岩石力学-岩石物理力学性质

合集下载

岩石力学

岩石力学

岩石力学岩石的物理性质 一、 岩石的分类火成岩:侵入岩和喷出岩。

沉积岩:砂岩(95%的油气储量)、页岩(待开采,如页岩气、煤层气)、石灰岩。

变质岩:不含油气。

二、 岩石的强度主要取决于:组成其矿物的强度、连接结构形式、岩石的结构和整体构造、胶结物的成分和胶结方式 三、岩石的物理性质孔隙度、渗透率、可压缩性、导电性、传热性的总称。

1、 孔隙度:绝对孔隙度:φ = V 孔/V 岩总 孔隙度越高,岩石的力学性质越差。

有效孔隙度: φ有效 =V 连通/V 孔总。

2、 渗透性:在一定压力作用下,孔隙具有让流体(油、气、水)通过的性质。

其大小用渗透率来描述,反映了流体在岩石孔隙中流动的阻力的大小。

达西定律:A LhK Q ∆=φ...K Φ——反应岩石性质系数 含义:以粘度为1厘泊的流体完全饱和于岩石孔隙中,在1个大气压差的作用下,以层流的方式用过截面积为1cm 2,长度为1cm 的岩样时,其流量为1cm 3/s 。

则渗透率为1达西(D )。

3、 岩石中的油、气、水饱和度。

…4、 岩石的粒度组成和比表面积:粒度组成的分析方法:筛分析法和沉降法。

通过粒度得孔隙度。

比表面积:单位体积岩石内颗粒的总表面积。

通过粒度组成估算比面。

孔隙度、粒度、比表三者之二求一岩石的力学性质岩石的类型、组成成分、结构构造、围压、温度、应变率、载荷等对其力学性质都有影响 一、 岩石变形性质的基本概念1、 弹性:… 基本弹性参数E 、υ。

2、 塑性3、 黏性:物体受力后,变形不能在瞬时完成,且应变率随应力的增加而增加的性质。

4、 脆性:受力后变形很小就发生破裂的性质。

(ε>5%就发生破裂的称为塑性材料,小于的称脆性材料)5、 延性:发生较大塑性变形,但不丧失其承载能力的性质。

岩石在常温,常压下,并不是理想的弹性或塑性材料,而是几种的复合体,如塑弹性、塑弹塑、弹塑蠕。

其本构关系略。

6、常温常压下岩石的典型应力-应变曲线:(重点)OA---塑性,应力增加快,但应变增加不多。

岩石力学第2章岩石的基本物理力学性质PPT课件

岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在

岩石力学讲义(岩石的物理性质)

岩石力学讲义(岩石的物理性质)
cw KR c
cw)与
岩石中含有较多的亲水性和可溶性矿物,大开空隙 较多,岩石的软化性较强,软化系数较小。
KR>0.75,岩石的软化性弱,工程地质性质较好
1、岩石的密度
2、岩石的孔隙性
(一)、岩石的密度
1、颗粒密度(ρ s):岩石固体部分的质量与
其体积的比值。它不包含孔隙在内,因此 其大小仅取决于组成岩石的矿物密度及其 含量: ρ s= ms/Vs ρ s—为岩石的颗粒密度
ms—为岩石固体部分的质量 Vs—为岩石固体部分的体积
(一)、岩石的密度
2、块体密度(或岩石密度)是指岩石单位体 积内的质量,按岩石的含水状态,又有干 密度(ρ d)、饱和密度(ρ 指岩石的天然密度。 ρ d=ms/V ρ
1. 结构面的成因类型 2. 结构面的规模与分级 3. 结构面特征及其对岩石性质的影响
一)结构面的成因类型
地质成因类型
原生结构面 构造结构面 次生结构面
力学成因类型
张性结构面 剪性结构面
结构面的地质成因类型
1. 原生结构面:在岩石形成过程中形成的软弱面
岩浆岩的流动构造面、冷缩形成的原生裂隙面、侵入
不规则,多呈折线或锯凿状。断面凹凸不平,粗
糙度大,破碎带宽度变化大,且易被岩脉、矿脉
充填,有时并有岩浆沿之入侵。张性破裂面常常
具有含水丰富,导水性强以及剪切强度高等特征
结构面的力学成因类型
剪性破裂面:是由剪应力而形成的,破裂面
两侧岩体沿破裂面切线方向发生有不同程度的
滑错位移。具有擦痕、共轭性、规律的位移方
变形性、渗透性,力学上的连续性及岩体应
力分布等都有显著影响。因此,在很多情况
下,软弱面是岩体力学问题的一个主要控制 因素。从本质上说,软弱面使岩体变得更加 软弱,更易于变形而且表现为高度的各向异 性。

