围是……………………………………………( ) A .x ≠-1B .x ≠1C .x =-1D .x =15.下列说法正确的是 ……………………………………………………………………( )A .若甲组数据的方差s 2甲=0.39,乙组数据的方差s 2乙=0.25,则甲组数据比乙组数据大;B .从1,2,3,4,5中随机抽取一个数,是偶数的可能性比较大;C .数据3,5,4,1,-2的中位数是3;D .若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖.6. 如图所示,△ABC 中,点D 、E 分别是AC 、BC 边上的点,且DE ∥AB ,CD :CA ﹦2:3,△ABC 的面积是18,则四边形ABED 的面积是…………………………( ) A .6 B .8C .9D .107. 如图,若锐角△ABC 内接于⊙O,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ; ③D C ∠>∠tan tan 中,正确的结论为……………………………………………………………………………………( ) A 、①② B 、②③ C 、①②③ D 、①③yxoC BA (第8题)(第6题)(第7题)8. 如图,平面直角坐标系中,△ABC 的顶点坐标分别是A (1,1),B (3,1),C (2,2),当直线b x y +=21与△ABC 有公共点时,b 的取值范围是………………………………( ) A.-1≤b ≤1 B. -21≤b ≤1 C. -21≤b ≤21 D. -1≤b ≤21 9.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是…………………………………………………( ) A . 5:4 B . 5:2C . :2D . :10. 如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P→D→Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是…………………………………………………………( )A .B .C .D .二、填空题(本大题共8小题,每小题2分,共计16分.) 11. 已知m n mn +=,则(1)(1)m n --= .12.一个零件的横截面是正六边形,这个六边形的内角和为 ︒.(第9题) (第10题)13. 某校女子排球队队员的年龄分布如下表:年龄(岁) 13 14 15 人数(人)474则该校女子排球队队员的平均年龄是______岁.14. 已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,3),则另一个交点坐标是 . 15. 已知一个圆锥的侧面积是π22cm ,它的侧面展开图是一个半圆,则这个圆锥的高为 cm .16. 如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD=56°,则∠B 的度数为 °. 17. 如图,在平行四边形ABCD 中,∠BCD=30°,BC=6,CD=63,M 是AD 边的中点,N 是 AB 边上的一动点,将△AMN 沿MN 所在直线 翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的 最小值是___________.18. 正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y =x2(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =x2(x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .三、解答题(本大题共10小题,共计84分.解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本小题满分8分)计算:(1)11272cos30232-⎛⎫-︒+-- ⎪⎝⎭(2)()()()111x x x x -+-+(第18题)MDAA'第17题20.(本小题满分8分)(1)解方程:0112=+-xx . (2)解不等式组21514(2)x x x +>⎧⎨+>-⎩,.21.(本小题满分10分)如图,在△ABC 中,AB =AC . (1)作△ABC 的角平分线AD ;(尺规作图,保留痕迹) (2)在AD 的延长线上任取一点E ,连接BE 、CE .①求证:△BDE ≌△CDE ;②当AE =2AD 时,四边形ABEC 是什么图形?请说明理由.22.(本小题满分7分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图(注:每组含最小值,不含最大值).甲同学计算出第二组的频率是0.06,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题: (1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少? (3)若该校九年级有800名学生,请估计该校九年级达到优秀的人数是多少.23.(本小题满分7分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用“画树状图”或“列表”等方法求两次都摸到红球的概率.学校_____________ 班级 姓名____________ 考试号__________ ………………………………………密……………………………封………………………………线……………………………………………24.