江苏省2020年中考数学模拟试题(含答案)
2020年江苏省常州市中考数学模拟考试试卷附解析
2020年江苏省常州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A .k >14-B .k >14-且0k ≠C .k <14-D .14k ≥-且0k ≠ 2. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( )A .0 个B .1 个C .2 个D .3 个3.在数轴上,表示数①-3;②2. 6;③35-;④0;⑤143;⑥223-;⑦- 1 的点中. 在原点右边的点有( )A .2 个B .3 个C .4 个D .5 个4.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.55.在NBA 的篮球队员中,有两位出色的中国球员,他们是姚明和易建联. 经调查,七(3)班44位学生中,喜欢姚明的有25人,喜欢易建联的有20人,两个都不喜欢的有8人,那么两个都喜欢的有( )人A . 9B . 11C . 13D . 8 6.化简(-2x )3·y 4÷12x 3y 2的结果是( ) A .61y 2 B .-61y 2 C .-32y 2 D .-32xy 2 7.如图是某镇中学七年级(3)班60名同学参加兴趣活动小组的扇形统计图.其中.S 1、S 2、S 3、S 4分别表示四个扇形的面积,如果S 1:S 2:S 3:S 4=4:3:2:1,那么参加数学活动小组的同学有( )A .24人B .18人C .12人D .6人8.从一 副扑克牌(除去大小王)中任取一张,抽到的可能性较小的是( )A .红桃B .6C .黑桃8D .梅花6或8 9.抛物线223y x x =--的顶点坐标是( )A .(-1,-4)B .(3,0)C .(2,-3)D .(1,-4) 10.在□ABCD 中∠A=50°,则∠A 的邻角∠D 的度数为( ) A .40° B .50° C .130°D .不能确定 11.如图,0是菱形ABCD 的对角线AC ,BD 的交点,E ,F 分别是 OA ,OC 的中点.下列结论:①ADE BOD S S ∆∆=;②四边形 BFDE 是中心对称图形;③△DEF 是轴对称图形;④∠ADE=∠EDO. 其中正确的结论有( )A .1个B .2个C .3个D . 4个12.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为( )A .22cmB .2cmC .22cmD .21cm 13.如图中,属于相似形的是( )A .①和②,④和⑥B .②和③,⑧和⑨C .④和⑤,⑦和⑨D .①和③,⑧和⑨ 14.二次函数2y ax bx c =++的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A .0ab <B .0bc <C .240b ac ->D .0a b c ++< A O B15.下列各种现象中不属于中心投影现象是()A.民间艺人表演的皮影戏B.在日常教学过程中教师所采用投影仪的图象展示C.人们周末去电影院所欣赏的精彩电影D.在皎洁的月光下低头看到的树影16.下列长度的三条线段,能组成三角形的是()A.1cm,2 cm,3cm B.2cm,3 cm,6 cmC.4cm,6 cm,8cm D.5cm,6 cm,12cm二、填空题17.已知数据2,3,4,5,6,x的平均数是4,则x的值是.18.某种药品的说明书贴有如下标签,则一次服用这种药品的剂量范围是 mg~ mg.19.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x米,则根据题意,可列出方程为 .20.如图,,已知OA=OB,OC=OD,D和BC相交于点E,则图中全等三角形有对.21.一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .三、解答题22.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(2)摸出的两个球上数字之和为多少时的概率最大?23.如图,在Rt △ABC 中,∠C= 90°,AC=5,BC=12,求B 的正弦、余弦和正切的值.24.写出下列假命题的一个反例:(1)有两个角是锐角的三角形是锐角三角形.(2)相等的角是对顶角.25.如图,1l 反映了某个体服装老板的销售收入与销售量之间的关系,2l 反映了该老板的销售成本与销售量的关系,根据图象回答下列问题:(1)分别求出1l 、2l 对应的函数解析式(不要求写出自变量的取值范围);(2)当销售量为30件时,销售收入为 元,销售成本为 元;(3)当销售量为60件时,销售收入为 元,销售成本为 元;(4)当销售量为 件时,销售收入等于销售成本;(5)当销售量 件时,该老板赢利.当销售量 件时.该老板亏本.26.如图,在△ABC 中,∠ABC= 50°,∠ACB=70°,延长 CB 至D 使 BD=BA ,延长 BC 至E 使 CE=CA. 连结 AD 、AE ,求△ADE 各内角的度数.27.星期六,小华同学到新华书店买了一套古典小说《水浒传》,共有上、中、下三册,回家后随手将三本书放在书架同一层上,问:(1)共有多少种不同的放法7 请画树状图分析;(2)求出按上、中、下顺序摆放的概率.28.A,B是平面上的两个固定点,它们之间的距离为5 cm,请你在平面上找一点C(1)要使点C到A,B两点的距离之和等于5 cm ,则C点在什么位置?(2)要使点C到A,B两点的距离之和大于5 cm ,则点C在什么位置?(3)能使点C到A,B两点的距离之和小于5 cm吗?为什么?29.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a-1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米.(1)用含a的代数式表示s;(2)已知a=11,求s的值.30.某商店将进货每个10元的商品按每个18元售出,每天可卖出60个,商店经理到市场上做了一翻调查发现,若将这种商品的售价(在每个18元的基础上)每个提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每个降低1元,则日销售就增加10个.为获得每日最大利润,此商品售价应定为多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.A5.A6.C7.B8.C9.D10.C11.C12.C13.D14.D15.D16.C二、填空题17.418.15,2019.312312126x x -=+20. 421.1120a +三、解答题22.解:(1)图略,摸出的两个球上数字之和为5的概率为16. (2)摸出的两个球上数字之和为6时概率最大. 23.5sin 13AC B AB ==,1213BC sB AB ∞==,5tan 12AC B BC == 24.(1)如直角三角形有两个锐角;(2)两直线平行,同位角相等(不唯一)25.(1)1l :100t x =,2l :751000t x =+;(2)3000,3250;(3)6000,5500;(4)40;(5)大于40,小于4026.∠D=25°,∠E=35°,∠DAF=120°27.(1)共有 6种不同摆放顺序 (2)1 628.(1)点C在线段AB上;(2)点C在线段AB外;(3)不能,因为两点之间线段最短(为5 cm) 29.解:(1)s=700(a-1)+(881a+2309)=1581a+1609.(2)a=11时,s=1581a+1609=1 581×11 +1 609=19000.30.设此商品每一个售价为x元,每日利润S最大.当x>18时,S=[60-5(x-18)](x-10)=-5(x-20)2+500;即商品提价,当x=20时,每日最大利润为500元.当x<18时,S=[60+10(18-x)](x-10)=-10(x-17)2+490;即商品降价,当x=17时,每日最大利润为490元.综上所述:此售价应定为每个20元,每日利润最大.。
2020年江苏省中考数学全优模拟试卷附解析
2020年江苏省中考数学全优模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.有一个 1 万人的小镇,随机调查 3000 人,其中 450 人看中央电视台的晚间新闻. 在该镇随便问一个,他(她)看中央电视台晚间新闻的概率是( )A.A .13000B .320C .0D .12. 现有一批产品共 10 件,其中正品 9件,次品1件,从中任取 2 件,取出的全是正品的概率为( )A .45B .89C .910D .1920 3.一个多边形的内角和与外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形 4.“a ≥b ”的反面是( ) A .a<b B .a ≠b C .a ≤b D .a=b 或a<b5.下列计算正确的是( ) A .164=±B .32221-=C .2464÷=D .2632=⋅ 6.若关于x 的方程652m x =-的根为 1,则m 等于( ) A . 1B . 8C .18D . 42 7.下列从左到右的变形,属于因式分解的是( ) A .2(3)(2)6x x x x +-=+-B .1()1ax ay a x y --=--C .2323824a b a b =⋅D .24(2)(2)x x x -=+-8.下列图案,能通过某基本图形旋转得到,但不能通过平移得到的是 ( )9.单项式223a b -的系数和次数分别是( ) A .23,2 B .23,3 C .23-,2 D .23-,3 10. 在 0.25,14-,13-,0,3,+4,-3 这几个数中,互为相反数的有( )A.0 对B.1 对C.2 对D. 3 对二、填空题11.在半径等于 15 cm 的⊙O中,有两条长分别为 18 cm和 24 cm 的平行弦,这两条弦之间的距离是 cm.12.两个相似三角形周长的比为2:3,则其对应的面积比为___________.13.如图,∠DCE是平行四边形ABCD的一个外角,且∠DCE=500,则∠A的度数是.14.如图,AC、BC被AB所截的同旁内角是.15.如图所示,将两块相同的直角三角板的直角顶点重合放在一起,若∠AOD=110°,则∠BOC= .请你用符号表示图中的全等三角形:.16.轴对称图形和轴对称的区别在于前者是对个图形而言的,而后者是对个图形而言的.17.某校共有教师100名,现按职称(高级、一级、其它职称)制成统计图,则其它职称的教师占%.三、解答题18.如图所示,甲站在墙前,乙在墙后,为了不破甲看到,请你在图中画出乙的活动区域. 19.如图,为3种不同的树木,在阳光下檠天树留下了它的影子.(1)请你画出同一时刻红果树和白杨树的影子.(用线段表示树影)(2)若要白杨树的影子落在檠天树的影子内,则檠天树至少有多高?(用线段表示檠天树的高度)20.试判断下列各命题的真假,对于真命题给出证明,对于假命题举反例说明.命题l:一组对边平行,另一组对边相等的四边形是平行四边形;命题2:一组对边平行,一组对角相等的四边形是平行四边形.21.解下列不等式组,并把臃在轴上表示出来.(1)122(1)1x xx x-≤⎧⎨++>⎩(2)132(2) 2165()75xxx x +⎧->-⎪⎪⎨⎪--≥-⎪⎩22.已知3(21)23x x b-=-的解不大于2,求b的取值范围.53b≥-23.把下列各式分解因式:(1)22a b ab -;(2)23296x y z xyz -; (3)24499a a -+; (4)2()669x y x y +--+;(5)224(2)25()x y x y +--;(6)2221xy x y --+ .24.若n 为整数,则22(21)(21)n n +--能被8整除吗?请说明理由.25.运用简便方法进行计算: (1)139910044⨯;(2)220039-;(3)2219.910.09-;(4)22007200820061-⨯+26.已知223x y +=,2()4x y +=,求xy 的值.1227.用代入法解下列方程组:(1) 65232x y x y -=⎧⎨=⎩;(2)0.30.440.20.92m n m n +=⎧⎨-=-⎩;28.将一张正方形的纸片对折,在这张重叠的纸上画上如图所示的图案,然后打开,猜想会是怎么样的图案.动手试试看.29.先化简,再求值:3332233211223223ab a b a b ab a b a b ab -+----+,其中 a=2,b=3.30.(1)被除数是334-,除数比被除数大112,商是多少?(2)被除数是113-的倒数,除数是23-,商是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.A5.D6.C7.D8.A9.D10.C二、填空题11.21 或312.4:913.130°14.∠A 和∠415.70°,△AOB ≌△COD 16.1,217.65三、解答题18.如图中斜线区.19.(1)黑实线表示;(2)红实线表示. 20.略 21.(1)1x ≥-,在数轴上表示略 (2)712x -≤<,在数轴上表示略 22.5b ≥-23. (1)()ab a b -;(2)23(32)xy xyz -;红果树 白杨树擎天树AB(3)22(3)3a -;(4)2(3)x y +-;(5)3(3)(7)x y x y ---;(6)(1)(1)x y x y +--+ 24.能被8整除 25. (1)799996;(2)4012000;(3)396.4 (4)2 26. 1227. (1)432x y ⎧=-⎪⎨⎪=-⎩;84m n =⎧⎨=⎩ 28. 略29. 3221122a b ab a b --,-12 30. (1)53 (2)98。
2020年江苏省南通市最新中考数学模拟试卷(含答案)
江苏省南通市2020年中考数学模拟试卷注意事项:1. 本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在试卷上无效.2. 答选择题必须用2B 铅笔,把答题卡上对应题号的选项字母涂满、涂黑.如需修改,要用绘图橡皮轻擦干净再选涂其他选项.答非选择题使用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其它位置答题一律无效.3. 作图必须使用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题:(本题有8小题,每小题3分,共24分) 1.-3的绝对值是( )A .-3B .3C .31D .31 2.计算 (m 3)2的正确结果为( )A .5mB .9mC .6mD .9m 3.如图所示,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( )A .021>-a b B .0>-b a C .02>+b a D .0>+b a4.如图,线段AC 与BD 相交于点O ,且OA =OC ,请添加一个条件,使△OAB ≌△OCD ,这个条件可以是( )A .∠A =∠DB .OB =ODC .∠B =∠CD .AB =DC 5.下列事件中,是确定事件的有( )①打开电视,正在播放广告;②三角形三个内角的和是180°;③两个负数的和是正数④某名牌产品一定是合格产品A .①②③④B .②③C .②④D .②6.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d > 7.如右图,△ABC 中,∠ABC =90°,AB =BC ,三角形的 顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间 的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( ) A .172 B .52 C .24 D .73 8.如图,在同一直角坐标系中,一次函数y =ax +c 和二次函数 y =ax 2+bx +c 的图象大致为( )ll 2 l 3ACBxy OA xyOBxyOC xyOD二、填空题:(本题有10小题,每小题3分,共30分)9.截止目前,某市总人口数约373万,此人口数用科学记数法可表示为 . 10.在实数范围内分解因式9y 4-4= . 11.如果1-x x有意义,那么x 的取值范围是 . 12.已知数据:2,1-,3,5,6,5,则这组数据的众数与极差的和是 . 13.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 .14.据《新华日报》2012年1月22日报道:“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1 726.13元钱,那么他购买这台冰箱节省了 元钱.15.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11,按此方式,将二进制数11010换算成十进制数为 .16.已知点A 是反比例函数3y x=-图象上的一点.若AB 垂直于y 轴,垂足为B ,则AOB △的面积= .17.在平面直角坐标系中,ABC △顶点A 的坐标为(23),,若以原点O 为位似中心,画AEC △的位似图形A B C '''△,使ABC △与A B C '''△的相似比等于12,则点A '的坐标为 .18.如右图,在△ABC 中,∠ACB =90︒,AC =2,BC =1,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴运动时,点C 随之在y 轴上运动, 在运动过程中,点B 到原点O 的最大距离为 .三、解答题:(本大题共有10小题,共96分)19.(本题满分8分)(1)计算:12011|32|5(2009π)2-⎛⎫-++-⨯- ⎪⎝⎭.(1)班87654309(2)班(1)班76543309(1)班 AB(2) 解不等式组205121123x x x ->⎧⎪+-⎨+⎪⎩,≥,20.(本题满分8分)先化简,再求值)252(4239--+÷--a a a a , 其中a 满足062=--a a .21.(本题满分10分)如图,线段AB 的端点在边长为1的小正方形网格的格点上,现将线段AB 绕点A 按逆时针方向旋转90°得到线段AC .⑴请你在所给的网格中画出线段AC 及点B 经过的路径;⑵若将此网格放在一平面直角坐标系中,已知点A 的坐标为 (1,3),点B 的坐标为(-2, -1),则点C 的坐标为 ; ⑶线段AB 在旋转到线段AC 的过程中,线段AB 扫过的区域的面积为 ;⑷若有一张与⑶中所说的区域形状相同的纸片, 将它围成一个几何体的侧面,则该几何体底面圆 的半径长为 .22. (本题满分10分) 王老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班和(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况: (1)利用图中提供的信息,补全下表:(2)若把24分以上(含24分)记为”优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察图中数据分布情况,你认为哪个班的学生纠错的得分情况比较整齐一些,并 说明原因.23. (本题满分10分) 如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 的坐标为(4,0),顶点G 的坐标为(0,2),将矩形OEFG 绕点O 逆时针旋转,使点F 落在y 轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A . (1)判断△OGA 和△OMN 是否相似,并说明理由; (2)求图象经过点A 的反比例函数的解析式; (3)设(2)中的反比例函数图象交EF 于点B , 求直线AB 的解析式.24.(本题满分10分)甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表). 甲超市:乙超市:(1)用树状图表示得到一次摸奖机会时摸出彩球的所有情况; (2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.25.(本题满分10分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度12i :且O,A,B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)26.(本题满分10分) (1)如图1,OA、OB是⊙O的半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连结AD交DC于点E.则CD=CE吗?如成立,试说明理由。
