2019届高考理科数学知识点题组训练题0
2019年高考数学高考题和高考模拟题分项版汇编专题08数列理(含解析)

( m 1) 个
与已知矛盾.
最后证明:2m排在2m−3之后(m≥2为整数).
假设存在2m(m≥2),使得2m排在2m−3之前,则an 的长度为m+1且末项为2m+l的递增子列
的个数小于 2m .与已知矛盾。
综上,数列an 只可能为2,1,4,3,…,2m−3,2m,2m−1,…。
【答案】16
a2a5 a8 a1 d a1 4d a1 7d 0
【解析】由题意可得:
S9
9a1
98 2
d
27
,
解得:
a1 d
5 2
,则
S8
8a1
87 2
d
40
28
2
16
.
【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应
用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构
因 a2 3a1 ,所以 a1 d 3a1 ,即 2a1 d ,
所以 S10 S5
10a1
10 2
9
d
5a1
5
2
4
d
100a1 25a1
4.
【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转
4
2019 年高考数学高考题和高考模拟题分项版汇编专题 08 数列理(含解析)(word 版可编辑修改)
(Ⅰ)求an 和bn 的通项公式;
假设2m排在2m−1之后.
设 ap1 , ap2 ,, apm1 , 2m 1是 数 列 an 的 长 度 为 m末 项 为 2m−1的 递 增 子 列 , 则 ap1 , ap2 ,, apm1 , 2m 1, 2m 是数列an 的长度为m+1末项为2m的递增子列。与已知矛盾. 再证明:所有正偶数都是an 中的项. 假设存在正偶数不是an 中的项,设不在an 中的最小的正偶数为2m。 因为2k排在2k−1之前(k=1,2,…,m−1),所以2k和 2k 1 不可能在an 的同一个递增子列中. 又an 中不超过2m+1的数为1,2,…,2m−2,2m−1,2m+1,所以an 的长度为m+1且末项为2m+1
2019数学(理科)高考题分类(高考真题+模拟题) 数列

D单元数列D1 数列的概念与简单表示法20.D1,D5,M2[2019·北京卷]已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<…<i m),若a i1<a i2<…<a im,则称新数列a i1,a i2,…,a im为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列.(2)已知数列{a n}的长度为p的递增子列的末项的最小值为a m,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m<a n.(3)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s-1个(s=1,2,…),求数列{a n}的通项公式.20.解:(1)1,3,5,6.(答案不唯一)(2)证明:设长度为q末项为a n0的一个递增子列为a r1,a r2,…,a rq-1,a n.由p<q,得a rp ≤a rq-1<a n.因为{a n}的长度为p的递增子列末项的最小值为a m0,又a r1,a r2,…,a rp是{a n}的长度为p的递增子列,所以a m0≤a rp.所以a m<a n.(3)由题设知,所有正奇数都是{a n}中的项.先证明:若2m是{a n}中的项,则2m必排在2m-1之前(m为正整数).假设2m排在2m-1之后.设a p1,a p2,…,a pm-1,2m-1是数列{a n}的长度为m末项为2m-1的递增子列,则a p1,a p2,…,a pm-1,2m-1,2m是数列{a n}的长度为m+1末项为2m的递增子列.与已知矛盾.再证明:所有正偶数都是{a n}中的项.假设存在正偶数不是{a n}中的项,设不在{a n}中的最小的正偶数为2m.因为2k排在2k-1之前(k=1,2,…,m-1),所以2k和2k-1不可能在{a n}的同一个递增子列中.又{a n}中不超过2m+1的数为1,2,…,2m-2,2m-1,2m+1,所以{a n}的长度为m+1且末项为2m+1的递增子列个数至多为2×2×2×…×2⏟(m-1)个×1×1=2m-1<2m.与已知矛盾.最后证明:2m排在2m-3之后(m≥2且m为整数).假设存在2m(m≥2),使得2m排在2m-3之前,则{a n}的长度为m+1且末项为2m+1的递增子列的个数小于2m.与已知矛盾.综上,数列{a n}只可能为2,1,4,3,…,2m-3,2m,2m-1,….经验证,数列2,1,4,3,…,2m-3,2m,2m-1,…符合条件.所以a n={n+1,n为奇数, n-1,n为偶数.D2 等差数列及等差数列前n项和9.D2[2019·全国卷Ⅰ]记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5B.a n=3n-10C.S n=2n2-8nD.S n=12n2-2n9.A[解析]设等差数列{a n}的公差为d,由题意有{4a1+4×32d=0,a1+4d=5,解得{a1=-3,d=2,所以a n=-3+(n-1)×2=2n-5,S n=-3n+n(n-1)2×2=n2-4n,对比选项可知只有A正确.19.D2,D3[2019·全国卷Ⅱ]已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n-a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.19.