(本题满分6分)如图,小明在大楼30 m 高(即PH =30 m)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i 为13,点P 、H 、B 、C 、A 在同一个平面上,点H 、B 、C 在同一条直线上,且PH ⊥HC . (1)山坡坡角(即∠ABC)的度数等于_______°; (2)求A 、B 两点间的距离.25.(本小题满分10分) 如图,某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制函数图像,其中日销售量y(kg)与销售时间x(天)之间的函数关系如图①所示,销售单价p(元/kg)与销售时间x (天)之间的函数关系如图②所示.(1)直接写出y 与x 之间的函数关系式; (2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24 kg 的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?26. (本题满分8分)小明遇到这样一个问题:“如图1,在边长为a (a >2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.”分析时,小明发现,分别延长QE 、MF 、NG 、PH 交FA 、GB 、HC 、ED 的延长线于点R 、S 、T 、W ,可得△RQF 、△SMG 、△TNH 、△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个正方形(无缝隙不重叠),则这个正方形的边长为 ; (2)求正方形MNPQ 的面积;(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF ,再分别过点D 、E 、F 作BC 、AC 、AB 的垂线,得到等边△RPQ .若S △RPQ=33,则AD 的长为 .27.(本小题满分10分)如图,在直角坐标系中,⊙M的圆心M在y轴上,⊙M与x轴交于点A、B,与y轴交于点C、D,过点A作⊙M的切线AP交y轴于点P,若⊙M的半径为5,点A的坐标为(﹣4,0),(1)求证:∠PAC=∠CAO;(2)求直线PA的解析式;(3)若点Q 为⊙M 上任意一点,连接OQ 、PQ ,问PQOQ的比值是否发生变化?若不变求出此值;若变化,说明变化规律.28. (本小题满分10分)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案一、选择题1—5:B DCAC ,6—10:DDBAA二、填空题11. 1 12. 720 13.14 14.(-1,-3) 15.3 16.34 17.3193- 18.(13,13-+)三、解答题19.(1)原式=)32(223233--+⨯- (2)=322333+-+- (3)=33 (4)(2)原式=221x x x -+- (2)=1+-x (4)20.(1) 0112=+-x x解:去分母,得0)1(2=-+x x (1)去括号,得022=-+x x移项、合并同类项,得2-=x (3)经检验,2-=x 是原方程的解 (4)(2)解不等式组21514(2)x x x +>⎧⎨+>-⎩,.解:由①得:x 2>4x >2 (1)由②得:1+x >84-xx 3->-9x <3 (3)∴不等式组的解集为2<x <3 (4)21.(1)作图略 (2)(2)①∵AB=AC, AD 平分∠BAC,∴BD=CD ,AD ⊥BC.∴∠BDE=∠CDE=90° . (4)在△BDE 和△CDE 中,∴△BDE ≌△CDE (6)②∵AE=2AD,∴AE=DE.∵BD=CD, ∴四边形ABEC 是平行四边形 (8)∵AD ⊥BC,∴平行四边形ABEC 是菱形 (10)22. (1)12÷0.06=200(人). (2)(2)第一、二、三、四组的总人数为:12÷4×(2+4+17+15)=114(人) (3)∴这次测试成绩的优秀率为:100200114200⨯-%=43%.........................5 (3)800×43%=344(人). (7)23. (1)21 ………………2 (2)列表如下:(树状图也可) 红1红2 白 黑 红1﹣﹣﹣ (红2,红1) (白,红1) (黑,红1) 红2(红1,红2) ﹣﹣﹣ (白,红2) (黑,红2) 白(红1,白) (红2,白) ﹣﹣﹣ (黑,白) 黑 (红1,黑) (红2,黑) (白,黑)﹣﹣﹣ (5)共有12种等可能的情况,其中两次都摸到红球有2种, (6)∴P(两次都摸到红球)==. (7)24.解:(1)30 (1)(2)在中,,∵,∴ (3)在中,,,∴是等腰直角三角形, (5)20(米).∴AB=PB=320米. (6)答:A、B两点间的距离为325.(1) (2)(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,∵点(10,10),(20,8)在p=mx+n的图象上,∴,解得:.∴. (4)当x=10时,p=10,y=2×10=20,销售金额为:10×20=200(元); (5)当x=15时,,y=2×15=30,销售金额为:9×30=270(元). 故第10天和第15天的销售金额分别为200元,270元 (6)(3)若日销售量不低于24千克,则y≥24.当0≤x≤15时,y=2x ,解不等式2x≥24,得x≥12;当15<x≤20时,y=﹣6x+120,解不等式﹣6x+120≥24,得x≤16.∴12≤x≤16。
苏教版2020年中考数学模拟卷(含答案解析)