2020年江苏省中考数学摸底测试试卷附解析
2020年江苏省中考数学摸底测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )A .B .C .D .2.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40 个,除颜色外其它都完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在 20和 40,则 口袋中白色球的个数很可能是( ) A .6 个 B . 16 个 C . 18 个 D . 24 个 3.如图,点 A .B 、C 是⊙O 上的点,∠BOC=120°,则∠A=( )A .120°B .80°C . 60D . 50°4. 实数a ,b 在数轴上的位置如图所示,则下列代数式中,无意义的是( )A a b +B a b -C b a -D 2()b a -5.下列事件中,不可能发生的是( ) A .异号两数相加和为正数B .从 1、3、5、7、.9中任取一个数是偶数C .任意抛掷一只纸杯,杯口朝上D .任意投掷一枚正方体骰子,朝上一面的数字小于76.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ) A . B . C . D .7.如图所示,已知∠A=∠D ,∠l=∠2,那么,要得到△ABC ≌△DEF ,还应给出的条件是 ( )A .∠E=∠B B .ED=BC C .AB=EFD .AF=CD8.31254--可以读作( )A .35减负2减负14B .正35,正 2 与正14的和C .正35,负 2与负14的差D .35减 2减149.下列生活现象中,属于相似变换的是( ) A .抽屉的拉开 B .汽车刮雨器的运动C .荡秋千D .投影片的文字经投影变换到屏幕10.抛物线2(3)(1)y x x =+-的对称轴是( ) A . 直线x=1B .直线x=-1C . 直线12x =D . 直线12x =-二、填空题11.已知圆的两弦 AB 、CD 的长是方程 x 2-42x+432=0的两根,且AB ∥CD ,又知两弦之间的距离为3,则半径长为 .12.ky x=的图象的一部分如图所示,其中点A 是图象上的点,AB ⊥x 轴,△AQB 的面积2,则k 为 .13.如图,在三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为________.14.若分式13a -无意义,242b b --的值为 0,则ab = .15.如果分式211x x -+的值为0,则x= . 16.6x 2÷(-2x )= .17.把12()a -写成同底数幂的乘积的形式(写出一种即可): 如:12()a -= × = × × .18.计算:(1)(5)(2)-⨯-= ; (2)136()3÷-= .19.若-59600000用科学记数法表示为a ×10n ,则a= ,n= .三、解答题20.如图,根据要求完成下列作图:(1)在图①中用线段表示出小明行至 B 处时,他在路灯A 下的影子. (2)在图②中根据小明在路灯A 下的影子,判断其身高并用线段表示.(3)在图③中,若路灯、小明及影子、木棍及影子的关系如图,请判断这是白天还是夜晚,为什么?21.已知三角形三边 a 、b 、c 满足01115a b b c c al +++==,求:a : b : c .22.AB 是半圆0的直径,C 、D 是半圆的三等分点,半圆的半径为R. (1)CD 与 AB 平行吗?为什么? (2)求阴影部分的面积.23.已知弧 AB ,如图所示,用直尺和圆规求作这条弦的四等分点.24.写出下列命题的逆命题,并判断真假:(1)如果一个三角形是直角三角形,那么它的两个锐角互余;(2)在角的内部到一个角的两边距离相等的点在这个角的平分线上;(3)等腰三角形的两个底角相等;(4)正多边形的各边相等.25.阅读理解题:(1)如图,在△ABC中,AD是BC边上的中线,且AD=12 BC.求证:∠BAC=90°.(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.26.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A的概率.27.如图,用恰当的方法比较长方形ABCD中AB、AC、AD的长,然后用“<”号连结这三条线段.28.找出下列解方程过程中的错误之处,并予以纠正.解方程:1.2031030.2x x-⋅=+⋅解:101231032x x-=+…第一步2010369x x=+-…第二步2091036x x-=+…第三步1146x=…第四步1146x=…第五步29.2007年4月,国民体质监测中心等机构开展了青少年形体测评,专家组随机抽查了某市若干名初中学生的坐姿、站姿、走姿情况. 专家将测评数据做了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并根据统计结果绘制了如下两幅不完整的统计图. 请你根据,图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了名学生,如果全市有 10万名初中生,那么全市初中生中,三姿良好的学生约有名;(3)根据统计结果,请你简单谈谈自己的看法.30.计算: (用简便方法) (1) (+1.3) +(-0.8)+2.7+(-0. 6);(2)13( 2.25)(3)(3)(0.125)84-+-+-++(3)4( 6.74)(1)( 1.74)( 1.8)5++++-+-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.C5.B6.A7.D8.D9.D10.B二、填空题1512.一413.60°14.-615.116.-3x17.不唯一,如:2()a -,10()a -;4()a -,6()a -,2()a -18.10,-10819.-5. 96,7三、解答题 20.(1)BC 为小明在路灯A 下的影子. (2)BD 为小明的身高.(3)因为光线互相平行,所以是白天.21.设01115a b b c c ak l +++===,则101115a b k b c k c a k +=⎧⎪+=⎨⎪+=⎩,738a k b k c k =⎧⎪=⎨⎪=⎩∴a :b :c=7k :3k :8k=7:3;8.(1)由题意知⌒AC =⌒CD =⌒DB ,∴∠CDA=∠DAS, ∴CD ∥AB. (2)由题意知⌒AC 的度数为 60°,∴∠AOC=∠COD=∠DOB=60°,223,64ADCOCD R S s R π∆==扇形,∴22233()6464R S R R ππ=+=+阴影 23.如图所示.24.(1)若一个三角形的两锐角互余,则这个三角形是直角三角形.是真命题;(2)角平分线上的点到角两边的距离相等.是真命题;(3)有两个角相等的三角形是等腰三角形.是真命题;(4)各边都相等的多边形是正多边形.是假命题25.(1)略;(2)若三角形一边上的中线等于这边的一半,则这个三角形是直角三角形26.解:(1)用列表法或树状图表示所有可能结果如下: ① 列表法 ②树状图(2)P (恰好选中医生甲和护士A )=1627.AD<AB<AC28.共有四步错误,第一步中10应为l ;第二步漏乘了不含分母的项10;第三步移项没有变号;第五步中除数和被除数关系颠倒.正确解为4229x =29.(1)扇形图中填:三姿良好12%. 条形统计图如图所示:A B 甲 (甲,A) (甲,B) 乙 (乙,A) (乙,B) 丙(丙,A)(丙,B)护 士医 生(2) 500, 12000;(3)答案不唯一,如:中学生应该坚持锻炼身体,努力纠正坐、立、走中的不良习惯,促进身心健康发育30.(1)2.6 (2)-9 (3)5。
2020年江苏省苏州市中考数学全真模拟试卷附解析_1
2020年江苏省苏州市中考数学全真模拟试卷 _1 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,ABCD 为正方形,边长为a ,以点B 为圆心,以BA 为半径画弧,则阴影部分的面积是( )A . (1-л)a 2B . l-лC .244a π-D .44π- 2.如图,半圆 0 的直径AB 与半圆围成一个区域,要使一只蚂蚁 (看成点 C )在这个区域内,则∠ACB 应该是( )A .小于90B .大于 90°C . 等于120°D . 大于120°3.如图,已知点A 是一次函数y=x 的图象与反比例函数2y x=的图象在第一象限内的交点,点B 在x 轴的负半轴上,且 OA= OB ,那么△AOB 的面积为( )A .2B 2C 2D .224.方程216x =的解是( )A .4x =B . 4x =-C . 14x =,24x =-D . 11x =,216x =5.已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .90D =∠B .AB CD =C .AD BC = D .BC CD = 6.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需要知道相应样本的( )A .平均数B .最大值C .众数D .频率分布 7.如图所示,下列条件中,不能判定AB ∥CD 的是( ) A .∠PEB=∠EFD B .∠AEG=∠DFH C .∠BEF+∠EFD=180° D .∠AEF=∠EFD8. 已知两条线段的长分别为 3,4,那么能与它们组成直角三角形的第三条线段的长为( )A . 5B .7C .5D .5或79.一个几何体的三视图如下图所示,则这个几何体应该是 ( )A .B .C .D .10.已知a +b =2,则224a b b -+的值是( )A .2B .3C .4D .611.温度上升了3-℃后,又下降2℃,这一过程的温度变化是( ) A .上升1℃ B .上升5℃ C .下降1℃ D .下降5℃12.以x=-3为解的方程是 ( )A .3x-7=2B .5x-2=-xC .6x+8=-26D .x+7=4x+16 13.已知样本数据:21,23,25,27,28,25,24,30,29,24,22,24,26,26,29,26,28,25,27,23.在列频率分布表时,若取组距为2,则落在24.5~26.5这组的频率是 ( )A .O .3B .0.4C .0.5D .0.6二、填空题14.晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为 米.15. 掷一枚质地均匀的小正方体,它的六个面上分别标有数宇 1、2、3、4、5、6,则朝上一面的数字是小于 6 的概率是 .16.某工厂生产了一批零件共1600件,从中任意抽取了80件进行检查,其中合格产品78件,其余不合格,则可估计这批零件中有 件不合格.17.如图,∠3=∠ 时,AF ∥BE ,理由是 .∠2=∠ 时,FC ∥DE ,理由是 .18.将一图形沿着正北方向平移5cm后,再沿着正西方向平移5cm,这时图形在原来位置的向上.19.从 1,2,3,4,5 中任选两个数,这两个数的和恰好等于7 有种可能.20.a、b、c三个数在数轴上的位置如图所示,化简||||++++-= .a cb ac a21.将两块直角三角板的直角顶点重合(如图),若∠AOD = 110°,则∠COB= .三、解答题22.如图,画出下列立体图形的俯视图.23.春秋旅行社为吸引市民组团去某风景区旅游,推出了如下收费标准:某单位组织员工去该风景区旅游, 共支付给春秋旅行社旅游费用27000元:,请问该单位这次共有多少员工去该风景区旅游?24.如图,在四边形ABCD中,AB∥CD,且∠A=∠C,求证:四边形ABCD是平行四边形.(用两种方法证明)25.下面几个立体图形,请将它们加以分类.26.如图4,AB∥EF,AB∥CD. 若∠EFB =l20°,∠C =70°,求∠FBC的度数.27.如图,直线OA,OB表示两条相互交叉的公路.点M,N表示两个蔬菜基地.现要建立一个蔬菜批发市场,要求它到两个基地的距离相等,并且到公路OA,OB的距离相等,请你作图说明此批发市场应建在什么地方?AMONB28.如图所示的轴对称图形的对称轴都不止一条,请把它们都画出来.29.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动.如果要求新池塘成平行四边形的形状.请问李大伯的愿望能否实现?若能,请画出你的设计;若不能,请说明理由.30.公司推销某种产品,付给推销员每月的工资有两种方案:方案一:不论推销多少都有 500 元的底薪,每推销一件产品加付推销费 2 元.方案二:不付底薪,每推销一件产品,付给推销费 5元.若小王一个月推销产品 200 件,则小王会选择哪一种工资方案?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.C5.D6.D7.B8.D9.D10.C11.D12.D13.A二、填空题14.6.615.516.64017.F;内错角相等,两直线平行;D;同位角相等,两直线平行18.西北19.220.+-21.2a b c70°三、解答题22.23.30人24.略25.棱锥:①③,直棱柱:②④,圆柱体:⑤26.∵AB∥EF,∠EFB=120°,∴∠ABF=180°-120°=60°∵AB∥CD.∠C=70°,∴∠A8C=∠C=70°.∴∠FBC∠ABC-∠ABF=70°-60°=10°27.的平分线OC和线段MN的垂直平分线DE,则射线OC与直线DE的交分别作AOB点P即为批发市场应建的地方.28.略29.如图所示:CB30.小王应选择方案二。
【2020年】江苏省中考数学模拟试卷(含答案)
2020年江苏省中考数学模拟试卷含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣22.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a23.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>34.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.57.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πc m29.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为.12.(3分)分解因式:a3﹣2a2b+ab2=.13.(3分)已知正n边形的每一个内角为135°,则n=.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.20.(8分)解不等式组,并写出x的所有整数解.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m 的取值范围;(3)若∠ABM=45°时,求m的值.28.(14分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP 的长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣2【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.【点评】此题考查算术平方根问题,关键是根据4的算术平方根是2解答.2.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a2【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法逐一计算可得.【解答】解:A、a2•a3=a5,此选项正确;B、(a2)3=a6,此选项错误;C、a3、a2不能合并,此选项错误;D、a8÷a4=a4,此选项错误;故选:A.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>3【分析】根据二次根式有意义的条件;列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:A.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:,解得,,∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,故选:B.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.【解答】解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故选:C.【点评】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【分析】设该队获胜x场,则负了(6﹣x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积、底面积后即可求得其表面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为1×π×2=2π,底面积为π×(1)2=π.表面积为2π+π=3π;故选:B.【点评】此题考查由三视图判定几何体,本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.9.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.【分析】首先过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理求得AF,根据平行线分线段成比例定理求得OH,由相似三角形的性质求得AM与AF的长,根据相似三角形的性质,求得AN的长,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2,∵BF=FC,BC=AD=2,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==2,∴AN=2AF=,∴MN=AN﹣AM=﹣=.故选:C.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.13.(3分)已知正n边形的每一个内角为135°,则n=8.【分析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多边形的边数.【解答】解:多边形的外角是:180﹣135=45°,∴n==8.