解:(1)证明:由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n+1-b n+1)=4(a n -b n )+8,即a n+1-b n+1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n-1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n-12,b n =12[(a n +b n )-(a n -b n )]=12n -n+12.14.D2[2019·全国卷Ⅲ] 记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .14.4 [解析] 设数列{a n }的公差为d ,由题意得a 1+d=3a 1,即d=2a 1,则S 5=5a 1+5×42d=25a 1,S 10=10a 1+10×92d=100a 1,所以S 10S 5=100a 125a 1=4.10.D2[2019·北京卷] 设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 .10.0 -10 [解析] 方法一:设等差数列{a n }的公差为d ,由已知可得{a 1+d =-3,5a 1+10d =-10,解得{a 1=-4,d =1,所以a 5=a 1+4d=-4+4×1=0,S n =-4n+12n (n-1)=12n 2-92n=12(n -92)2-818.因为n ∈N *,故当n=4或n=5时,S n 取得最小值-10.方法二:设等差数列{a n }的公差为d ,因为S 5=5(a 1+a 5)2=5a 3=-10,所以a 3=-2,又因为a 2=-3,所以d=a 3-a 2=1,所以a 1=a 2-d=-4,a 5=a 3+2d=0,S n =-4n+12n (n-1)=12n 2-92n=12(n -92)2-818.因为n ∈N *,故当n=4或n=5时,S n 取得最小值-10.8.D2[2019·江苏卷] 已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 .8.16 [解析] 设数列{a n }的公差为d ,由S 9=9a 5=27,得a 5=3,从而3a 2+a 8=0,即3(a 5-3d )+(a 5+3d )=0,解得d=23a 5=2,所以S 8=S 9-a 9=S 9-(a 5+4d )=27-11=16.20.D2、D3、D4[2019·江苏卷] 定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”. (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n-2bn+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1,求m的最大值.20.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3-4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n=2b n-2bn+1,得S n =b nb n+12(b n+1-b n ), 当n ≥2时,由b n =S n -S n-1,得b n =b n b n+12(b n+1-b n )-b n -1b n2(b n -b n -1),整理得b n+1+b n-1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *).②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q>0. 因为c k ≤b k ≤c k+1,所以q k-1≤k ≤q k ,其中k=1,2,3,…,m. 当k=1时,有q ≥1;当k=2,3,…,m 时,有lnkk ≤ln q ≤lnkk -1.设f (x )=lnxx (x>1),则f'(x )=1-lnxx 2. 令f'(x )=0,得x=e .列表如下:x (1,e)e (e,+∞)f'(x ) +0 -f (x )↗极大值↘因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q=√33,当k=1,2,3,4,5时,lnkk ≤ln q ,即k ≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.19.D2,D3,D4[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k ,其中k ∈N *.(i)求数列{a 2n (c 2n -1)}的通项公式; (ii)求∑i=12na i c i (n ∈N *).19.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2,故a n =4+(n-1)×3=3n+1,b n =6×2n-1=3×2n . 所以,{a n }的通项公式为a n =3n+1,{b n }的通项公式为b n =3×2n . (2)(i)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1.(ii)∑i=12na i c i =∑i=12n[a i +a i (c i -1)]=∑i=12na i +∑i=1na 2i (c 2i -1)=[2n ×4+2n (2n -1)2×3]+∑i=1n(9×4i -1) =(3×22n-1+5×2n-1)+9×4(1-4n )1-4-n =27×22n-1+5×2n-1-n-12(n ∈N *).20.D2,D3,D4,M3[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式;(2)记c n =√an 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.20.解:(1)设数列{a n }的公差为d ,由题意得a 1+2d=4,a 1+3d=3a 1+3d , 解得a 1=0,d=2, 从而a n =2n-2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n+1+b n ,S n+2+b n 成等比数列得(S n+1+b n )2=(S n +b n )(S n+2+b n ), 解得b n =1d (S n+12-S n S n+2), 所以b n =n 2+n ,n ∈N *.