2020年中考数学模拟试卷一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.下图几何体的主视图是()A.B.C.D.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα二.填空题(共8小题)9.=.10.分解因式:x3﹣x=.11.已知一个多边形的内角和为540°,则这个多边形是边形.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三.解答题(共10小题)17.计算或化简:(1)(2)18.解方程:+=1.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案与试题解析一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.4.下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.二.填空题(共8小题)9.= 2 .【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).11.已知一个多边形的内角和为540°,则这个多边形是五边形.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5.则这个多边形是五边形.故答案为:五.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为3<x≤9 .【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.则A的横坐标取值范围是3<x≤9.故答案为:3<x≤9.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15 .【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15三.解答题(共10小题)17.计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.18.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)1 32 (1,2)(3,2)4 (1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)1 2 3 41 ﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF =(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。
2020年江苏省九年级数学中考模拟试题及答案
A B C D2020江苏省九年级数学中考模拟试题(全卷共140分,考试时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的代号填在答题卷的相应位置上.) 1. 4的平方根是( )A. 2-B. 2C. 2±D. 16 2. 下列计算正确的是( )A .(a 3)2= a 6B .a 2+ a 4= 2a 2C .a 3a 2= a 6D .(3a )2= a 63. 下列说法中正确的是( ) A .“打开电视,正在播放《新闻联播》”是必然事件 B .一组数据的波动越大,方差越小 C .数据1,1,2,2,3的众数是3D .想了解某种饮料中含色素的情况,宜采用抽样调查4. 如果三角形的两边长分别为3和6,第三边长是奇数,则第三边长可以是( ) A .3 B .4 C .5 D .95. 下列图形中,既是轴对称图形,又是中心对称图形的是( )6. 将2.05 × 310-用小数表示为( )A .0.000205B .0.00205C .0.0205D .-0.002057. 平面直角坐标系中,若平移二次函数()() 673y x x =---的图像,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为 ( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位BACA ′B ′C ′(第15题)8.如图,在一张矩形纸片ABCD 中,AD = 4cm ,点E ,F 分别是CD 和AB 的中点,现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH ,若HG 延长线恰好经过点D ,则CD 的长为( ) A . 2cmB .23cmC .4 cmD . 43cm(第8题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 要使22x -有意义,则x 的取值范围是_▲______. 10.因式分解:2x 2– 8 = ▲ . 11. 若m 2-2m =1,则2017+2m 2-4m 的值是___▲___.(第12题)12.把一根直尺与一块直角三角板如图放置,若∠1 = 55°,则∠2 = ▲ °. 13. 在Rt △ABC 中,∠ACB = 90°,CD 是斜边AB 上的中线 , CD = 4,AC = 6,则CB = ▲ . 14.如果关于x 的方程x 2-6x + m = 0有两个相等的实数根,那么m = ▲ . 15.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到△A ′B ′C ′,连接A ′C ,则△A ′B ′C 的周长为▲ . 16.设函数2y x =与1y x =-的图像的交点坐标为(a ,b ),则11a b-的值为 ▲ . 17.用扇形纸片制作一个圆锥的侧面,要求圆锥的高是3cm ,底面周长是8πcm ,则扇形的半径为 ▲ cm .18.