【点评】任何任何多边形的外角和是360°,不随边数的变化而变化.根据这个性质把多边形的角的计算转化为外角的计算,可以使计算简化.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160.【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.【点评】本题考查理解题意的能力,本题是个增长率问题,发生了两次变化,先找出一月份的产量和三月份的产量,从而可列出方程.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为2.【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;【解答】解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是2+.【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【解答】解:连接OA,AC′,如图,∵点O是BC中点,∴OC=BC=2,在Rt△AOC中,OA==,∵△ABC绕点O旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),∴AC′的最大值为2+,即在旋转过程中点A、C′两点间的最大距离是2+.故答案为2+.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是2<b<.【分析】根据y2大于y3,说明x=3时,﹣x+b<,再根据y1大于y2,说明直线l和抛物线有两个交点,即可得出结论.【解答】解:如图,当x=3时,y2=,y3=﹣3+b,∵y3<y2,∴﹣3+b<,∴b<,∵y1>y2,∴直线l:y=﹣x+b①与双曲线y=②有两个交点,联立①②化简得,x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b<﹣2(舍)或b>2,∴2<b<,故答案为:2<b<.【点评】此题主要考查了反比例函数和一次函数的交点问题,一元二次方程根的判别式,熟练掌握一次函数和双曲线的性质是解本题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣+1+3+=6;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.【分析】(1)由基本了解的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)由(1)可求得了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60人,扇形统计图中“了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90.(2)“了解很少”的人数为60﹣(15+30+5)=10人,补全图形如下:(3)估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数为1200×=900人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.【分析】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)列表得出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.【解答】解:(1)因为共有4张牌,其中点数是偶数的有3张,所以这张牌的点数是偶数的概率是;(2)列表如下:23482(2,3)(2,4)(2,8)3(3,2)(3,4)(3,8)4(4,2)(4,3)(4,8)8(8,2)(8,3)(8,4)从上面的表格可以看出,总共有12种结果,每种结果出现的可能性相同,其中恰好两张牌的点数都是偶数有6种,所以这两张牌的点数都是偶数的概率为=.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)【分析】作BH⊥AC于H,根据正弦的定义求出BH,根据余弦的定义计算即可.【解答】解:作BH⊥AC于H,由题意得,∠CBH=45°,∠BAH=60°,在Rt△BAH中,BH=AB×sin∠BAH=6,在Rt△BCH中,∠CBH=45°,∴BC==6(千米),答:B,C两地的距离为6千米.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握锐角三角函数的定义、正确标出方向角是解题的关键.24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.【分析】(1)欲证明AB=CF,只要证明△AEB≌△FEC即可;(2)想办法证明AC=BD,BF=AC即可解决问题;【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.【点评】本题考查平行四边形的判定和性质、矩形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【点评】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.。
江苏2020届中考数学一模试题(含答案解析)
江苏2020届中考数学一模试题一、单选题1.截至今年一季度末,江苏省企业养老保险参保人数达850万,则参保人数用科学记数法表示为 A .8.50×106 B .8.50×105 C .0.850×106 D .8.50×1072.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为( ) A .83,74x y x y =+⎧⎨=-⎩ B .83,74x y x y =-⎧⎨=+⎩ C .84,73x y x y =+⎧⎨=-⎩ D .84,73x y x y =-⎧⎨=+⎩3.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分AB ,垂足为点E ,交AC 于D 点,连接BD ,若AD =4,则DC 的值为( )A .1B .1.5C .2D .34.已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )A .B .C .D .5.如图,某同学用圆规BOA 画一个半径为4cm 的圆,测得此时90O ∠=︒,为了画一个半径更大的同心圆,固定A 端不动,将B 端向左移至B '处,此时测得120O '∠=︒,则BB '的长为( )A .4B 2-C .D .26.如图,OABC 是边长为1的正方形,OC 与x 轴正半轴的夹角为15°,点B 在抛物线y=ax 2的图象上,则a 的值为( )A .23-B .3-C .2-D .12- 7.如图,已知A 为反比例函数k y x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( )A .2B .-2C .4D .-48.将等边三角形ABC 放置在如图的平面直角坐标系中,已知其边长为2,现将该三角形绕点C 按顺时针方向旋转90°,则旋转后点A 的对应点A’的坐标为( )A .(1+,1)B .(﹣1,1-)C .(﹣1,-1)D .(2,)9.如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD =D .AG 平分CAD ∠ 10.若整数a 既使关于x 的分式方程13x x --﹣2(3)a x x --=1的解为非负数,又使不等式组3024385x a x x+⎧+>⎪⎨⎪-+>⎩有解,且至多有5个整数解,则满足条件的a 的和为( ) A .﹣5 B .﹣3 C .3 D .211.若:3:4a b =,且14a b +=,则2a b -的值是( )A .4B .2C .20D .1412.已知点P 在x 轴上,且点P 到y 轴的距离为1,则点P 的坐标为( )A .(0,1)B .(1,0)C .(0,1)或(0,-1)D .(1,0)或(-1,0)二、填空题13.若3x =+3y =,则222x xy y ++=___. 14.李叔叔骑车从家到工厂,通常要40分钟,如果他骑车速度比原来每小时增加2千米,那么可节约10分钟,李叔叔的家离工厂有_______千米.15.如图,已知∠AOB =30°,在射线OA 上取点O 1,以点O 1为圆心的圆与OB 相切;在射线O 1A上取点O 2,以点O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以点O 3为圆心,O 3O 2为半径的圆与OB 相切……,若⊙O 1的半径为1,则⊙O n 的半径是______________.16.如图,在4×4的正方形网格图中,以格点为圆心各画四条圆弧,则这四条圆弧所围成的阴影部分面积为_____.17.如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A 作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,111n n n n A B C A ---中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为_____.三、解答题18.进入夏季,为了解某品牌电风扇销售量的情况,厂家对某商场5月份该品牌甲、乙、丙三种型号的电风扇销售量进行统计,绘制如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该商场5月份售出这种品牌的电风扇共多少台?(2)补全条形统计图.(3)若该商场计划订购这三种型号的电风扇共2000台,根据5月份销售量的情况,求该商场应订购丙种型号电风扇多少台比较合理?19.如图,已知E ,F 分别是▱ABCD 的边BC 、AD 上的点,且BE=DF求证:四边形AECF 是平行四边形.20.某特产店销售核桃,进价为每千克40元,按每千克60元出售,平均每天可售100千克,后经市场调查发现,单价每降低2元,则平均每天销售可增加20千克,若该专卖店销售该核桃要想平均每天获利2240元,且在平均每天获利不变的情况下,为尽可能让利于顾客,求每千克核桃应降价多少元?21.设用符号〈a ,b 〉表示a ,b 两数中较小的数,用符号[a ,b]表示a ,b 两数中较大的数,试求下列各式的值.(1)〈-5,-0.5〉+[-4,2]; (2)〈1,-3〉+[-5,〈-2,-7〉].22.已知:2(1)3a b a x y -+=是关于y x 、二元一次方程,点A 在坐标平面内的坐标为a b (,) 点B (3,2)将线段AB 平移至A’B’的位置,点B 的对应点'B (-1,3).求点A’的坐标23.先化简,再求值:,其中.24.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,AD 平分∠BAC ,BD=CD(1)求证:BE=CF ;(2)已知AC=10,DE=4,BE=2,求△AEC 的面积25.如图,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x 、y 轴交于,A B 两点,正比例函数的图像2l 与1l 交于点(),3C m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S ∆∆-的值;(3)在坐标轴上找一点P ,使以OC 为腰的OCP ∆为等腰三角形,请直接写出点P 的坐标. 26.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线2x =,点A 的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P 为抛物线上一点(不与点A 重合),联结PC .当PCB ACB ∠=∠时,求点P 的坐标; (3)在(2)的条件下,将抛物线沿平行于y 轴的方向向下平移,平移后的抛物线的顶点为点D ,点P 的对应点为点Q ,当OD DQ ⊥时,求抛物线平移的距离.参考答案1.A解:850万=8500000=8.5×106,故选A .2.A根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.3.C由线段垂直平分线的性质定理可知4BD AD ==,30ABD A ︒∠=∠=,易知30CBD ︒∠=,根据直角三角形中30︒角所对的直角边是斜边的一半可得122DC BD ==. 解:在Rt △ABC 中,∠A =30° 60ABC ︒∴∠=DE 垂直平分AB ,点D 在AB 上4BD AD ∴==,30ABD A ︒∠=∠=30CBD ABC ABD ︒∴∠=∠-∠=122DC BD ∴== 故选:C本题考查了线段垂直平分线的性质定理,同时涉及到了直角三角形30︒角这一性质,灵活利用这两个性质求线段长是解题的关键.4.C根据绝对值的性质可得a ≤0, b ≥0,由a b >可得a 到原点的距离大于b 到原点的距离,进而可得答案. 解:,a a b b =-=,∴a ≤0, b ≥0∴B, D 错误;a b >∴a到原点的距离大于b到原点的距离.C是正确的, A是错误的,故选C本题主要考查数轴上的点与绝对值.5.A△ABO是等腰直角三角形,利用三角函数即可求得OA的长,过O'作O'D⊥AB于点D,在直角△AO'D 中利用三角函数求得AD的长,则AB'=2AD,然后根据BB'=AB'-AB即可求解.解:在等腰直角△OAB中,AB=4,则OA=cm,AO'=,∠AO'D=12×120°=60°,过O'作O'D⊥AB于点D.则AD=AO'•sin60°=22×3=6.则AB'=2AD=26,故BB'=AB'-AB=26-4.故选:A.本题考查了三角函数的基本概念,主要是三角函数的概念及运算,关键把实际问题转化为数学问题加以计算.6.B连接OB,根据正方形的对角线平分一组对角线可得∠BOC=45°,过点B作BD⊥x轴于D,然后求出∠BOD=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得12BD OB=,再利用勾股定理列式求出OD,从而得到点B的坐标,再把点B的坐标代入抛物线解析式求解即可.如图,连接OB,∵四边形OABC 是边长为1的正方形,∴451BOC OB ∠===, 过点B 作BD ⊥x 轴于D ,∵OC 与x 轴正半轴的夹角为15,∴451530BOD ∠=-=,∴122BD OB ==OD ==∴点B 的坐标为⎝⎭,∵点B 在抛物线y =ax 2(a <0)的图象上,∴2a =⎝⎭解得a =3-故选B.考查正方形的性质,勾股定理,二次函数图象上点的坐标特征等,求出点B 的坐标是解题的关键. 7.D设A 点坐标为(m ,n),则有AB=-m ,OB=n ,继而根据三角形的面积公式以及反比例函数图象上点的坐标特征即可求得答案. 设A 点坐标为(m ,n),则有AB=-m ,OB=n ,。
2020年江苏省九年级中考数学模拟试卷(九)含答案
江苏省九年级中考数学模拟试卷(九)(满分:130分考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)×5的结果是( )A.10 B.5 C.-5 D.-102.下列运算正确的是( )A.x3·x2=16 B.(x2)3=x5C.2a-3a=-a D.(x-2)2=x2-43.设x=13,则x的值满足( )A.1<x<2 B.2<x<3 C.3<x<4 D.4<x<54.给出下列四个函数:①y=-x;②y=x;③y=1x;④y=x2.当x<0时,y随x的增大而减小的函数有( )A.①③B.②④C.①④D.①③④5.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是( )A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较6.若-1≤y≤2,则代数式23x +y+1有( )A.最大值0 B.最大值3 C.最小值0 D.最小值17.圆锥底面圆的半径为3 cm,其侧面展开图是半圆,则圆锥的母线长为( )A.3 cm B.6 cm C.9 cm D.12 cm8.如图,下列条件中不能判断直线l1∥l2的是( )A.∠1=∠3 B.∠2=∠3C.∠4=∠5 D.∠2+∠4=180°9.如图,⊙O的半径为5,若OP=3,则经过点P的弦长可能是( )A.3 B.6 C.9 D.1210.如图,⊙O是以原点为圆心、2为半径的圆,点P是直线y=-x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )A.3 B.4 C.6-2D.32-1二、填空题(本大题共8小题,每小题3分,共24分)11.我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是_______毫米.12.分解因式:x3-6x2+9x=_______.13.现有五张完全相同的卡片,上面分别写有“中国”、“美国”、“韩国”、“德国”、“英国”,把卡片背面朝上洗匀,从中随机抽取一张,抽到卡片对应的国家为亚洲国家的概率是_______.14.不等式组2063xx x->⎧⎨+>⎩的解集是_______.15.如图,点A在反比例函数y=6x(x>0)的图像上,且OA=4,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B.则△ABC的周长为_______.16.在四边形ABCD中,给出三个条件:①AD∥BC;②AB=DC;③AD=BC.以其中两个作为题设,余下一个作为结论,写出一个真命题:_______.(用“序号⇒序号”表示)17.已知一次函数y=23x+b与反比例函数y=3x中,x与y的对应值如下表:则不等式23x+b>3x的解集为_______.18.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=3,AO=2,那么AC的长等于_______.三、解答题(本大题共11小题,共76分)计算:()2012122cos30 3.142π-⎛⎫+--︒+- ⎪⎝⎭.20.(本题满分5分)解方程组:327239x y x y +=⎧⎨-=⎩21.(本题满分6分)先化简,再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程x 2-2x -2=0的正数根.22.(本题满分6分)某市举办中学生足球赛,初中男子组共有市区学校的A 、B 两队和县区学校的e 、f 、g 、h 四队报名参赛,六支球队分成甲、乙两组,甲组由A 、e 、f 三队组成,乙组由B 、g 、h 三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.(1)在甲组中,首场比赛抽e 队的概率是_______;(2)请你用画树状图或列表的方法,求首场比赛出场的两个队都 是县区学校队的概率.23.(本题满分6分)“校园手机”现象越来越受到社会的关注°某校小记著随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下统计图:(1)求这次调查的家长人数,并补全图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)已知该地区共有6500名家长,估计其中反对中学生带手机的家长大约有多少名.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D 所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测的小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?25.