(2)c n =√a n2b n=√2n -22n(n+1)=√n -1n(n+1),n ∈N *.我们用数学归纳法证明.①当n=1时,c 1=0<2,不等式成立;②假设n=k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2√k .那么,当n=k+1时,c 1+c 2+…+c k +c k+1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +2√k+1+√k= 2√k +2(√k +1-√k )=2√k +1, 即当n=k+1时不等式也成立.根据①和②,不等式c1+c2+…+c n<2√n对任意n∈N*成立.D3 等比数列及等比数列前n项和14.D3[2019·全国卷Ⅰ]记S n为等比数列{a n}的前n项和.若a1=13,a42=a6,则S5=.14.1213[解析]因为a42=a2a6=a6,所以a2=1,所以公比为a2a1=3,所以S5=13×(1-35)1-3=1213.21.D3,K6[2019·全国卷Ⅰ]为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.21.解:(1)X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为X-101P(1-α)βαβ+(1-α)(1-β)α(1-β)(2)(i)证明:由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ii)由(i)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=48-1p1.3,所以由于p8=1,故p1=348-1p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=44-1p13.=1257p4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为≈0.0039,此时得出错误结论的概率非常小,说明这种0.8时,认为甲药更有效的概率为p4=1257试验方案合理.19.D2,D3[2019·全国卷Ⅱ]已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n-a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.19.解:(1)证明:由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a1+b1=1,所以{a n+b n}是首项为1,公比为12的等比数列.由题设得4(a n+1-b n+1)=4(a n-b n)+8,即a n+1-b n+1=a n-b n+2.又因为a1-b1=1,所以{a n-b n}是首项为1,公差为2的等差数列.(2)由(1)知,a n+b n=12n-1,a n-b n=2n-1,所以a n=12[(a n+b n)+(a n-b n)]=12n+n-12,b n=12[(a n+b n)-(a n-b n)]=12n-n+12.5.D3[2019·全国卷Ⅲ]已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.25.C[解析]设数列{a n}的公比为q,由题知a1>0,q>0且q≠1,则{a1(1-q4)1-q=15,a1q4=3a1q2+4a1,解得{a1=1,q=2,所以a3=a1q2=4.9.D3,L1[2019·全国卷Ⅲ]执行图1-3的程序框图,如果输入的ε为0.01,则输出s的值等于()图1-3A .2-124B .2-125C .2-126D .2-1279.C [解析] x=1,s=0,s=0+1=1,x=12,12>0.01;s=1+12,x=14,14>0.01;s=1+12+14,x=18,18>0.01;s=1+12+14+18,x=116,116>0.01;s=1+12+14+18+116,x=132,132>0.01;s=1+12+14+18+116+132,x=164,164>0.01;s=1+12+14+18+116+132+164,x=1128,1128<0.01,输出s=1+12+14+18+116+132+164=1×[1-(12)7]1-12=2-126.20.D2、D3、D4[2019·江苏卷] 定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”. (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n-2bn+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1,求m的最大值.20.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3-4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n=2b n-2bn+1,得S n =b nb n+12(b n+1-b n ), 当n ≥2时,由b n =S n -S n-1,得b n =b n b n+12(b n+1-b n )-b n -1b n2(b n -b n -1),整理得b n+1+b n-1=2b n .所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n (n ∈N *).②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q>0. 因为c k ≤b k ≤c k+1,所以q k-1≤k ≤q k ,其中k=1,2,3,…,m. 