如图,已知Y ABCD 的顶点A 、C 分别在直线x =2和x =5上,O 是坐标原点,则对角线OB 长的最小值为 ▲ .AB C Oxy(第18题)x =2 x =5三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题10分)(1)计算:2017131(1)()273--+π-+. (2)化简:21111x x x ⎛⎫+÷ ⎪--⎝⎭20.(本题10分)(1)解方程:221x x -=; (2)解不等式组:1,2263 2.x x x x ⎧+≥⎪⎨⎪+>+⎩ 21.(本题7分)若中学生体质健康综合评定成绩为x 分,满分为100分.规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了▲ 名学生;a = ▲ %;C 级对应的圆心角为▲ 度. (2)补全条形统计图;(3)若该校共有2000名学生,请你估计该校D 级学生有多少名?22.(本题7分)2016年G20杭州峰会期间,某志愿者小组有五名翻译,其中一名只会翻译法语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是多少?(请用“画树状图”的方法给出分析过程,并求出结果)23.(本题8分)已知:如图,Y ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E . (1)求证:△AOD ≌ △EOC ;AEDO(第23题)B OA C D(2)连接AC ,DE ,当∠B =∠AEB = ▲ °时,四边形ACED 是正方形?请说明理由.24. (本题8分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成任务,共需支付运费4800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元. (1)求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?25. (本题8分)如图,梯子斜靠在与地面垂直(垂足为O )的墙上,当梯子位于AB 位置时,它与地面所成的角∠ ABO = 60°;当梯子底端向右滑动1 m (即BD = 1m )到达CD 位置时,它与地面所成的角∠ CDO = 51°18′,求梯子的长.(参考数据:sin 51°18′ ≈ 0.780,cos 51°18′ ≈ 0.625,tan 51°18′ ≈ 1.248)(第25题)26. (本题满分8分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接CO 并延长CO 交于⊙O 于点D ,连接AD .(1) 弦长AB 等于 ▲ (结果保留根号); (2) 当∠D =20°时,求∠BOD 的度数;(3) 当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.OAC(第26题)BD27.(本题10分)如图1,菱形ABCD 中,∠A =60º.点P 从A 出发,以2cm/s 的速度,沿边AB 、BC 、CD 匀速运动到D 终止;点Q 从A 与P 同时出发,沿边AD 匀速运动到D 终 止,设点P 运动的时间为t 秒.△APQ 的面积S (cm 2)与t (s )之间函数关系的图像由图2中的曲线段OE 与线段EF 、FG 给出.(1)求点Q 运动的速度;(2)求图2中线段FG 的函数关系式;(3)问:是否存在这样的t ,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分?若存在,求出这样的t 的值;若不存在,请说明理由.C(图1) (图2)MxyONMxyON28.(本题10分)已知抛物线l :y = ax 2+ bx + c (a ,b ,c 均不为0)的顶点为M ,与y 轴的交点为N ,我们称以N 为顶点,对称轴是y 轴且过点M 的抛物线为抛物线l 的衍生抛物线,直线MN 为抛物线l 的衍生直线.(1)如图,抛物线y = x 2-2x -3的衍生抛物线的解析式是 ,衍生直线的解析式是 ;(2)若一条抛物线的衍生抛物线和衍生直线分别是y =-2x 2+1和y =-2x +1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y = x 2-2x -3的顶点为M ,与y 轴交点为N ,将它的衍生直线MN 先绕点N 旋转到与x 轴平行,再沿y 轴向上平移1个单位得直线n ,P 是直线n 上的动点,是否存在点P ,使△POM 为直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(备用图)九年级数学试题答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的代号填在表格的相应位置上.)题号 1 2 3 4 5 6 7 8 选项 CADCCBCB二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.1x ≥ 10.)2)(2(2-+x x 11.2019 12.145° 13.27 14.9 15. 12 16.12-17. 5 18. 7三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题10分)(1)计算:20170131(1)()273--+π-+分 = 0. --------------- 5分 (2)化简:21111x x x ⎛⎫+÷ ⎪--⎝⎭ 原式=()()111x x x x x+-⋅- ----------------------4分 =1x + ------------5分20.