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

第二章岩石的基本物理力学性质第一节概述第二节岩石的基本物理性质一岩石的密度指标1 岩石的密度:岩石试件的质量与试件的体积之比,即单位体积内岩石的质量。

(1)天然密度:是指岩石在自然条件下,单位体积的质量,即(2)饱和密度:是指岩石中的孔隙全部被水充填时单位体积的质量,即(3)干密度:是指岩石孔隙中液体全部被蒸发,试件中只有固体和气体的状态下,单位体积的质量,即(4)重力密度:单位体积中岩石的重量,简称重度。

2 岩石的颗粒密度:是指岩石固体物质的质量与固体的体积之比值。

公式二岩石的孔隙性1 岩石的孔隙比:是指岩石的孔隙体积与固体体积之比,公式2 岩石的孔隙率:是指岩石的孔隙体积与试件总体积的比值,以百分率表示,公式孔隙比和孔隙率的关系式:三岩体的水理性质1 岩石的含水性质(1)岩石的含水率:是指岩石孔隙中含水的质量与固体质量之比的百分数,即(2)岩石的吸水率:是指岩石吸入水的质量与试件固体的质量之比。

2 岩石的渗透性:是指岩石在一定的水力梯度作用下,水穿透岩石的能力。

它间接地反映了岩石中裂隙间相互连通的程度。

四岩体的抗风化指标1 软化系数:是指岩石饱和单轴抗压强度与干燥状态下的单轴抗压强度的比值。

它是岩石抗风化能力的一个指标,反映了岩石遇水强度降低的一个参数:2 岩石耐崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性能。