当k=1时,有q ≥1;当k=2,3,…,m 时,有lnkk ≤ln q ≤lnkk -1. 设f (x )=lnxx (x>1),则f'(x )=1-lnxx 2. 令f'(x )=0,得x=e .列表如下:x (1,e)e (e,+∞)f'(x ) +0 -f (x )↗极大值↘因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q=√33,当k=1,2,3,4,5时,lnkk ≤ln q ,即k ≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.19.D2,D3,D4[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (i)求数列{a 2n (c 2n -1)}的通项公式;(ii)求∑i=12na i c i (n ∈N *).19.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2,故a n =4+(n-1)×3=3n+1,b n =6×2n-1=3×2n . 所以,{a n }的通项公式为a n =3n+1,{b n }的通项公式为b n =3×2n . (2)(i)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ii)∑i=12na i c i =∑i=12n[a i +a i (c i -1)]=∑i=12na i +∑i=1na 2i (c 2i -1)=[2n×4+2n (2n -1)2×3]+∑i=1n(9×4i -1) =(3×22n-1+5×2n-1)+9×4(1-4n)1-4-n=27×22n-1+5×2n-1-n-12(n ∈N *).20.D2,D3,D4,M3[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式;(2)记c n =√an 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.20.解:(1)设数列{a n }的公差为d ,由题意得a 1+2d=4,a 1+3d=3a 1+3d , 解得a 1=0,d=2, 从而a n =2n-2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n+1+b n ,S n+2+b n 成等比数列得(S n+1+b n )2=(S n +b n )(S n+2+b n ), 解得b n =1d (S n+12-S n S n+2), 所以b n =n 2+n ,n ∈N *.(2)c n =√a n2b n=√2n -22n(n+1)=√n -1n(n+1),n ∈N *.我们用数学归纳法证明.①当n=1时,c 1=0<2,不等式成立;②假设n=k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2√k .那么,当n=k+1时,c 1+c 2+…+c k +c k+1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k= 2√k +2(√k +1-√k )=2√k +1, 即当n=k+1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.D4 数列求和20.D2、D3、D4[2019·江苏卷] 定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”. (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n-2bn+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1,求m的最大值.20.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3-4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n=2b n-2bn+1,得S n =b nb n+12(b n+1-b n ),当n ≥2时,由b n =S n -S n-1,得b n =b n b n+12(b n+1-b n )-b n -1b n2(b n -b n -1),整理得b n+1+b n-1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *).②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q>0. 因为c k ≤b k ≤c k+1,所以q k-1≤k ≤q k ,其中k=1,2,3,…,m. 当k=1时,有q ≥1;当k=2,3,…,m 时,有lnkk ≤ln q ≤lnkk -1. 设f (x )=lnxx (x>1),则f'(x )=1-lnxx 2. 令f'(x )=0,得x=e .列表如下:x (1,e)e (e,+∞)f'(x ) +0 -f (x )↗极大值↘因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q=√33,当k=1,2,3,4,5时,lnkk ≤ln q ,即k ≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.19.D2,D3,D4[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (i)求数列{a 2n (c 2n -1)}的通项公式; (ii)求∑i=12na i c i (n ∈N *).19.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2,故a n =4+(n-1)×3=3n+1,b n =6×2n-1=3×2n . 