(本题10分)(1)解方程:221x x-=;(2)解不等式组:1,2263 2.xxx x⎧+≥⎪⎨⎪+>+⎩解不等式21xx≥+,得2-≥x.………2分解不等式2362+>+xx,得4<x.……4分∴不等式组的解集42<≤-x.…5分21.(本题7分)(1)50,24%,72º(每个1分)……………………………3分(2)补全条形统计图如图.……………………………5分(3)∵4200016050⨯=∴若该校共有2000名学生,估计该校D级学生有160名.……………………7分22.(本题7分)将一名只会翻译法语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:…………………4分∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,……………5分∴该组能够翻译上述两种语言的概率为:147=2010.…………………7分23.(本题8分)(1)∵四边形ABCD是平行四边形,∴AD∥BC.·············1分102212x x-+=……. 2分2(1=2x-)……3分(x-1)= 2±……4分∴1212,12x x==-……5分(第23题)B OA C D∴∠D =∠OCE ,∠DAO =∠E .又∵OC =OD , ············· 2分 ∴△AOD ≌△EOC .············· 3分(2)当∠B =∠AEB =45°时,四边形ACED 是正方形. --------------- 4分∵△AOD ≌△EOC ,∴OA =OE .又∵OC =OD ,∴四边形ACED 是平行四边形. ······ 5分∵∠B =∠AEB =45°,∴AB =AE ,∠BAE =90°. ---------------6分 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∴∠COE =∠BAE ∴Y ACED 是菱形.--------------- 7分∵AB =A E ,AB =CD ,∴AE =CD .∴菱形ACED 是正方形. ------- 8分24.(本题8分)(1)设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需2x 趟,依题意得:121212x x+= --------------- 1分 解得:18x =--------------- 3分经检验18x =是原方程的解---------------4分 ∴236x =---------------5分答:甲车单独运完此堆垃圾需18趟,乙车需36趟.(2)设甲车每趟需运费a 元,则乙车每趟需运费(200)a -元,依题意得:1212(200)4800a a +-=--------------- 6分解得:300a =--------------- 7分 ∴200100a -=∴单独租用甲车的费用=300×18=5400(元);单独租用乙车的费用=100×36=3600(元) 5400>3600∴单独租用乙车合算. ------------------------- 8分 25.(本题8分)设梯子的长为x m .在Rt △ABO 中,co s∠ABO =OB AB, ∴OB =AB cos∠ABO =x cos 60°=12x .--------------2分在R t△CDO 中,cos∠CDO = OD CD,∴OD =CD cos∠CDO = x cos51°18′ ≈ 0.625x --------4分∵BD =OD ﹣OB ,∴0.625x ﹣12x = 1,-------------- 6分解得x = 8.--------------7分.ABEO故梯子的长是8米.--------------8分.26.(本题8分)(1)23.-------------------------1分 (2)∵∠BOD 是△BOC 的外角,∠BCO 是△ACD 的外角, ∴∠BOD =∠B +∠BCO ,∠BCO =∠A +∠D .∴∠BOD =∠B +∠A +∠D .------------------------- 2分又∵∠BOD =2∠A ,∠B =30°,∠D =20°,------------------------- 3分 ∴2∠A =∠B +∠A +∠D =∠A +50°,∴∠A =50°------------------------- 4分∴∠BOD =2∠A =100°.------------------------- 5分 (3)∵∠BCO =∠A +∠D ,∴∠BCO >∠A ,∠BCO >∠D .∴要使△DAC 与△BOC 相似,只能∠DCA =∠BCO =90°.---------- 6分 此时∠BOC =60°,∠BOD =120°,∴∠DAC =60°. ∴△DAC ∽△BOC .------------------------- 7分 ∵∠BCO =90°,即OC ⊥A B ,∴AC =12AB =3.------------------------- 8分 27.(本题10分)(1)∵点Q 始终在AD 上作匀速运动,∴它运动的速度可设为a cm/s . 当点P 在AB 上运动时,AP =2t ,过点P 作PH ⊥AD 于H ,则PH =AP ·sin60º=3t , 此时,S =12·at ·3t =32a t 2,S 是关于t 的二次函数.当点P 在BC 上运动时,P 到AD 的距离等于定长32AB ,此时,△APQ 的面积S 与t 之间的函数关系是一次函数由图2可知∶t =3时,S = 932,∴ 932 = 32a ·9,∴a =1,即Q 点运动速度为1 cm /s .------------------------------------------------2分(2)∴当点P 运动到B 点时,t =3,∴AB =6.