岩石耐崩解性指数:是通过对岩石试件进行烘干,浸水循环试验所得的指数。

它直接反映了岩石在浸水和温度变化的环境下抵抗风化作用的能力。

3 岩石的膨胀性:岩石浸水后体积增大的性质。

(1)岩石的自由膨胀率:是指岩石试件在无任何约束的条件下浸水后所产生膨胀变形与试件原尺寸的比值。

(2)岩石的侧向约束膨胀率:是将具有侧向约束的试件浸入水中,使岩石试件仅产生轴向膨胀变形而求得膨胀率。

(3)膨胀压力:岩石试件浸水后,使试件保持原有体积所施加的最大压力。

五岩体的其他特性1 岩石的抗冻性:岩石抵抗冻融破坏的性能。

岩石力学名词解释

岩石力学名词解释

一.岩石的物理力学性质1.岩体:位于一定地质环境中,在各种宏观地质界面(断层、节理、破碎带等)分割下形成的有一定结构的地质体。

由结构面与结构体组成的地质体。

2.岩石:是经过地质作用而天然形成的一种或多种矿物的集合体。

具有一定结构构造的矿物(含结晶和非结晶的)集合体。

3.岩(体)石力学:是力学的一个分支学科,是研究岩(体)石在各种力场作用下变形与破坏规律的理论及其实际应用的一门基础学科。

4.结构面:指在地质历史发展过程中,岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。

5.岩石质量指标(RQD):指大于10cm的岩芯累计长度与钻孔进尺长度之比的百分数。

6.空隙指数:指在0.1MPa压力条件下,干燥岩石吸入水的重量与岩石干重量的比值。

7.软化性:软化性是指岩石浸水饱和后强度降低的性质。

8.软化系数:指岩石试件的饱和抗压强度与干燥状态下的抗压强度的比值。

9.膨胀性:是指岩石浸水后体积增大的性质。

10.单轴抗压强度:是指岩石试件在单轴压力下达到破坏的极限值。

,11.抗拉强度:是指岩石试件在单向拉伸条件下试件达到破坏的极限值。

12.抗剪强度:指岩石抵抗剪切破坏的能力。

13.形状效应:在岩石试验中,由于岩石试件形状的不同,得到的岩石强度指标也就有所差异。

这种由于形状的不同而影响其强度的现象称为“形状效应”。

14.尺寸效应:岩石试件的尺寸愈大,则强度愈低,反之愈高,这一现象称为“尺寸效应”。

引起结构面尺寸效应的基本因素:结构面的强度与峰值剪胀角。

15.延性度:指岩石在达到破坏前的全应变或永久应变。

16.流变性:指在外界条件不变时,岩石应变或应力随时间而变化的性质。

17.蠕变:指在应力不变的情况下,岩石的变形随时间不断增长的现象。

18.应力松弛:是指当应变不变时,岩石的应力随时间增加而不断减小的现象。

19.弹性后效:是指在加荷或卸荷条件下,弹性应变滞后于应力的现象。

20.峰值强度:若岩石应力—应变曲线上出现峰值,峰值最高点的应力称为峰值强度。

岩石的物理力学性质

岩石的物理力学性质
(2)大开空隙率nb:即岩石试件内大开型空隙的体积(Vnb) 占试件总体积(V)的百分比。
nb Vnb 100% V
(3)小开空隙率nl:即岩石试件内小开型空隙的体积(Vnl) 占试件总体积(V)的百分比。
nl Vnl 100% V
(4)总开空隙率(孔隙率)n0: 即岩石试件内开型空隙的 总体积(Vn0)占试件总体积(V)的百分比。
cf ) , 以
此强度下降值与融冻试验前的抗压强度 σ c之比的百
c cf Cf 100% c
可见:抗冻系数Cf 越小,岩石抗冻融破坏的能力越强。
7.岩石的碎胀性
岩石破碎后的体积VP 比原体积 V增大的性能称为岩石
的碎胀性,用碎胀系数ξ 来表示。
VP V
碎胀系数不是一个固定值,是随时间而变化的。 永久碎胀系数(残余碎胀系数)――不能再压密时 的碎胀系数称为永久碎胀系数.
岩石的软化性是指岩石在饱水状态下其强度相对 于干燥状态下降低的性能,可用软化系数η 表示。
软化系数指岩石试样在饱水状态下的抗压强度
σ
cb与在干燥状态下的抗压强度σ c之比,即
cb c c
各类岩石的η c=0.45~0.9之间。 η η
c c
Байду номын сангаас
>0.75,岩石软化性弱、抗水、抗风化能力强; <0.75,岩石的工程地质性质较差。
1 与 主 应 力 差 ( σ 1-
σ 3) 的关 系 曲 线 表 示 。
反复加卸载对岩石变形的影响
围压对岩石变形的影响
三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
砂岩:孔隙较多,岩性较软, σ3增大,弹性模量变大。 辉长岩:致密坚硬, σ3增大,弹性模量几乎不变。

岩石的基本物理力学性质

岩石的基本物理力学性质

第一章 岩石的基本物理力学性质
主讲内容:
第一节 第二节 第三节 第四节 第五节
岩石的物理性质 岩石的强度性质 岩石的变形特征 岩石的流变特性 岩石的强度理论
第一节 岩石的基本物理性质
一、岩石的容重 二、岩石的比重 三、岩石的孔隙性 四、岩石的水理性质
含水性 吸水性 透水性 软化性 抗冻性 膨胀性 崩解性
破坏力的一部分用来克服与正应力无关的粘结力,
使材料颗粒间脱离联系;另一部分剪切破坏力用
来克服与正应力成正比的摩摩力,使面内错动而
最终破坏。
一、库伦准则:
数学表达式: c tan
参数 意义
f tan ——内摩擦系数
表示在破坏面上的正应力与剪应力的组合关系满足上式.
库仑准则的应用: 解决在压力(应力)作用下的破
第一节 岩石的基本物理性质
一、岩石的容重:
岩石单位体积(包括岩石内孔隙体积)的重量称为 岩石的容重,容重的表达式为:
W /V
岩石的容重取决于组成岩石的矿物成分、孔隙 发育程度及其含水量。岩石容重的大小,在一定程 度上反映出岩石力学性质的优劣。根据岩石的含水 状况,将容重分为天然容重、干容重、和饱和容重。
坏判推,不适应于拉破坏。
破坏判断2个方面:一个是判断材料在何种应力环
境下破坏,二是判断破坏面的方位角。当然,这种判 断是在材料特征常数[ f,(), c ]为已知的条件下去判断。
C tg c f
库仑准则 主要公式:
2c cos 1 1 sin c 2c cos 45 / 2
即有蠕变现象
力与应变速率一一对 应,受力瞬间不变形, 随时间流逝变形趋于
无限的特点
描述流变性质的三个基本元件
(3)粘性元件 本构方程 d