所以,{a n }的通项公式为a n =3n+1,{b n }的通项公式为b n =3×2n . (2)(i)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ii)∑i=12na i c i =∑i=12n[a i +a i (c i -1)]=∑i=12na i +∑i=1na 2i (c 2i -1)=[2n×4+2n (2n -1)2×3]+∑i=1n(9×4i -1) =(3×22n-1+5×2n-1)+9×4(1-4n)1-4-n=27×22n-1+5×2n-1-n-12(n ∈N *).20.D2,D3,D4,M3[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式;(2)记c n =√an 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.20.解:(1)设数列{a n }的公差为d ,由题意得a 1+2d=4,a 1+3d=3a 1+3d , 解得a 1=0,d=2, 从而a n =2n-2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n+1+b n ,S n+2+b n 成等比数列得(S n+1+b n )2=(S n +b n )(S n+2+b n ),解得b n =1d (S n+12-S n S n+2), 所以b n =n 2+n ,n ∈N *.(2)c n =√a n 2b n=√2n -22n(n+1)=√n -1n(n+1),n ∈N *.我们用数学归纳法证明.①当n=1时,c 1=0<2,不等式成立;②假设n=k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2√k .那么,当n=k+1时,c 1+c 2+…+c k +c k+1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k= 2√k +2(√k +1-√k )=2√k +1, 即当n=k+1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.D5 单元综合20.D1,D5,M2[2019·北京卷] 已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若a i 1<a i 2<…<a i m ,则称新数列a i 1,a i 2,…,a i m 为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列.(2)已知数列{a n }的长度为p 的递增子列的末项的最小值为a m 0,长度为q 的递增子列的末项的最小值为a n 0.若p<q ,求证:a m 0<a n 0.(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s-1,且长度为s 末项为2s-1的递增子列恰有2s-1个(s=1,2,…),求数列{a n }的通项公式.20.解:(1)1,3,5,6.(答案不唯一)(2)证明:设长度为q 末项为a n 0的一个递增子列为a r 1,a r 2,…,a r q -1,a n 0.由p<q,得a rp ≤a rq-1<a n.因为{a n}的长度为p的递增子列末项的最小值为a m0,又a r1,a r2,…,a rp是{a n}的长度为p的递增子列,所以a m0≤a rp.所以a m<a n.(3)由题设知,所有正奇数都是{a n}中的项.先证明:若2m是{a n}中的项,则2m必排在2m-1之前(m为正整数).假设2m排在2m-1之后.设a p1,a p2,…,a pm-1,2m-1是数列{a n}的长度为m末项为2m-1的递增子列,则a p1,a p2,…,a pm-1,2m-1,2m是数列{a n}的长度为m+1末项为2m的递增子列.与已知矛盾.再证明:所有正偶数都是{a n}中的项.假设存在正偶数不是{a n}中的项,设不在{a n}中的最小的正偶数为2m.因为2k排在2k-1之前(k=1,2,…,m-1),所以2k和2k-1不可能在{a n}的同一个递增子列中.又{a n}中不超过2m+1的数为1,2,…,2m-2,2m-1,2m+1,所以{a n}的长度为m+1且末项为2m+1的递增子列个数至多为2×2×2×…×2⏟(m-1)个×1×1=2m-1<2m.与已知矛盾.最后证明:2m排在2m-3之后(m≥2且m为整数).假设存在2m(m≥2),使得2m排在2m-3之前,则{a n}的长度为m+1且末项为2m+1的递增子列的个数小于2m.与已知矛盾.综上,数列{a n}只可能为2,1,4,3,…,2m-3,2m,2m-1,….经验证,数列2,1,4,3,…,2m-3,2m,2m-1,…符合条件.所以a n={n+1,n为奇数, n-1,n为偶数.10.D5[2019·浙江卷]设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N*,则()A.当b=12时,a10>10B.当b=14时,a10>10C.当b=-2时,a10>10D.当b=-4时,a10>1010.A[解析]a2=a2+b≥b,a n+1=a n2+b,所以当b越大时,a10越大.四个选项中A中的b最大,当b=12时,a n+1=a n2+12,所以a2≥12,a3≥34,a4≥1716,a5≥417256>32,a6>114,a7>12916>8,a8>64,所以a10>a9>a8>10.故选A.9.[2019·南昌模拟]已知数列{a n}的前n项和为S n,a1=-8,且(3n-5)a n+1=(3n-2)a n-9n2+21n-10,则a n=()A.-4nB.3n-5C.(3n-5)(5-n)D.5-n9.C[解析]∵(3n-5)a n+1=(3n-2)a n-9n2+21n-10,∴(3n-5)a n+1=(3n-2)a n-(9n2-21n+10),即(3n-5)a n+1=(3n-2)a n-(3n-5)(3n-2),∵n∈N*,∴a n+13n-2=a n3n-5-1,∴数列{a n3n-5}为等差数列,其首项为a13-5=4,公差d=-1,∴a n3n-5=4-(n-1)=5-n,∴a n=(3n-5)(5-n),故选C.3.