---------------------------------------3分当点P 在BC 上运动到C 时,点Q 恰好运动到D 点;当点P 由C 运动到D 时,点Q 始终在D 点,∴图2中的图像FG 对应的是点Q 在D 点、点P 在CD 上运动时S 与t 之间的函数关系,此时,PD =18-2t ,------------------------------------------------------------4分点P 到AD 的距离PH =PD ·sin60º=3(9-t ),------------------------------ ---------- 5分OAB C D此时S =12×6×3(9-t ),∴FG 的函数关系式为S =3 3 (9―t ),即S =―33t +27 3 (6≤t <9). ------------------------------ ---------- --------- ---------- --6分(3)当点P 在AB 上运动时,PQ 将菱形ABCD 分成△APQ 和五边形PBCDQ ,此时,△APQ 的面积S =32t 2,根据题意,得32t 2=16S 菱形ABCD =16×6·6sin60º,解得t =6(秒).-- 8分 当点P 在BC 上运动时,PQ 将菱形ABCD 分成四边形AB PQ 和四边形PCDQ ,此时,有 S 四边形ABPQ =56S 菱形ABCD ,即 12(2t ―6+t )×6×32 = 56×6×6×32,解得t =163(秒)--9分 ∴存在t =6和t =163,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分.--------- 10分.28.(本题10分)(1)y =﹣x 2﹣3,y =﹣x ﹣3.------------------------------ ---------- 2分(2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点, ∴将y =﹣2x 2+1和y =﹣2x +1联立,得,22121y x y x ⎧=-+⎨=-+⎩ 解得0111x x y y ==⎧⎧⎨⎨==-⎩⎩或,------------------------------ ---------- 3分 ∵衍生抛物线y =﹣2x 2+1的顶点为(0,1),∴原抛物线的顶点为(1,﹣1).设原抛物线为y =a (x ﹣1)2﹣1,∵y=a (x ﹣1)2﹣1过(0,1),∴1=a (0﹣1)2﹣1,解得 a =2,------------------------------ ---------- 4分 ∴原抛物线为y =2x 2﹣4x +1.------------------------------ ---------5分(3)∵N (0,﹣3),∴MN 绕点N 旋转到与x 轴平行后,解析式为y =﹣3,∴再沿y 轴向上平移1个单位得的直线n 解析式为y =﹣2.------------------------------ ---- 6分设点P 坐标为(x ,﹣2),∵O (0,0),M (1,﹣4),∴OM 2=(x M ﹣x O )2+(y O ﹣y M )2=1+16=17,OP 2=(|x P ﹣x O |)2+(y O ﹣y P )2=x 2+4,MP 2=(|x P ﹣x M |)2+(y P ﹣y M )2=(x ﹣1)2+4=x 2﹣2x +5.①当OM 2=OP 2+MP 2时,有17=x 2+4+x 2﹣2x +5,解得x=1+172或x=1-172,即P(1+172,﹣2)或P(1-172,﹣2).--------- 7分②当OP2=OM2+MP2时,有x2+4=17+x2﹣2x+5,解得x=9,即P(9,﹣2).------------------------------ ---------- 8分③当MP2=OP2+OM2时,有x2﹣2x+5=x2+4+17,解得x=﹣8,即P(﹣8,﹣2).------------------------------ ---------- 9分综上所述,当P 1+17,﹣21-172)或(9,﹣2)或(﹣8,﹣2)时,△POM为直角三角形.------------------------------ ----------10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2020年中考数学模拟试题含答案(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效.一、选择题 (每题3分,共24分.)1. 1不是﹣1的A .相反数B .绝对值C .倒数D .平方数 2.若一个几何体的三视图如图,则这个几何体是A .圆柱B .三棱柱C .球D .圆锥3.体育委员把全班45名同学一周的体育锻炼总时间进行了统计,并绘制成如图所示的折线统计图,则全班45名同学一周的体育锻炼总时间的众数和中位数分别是 A .9,9 B .9,10 C .18,9 D .18,184.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n 个.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n 的值为 A .2 B .3 C .4 D .55. 若锐角α的正弦值为0.58,则A .α=30°B .α=45°C .30°<α<45°D .45°<α<60°6. 如图,△ABC 的顶点A 和C 分别在x 轴、y 轴的正半轴上,且AB ∥y 轴,点B (1,3),将△ABC 以点B 为旋转中心顺时针方向旋转90°得到△DBE ,恰好有一反比例函数ky x第2题图第6题图图象恰好过点D,则k的值为A.6 B.