岩体力学第二章岩石的基本物理力学性质PPT课件

岩体力学第二章岩石的基本物理力学性质PPT课件

岩石的强度和破坏
强度
岩石抵抗外力破坏的能力, 通常分为抗压、抗拉和抗 剪强度。
破裂准则
描述岩石在不同应力状态 下从弹性到破坏的过渡规 律。
破裂模式
岩石破坏时的形态和方式, 如脆性、延性、剪切等。
04
岩石的物理力学性质与岩体力学应用
岩石的物理力学性质在岩体工程设计中的应用
岩石的物理性质在岩体工程设计中具有重要影响, 如密度、孔隙率、含水率等参数,决定了岩体的承 载能力和稳定性。
岩石的物理力学性质在岩体工程治理中的应用
在岩体工程治理中,需要根据岩石的 物理力学性质制定相应的治理方案。
在治理过程中,还需要根据岩石的变形和 破坏模式,采取相应的监测和预警措施, 以确保工程治理的有效性和安全性。
如对于软弱岩体,可以采用加固、注浆等措 施提高其承载能力和稳定性;对于破碎岩体 ,可以采用锚固、支撑等措施防止其崩塌和 滑移。
弹性波速
表示岩石中弹性波传播速度, 与岩石的密度和弹性模量等有 关。
岩石的塑性和流变
01
02
03
塑性
当应力超过岩石的屈服点 时,岩石会发生塑性变形, 不再完全恢复到原始状态。
流变
在长期应力作用下,岩石 的变形不仅与当前应力状 态有关,还与应力历史有 关。
蠕变
在恒定应力作用下,岩石 变形随时间逐渐增加的现 象。
岩体力学第二章岩石的基本物 理力学性质ppt课件