[2019·山东淄博模拟]已知在等比数列{a n}中,a1=2,且a1,a2,a3-2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=1a n+2log2a n-1,求数列{b n}的前n项和S n.3.解:(1)设等比数列{a n }的公比为q.∵a 1,a 2,a 3-2成等差数列,a 1=2, ∴2a 2=a 1+(a 3-2)=2+(a 3-2)=a 3, ∴q=a3a 2=2,∴a n =a 1q n-1=2n (n ∈N *).(2)b n =1a n+2log 2a n -1=(12)n +2log 22n -1=(12)n +2n-1,则S n =(12+1)+[(12)2+3]+[(12)3+5]+…+[(12)n+(2n -1)]=12+(12)2+(12)3+…+(12)n +[1+3+5+…+(2n-1)]=12[1-(12)n]1-12+n ·[1+(2n -1)]2=n 2-(12)n+1(n ∈N *).6.[2019·河北石家庄质检] 已知{a n }是首项为1的等比数列,各项均为正数,且a 2+a 3=12. (1)求数列{a n }的通项公式; (2)设b n =1(n+2)log3a n+1,求数列{b n }的前n 项和S n .6.解:(1)设数列{a n }的公比为q , 由a 2+a 3=12得q+q 2=12, 解得q=3或q=-4,因为数列{a n }的各项都为正数,所以q>0,所以q=3,所以a n =3n-1. (2)由(1)知b n =1(n+2)log3a n+1=1n(n+2)=12(1n -1n+2),∴S n =12×1-13+12-14+…+1n -1-1n+1+1n -1n+2=34-2n+32(n+1)(n+2).。
2019年理科数学高考重点题1097

2019年理科数学高考重点题单选题(共5道)1、,分别从集合和中随机取一个数和,确定平面上的一个点,记“点落在直线上”为事件,若事件的概率最大,则的可能值为()A3B4C2和5D3和42、,分别从集合和中随机取一个数和,确定平面上的一个点,记“点落在直线上”为事件,若事件的概率最大,则的可能值为()A3B4C2和5D3和43、已知平面上四个点,,,,设是四边形及其内部的点构成的点的集合,点是四边形对角线的交点,若集合,则集合S所表示的平面区域的面积为A2B4C8D164、中,A、B的对边分别是,且,那么满足条件的()A有一个解B有两个解C无解D不能确定5、如图是一个算法的流程图,若输入的值为,则输出的值是A0B-1C-2D-3简答题(共5道)6、,,为的中点,,且面(1)求证:(2)求二面角的余弦值大小7、设(1)求证:是一个自然数;(2)求的个位数。
8、已知向量当时,有函数9、,如果存在一个正整数,使得对任意的()都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期.例如当时是周期为的周期数列,当时是周期为的周期数列。
(1)设数列满足(),(不同时为0),求证:数列是周期为的周期数列,并求数列的前2013项的和;(2)设数列的前项和为,且.①若,试判断数列是否为周期数列,并说明理由;②若,试判断数列是否为周期数列,并说明理由;(3)设数列满足(),,,数列的前项和为,试问是否存在,使对任意的都有成立,若存在,求出的取值范围;不存在,说明理由.10、如图,∠BAC的平分线与BC和外接圆分别相交于D和E,延长AC交过D,E,C三点的圆于点F。
(1)求证:;(2)若,求的值。
书面表达(共5道)11、阅读下面的材料,根据要求写一篇不少于800字的文章。
一家人晚饭后边看电视边聊节目。
爷爷说:“还是京剧好啊。
一招一式、一颦一蹙都是真功夫,都是美呀!祖宗留下的东西就是好哇!”孙子听了,抢着说:“爷爷,流行音乐也挺好的,不管是中国的还是外国的。
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)(解析版)

2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题1. 已知集合A={−1, 0, 1, 2}, B={x|x2≤1},则A∩B=( )A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}2. 若z(1+i)=2i,则z=( )A.−1−iB.−1+iC.1−iD.1+i3. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了了解本校小学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.0.5B.0.6C.0.7D.0.84. (1+2x2)(1+x)4的展开式中x3的系数为( )A.12B.16C.20D.245. 已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( )A.16B.8C.4D.26. 已知曲线y=ae x+x ln x在点(1,ae)处的切线方程为y=2x+b,则( )A.a=e, b=−1B.a=e, b=1C.a=e−1, b=1D.a=e−1,b=−17. 函数y=2x32x+2−x在[−6,6]的图象大致为()A. B.C. D.8. 如图,点N为正方形ABCD的中心,△EDC为正三角形,平面EDC⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9. 执行下边的程序框图,如果输入的ε为0.01,则输出的值等于()A.2−124B.2−125C.2−126D.2−12710. 双曲线C :x 24−y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO|=|PF|,则△PFO 的面积为( ) A.3√24B.3√22C.2√2D.3√211. 