(本题满分7分)某超市销售甲、乙两种商品,3月份该超市同时一次购进甲、乙两种商品共100件,购进甲种商品用去300元,购进乙种商品用去1200元.(1)若购进甲、乙两种商品的进价相同,求两种商品的数量分别是多少;(2)由于商品受到市民欢迎,超市4月份决定再次购进甲、乙两种商品共100件,但甲、乙两种商品进价在原基础上分别降20%、涨20%,甲种商品售价20元,乙种商品售价35元,若这次全部售出甲、乙两种商品后获得的总利润不少于1200元,该超市最多购进甲种商品多少件?如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF交对角线AC于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=23,求AB的长.27.(本题满分8分)如图,在△ABC中,D是AB边上一点,⊙O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是⊙O的切线;(2)如果∠ACB=75°,①若⊙O的半径为2,求BD的长;②试问CD:BC的值是否为定值?若是,直接写出这个比值;若不是,请说明理由.28.(本题满分10分)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对称轴上一点为顶点的菱形称为这条抛物线的“抛物菱形”.(1)若抛物线y=ax2+bx-+c(a≠0)与x轴的两个交点为(-1,0)、(3,0),且这条抛物线的“抛物菱形”是正方形,求这条抛物线的函数解析式;(2)如图,四边形OABC是抛物线y=-x2+bx(b>0)的“抛物菱形”,且∠OAB=60°.①求“抛物菱形OABC”的面积;②将直角三角板中含有“60°角”的顶点与坐标原点O重合,两边所在直线与“抛物菱形OABC”的边AB、BC交于点E、F,△OEF的面积是否存在最小值?若存在,求出此时△OEF的面积;若不存在,说明理由.29.(本题满分10分)如图1,⊙O在直角坐标系中是一个以原点为圆心、半径为4的圆,AB是过圆心O的直径,点P从点B出发沿⊙O做匀速运动,过点P作PC垂直于直径AB,PC的长度随着点P的运动而变化.(各组数据已标出)(1)当点P的位置如图所示时,求∠OPC和∠POC的度数.(2)当点P的位置如图所示时,求PC的值.(3)探究:PC的长度随着∠BOP的变化而变化,设PC的值为y,∠BOP为x,并规定:①PC在x轴上方记为正,在x轴下方记为负;②逆时针旋转得到的角度记为正,顺时针旋转得到的角度记为负;③η=180°,12π=90°.请写出y关于x的函数关系式,以及x的取值范围.(直接写出答案)(4)试在图2中画出第(3)题中函数的图像.(5)求出该函数图像的对称轴.(直接写出答案,答案请用含有π的式子表示)参考答案1—10 DCCDB CBBCB 11.2.5 ×10-312.x(x -3)2 13.2514.2<x<3 15.27 16.①③⇒②(或②③⇒①) 17.x>1或-2<x<0 18.22+3 19.3+320.31x y =⎧⎨=-⎩21.11x - 3322.(1)13(2)4923.(1)280(人).(2)36°.(3)4550(名).24.解:由题意得,∠BAD=∠BCE , ∵∠ABD=∠CBE=90°, ∴△BAD ∽△BCE , ∴=, 即=,解得BD=13.6米.25.(1)购进甲种商品20件,乙种商品80件.(2)55件. 26.(1)略 (2)6. 27.(1)略 (2)3-1. 28.(1)y =-12x 2+x +32或y =12x 2-x -32(2)①6 ②存在. 29.(1)60°.(2)23 (3) y =4sinx .x 可取任意实数.(4)图像如下:(5)x =2π±k π(k 为整数).。
2020年江苏省南京市中考数学模拟试卷附解析
2020年江苏省南京市中考数学模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知,在等腰梯形 ABCD 中,AD ∥BC ,AD= 4 cm ,BC= 10 cm ,AB = 5 cm ,以点A 为圆心,AD 为半径作⊙A ,则⊙A 与 BC 的位置关系是( )A .相离B . 相切C . 相交D .不能确定2.二次函数221(0)y kx x k =++<的图象可能是( )3. 地图上1cm 2 面积表示实际面积400m 2,该地图的比例尺是( )A .1 :400B .1:4000C .1:2000D .1:200 4.抛物线24y x x =-的对称轴是( )A .直线x=2B .直线x=-2C .直线x=4D .直线x=-4 5.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A .75°B .60°C .45°D .30°6.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( )A .4种B .3种C .2种D .1种7.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A . 14cmB .4cmC .15cmD .3cm8.用长为4 cm 、5 cm 、6 cm 的三条线段围成三角形的事件是( )A .随机事件B .必然事件C .不可能事件D .以上都不是9.与23a b 是同类项的是( )A .2aB .2abC .23abD .24ba 10. 在数轴上表示-1.2 的点在( )A .-1 与0之间B .-2 与- 1 之间C .1 与2之间D .-1 与 1 之间 二、填空题11.如图,过点P 画⊙O 的切线PQ ,Q 为切点,过P ﹑O 两点的直线交⊙O 于A ﹑B 两点,且2sin ,12,5P AB ∠==则OP=__________. 12.已知512a -=,512b +=,则 a 、b 的比例中项为 . 13.如图,已知:⊙O 的半径为5,弦AB = 8,P 是弦AB 上任意一点,则OP 的取值范围是 .14.将一长方形的纸片按如图方式折叠,BC ,BD 为折痕,则∠CBD= 度.15.某中学今年“五一”长假期问要求学生参加一项社会调查活动.为此,小明在他所居住 小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收人情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).分组频数 频率 1000~12003 0.060 1200~140012 0.240 1400~160018 0.360 1600~l8000.200 1800~20005 2000~22002 0.040 合计 50 1.000请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在第 小组内; (3)请你估算该小区600个家庭中收入较低(不足l400元)的家庭个数大约有 个.16.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .17.点A(1-a ,3),B(-3,b)关于y 轴对称,则b a = .18.用有45°直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为 .19.直接写出因式分解的结果:(1)=-222y y x ;(2)=+-3632a a .20.看图填空.(A 、0、B 在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C 平分∠AOD ,0E 平分∠BOD ,则∠AOD=2 =2 .∠BOE= =12.三、解答题21.判断 222,1 2为比例中项的一个比例式.22.求出抛物线225y x x =-++的对称轴和顶点坐标.23.如图,在△ABC中,∠ACB=90°,CA=CB,CD⊥AB,垂足是D,E是AB上一点,EF ⊥AC,垂足是F,G是BC上一点,CG=EF.求证:△DFG是等腰直角三角形.24.某商场今年二月份的营业额为400万元,三月份的营业额比二月份增加10%,五月份的营业额达到633.6万元.求三月份到五月份营业额的平均月增长率.25.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.三家在广告中都称该种产品的使用寿命是8年,请根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数的的哪一种集中趋势的特征数.26.上海到北京的航线全程为 s(km),飞行时间需 a(h). 而上海到北京的铁路全长为航线长的m倍,乘车时间需 b(h). 问飞机的速度是火车速度的多少倍?(用含 a,b,s,m 的分式表示)27.读句画图,并回答问题.(1)画三角形ABC,取AB的中点M;(2)过点M画直线MN∥BC,交AC于点N;(3)过点M画直线MP∥AC,交BC于点P;(4)测量AN与NC,BP与PC是否相等?(5)测量MN与BC,MP与AC之间的关系?(6)再重新任意画一个三角形,重复以上的画图步骤,观察(5)的关系是否仍然成立?28.当 x= -2 时,代数式 x(2-m)+4 的值等于18,求当 x=3 时这个代数式的值.29. 在一次环保知识测试中,三年级一班的两名学生根据班级成绩(分数为整数)分别绘制了组距不同的频数分布直方图,如图1、图2.已知,图1从左到右每个小组的频率分别为:0.04,0.08,0.24,0.32,0.20,0.12,其中68.5~76.5小组的频数为12;图2从左到右每个小组的频数之比为1∶2∶4∶7∶6∶3∶2,请结合条件和频数分布直方图回答下列问题:(1)三年级一班参加测试的人数为多少? (2)若这次测试成绩80分以上(含80分)为优秀,则优秀率是多少?(3)若这次测试成绩60分以上(含60分)为及格,则及格率是多少?30.如图,△OAB 中,OA=OB ,以O 为圆心的圆交BC 于点C 、D ,求证:AC=BD. D C B A O【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.A5.B6.B7.A8.B9.D10.B二、填空题11.1512.1±13.≤OP14.53≤9015.(1)略;(2)三;(3)18016.417.-818.22°19.(1))1xa(3-y;(2)2)1)(+x1(2-20.(1)∠AOC,∠COD,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC,∠COD,∠DOE,∠BOD三、解答题21.∵2×=.22.顶点坐标(1,6),对称轴为直线x=1.23.证△AFD≌△CGD,FD=GD,∠ADF=∠CDG,得∠FDG=90°24.20%25.甲使用了众数,乙使用了平均数,丙使用了中位数26.b am倍27.(1)(2)(3)略 (4)AN=NC,BP=PC;(5)MN=12BC,MP=12AC;(6)仍然成立.28.-1729.⑴50;⑵44%;⑶96%.30.证:如图过O作OE⊥AB于E,∵OA=OB,OE⊥AB于E,∴AE=BE.又∵CD是⊙O的弦,OE⊥CD,∴CE=DE,∴AE-CE=BE-DE,即AC=BD.。
2020年江苏省中考数学摸底考试试卷附解析
2020年江苏省中考数学摸底考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为( )A .34B .43C .35D .45 2.二次函数342++=x x y 的图象可以由二次函数2x y =的图象平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,再向上平移1个单位长度B .先向左平移2个单位长度,再向下平移1个单位长度C .先向右平移2个单位长度,再向上平移1个单位长度D .先向右平移2个单位长度,再向下平移1个单位长度3.若函数2y ax bx c =++的图象如图所示,则下列各式正确的个数是( ) ①a>0;②b>0;③c>0;④240b ac ->;⑤ a+b+c>0A .5 个B .4 个C .3 个D .2 个 4.下列方程属于一元二次方程的是( ) A .22(2)x x x -⋅= B .20ax bx c ++= C .15x x += D .20x =5.王京从点O 出发.先向西走40米,再向南走30米,到达点M.如果点M 的位置用(-40,-30)表示,从点M 继续向东走50米,再向北走50米,到达点N ,那么点N 的坐标是( )A . (-l0,10)B . (10,-l0)C .(10,-20)D . (10,20)6.如果22(3)9x x kx -=++,那么k 的值等于( ) A .3 B .-3 C .6D .-6 二、填空题7.已知22(5)(3)0a b -++=,则点P(a ,b )在第 象限.8.看图填空.(A 、0、B 在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C 平分∠AOD ,0E 平分∠BOD ,则∠AOD=2 =2 .∠BOE= =12.9.把编号为 1、2、3、4、…的若干盆花按如图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第 6盆花的颜色为色.10.如图所示,△ABC中,D,E是BC边上的两点,且BD=DE=EC,则AD是三角形的中线,AE是三角形的中线.11.计算机软件中,大部分都有“复制”、“粘贴”功能,如在“Word”中,可以把一个图形复制后粘贴在同一个文件上,通过“复制”、“粘贴”得到的图形可以看作原图经过变换得到的.12.答1在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是_______.13.化简:(7y - 3z)- (8y - 5z)= .14.某种药品的说明书贴有如下标签,则一次服用这种药品的剂量范围是 mg~ mg.15.在下列直角坐标系中(1)请写出在□ABCD内.(不包括边界)横、纵坐标均为整数的点,且和为零的点的坐标;(2)在□ABCD内.(不包括边界)任取一个横、纵坐标均为整数的点,求该点的横、纵坐标之和为零的概率.16.在直角坐标系内,点P(-2,26)到原点的距离为= .17.给出以下四个命题:①线段中垂线上的点到线段两端的距离相等;②到线段两端的距离相等的点在这条线段的中垂线上;③不在线段垂直平分线上的点,到这条线段两端的距离不相等;④到线段两端距离不相等的点,不在这条线段的中垂线上. 其中真命题有: . 18.如图,△ABC 是等边三角形,P 是三角形内任一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 周长为12,PD+PE+PF= .19. 根据如图计算,若输入的x 的值为 1,则输出的y 的值为 .20.如图,正六边形 AB αDEF 的边长是 a ,分别以 C .F 为圆心、以a 为半径画弧,则图中阴影部分的面积是 .21.弯制管道时,先按中心线计算其“展直长度”,再下料. 根据如图所示的图形可算得管道的展直长度为_______.(单位:mm,精确到1mm).100︒R12018022.如图,△ABC ≌△DEF ,点B 和点E ,点A 和点D 是对应顶点,则AB= ,CB= ,∠C= ,∠CAB= .三、解答题23.如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试说明:ABF EAD △∽△.N M Q P E D CB A24.在△ABC 中,AD 是高,矩形PQMN 的顶点P 、N 分别在AB 、AC 上,QM 在边BC 上.若BC=8cm ,AD=6cm ,且PN=2PQ ,求矩形PQMN 的周长.25.已知扇形的圆心角为120°,面积为300πcm 2.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,则这个圆锥的全面积是多少? ππ400,2026.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB=DC ,AC 与BD 相交于点O .请在图中找出一对全等的三角形,并加以证明.D B A O CC B A27.如图,∠A :∠B :∠C=2:3:4,求△ABC 的内角的度数.28.如图,在小正方形组成的“L”形图中,请你用三种方法分别在图中添画一个小正方形使它成为轴对称图形.29.国家卫生部信息统计中心根据国务院新闻办公室授权发布的全国内地5月21日至5月25日非典型性肺炎发病情况,按年龄段进行统计分析中,各年龄段发病的总人数如图所示(发病的病人年龄在0~80岁之间),请你观察图形,回答下面的问题:(1)全国内地5月21日至5月25日平均每天有 人患非典型性肺炎;(2)年龄在29.5~39.5这一组的频数是 ;频率是 ;(3)根据统计图,年龄在 范围内的人发病最多.30.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.A4.D5.D6.D二、填空题7.四8.(1)∠AOC,∠COD,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC,∠COD,∠DOE,∠BOD9.黄10.ABE ,ACD11.平移变换12.2513.2y z -+14.15,2015.其中横、纵坐标和为零的点有3个,31155P ==∴.(2)∵在□ABCD 内横、纵坐标均为整数的点有15个,解:(1)(11)(00)(11)--,,,,,.16.72 17.①②③④18.419.420.223a π21.38922.DE, FE,∠F, ∠FDE三、解答题23.略24.14.4 cm..25.ππ400,2026.解:△ABC ≌△DCB .证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB=DC ,∴∠ABC=∠DCB . 在∆ABC 与∆DCB 中AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB .(注:答案不唯一)27.∠A=40°,∠B=60°,∠C=80°.28.图略29.⑴20; ⑵ 25,0.25; ⑶19.5~29.5.30.。
江苏省2020年中考数学模拟试题含答案
江苏省2020年中考数学模拟试题含答案一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的。