CONTENCT

• 引言 • 岩石的物理性质 • 岩石的力学性质 • 岩石的物理力学性质与岩体力学应
用 • 结论
01
引言
岩石的基本物理力学性质在岩体力学中的重要性
岩石的基本物理力学性质是岩体力学研究的基础,对于理解岩体 的变形、破坏和稳定性至关重要。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)DE段:岩石由破裂发展为全面破坏。承载能力逐渐降低,尚存的应 力称为残余强度。 岩石残余强度的存在,在矿山生产中具有实际意义。如有的矿柱在 发生局部开裂以后仍能稳固地支撑着顶板,就是残余强度在发挥作 用的例证。
(一)普通试验机下 的变形特性应力、应变 曲线形状与岩性有关
1、典ห้องสมุดไป่ตู้的岩石 应力、应变曲线
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸
形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;h/d≥(2-3)较合理 (3)加载速度 加载速度越大,表现强度越高 我国规定加载速度为0.5 -1.0MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明显,对泥岩、 粘土等软弱岩体,干燥强度是饱和强度的2-3倍。 温度度:180℃以下部明显:大于180℃,湿度越高强度越 小。
残余强度:是岩石在发生破坏后仍然具有的承载能力。其值可以 在岩石的应力——应变全过程曲线的峰值右侧线段所对应的应力 值测出。
岩石的抗压强度、抗剪强度及抗拉强度:岩石在压缩、剪切或拉 伸应力作用下表现出来的抗破坏能力各不相同,与之对应的强度 值分别为抗压强度、抗剪强度及抗拉强度。
岩石强度不是岩石的固有性质,而是一种指标值。凡是不受试件 的形状、尺寸、采集地、采集人等影响而保持不变的特征,如岩 石的颜色、密度等都是岩石的固有性质。
稳定破裂型 非稳定破裂型
1.4.1.3三轴抗压强度
岩石在三向压缩荷载作用下,达到破坏时所能承受的最大压应力 称为岩石的三轴抗压强度。 (triaxial compressive strength)
σ 1 = f (σ 2 , σ 3 ) τ = f (σ )
真三轴
假三轴
三轴压缩试验的破坏类型
岩石单轴抗压强度
试验施加的围压
S ''' c
=
Sc
+
1+ 1−
sin sin
ϕ ϕ
σa
岩石三轴抗压强度
岩石内摩擦角
粘聚力 内摩擦角
Mohr’s strength envelop
1.4.1.4点荷载强度指标(point load strength index)
是上世纪发展起来的一种简便的现场试验方法。 试件:任何形状,尺寸大致5cm,不做任何加工。 试验:在直接带到现场的点荷载仪上,加载劈裂破坏。
孔隙比是指岩石试件内各种裂隙、孔隙的体积总和与 试件内固体矿物颗粒的体积之比。
(一)孔隙比 e = VV / VC
VV——孔隙体积(水银充填法求出)
(二)孔隙率
n = VV = d s − ρ d × 100 %
V
ds
V=VC+VV
e~n关系
e = VV = VV /V
VC
VC /V
n = 1− γ c /GγW
试件尺寸
影响因素
试件形状 试件三维尺寸比例 加载速率 湿度
宽高比
1.4.1.2单轴抗压强度
岩石在单轴压缩荷载作用下达到破坏前所能承受的最大压应力称 为岩石的单轴抗压强度。(uniaxial compressive strength)
σc
=
P A
破坏时最大轴向压力 试件的横截面积
X状共扼斜面剪切破坏 单斜面剪切破坏 拉伸破坏
抗冻系数
cf
= σ c − σ cf σc
岩样冻融后的抗压强度
× 100 %
岩样冻融前的抗压强度
岩石在反复冻融后其强度降低的主要原因 (1)构成岩石的各种矿物的膨胀系数不同,当温度变化时,由于 矿物的胀、缩不均而导致岩石结构的破坏。 (2)当温度降到0时,岩石孔隙中的水将结冰,体积最增大9%, 会产生很大的膨胀压力,使岩石的结构发生改变,直至破坏。
对原型的研究程度和对模型力学参数取值的可 靠性,归根结底取决于对岩石或岩体的认知能力。 必须了解岩石的主要物理性质和力学性质及其影响 这些性质的主要因素。
1.2 岩石的基本构成和地质分类
岩石:由矿物或岩屑在地质作用下按一定规律 聚集而形成的自然物体 。
矿物:存在地壳中的具有一定化学成分和物理性 质的自然元素和化合物。
(2)AB段:该线段大致为直线,表明岩石呈线弹性变形。对应的B点的 应力值称为弹性极限。
(3)BC段:岩石内原有的微裂隙延伸扩展,体积变形由缩小转为增大, 即发生“扩容”。对应的C点的应力值称为屈服极限。
(4)CD段:岩石中的裂隙加速扩展,显示出宏观破坏的迹象,体积膨胀 加剧。对应的D点的应力值称为强度极限。
计算公式:由弹性力学Boursinesq公式
σt
=
2P πdt
劈裂破坏时最大压力 岩石圆盘试件厚度
岩石圆盘试件直径
①荷载沿轴向均匀分布 要求
②破坏面必须通过试件的直径 注:①端部效应 ②并非完全单向应力
由巴西人Hondros提出
抗弯法(梁的三点弯曲试验)
梁边缘到中性轴的距离
σ t = MC / I 梁截面绕中性轴的惯性矩
岩石应力-应变曲线形态的类型
(1)弹性硬岩(直线型):弹性、脆性 石英英、玄武岩、坚硬砂岩。
(2)下凹型:弹—塑性 石灰岩、粉砂岩;软化效应。
(3)上凹型:塑—弹性 硬化效应,原生裂隙压密,实体部分坚硬的岩石。 例如:片麻岩。
(4)S型:塑—弹—塑型 多孔隙,实体部分较软的岩石:沉积岩(页岩)
Ee
VV
=
V
V − VV
V
=n 1− n
1.3.4岩石的水理性
岩石与水相互作用时所表现出来的性质。 吸水性 透水性 软化性
抗冻性
1.3.4.1岩石的天然含水率
天然状态下岩石中水的质量与岩石烘干质量比值。 ω = mω × 100 % m rd
1.3.4.2岩石的吸水性
岩石在一定条件下吸收水分的性能称为岩石的的吸水性。
作用在试件上的最大弯矩
①岩石是各向同性的线弹性材料 适用条件 ②满足平面假设的对称面内弯曲
1.4.1.6抗剪切强度
岩石在剪切荷载作用下达到破坏前所能承受的最大剪应力称 为抗剪切强度。 (shear strength)
单面剪切试验
S0
=
FC A
冲击剪切试验
S0
=
FC 2π ra
双面剪切试验
S0
=
FC 2A
岩石三向压缩强度的影响因素
(1)侧压力的影响 围压越大,轴向压力越大
(2)加载途径对岩石三向压缩强度影响(下图)
A、B、C三条虚线是三个不同的加载途径,加载途径对岩石 的最终三向压缩强度影响不大。
(3)孔隙水压力对岩石三向压缩强度的影响
孔隙水压力使有效应力(围压)减小, 强度降低
无水
有水
岩石三轴抗压强度与单轴抗压强度的关系:
=
σ εe
EP
=
ε
σ p +εe
σ
岩石试件中的应力,压应力为正值;
εe
非弹性岩石的弹性应变;
εp
塑性应变。
应力——应变全过程曲线
岩石应力——应变全过程可划分为五个阶段:
(1)OA段:该线段的斜率由小变大,表明岩石内裂隙被压密实的过程。 在压密阶段,岩石体积缩小。对应的A点的应力值称为压密极限。
弹性常数与强度的确定
弹性模量国际岩石力学学会(ISRH)建议三种方法
初始模量
E0
=