﹣6 C.9 D.﹣97. 若数轴上的A、B、C三点表示的实数分别为a、1、﹣1,则|a+1|表示A.A、B两点间的距离 B.A、C两点间的距离C.A、B两点到原点的距离之和 D.A、C两点到原点的距离之和8.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4二、填空题(每题3分,共30分.)9.若a、b、c、d满足34a cb d==,则a cb d++= ▲.10. 2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为▲.11.如图,四边形ABCD是⊙O的内接四边形,∠B=137°,则∠AOC的度数为▲°.12.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是▲.13.如图,已知射线OM.以O为圆心,以12cm为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则扇形AOB的面积为▲cm2.14.若点A(﹣1,4)、B(m,4)都在抛物线y=2(3)a x h-+上,则m的值为▲.15.如图,△ABC中,AB=12,AC=8,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为▲.第11题图第12题图第13题图第17题图第15题图ABCDl1l2l3l4第16题图ABCMDE16.如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l3、l 4、 l2上,若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为▲cm2.17. 如图,点M是Rt△ABC的斜边AB的中点,连接CM,作线段CM的垂直平分线,分别交边CB和CA的延长线于点D、E.若∠C=90°,AB=20,tan B=25,则DE= ▲.18.如图,点C在以AB为直径的半圆上,AB=45, AC=4,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE,DF交EC的延长线于点F,当点D从点A运动到点B时,线段EF扫过的面积是▲.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:232cos4512-︒+-();(2)因式分解:3223363a b a b ab-+-. 20.(本题满分8分)(1)先化简,再求值:222111x xx x--÷+-(),其中x=-2;(2)解不等式组:2233134x xx x-≤-⎧⎪+⎨⎪⎩()<并写出它的所有非负整数解.21.(本题满分8分)体育中考前,抽样调查了九年级学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.第18题图(1)补全频数分布直方图; (2)扇形统计图中的m = ▲ ;(3)若“1分钟跳绳”成绩大于或等于140次为优秀,则估计全市九年级5900名学生中“1分钟跳绳”成绩为优秀的大约有多少人?22.(本题满分8分)王老师、张老师、李老师(女)、姚老师四位数学老师报名参加了临城片青年教师优秀课选拔赛,将通过抽签来决定上课节次,抽签时女士优先.(1)先抽签的李老师最不希望上第一节课,却偏偏抽到上第一节课的概率是 ▲ ; (2)在李老师已经抽到上第一节课的条件下,求抽签结果中,王老师比姚老师先上课的概率.23.(本题满分10分)快走是大众常用的健身方式,手机中的“乐动力”可以计算行走的步数与消耗的相应能量.对比数据发现小明步行12 000步与小红步行9600步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多2步,求小红每消耗1千卡能量可以行走多少步?24.(本题满分10分)如图,已知矩形ABCD 的两条对角线相交于点O ,过点 A 作AG ⊥BD 分别交BD 、BC 于点G 、E . (1)求证:BE 2=EG •EA ;(2)连接CG ,若BE=CE ,求证:∠ECG =∠EAC .ABCODEG25.(本题满分10分)某商场经营某种品牌的玩具,进价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元(x >40),请你分别用x 的代数式来表示销售量y 件和销售该品牌玩具获得利润w 元,并把结果填写在表格中:销售单价(元) x销售量y (件) ▲ 销售玩具获得利润w (元)▲(2)在(1)问条件下,若商场获得了8000元销售利润,求该玩具销售单价x 应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于35元,且商场要完成不少于350件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?26.(本题满分10分)如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,交⊙O 于点P ,点B 是⊙O 上一点,连接BP 并延长,交直线l 于点C ,使得AB =AC . (1)求证:AB 是⊙O 的切线; (2)若PC =26,OA =4.①求⊙O 的半径; ②求线段PB 的长.27.(本题满分12分)问题:探究一次函数2y kx k =++(k 是不为0常数)图像的共性特点. 探究过程:小明尝试把1x =-代入时,发现可以消去k ,竟然求出了2y =.老师问:结合一次函数图像,这说明了什么?