)1. 2017的相反数是……………………………………………………………………( ) A .2017B .-2017C .20171D .20171-2. 下列计算正确的是 ………………………………………………………………( ) A .a 2+a 2=a 4B .(a 2)3=a 5C .a +2=2aD .(ab )3=a 3b 33. 已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示0.0089为…………( ) A .8.9×103B .8.9×10-4C .8.9×10-3D .89×10-24.若分式1xx +有意义,则x 的取值范围是……………………………………………( ) A .x ≠-1B .x ≠1C .x =-1D .x =15.下列说法正确的是 ……………………………………………………………………( )A .若甲组数据的方差s 2甲=0.39,乙组数据的方差s 2乙=0.25,则甲组数据比乙组数据大;B .从1,2,3,4,5中随机抽取一个数,是偶数的可能性比较大;C .数据3,5,4,1,-2的中位数是3;D .若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖.6. 如图所示,△ABC 中,点D 、E 分别是AC 、BC 边上的点,且DE ∥AB ,CD :CA ﹦2:3,△ABC 的面积是18,则四边形ABED 的面积是…………………………( ) A .6 B .8C .9D .107. 如图,若锐角△ABC 内接于⊙O,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ; ③D C ∠>∠tan tan 中,正确的结论为……………………………………………………………………………………( ) A 、①② B 、②③ C 、①②③ D 、①③yxoC BA (第8题)(第6题)(第7题)8. 如图,平面直角坐标系中,△ABC 的顶点坐标分别是A (1,1),B (3,1),C (2,2),当直线b x y +=21与△ABC 有公共点时,b 的取值范围是………………………………( ) A.-1≤b ≤1 B. -21≤b ≤1 C. -21≤b ≤21 D. -1≤b ≤21 9.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是…………………………………………………( ) A . 5:4 B . 5:2C . :2D . :10. 如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P→D→Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是…………………………………………………………( )A .B .C .D .二、填空题(本大题共8小题,每小题2分,共计16分.) 11. 已知m n mn +=,则(1)(1)m n --= .12.一个零件的横截面是正六边形,这个六边形的内角和为 ︒.(第9题) (第10题)13. 某校女子排球队队员的年龄分布如下表:年龄(岁) 13 14 15 人数(人)474则该校女子排球队队员的平均年龄是______岁.14. 已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,3),则另一个交点坐标是 . 15. 已知一个圆锥的侧面积是π22cm ,它的侧面展开图是一个半圆,则这个圆锥的高为 cm .16. 如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD=56°,则∠B 的度数为 °. 17. 如图,在平行四边形ABCD 中,∠BCD=30°,BC=6,CD=63,M 是AD 边的中点,N 是 AB 边上的一动点,将△AMN 沿MN 所在直线 翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的 最小值是___________.18. 正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y =x2(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =x2(x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .三、解答题(本大题共10小题,共计84分.解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本小题满分8分)计算:(1)11272cos30232-⎛⎫-︒+-- ⎪⎝⎭(2)()()()111x x x x -+-+(第18题)MDAA'第17题20.(本小题满分8分)(1)解方程:0112=+-xx . (2)解不等式组21514(2)x x x +>⎧⎨+>-⎩,.21.(本小题满分10分)如图,在△ABC 中,AB =AC . (1)作△ABC 的角平分线AD ;(尺规作图,保留痕迹) (2)在AD 的延长线上任取一点E ,连接BE 、CE .①求证:△BDE ≌△CDE ;②当AE =2AD 时,四边形ABEC 是什么图形?请说明理由.22.(本小题满分7分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图(注:每组含最小值,不含最大值).甲同学计算出第二组的频率是0.06,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题: (1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少? (3)若该校九年级有800名学生,请估计该校九年级达到优秀的人数是多少.23.(本小题满分7分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用“画树状图”或“列表”等方法求两次都摸到红球的概率.学校_____________ 班级 姓名____________ 考试号__________ ………………………………………密……………………………封………………………………线……………………………………………24.(本题满分6分)如图,小明在大楼30 m 高(即PH =30 m)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i 为13,点P 、H 、B 、C 、A 在同一个平面上,点H 、B 、C 在同一条直线上,且PH ⊥HC . (1)山坡坡角(即∠ABC)的度数等于_______°; (2)求A 、B 两点间的距离.25.(本小题满分10分) 如图,某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制函数图像,其中日销售量y(kg)与销售时间x(天)之间的函数关系如图①所示,销售单价p(元/kg)与销售时间x (天)之间的函数关系如图②所示.(1)直接写出y 与x 之间的函数关系式; (2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24 kg 的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?26. (本题满分8分)小明遇到这样一个问题:“如图1,在边长为a (a >2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.”分析时,小明发现,分别延长QE 、MF 、NG 、PH 交FA 、GB 、HC 、ED 的延长线于点R 、S 、T 、W ,可得△RQF 、△SMG 、△TNH 、△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个正方形(无缝隙不重叠),则这个正方形的边长为 ; (2)求正方形MNPQ 的面积;(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF ,再分别过点D 、E 、F 作BC 、AC 、AB 的垂线,得到等边△RPQ .若S △RPQ=33,则AD 的长为 .27.(本小题满分10分)如图,在直角坐标系中,⊙M的圆心M在y轴上,⊙M与x轴交于点A、B,与y轴交于点C、D,过点A作⊙M的切线AP交y轴于点P,若⊙M的半径为5,点A的坐标为(﹣4,0),(1)求证:∠PAC=∠CAO;(2)求直线PA的解析式;(3)若点Q 为⊙M 上任意一点,连接OQ 、PQ ,问PQOQ的比值是否发生变化?若不变求出此值;若变化,说明变化规律.28. (本小题满分10分)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案一、选择题1—5:B DCAC ,6—10:DDBAA二、填空题11. 1 12. 720 13.14 14.(-1,-3) 15.3 16.34 17.3193- 18.(13,13-+)三、解答题19.(1)原式=)32(223233--+⨯- (2)=322333+-+- (3)=33 (4)(2)原式=221x x x -+- (2)=1+-x (4)20.(1) 0112=+-x x解:去分母,得0)1(2=-+x x (1)去括号,得022=-+x x移项、合并同类项,得2-=x (3)经检验,2-=x 是原方程的解 (4)(2)解不等式组21514(2)x x x +>⎧⎨+>-⎩,.解:由①得:x 2>4x >2 (1)由②得:1+x >84-xx 3->-9x <3 (3)∴不等式组的解集为2<x <3 (4)21.(1)作图略 (2)(2)①∵AB=AC, AD 平分∠BAC,∴BD=CD ,AD ⊥BC.∴∠BDE=∠CDE=90° . (4)在△BDE 和△CDE 中,∴△BDE ≌△CDE (6)②∵AE=2AD,∴AE=DE.∵BD=CD, ∴四边形ABEC 是平行四边形 (8)∵AD ⊥BC,∴平行四边形ABEC 是菱形 (10)22. (1)12÷0.06=200(人). (2)(2)第一、二、三、四组的总人数为:12÷4×(2+4+17+15)=114(人) (3)∴这次测试成绩的优秀率为:100200114200⨯-%=43%.........................5 (3)800×43%=344(人). (7)23. (1)21 ………………2 (2)列表如下:(树状图也可) 红1红2 白 黑 红1﹣﹣﹣ (红2,红1) (白,红1) (黑,红1) 红2(红1,红2) ﹣﹣﹣ (白,红2) (黑,红2) 白(红1,白) (红2,白) ﹣﹣﹣ (黑,白) 黑 (红1,黑) (红2,黑) (白,黑)﹣﹣﹣ (5)共有12种等可能的情况,其中两次都摸到红球有2种, (6)∴P(两次都摸到红球)==. (7)24.解:(1)30 (1)(2)在中,,∵,∴ (3)在中,,,∴是等腰直角三角形, (5)20(米).∴AB=PB=320米. (6)答:A、B两点间的距离为325.(1) (2)(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,∵点(10,10),(20,8)在p=mx+n的图象上,∴,解得:.∴. (4)当x=10时,p=10,y=2×10=20,销售金额为:10×20=200(元); (5)当x=15时,,y=2×15=30,销售金额为:9×30=270(元). 故第10天和第15天的销售金额分别为200元,270元 (6)(3)若日销售量不低于24千克,则y≥24.当0≤x≤15时,y=2x ,解不等式2x≥24,得x≥12;当15<x≤20时,y=﹣6x+120,解不等式﹣6x+120≥24,得x≤16.∴12≤x≤16。
江苏省2020年中考数学模拟卷(解析版)
中考数学模拟卷一.选择题(共10小题)1.下列各数中,最小的数是()A.﹣1B.﹣C.0D.12.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.从阳江海陵岛试验区旅游外侨局获悉,去年7,8两月暑假期间海陵岛共接待游客352万人次,旅游收人约24亿元,分别同比增长8.9%,8.8%,外省游客和团队游数量明显增加.其中352万用科学记数法表示为()A.0.352×105B.3.52×106C.3.52×107D.35.2×1064.下列运算正确的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a2•a4=a65.数据2,7,3,7,5,3,7的众数是()A.2B.3C.5D.76.关于x的一元二次方程x2﹣2x﹣(m﹣1)=0有两个不相等的实数根,则实数m的取值范围是()A.m>0且m≠1B.m>0C.m≥0且m≠1D.m≥07.正多边形的一个外角的度数为36°,则这个正多边形的边数为()A.6B.8C.10D.128.如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC面积为6,则点C坐标为()A.(4,2)B.(2,3)C.(3,4)D.(2,4)9.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5B.C.D.10.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.二.填空题(共6小题)11.因式分解:a3﹣9ab2=.12.不等式组的解为.13.如图所示方格纸中每个小正方形的边长为1,其中有三个格点A、B、C,则sin∠ABC =.14.在四张完全相同的卡片上分别印有等边三角形、平行四边形、矩形、圆的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为.15.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.16.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为.三.解答题(共9小题)17.计算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)018.先化简,再求值:,其中19.现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.20.如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.21.如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.(1)求证:四边形BCFE是平行四边形;(2)当∠ACB=60°时,求证:四边形BCFE是菱形.22.学校为了了解我校七年级学生课外阅读的喜好,随机抽取我校七年级的部分学生进行问卷调查(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,喜欢漫画的部分所占圆心角是度;(4)若七年级共有学生2800人,请你估计喜欢“科普常识”的学生人数共有多少名?23.如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.24.如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.(1)求证:PM∥AD;(2)若∠BAP=2∠M,求证:P A是⊙O的切线;(3)若AD=6,tan∠M=,求⊙O的直径.25.矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.(1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.求证:①PN=PF;②DF+DN=DP;(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.下列各数中,最小的数是()A.﹣1B.﹣C.0D.1【分析】根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可【解答】解:∵﹣1<﹣<0<1,∴最小的数为﹣1,故选:A.2.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选:D.3.从阳江海陵岛试验区旅游外侨局获悉,去年7,8两月暑假期间海陵岛共接待游客352万人次,旅游收人约24亿元,分别同比增长8.9%,8.8%,外省游客和团队游数量明显增加.其中352万用科学记数法表示为()A.0.352×105B.3.52×106C.3.52×107D.35.2×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据352万用科学记数法表示为3.52×106,故选:B.4.下列运算正确的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a2•a4=a6【分析】根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.【解答】解:A、(a2)5=a10,故原题计算错误;B、(x﹣1)2=x2﹣2x+1,故原题计算错误;C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;D、a2•a4=a6,故原题计算正确;故选:D.5.数据2,7,3,7,5,3,7的众数是()A.2B.3C.5D.7【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据7出现了三次最多为众数.故选:D.6.关于x的一元二次方程x2﹣2x﹣(m﹣1)=0有两个不相等的实数根,则实数m的取值范围是()A.m>0且m≠1B.m>0C.m≥0且m≠1D.m≥0【分析】根据一元二次方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>0,∴m>0.故选:B.7.正多边形的一个外角的度数为36°,则这个正多边形的边数为()A.6B.8C.10D.12【分析】多边形的外角和是360°,正多边形的每个外角都相等,且一个外角的度数为36°,由此即可求出答案.【解答】解:360÷36=10,则正多边形的边数为10.故选C.8.如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC面积为6,则点C坐标为()A.(4,2)B.(2,3)C.(3,4)D.(2,4)【分析】首先利用待定系数法即可解决.过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,根据S△AOC=S△COF+S梯形ACFE﹣S△AOE=6,列出方程即可解决.【解答】解:∵点B(﹣4,﹣2)在双曲线y=上,∴=﹣2,∴k=8,∴双曲线的函数解析式为y=.过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,∵正比例函数与反比例函数的交点A、B关于原点对称,∴A(4,2),∴OE=4,AE=2,设点C的坐标为(a,),则OF=a,CF=,当a<4时,则S△AOC=S△COF+S梯形ACFE﹣S△AOE,=×a×+(2+)(4﹣a)﹣×4×2=,∵△AOC的面积为6,∴=6,整理得a2+6a﹣16=0,解得a=2或﹣8(舍弃),∴点C的坐标为(2,4).故选:D.9.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5B.C.D.【分析】先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.【解答】解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.10.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.【分析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,当C从D点运动到E点时,即0≤x≤2时,y=×2×2﹣(2﹣x)×(2﹣x)=﹣x2+2x.当A从D点运动到E点时,即2<x≤4时,y=×[2﹣(x﹣2)]×[2﹣(x﹣2)]=x2﹣4x+8,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.二.填空题(共6小题)11.因式分解:a3﹣9ab2=a(a﹣3b)(a+3b).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣9ab2=a(a2﹣9b2)=a(a﹣3b)(a+3b).