dσ dε
0
( ) 割线模量 E50 = σ / ε 50
( ) 切线模量 Et = dσ / dε 50
极限强度 σ c
反复循环加载曲线
特点:
①卸载应力越大,塑 性滞理越大(原因: 由裂隙的扩大,能量 的消耗);
蜡容重 天然容重
1.3.2岩石的比重 Gs
岩石固体部分的重量和40C时同体积纯水重量的比值。
Gs =
岩石固体部分体积
Ws Vs ⋅γ
w
1.3.3岩石的孔隙性
岩石固体部分重量 40C单位体积水重量
岩石的孔隙性系指岩石的孔隙和空隙发育程度。
孔隙率是岩石试件内各种裂隙、孔隙的体积总和对于 试件总体积之比。
β =π +φ 42
液压入口
试件标准:
圆柱形试件:φ4.8-5.2cm (7cm),高H=(2-3)φ 长方体试件:边长L= 4.8-5.2cm (7cm) , 高H=(2-2.5)L 试件两端不平度0.5mm;尺寸误差±0.3mm;两端面垂直于轴线 ±0.25o
单向压缩试件的破坏形态
破坏形态是表现破坏机理的重要特征; 其主要影响因素:①应力状态 ②试验条件
结构:组成岩石的物质成分、颗粒大小和形状以及 其相互结合的情况。
构造: 组成成分的空间分布及其相互间排列关系 这是影响岩石力学性质和物理性质的三个重要因素。
岩浆岩:强度高、均质性好
岩石按成因分类 沉积岩:强度不稳定,各向异性 变质岩:不稳定与变质程度和原 岩性质有关
岩体=岩块+结构面
岩体
结构面
岩块
破坏形态有两类: (1)圆锥形破坏
原因:压板两端存在摩擦力,箍作用(又称端部效应), 在工程中也会出现。 (2)柱状劈裂破坏
张拉破坏(岩石的抗拉强度远小于抗压强度) 是岩石单向压缩破坏的真实反映(消除了端部效应)
消除试件端部约束的方法 润滑试件端部(如垫云母片;涂黄油在端部) 加长试件
影响单轴抗压强度的主要因素
扭转剪切试验
S0
=
16M C π D3
1.4.1.7破坏后强度(post-failure strength)
全应力应变曲线三个用途: 预测岩爆、预测蠕变破坏、预测循环加载条件下岩石的破坏
1.4.2岩石的变形特性
相关文档
最新文档