小组讨论得出:无论k 取何值,一次函数2y kx k =++的图像一定经过定点(-1,2).老师:如果一次函数的图像是经过某一个定点的直线,那么我们把像这样的一次函数的图像定义为“点旋转直线”.已知一次函数(3)(1)y k x k =++-的图像是“点旋转直线”.(1)一次函数(3)(1)y k x k =++-的图像经过的定点P 的坐标是 ▲ ; (2)已知一次函数(3)(1)y k x k =++-的图像与x 轴、y 轴分别相交于点A 、B .①若△OBP 的面积为3,求k 值; ②若△AOB 的面积为1,求k 值.28.(本题满分12分)如图,已知正方形ABCD 、AEFG 边长分别为2cm 、2cm ,将正方形ABCD 绕点A 旋转,连接BG 、DE 相交于点H .(1)判断线段BG 、DE 的数量关系与位置关系,并说明理由; (2)连接FH ,在正方形AB CD 绕点A 旋转过程中,①线段DH 的最大值是 ▲ ; ②求点H 经过路线的长度.ABCDEFG 备用图xyO数学答案及评分标准一、选择题(每小题3分,共24分)题号 1 2 3 4 5 6 7 8 得分DAACDDBC二、填空题(每小题3分,共30分) 9. 23.928210⨯; 10. 22-、4π-等; 11. -5; 12. 乙; 13. 25; 14. 4; 15. 1或2; 16. 12.5; 17. 20.20.60.8y x x =-++; 18. 3. 三、解答题(本大题共有10题,共96分).19.解:(1)原式=132-- ………………………3分=13-- ………………………1分(2)原式=326222--- ………………………3分=2-8 ………………………1分20.解:(1)原式=21x x+ ………………………3分 当x =-2时,原式=14- ………………………1分(2)1<x <4 ………………………3分2,3 ………………………1分21.解:画树状图或列表正确 ………………………5分14………………………3分 22.解:(1)顶点A 的坐标为(-3,5),k 的值为-15 ………………………4分(2)直线AD 的解析式为413y x =-+ ………………………4分23.解:(1)500; ………………………2分(2)表1填100,图1填30、20,图2填112; ………………………5分 (3)89.8﹪; ………………………3分24.解:(1)AM ∥CN ,理由略; ………………………5分(2)CB=CH ,理由略. ………………………5分25. 解:(1)设加工1件上衣、1条裤子所需的时间分别为x 、y 分钟,则: 654883+8464x y x y +=⎧⎨=⎩ 解得:4840x y =⎧⎨=⎩………………………3分(2)设加工1件上衣、1条裤子所得的计件工资分别为a 、b 元,则: 6544.83+840a b a b +=⎧⎨=⎩ 解得: 4.83.2a b =⎧⎨=⎩ ………………………2分∴每分钟加工上衣、裤子可得到的计件工资数分别为0.1元、0.08元 ……………1分 ∴加工1小时上衣、1小时裤子可得到的计件工资数分别为6元、4.8元……………1分 (3)设该月加工上衣m 小时,则加工裤子(200-m )小时∵200-m ≥m ∴m ≤100∵Y=6m +4.8(200-m )+1200=960+1.2 m +1200∴当m =100时,Y 有最大值2280 ………………………3分26.解:(1)BC ∥MD ,理由略; ………………………3分 (2)CD=16 ………………………3分(3)30° (4)分27.解:(1)∵B ′和B 关于CD 对称 ∴B ′C =BC∴l =OB ′+B ′C +OC =OB ′+BC +OC =x +OB =x +2+3 (3)分(2)∵B ′C ∥y 轴 ∴∠C B ′O =90° ∵△OAB 为等边三角形 ∴∠COB ′=60° ∴∠OCB ′=30° ∴OB ′=12CO ∴CO =2x CB 3x∵B ′C =BC ∴BC= B ′C=3x ∴BO = BC+ CO =2x+3x =2+3∴x =1 ∴点C 的坐标为(1,3) ………………………5分 (3)不能.理由:∵∠CB ′D =∠B =60° ∴若△CB ′D 为直角三角形 则∠B ′CD =90°或∠B ′DC =90°∵△DB ′C 与△DBC 关于CD 对称 ∴当∠B ′CD =90°时,∠BCD =∠B ′CD =90° ∴B ′、C 、B 三点共线 ∴点B ′与O 重合 与B ′在OA 上运动但不与O 、A重合矛盾∴∠B ′CD ≠90° 同理∠B ′DC =90°也不成立.∴△CB ′D 不能成为直角三角形. ………………………4分28. 解:(1)令y =0时,得到关于x 的一元二次方程2(1)10mx m x ---=∵221)4(1)1)m m m ∆=--⋅-=+((≥0 ∴这个二次函数的图像一定与x 轴有交点; (3)分(2)∵这个二次函数有最小值0 ∴221)4(1)1)m m m ∆=--⋅-=+((=0 ∴m =-1 ………………………3分或根据题意得:2244(1)(1)044ac b m m a m-⋅---== ∴m =-1 ………………………3分(3)根据题意得:关于x 的一元二次方程2(1)10mx m x ---=两根为1,-m∴1x m =-,21x =或11x =,2x m =- ∵两根均为正数 ∴m <0①若1x m =-,21x =,则-m >1 ∴m <-1 ∵m <0 ∴m <-1又∵231m-<< ∴-3<m <-2 符合m <-1 ②若11x =,2x m =-,则-m <1 ∴m >-1 ∵m <0 ∴-1<m <0 又∵123m -<< ∴12-<m <13- 符合-1<m <0∴-3<m <-1或12-<m<13- ………………………4分。