故答案为:a(a﹣3b)(a+3b).12.不等式组的解为3≤x<4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣3≥0,得:x≥3,解不等式3x<2x+4,得:x<4,∴不等式组的解集为3≤x<4,故答案为:3≤x<4.13.如图所示方格纸中每个小正方形的边长为1,其中有三个格点A、B、C,则sin∠ABC =.【分析】首先过点A作AD⊥BC于点D,连接AC,进而结合S△ABC得出AD的长,再利用锐角三角函数关系求出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,连接AC.∵S△ABC=20﹣×2×5﹣×2×4﹣×1×4=9,S△ABC=×BC×AD=9,∴×2AD=9,解得:AD=,故sin∠ABC==.故答案为:.14.在四张完全相同的卡片上分别印有等边三角形、平行四边形、矩形、圆的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为.【分析】根据轴对称图形的定义得到等边三角形、矩形和圆是轴对称图形,然后用A、B、C、D分别表示等边三角形、平行四边形、矩形、圆,画树状图展示所有12种等可能的结果数,其中抽到的卡片上印有的图案都是轴对称图形有6种,再利用概率的定义计算即可.【解答】解:等边三角形、矩形和圆是轴对称图形,用A、B、C、D分别表示等边三角形、平行四边形、矩形、圆,画树状图如下:共有12种等可能的结果数,其中抽到的卡片上印有的图案都是轴对称图形有6种结果,所以抽到的卡片上印有的图案都是轴对称图形的概率为=.故答案为:15.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有7个,第n幅图中共有2n﹣1个.【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【解答】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.故答案为:7;2n﹣1.16.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为10πcm2.【分析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S=2S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得扇形BOC到∠AOD=72°,于是得到结论.【解答】解:∵AC与BD是⊙O的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD是矩形,∴△ABO与△CDO的面积的和=△AOD与△BOC的面积的和,∴图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π(cm2),故答案为10πcm2.三.解答题(共9小题)17.计算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)0【分析】先代入三角函数值、化简二次根式并去绝对值符号、计算负整数指数幂和零指数幂,再计算加减运算即可得.【解答】解:原式=4×+2﹣3﹣2+1=2+2﹣4=4﹣4.18.先化简,再求值:,其中【分析】根据分式的运算法则即可求出答案.【解答】解:原式=÷()=当x=时,==﹣1﹣19.现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.【分析】设甲安装队每天安装x台空调,则乙安装队每天安装(x﹣2)台空调,根据乙队比甲队多用时间一天为等量关系建立方程求出其解即可.【解答】解:设甲安装队每天安装x台空调,则乙安装队每天安装(x﹣2)台空调,由题意,得,解得:x1=22,x2=﹣6.经检验,x1=22,x2=﹣6都是原方程的根,x=﹣6不符合题意,舍去.∴x=22,∴乙安装队每天安装22﹣2=20台.答:甲安装队每天安装22台空调,则乙安装队每天安装20台空调.20.如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.【分析】(1)根据角平分线的作图可得;(2)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.【解答】解:(1)如图,射线CF即为所求;(2)∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=2.21.如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.(1)求证:四边形BCFE是平行四边形;(2)当∠ACB=60°时,求证:四边形BCFE是菱形.【分析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.(2)根据菱形的判定证明即可.【解答】(1)证明:∵D.E为AB,AC中点∴DE为△ABC的中位线,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四边形BCEF为平行四边形.(2)∵四边形BCEF为平行四边形,∵∠ACB=60°,∴BC=CE=BE,∴四边形BCFE是菱形.22.学校为了了解我校七年级学生课外阅读的喜好,随机抽取我校七年级的部分学生进行问卷调查(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息回答问题:(1)这次活动一共调查了200名学生;(2)补全条形统计图;(3)在扇形统计图中,喜欢漫画的部分所占圆心角是72度;(4)若七年级共有学生2800人,请你估计喜欢“科普常识”的学生人数共有多少名?【分析】(1)利用这次活动一共调查的学生数=喜欢小说的学生数÷对应的百分比即可,(2)先求出喜欢科普的学生数,再作图即可,(3)利用喜欢漫画的部分所占圆心角=喜欢漫画的百分比×360°计算即可.(4)利用喜欢“科普常识”的学生人数=总人数×喜欢“科普常识”的百分比即可.【解答】解:(1)这次活动一共调查的学生数为80÷40%=200人(2)喜欢科普的学生数为200×30%=60人,如图(3)在扇形统计图中,喜欢漫画的部分所占圆心角是×360°=72°,(4)喜欢“科普常识”的学生人数为2800×30%=840名.故答案为:200,72.23.如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.【分析】(1)把A坐标代入二次函数解析式求出c的值,确定出二次函数解析式,把B 坐标代入求出n的值,把A与B坐标代入一次函数解析式求出k与b的值即可;(2)根据函数图象,确定出所求x的范围即可;(3)连接AC,BC,设直线AB与y轴交于点D,三角形ABC面积等于三角形ACD面积+三角形BCD面积,求出即可.【解答】解:(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分别代入y=kx+b得,解得:,∴y=﹣x+1;(2)根据图象得:使二次函数的值大于一次函数的值的x的取值范围是﹣1<x<2;(3)连接AC、BC,设直线AB交y轴于点D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,则S△ABC=S△ACD+S△BCD=×2×1+×2×2=1+2=3.24.如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.(1)求证:PM∥AD;(2)若∠BAP=2∠M,求证:P A是⊙O的切线;(3)若AD=6,tan∠M=,求⊙O的直径.【分析】(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x =2.5x,OM=MN=1.25x,OC=0.75x,根据三角形的中位线性质得出0.75x=AD=3,求出x即可.【解答】(1)证明∵BD是直径,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)证明:连接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半径,∴P A是⊙O的切线;(3)解:连接BN,则∠MBN=90°.∵tan∠M=,∴=,设BC=x,CM=2x,∵MN是⊙O直径,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴=,∴BC2=NC×MC,∴NC=x,∴MN=2x+x=2.5x,∴OM=MN=1.25x,∴OC=2x﹣1.25x=0.75x,∵O是BD的中点,C是AB的中点,AD=6,∴OC=0.75x=AD=3,解得:x=4,∴MO=1.25x=1.25×4=5,∴⊙O的半径为5.25.矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.(1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.求证:①PN=PF;②DF+DN=DP;(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.【分析】(1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;②由勾股定理可求得DM=DP,利用①可求得MN=DF,则可证得结论;(2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.【解答】(1)证明:①∵四边形ABCD是矩形,∴∠ADC=90°,又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM⊥PD,∠DMP=45°,∴DP=MP,∵PM⊥PD,PF⊥PN,∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF,在△PMN和△PDF中∴△PMN≌△PDF(ASA),∴PN=PF,MN=DF;②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP,∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;(2).理由如下:过点P作PM1⊥PD,PM1交AD边于点M1,如图,∵四边形ABCD是矩形,∴∠ADC=90°,又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF,在△PM1N和△PDF中,∴△PM1N≌△PDF(ASA),∴M1N=DF,由勾股定理可得=DP2+M1P2=2DP2,∴DM1DP,∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,∴DN﹣DF=DP.。
苏教版2020年中考数学模拟卷(含答案解析)
2020年中考数学模拟试卷一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.下图几何体的主视图是()A.B.C.D.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα二.填空题(共8小题)9.=.10.分解因式:x3﹣x=.11.已知一个多边形的内角和为540°,则这个多边形是边形.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三.解答题(共10小题)17.计算或化简:(1)(2)18.解方程:+=1.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案与试题解析一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.4.下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.二.填空题(共8小题)9.= 2 .【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).11.已知一个多边形的内角和为540°,则这个多边形是五边形.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5.则这个多边形是五边形.故答案为:五.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为3<x≤9 .【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.则A的横坐标取值范围是3<x≤9.故答案为:3<x≤9.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15 .【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15三.解答题(共10小题)17.计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.18.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)1 32 (1,2)(3,2)4 (1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)1 2 3 41 ﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF =(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。
2020年江苏省徐州市中考数学模拟测试试卷附解析
2020年江苏省徐州市中考数学模拟测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A.1.5 B.2 C.2.5 D.32.一个数的绝对值是正数,则这个数是()A.不等于0 的有理数 B.正数 C.任何有理数 D.非负数3.把12-与 6作和、差、积、商、幂的运算,结果中为正数的有()A. 4个B.3个C.2个D.1个4.如图,要使 a∥b,则∠2 与∠3 满足条件()A.∠2=∠3 B.∠2+∠3=90°C.∠2+∠3=180°D.无法确定5.已知一个三角形的周长为39 cm,一边长为12 cm,另一边长为l5 cm,则该三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.无法确定6.在一周内体育老师对某运动员进行了5次百米短跑测试,若想了解该运动员的成绩是否稳定,老师需要知道他5次成绩的()A.平均数B.方差C.中位数D.众数7.如图,用火柴棒按如图的方式搭三角形,搭一个三角形需 3根火柴棒,如图甲;搭两个三角形需 5根火柴棒,如图乙;搭三个三角形需 7根火柴棒,如图丙. 那么按此规律搭下去,搭10 个三角形需要多少根火柴棒()A.21 B.30 C.111 D.1198.圆锥的底面半径为1,表面积为4π,则圆锥的母线长为().B E DC A F O A .4 B .3 C .22D .32 9.抛物线223y x x =--的顶点坐标是( )A .(-1,-4)B .(3,0)C .(2,-3)D .(1,-4)10. ,则a +b b的值是( ) A .85 B .35 C .32 D .58 11.如图,已知点 P 是△ABC 的边 AB 上一点,且满足△APC ∽△ACB ,则下列的比例式:①AP AC PC CB =;②AC AB AP AC=;③PC AC PB AP =;④AC PC AB PB =.其中正确的比例式的序号是( ) A .①② B .③④ C .①②③ D .②③④12.如图,P 是∠α的边OA 上一点,且点P 的坐标为(3,4), 则sin α= ( )A .35B .45C .34D .4313.如图,△ABC 的三边分别切⊙O 于D ,E ,F ,若∠A=50°,则∠DEF=( )A .65°B .50°C .130°D .80°14.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是( )A .12B .13C .23D .14 15.在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是( ) A .23 B .1 C .2 D . 3216.已知方程(31)(2)0x x +-=,则31x +的值为( )A .7B .2C .0D .7 或0二、填空题17.直角坐标平面内,一点光源位于A(0,6)处,线段CD ⊥x 轴,D 为垂足,C(-3,2),则CD 在x 轴上的影长为 ,点C 的影子的坐标为 .18.如图,△ABC 中,∠A=70°,⊙O 截△ABC•的三条边所截得的弦长都相等,•则∠BOC=_______.19.写出一个开口向下,对称轴是直线 x=3,且与y 轴交点是(0,一2)的抛物线的解析式:.20.已知菱形的一个内角为120°,且平分这个内角的一条对角线长为4 cm,则这个菱形的面积为.21.若a b,则2ac2b c.三、解答题22.如图,屋顶上有一只小猫,院子里有一只小老鼠,若让小猫看见了小老鼠,老鼠就会有危险,因此小老鼠应躲在小猫视线的盲区才安全,请你画出小老鼠的安全区域.墙23.如图所示的相似四边形中,求未知边 x、y的长度和角度α的大小.24.在容器里有 1 5℃的水 4 升,现在要把 5 升水注入里面,使容器里混合后的水的温度(即平均温度)不低于 25℃,且不高于30℃,试问注入 5 升水的温度应在什么范围内?25.一次科技知识竞赛,两组学生成绩统计如下:分数(分)5060708090100人数甲组251013146(人)乙组441621212这次竞赛中成绩谁优谁次,并说明理由.26.从甲地到乙地有两条路,每条路都是3 km ,其中第一条路是平路,第二条路有1 km 的上坡路和2 km 的下坡路. 小雨在上坡路上的骑车速度为每小时v (km),在平路上的骑车速度每小时2v (km),在下坡路上的骑车速度为每小时3v (km),求:(1)当走第二条路时,她从甲地到乙地需要多长时间?(2)她走哪条路花费时间少?少用多少时间?27.在依次标有数字3、6、9、12……的卡片中,小明拿到3张卡片,它们的数字相邻,且数字之和为117.(1)小明拿到的卡片是标有哪些数字的?(2)你能否拿到数字相邻的4张卡片,使其数字之和为177?若能,请指出这4张卡片中数字最大的卡片,若不能,请说明理由.28.若“*”是新规定的某种运算法则,设2*A B A B B =⋅-,试求:(1)(2)6-*的值;(2)(5)10x *-=中 x 的值.29.计算3(2)-,3(3)-,31()2-,31()3-,并找出其中最大的数和最小的数.30.如图所示是一个正三角形区域的土地,中间的每一个点都是中点,所以每个三角形都是正三角形. 3 月 12 日植树节,同学们一起到这块地里植树,有一棵名贵的树要植在中间最小的三角形内,而同学们在不知道的情况下,随意地种,则这棵树种对地方的概率是多少?1 16【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.C4.C5.C6.答案:B7.A8.B9.D10.A11.AB13.A14.B15.B16.D二、填空题17.1.5,(-4.5,0)18.125°19.2(3)7y x =--+(答案不唯一).20.221.≥三、解答题22.如图: 23. 由于两个四边形相似,它们的对应边成比例,对应角相等,所以18467y x ==,解得 x=31.5,y=27. α= 360°- (77°+83°+ 117°) =83°.24.33°~42°25.墙安全区域26.(1)53v h ;(2)走第一条花费时间少,少用16v h 27.(1)小明拿到的卡片标有的数字是36、39、42(2)设相邻的4张卡片为x ,x+3,x+6,x+9,则 x+(x+3)+(x+6)+(x+9)=117,994x =不是整数,∴不能拿到数字相邻的4张卡片,使其数字之和为177. 28.(1)-48 (2)7x =-29. 最大的数31()3-,最小的数为3(3)- 30.116。
苏科版2020年中考数学模拟试题及答案(含详解) (5)
中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。
2020年江苏省中考数学预测试题(含解答)
江苏省2020年中考数学真题试题一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有一个是正确的)1.(2.00分)4的平方根是()A.±2 B.2 C.﹣2 D.162.(2.00分)一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为()A.11.18×103万元B.1.118×104万元C.1.118×105万元D.1.118×108万元3.(2.00分)函数y=中自变量x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x=﹣14.(2.00分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣15.(2.00分)如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)6.(2.00分)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A.B.C.D.7.(2.00分)⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是()A.内含 B.内切 C.相交 D.外切8.(2.00分)下列图形中,是轴对称图形但不是中心对称图形的是()A.正三角形 B.菱形 C.直角梯形 D.正六边形9.(2.00分)下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.(2.00分)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A.B.C.D.二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上)11.(3.00分)因式分解:2x2﹣8= .12.(3.00分)徐州巿部分医保定点医院2008年第一季度的人均住院费用(单位:元)约为:12320,11880,10370,8570,10640,10240.这组数据的极差是元.13.(3.00分)若x1、x2为方程x2+x﹣1=0的两个实数根,则x1+x2= .14.(3.00分)边长为a的正三角形的面积等于.15.(3.00分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D.若∠C=18°,则∠CDA= 度.16.(3.00分)如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A 重合,得折痕DE,则△ABE的周长等于cm.三、解答题(每小题5分,共20分)17.(5.00分)计算:(﹣1)2008+π0﹣()﹣1+.18.(5.00分)已知x=+1,求x2﹣2x﹣3的值.19.(5.00分)解不等式组,并写出它的所有整数解.20.(5.00分)如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.732四、解答题(本题有A、B两类题,A类题4分,B类题6分,你可以根据自己的学习情况,在两类题中任意选做一题,如果两类题都做,则以A类题计分)21.(7.00分)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.五、解答题(每小题7分,共21分)22.(7.00分)从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B 车的平均速度之比为10:7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?23.(7.00分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费金额/元 5(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.(7.00分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.(8.00分)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)行驶路程收费标准调价前调价后不超过3km的部分起步价6元起步价a 元超过3km不超出6km的部分每公里2.1元每公里b元超出6km的部分每公里c元设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a= ,b= ,c= .②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.(8.00分)已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题,画图并给出证明;②构造一个假命题,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.(8.00分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.(10.00分)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E 旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.探究一:在旋转过程中,(1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;(2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;(3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为,其中m的取值范围是.(直接写出结论,不必证明)探究二:若且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.参考答案与试题解析一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有一个是正确的)1.(2.00分)4的平方根是()A.±2 B.2 C.﹣2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的一个平方根.【解答】解:∵(±2 )2=4,∴4的平方根是±2.故选:A.【点评】本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.2.(2.00分)一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为()A.11.18×103万元B.1.118×104万元C.1.118×105万元D.1.118×108万元【分析】科学记数法的形式a×10n(1≤a<10,n为自然数):确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.直接进行形式的变换即可.【解答】解:11 180万元=1.118×104万元.故选:B.【点评】本题要注意的是单位是“万元”,所以结果是 1.118×104万元,数字部分小数点向左移动了4位.3.(2.00分)函数y=中自变量x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x=﹣1【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+1≠0,解得x≠﹣1,故选:C.【点评】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.4.(2.00分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣1【分析】根据合并同类项的法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为x3+x3=2x3,故本选项错误;B、应为x3•x9=x12,故本选项错误;C、应为(x2)3=x6,故本选项错误;D、x÷x2=x1﹣2=x﹣1,正确.故选:D.【点评】本题主要考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质和法则是解题的关键.5.(2.00分)如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)【分析】将(3,﹣4)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:因为点(3,﹣4)在反比例函数y=的图象上,k=3×(﹣4)=﹣12;符合此条件的只有C:k=﹣2×6=﹣12.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.6.(2.00分)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.(2.00分)⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是()A.内含 B.内切 C.相交 D.外切【分析】根据两圆圆心距与半径之间的数量关系判断⊙O1与⊙O2的位置关系.【解答】解:∵⊙O1和⊙O2的半径分别为5和2,O1O2=3,则5﹣2=3,∴⊙O1和⊙O2内切.故选:B.【点评】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.8.(2.00分)下列图形中,是轴对称图形但不是中心对称图形的是()A.正三角形 B.菱形 C.直角梯形 D.正六边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.正确;B、是轴对称图形,也是中心对称图形.错误;C、不是轴对称图形,也不是中心对称图形.错误;D、是轴对称图形,也是中心对称图形.错误.故选:A.【点评】掌握中心对称图形与轴对称图形的概念.轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.(2.00分)下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数【分析】根据概率、平行线的性质、负数的性质进行填空即可.【解答】解:A、抛掷1个均匀的骰子,出现6点向上的概率为,故A错误;B、两条平行线被第三条直线所截,同位角相等,故B错误;C、366人中平年至少有2人的生日相同,闰年可能每个人的生日都不相同,故C错误;D、实数的绝对值是非负数,故D正确;故选:D.【点评】本题考查了必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.10.(2.00分)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A.B.C.D.【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【解答】解:设小正方形的边长为1,则其面积为1.∵圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为,即圆的直径为,∴大正方形的边长为,则大正方形的面积为×=2,则小球停在小正方形内部(阴影)区域的概率为.故选:C.【点评】用到的知识点为:概率=相应的面积与总面积之比;难点是得到两个正方形的边长的关系.二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上)11.(3.00分)因式分解:2x2﹣8= 2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法和公式法分解因式,是基础题.12.(3.00分)徐州巿部分医保定点医院2008年第一季度的人均住院费用(单位:元)约为:12320,11880,10370,8570,10640,10240.这组数据的极差是3750 元.【分析】根据极差的定义求解.用12320减去8570即可.【解答】解:这组数据的极差=12320﹣8570=3750(元).故填3750.【点评】极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.13.(3.00分)若x1、x2为方程x2+x﹣1=0的两个实数根,则x1+x2= ﹣1 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得x1+x2=﹣1.故答案为﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.14.(3.00分)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.【点评】此题主要考查了正三角形的高和面积的求法,比较简单.15.(3.00分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D.若∠C=18°,则∠CDA= 126 度.【分析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.【解答】解:连接OD,则∠ODC=90°,∠COD=72°;∵OA=OD,∴∠ODA=∠A=∠COD=36°,∴∠CDA=∠CDO+∠ODA=90°+36°=126°.【点评】本题利用了切线的性质,三角形的外角与内角的关系,等边对等角求解.16.(3.00分)如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A 重合,得折痕DE,则△ABE的周长等于7 cm.【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.【解答】解:在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC==4.由翻折的性质,得CE=AE.△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7.故答案为:7.【点评】本题考查了翻折的性质,利用了勾股定理,利用翻折的性质得出CE与AE的关系是阶梯关键,又利用了等量代换.三、解答题(每小题5分,共20分)17.(5.00分)计算:(﹣1)2008+π0﹣()﹣1+.【分析】接利用负指数幂的性质以及零指数幂的性质以及立方根的性质分别化简得出答案.【解答】解:原式=1+1﹣3+2=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5.00分)已知x=+1,求x2﹣2x﹣3的值.【分析】将x=变形为x﹣1=,通过平方凑出x2+2x的值,整体代入即可.【解答】解:∵x=+1∴x﹣1=两边平方得(x﹣1)2=3∴x2﹣2x=2∴x2﹣2x﹣3=2﹣3=﹣1【点评】本题考查整式运算,运用的整体代入的方法可以简化运算.19.(5.00分)解不等式组,并写出它的所有整数解.【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:解不等式>﹣1,得:x>﹣2,解不等式2x+1≥5(x﹣1),得:x≤2,所以不等式组的解集为﹣2<x≤2,则不等式组的整数解哟﹣1、0、1、2.【点评】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.20.(5.00分)如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.732【分析】利用锐角三角函数,在Rt△CDE中计算出坝高DE及CE的长,通过矩形ADEF.利用等腰直角三角形的边角关系,求出BF的长,得到坝底的宽.【解答】解:在Rt△CDE中,∵sin∠C=,cos∠C=∴DE=sin30°×DC=×14=7(m),CE=cos30°×DC=×14=7≈12.124≈12.12,∵四边形AFED是矩形,∴EF=AD=6m,AF=DE=7m在Rt△ABF中,∵∠B=45°∴DE=AF=7m,∴BC=BF+EF+EC≈7+6+12.12=25.12≈25.1(m)答:该坝的坝高和坝底宽分别为7m和25.1m.【点评】本题考查了解直角三角形的应用.题目难度不大,求BF的长即可利用直角等腰三角形的性质,也可利用锐角三角函数.四、解答题(本题有A、B两类题,A类题4分,B类题6分,你可以根据自己的学习情况,在两类题中任意选做一题,如果两类题都做,则以A类题计分)21.(7.00分)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.【点评】本题主要考查等腰三角形的判定与性质,解题的关键是掌握等角对等边、等边对等角的性质.五、解答题(每小题7分,共21分)22.(7.00分)从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B 车的平均速度之比为10:7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?【分析】设A车的平均速度为10xkm/h,则B车的平均速度为7xkm/h,根据时间=路程÷速度结合A车的行驶时间比B车的少1h,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设A车的平均速度为10xkm/h,则B车的平均速度为7xkm/h,根据题意得:﹣=1,解得:x=15,经检验,x=15是分式方程的根,∴10x=150,7x=105.答:A车的平均速度为150km/h,B车的平均速度为105km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.(7.00分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费金额/元 5(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.【分析】(1)由于月功能费为5元,占的比例为4%,所以小王手机话费=5÷4%=125元;(2)根据扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360度知,表示短信费的扇形的圆心角=(1﹣36%﹣40%﹣4%)×360°=72°;(3)基本话费=125×40%=50元,长途话费=125×36%=45元,短信费=125×(1﹣36%﹣40%﹣4%)=25元.【解答】解:(1)小王手机总话费=5÷4%=125元.(2)表示短信费的扇形的圆心角=(1﹣36%﹣40%﹣4%)×360°=72°.(3)50、45、25项目月功能费基本话费长途话费短信费金额/元 5 50 45 25(4)基本话费=125×40%=50元,长途话费=125×36%=45元,短信费=125×(1﹣36%﹣40%﹣4%)=25元.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(7.00分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.六、解答题(每小题8分,共16分)25.(8.00分)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)行驶路程收费标准调价前调价后不超过3km的部分起步价6元起步价a 元超过3km不超出6km的部分每公里2.1元每公里b元超出6km的部分每公里c元设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a= 7 ,b= 1.4 ,c= 2.1 .②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.【分析】①a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;②当x>3时,y1与x的关系,有两部分组成,第一部分为6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;③当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价;【解答】解:①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元;故答案为7,1.4,2.1;②由图得,当x>3时,y1与x的关系式是:y1=6+(x﹣3)×2.1,整理得,y1=2.1x﹣0.3;函数图象如图所示:③由图得,当3<x<6时,y2与x的关系式是:y2=7+(x﹣3)×1.4,整理得,y2=1.4x+2.8;所以,当y1=y2时,交点存在,即,2.1x﹣0.3=1.4x+2.8,解得,x=,y=9;所以,函数y1与y2的图象存在交点(,9);其意义为当 x时是方案调价前合算,当 x时方案调价后合算.【点评】本题主要考查了一次函数在实际问题中的应用,能够根据题意中的等量关系建立函数关系式;能够根据函数解析式求得对应的x的值;作图关键是确定交点;体现了数形结合思想.26.(8.00分)已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题,画图并给出证明;②构造一个假命题,举反例加以说明.【分析】如果①②结合,那么这些线段所在的两个三角形是SSA,不一定全等,那么就不能得到相等的对边平行;如果②③结合,和①②结合的情况相同;如果①④结合,由对边平行可得到两对内错角相等,那么AD,BC所在的三角形全等,也得到平行的对边也相等,那么是平行四边形;最易举出反例的是②④,它有可能是等腰梯形.【解答】解:(1)①④为论断时:∵AD∥BC,∴∠DAC=∠BCA,∠ADB=∠DBC.又∵OA=OC,∴△AOD≌△COB.∴AD=BC.∴四边形ABCD为平行四边形.(2)②④为论断时,此时一组对边平行,另一组对边相等,可以构成等腰梯形.【点评】本题主要考查平行四边形的判定,学生注意常用等腰梯形做反例来推翻不是平行四边形的判断.七、解答题(第27题8分,第28题10分,共18分)27.(8.00分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了用待定系数法求抛物线解析式、函数图象交点、图形面积的求法等知识.不规则图形的面积通常转化为规则图形的面积的和差.28.(10.00分)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF的直角顶点E放置于三角板AB C的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.探究一:在旋转过程中,(1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;(2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;(3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为EP:EQ=1:m ,其中m的取值范围是0<m≤2+.(直接写出结论,不必证明)探究二:若且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.【分析】探究一:(1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明BE=CE,∠PBE=∠C.根据等角的余角相等可以证明∠BEP=∠CEQ.即可得到全等三角形,从而证明结论;(2)作EM⊥AB,EN⊥BC于M、N,根据两个角对应相等证明△MEP∽△NWQ,发现EP:EQ=EM:EN,再根据等腰直角三角形的性质得到EM:EN=AE:CE;(3)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析.探究二:(1)设EQ=x,结合上述结论,用x表示出三角形的面积,根据x的最值求得面积的最值;(2)首先求得EQ和EB重合时的三角形的面积的值,再进一步分情况讨论.【解答】解:探究一:(1)连接BE,根据E是AC的中点和等腰直角三角形的性质,得BE=CE,∠PBE=∠C,又∠BEP=∠CEQ,则△BEP≌△CEQ,得EP=EQ;(2)作EM⊥AB,EN⊥BC于M,N,∴∠EMP=∠ENC,∵∠MEP+∠PEN=∠PEN+∠NEF=90°,∴∠MEP=∠NEF,∴△MEP∽△NEQ,∴EP:EQ=EM:EN=AE:CE=1:2;(3)过E点作EM⊥AB于点M,作EN⊥BC于点N,∵在四边形PEQB中,∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°(四边形的内角和是360°),又∵∠EPB+∠MPE=180°(平角是180°),∴∠MPE=∠EQN(等量代换),∴Rt△MEP∽Rt△NEQ(AA),∴(两个相似三角形的对应边成比例);在Rt△AME∽Rt△ENC∴=m=∴=1:m=,EP与EQ满足的数量关系式为EP:EQ=1:m,∴0<m≤2+;(当m>2+时,EF与BC不会相交).探究二:若AC=30cm,(1)设EQ=x,则S=x2,所以当x=10时,面积最小,是50cm2;当x=10时,面积最大,是75cm2.(2)当x=EB=5时,S=62.5cm2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2020年中考数学模拟试题含答案注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位......置.上)1. 计算(-4)+6的结果为A.-2 B.2 C.-10 D.22.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A.3.5×106B.3.5×107C.35×105D.0.35×1083.下列图形中,是中心对称图形的是A. B. C. D.4.如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是A.点M B.点N C.点P D.点Q5.如图是某个几何体的三视图,该几何体是A.三棱柱B.三棱锥C.圆锥D.圆柱6.已知方程3x2-4x-4=0的两个实数根分别为x1,x2.则x1+x2的值为QP NM左视图主视图俯视图(第5题)A .4B .23C .43D .-437. 八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是 A.1010202x x -=B.1010202x x -=C.1010123x x -=D.1010123x x -= 8. 若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89. 如图,点A 为反比例函数y =8x (x ﹥0)图象上一点,点B 为反比例函数y =kx(x ﹤0)图象上一点,直线AB 过原点O ,且OA =2OB ,则k 的值为 A .2B .4C .-2D .-410.如图,在矩形ABCD 中,AB =4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF 的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲ °. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .ABF(第10题)O xyy =8xAB y =kx(第9题)16.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 的坐标为 ▲ . 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19. (本小题满分10分)(1)计算(x +y )2-y (2x +y ); (2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a =25.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表: 组别观点频数(人数)A 大气气压低,空气不流动m(第18题)y xB OCADCEBA (第15题)ABDOC(第14题)DCB A 1(第12题)2C 10%B A20%DE调查结果扇形统计图B 地面灰尘大,空气湿度低40C 汽车尾气排放 nD 工厂造成的污染120 E其他60请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离.(参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E .求DE 的长.BCA (第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)(第25题)FEDCBA请用学过的方法研究一类新函数ky x=(k 为常数,k ≠0)的图象和性质. (1)在给出的平面直角坐标系中画出函数6y x=的图象(可以不列表); (2)对于函数ky x=,当自变量x 的值增大时,函数值y 怎样变化? (3)函数k y x =的图象可以经过怎样的变化得到函数2ky x =+的图象?27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G .(1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值; (3)若P 为AB 的中点,求PG 的长.(第26题)28.(本小题满分13分)已知二次函数y=ax2+bx+c(c≠4a),其图象L经过点A(-2,0).(1)求证:b2-4ac>0;(2)若点B(-c2a,b+3)在图象L上,求b的值;(3)在(2)的条件下,若图象L的对称轴为直线x=3,且经过点C(6,-8),点D(0,n)在y轴负半轴上,直线BD与OC相交于点E,当△ODE为等腰三角形时,求n的值.数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分 标准的精神给分.一、选择题(本大题共10小题,每小题3分,共30分.)11. 312.6513.3(2a +b )(2a -b )14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2················· 4分 =x 2·························· 5分 (2)解:原式=221[](2)(2)4a a aa a a a g----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a g+----- ··················· 7分 =24(2)4a aa a a g --- ························ 8分 =21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)★保密材料阅卷使用1 2 3 4 1 (1,2) (1,3) (1,4) 2 (2,1) (2,3) (2,4) 3 (3,1) (3,2) (3,4) 4(4,1)(4,2)(4,3)·································· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分 所以 P (数字之和大于4)=812=23. ·················· 8分22.(本小题满分8分)解:过B 作BE ⊥CD 垂足为E ,设BE =x 米, ·············· 1分在Rt△ABE 中,tan A =BEAE, ········· 2分AE =BEtan A=BEtan37° =43x , ········ 3分在Rt△ABE 中,tan ∠BCD =BE CE, ······· 4分CE =BE tan∠BCD =xtan45°=x ,······· 5分∵AC =AE -CE ,∴43x -x =150解得x =450 ················ 7分答:小岛B 到河边公路AD 的距离为450米. ··············· 8分 23.(本小题满分8分)解:连接OD ,过点O 作OH ⊥AC ,垂足为H . ··············· 1分由垂径定理得AH =12AC =3.在Rt△AOH 中,OH =52-32=4. ········· 2分 ∵DE 切⊙O 于D ,∴OD ⊥DE ,∠ODE =90°. ············· 3分(第23题)A BC EOHEBCA(第22题)∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.··········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,∴0≤m<1.··························· 9分25.(本小题满分8分)(1)由△ABC≌△ADE且AB=AC,得∴AE=AD=AC=AB,∠BAC=∠EAF,∴ ∠BAE=∠CAF.∴△ABE≌△ACF,························ 3分∴BE=CF.···························· 4分(2)∵四边形ABDF是菱形,∴AB∥DF,∴∠ACF=∠BAC=45°.····················· 5分∵AC=AF,∴∠CAF=90°,即△ACF是以CF为斜边的等腰直角三角形,∴CF=·························· 7分又∵DF=AB=2,∴CD=2.················· 8分26.(本小题满分10分)(1)图略;····························· 4分(2)若k>0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;················· 6分若k<0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;················· 8分(3)函数kyx=的图象向左平移2个单位长度得到函数2kyx=+的图象.··10分27.(本小题满分13分)(1)∵四边形ABDF 是矩形,∴AB ∥CD ,∴∠APD =∠QDP . ························ 1分 ∵∠APD =∠QPD ,∴∠QPD =∠QDP , ························ 2分 ∴DQ =PQ . ··························· 3分(2)过点Q 作QE ⊥DP ,垂足为E ,则DE =12D P . ············· 5分 ∵∠DEQ =∠PAD =90°,∠QDP =∠APD ,∴△QDE ∽△DPA ,∴DQ DP =DE AP , ··················· 6分∴AP ·DQ =DP ·DE =12DP 2. 在Rt△DAP 中,有DP 2=DA 2+AP 2=36+AP 2,∴AP ·DQ =12(36+AP 2). ····················· 7分 ∵点P 在AB 上,∴AP ≤4,∴AP ·DQ ≤26,即AP ·DQ 的最大值为26. ············· 8分(3)∵P 为AB 的中点,∴AP =BP =12AB =2, 由(2)得,DQ =14(36+22)=10. ················ 9分 ∴CQ =DQ -DC =6.设CG =x ,则BG =6-x ,由(1)得,DQ ∥AB ,∴CQ BP =CG BG, ·················· 11分 即62=x 6-x ,解得x =92, ····················· 12分 ∴BG =6-92=32, ∴PG =PB 2+BG 2=52. ······················ 13分 28.(本小题满分13分)(1)证明:由题意,得4a -2b +c =0,∴b =2a +12c . ·········· 1分 ∴b 2-4ac =(2a +12c )2-4ac =(2a -12c )2. ·············· 2分∵c ≠4a ,∴2a -12c ≠0,∴(2a -12c )2>0,即b 2-4ac >0. ······ 3分 (2)解:∵点B (-c2a ,b +3)在图象L 上, ∴22()342c c a b c b a a ⋅+⋅-+=+,整理,得(42)34c a b c b a-+=+. ···· 4分 ∵4a -2b +c =0,∴b +3=0,,解得b =-3. ············ 6分(3)解:由题意,得332a--=,且36a -18+c =-8,解得a =12,c =-8. ∴图象L 的解析式为y =12x 2-3x -8. ··············· 7分 设OC 与对称轴交于点Q ,图象L 与y 轴相交于点P ,则Q (3,-4),P (0,-8),OQ =PQ =5.分两种情况:①当OD =OE 时,如图1,过点Q 作直线MQ ∥DB ,交y 轴于点M ,交x 轴于点H , 则OM OQ OD OE=,∴OM =OQ =5. ∴点M 的坐标为(0,-5). 设直线MQ 的解析式为15y k x =-.∴1354k -=-,解得113k =. ∴MQ 的解析式为153y x =-.易得点H (15,0). 又∵MH ∥DB ,OD OB OM OH =. 即8515n -=,∴83n =-. ··················· 10分 ②当EO =ED 时,如图2,∵OQ =PQ ,∴∠1=∠2,又EO =ED ,∴∠1=∠3.∴∠2=∠3, ∴PQ ∥DB .设直线PQ 交于点N ,其函数表达式为28y k x =-∴2384k -=-,解得243k =. ∴PQ 的解析式为483y x =-. ∴点N 的坐标为(6,0). ∵PN ∥DB ,∴OD OB OP ON =,∴886n -=,解得323n =-. ······ 12分 综上所述,当△ODE 是等腰三角形时,n 的值为83-或323-. (13)。