设f(x)是定义域为R 的偶函数,且在(0,+∞)单调递减,则( ) A.f (log 314)>f (2−32)>f (2−23) B.f (log 314)>f (2−23)>f (2−32) C.f (2−32)>f (2−23)>f (log 314)D.f (2−23)>f (2−32)>f (log 314)12. 设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论: ①f(x)在(0,2π)有且仅有3个极大值点, ②f(x)在(0,2π)有且仅有2个极小值点, ③f(x)在(0,π10)单调递增,④ω的取值范围是[125,2910). 其中所有正确结论的编号是( ) A.①④ B.②③ C.①②③ D.①③④二、填空题13. 已知a →,b →为单位向量,且a →⋅b →=0,若c →=2a →−√5b →,则cos (a →,c →)=________.14. 记S n 为等差数列{a n }项和,若a 1≠0,a 2=3a 1,则S 10S 5=________.15. 设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限,若△MF 1F 2为等腰三角形,则M 的坐标为________.16. 学生到工厂劳动实践,利用3D 打印技术制作模型,如图,该模型为长方体ABCD −A 1B 1C 1D 1,挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm ,3D 打印所用原料密度为0.9g/cm 2,不考虑打印损耗,制作该模型所需原料的质量为________g .三、解答题 17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同. 经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比,根据试验数据分别得到如下直方图: 记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18. △ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a sin A+C 2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.19. 图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60∘,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B −CG −A 的大小.20. 已知函数f(x)=2x 3−ax 2+b . (1)讨论f(x)的单调性;(2)是否存在a,b ,使得f(x)在区间[0,1]的最小值为−1且最大值为1?若存在,求出a,b 的所有值;若不存在,说明理由.21. 已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A,B .(1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.22. 如图,在极坐标系Ox 中,A(2,0),B(√2,π4),C(√2,3π4),D(2,π),弧AB̂,BC ̂,CD ̂所在圆的圆心分别是(1,0),(1,π2),(1,π),曲线M 1是弧AB̂,曲线M 2是弧BC ̂,曲线M 3是弧CD ̂.(1)分别写出M 1,M 2,M 3的极坐标方程;(2)曲线M 由M 1,M 2,M 3构成,若点P 在M 上,且|OP|=√3,求P 的极坐标.23. 设x ,y ,z ∈R ,且x +y +z =1.(1)求(x −1)2+(y +1)2+(z +1)2的最小值;(2)若(x −2)2+(y −1)2+(z −a)2≥13成立,证明:a ≤−3或a ≥−1.参考答案与试题解析2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题1.【答案】A【考点】一元二次不等式的解法交集及其运算【解析】此题暂无解析【解答】解:∵x2≤1,∴−1≤x≤1,∴B={x|−1≤x≤1},∴A∩B={−1,0,1}.故选A.2.【答案】D【考点】复数代数形式的乘除运算【解析】此题暂无解析【解答】解:z(1+i)=2i,z=2i1+i,z=2i(1−i)(1+i)(1−i),z=1+i,故选D.3.【答案】C【考点】生活中概率应用【解析】此题暂无解析【解答】解:只阅读过《红楼梦》或《西游记》的人数为:90−60=30,只阅读过《红楼梦》的人数为:80−60=20,只阅读过《西游记》的人数为30−20=10,阅读过《西游记》的人数为:10+60=70,与该校学生总数比值为70100=0.7.故选C.4.【答案】A【考点】二项式定理的应用【解析】此题暂无解析【解答】解:(1+x)4展开式中x3项的系数:C43=4;(1+x)4展开式中x项的系数:C41=4;所以(1+2x2)(1+x)4展开式中x3项的系数为:4+2×4=12. 故选A.5.【答案】C【考点】等比数列的前n项和【解析】此题暂无解析【解答】解:a1q4=3a1q2+4a1,q4−3q2−4=0,解得q=2或−2(舍)a1(1−q4)1−q=15,解得a1=1,所以a3=a1q2=4.故选C.6.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:y′=ae x+ln x+1,∵曲线y=ae x+x ln x在点(1,ae)处的切线方程为y=2x+b,∴ae+ln1+1=2,解得a=e−1.∴切线方程为y=2x−1,解得b=−1.故选D.7.【答案】B【考点】函数奇偶性的判断函数的图象【解析】此题暂无解析【解答】解:将−x代入题中函数,可得y1=2(−x)32−x+2−(−x)=−y,故原函数为奇函数,关于原点对称,因此排除选项C.将x=1代入函数,得y=45>0,排除选项D.将x=4代入函数,得y=2⋅4324+2−4≈23=8,排除选项A. 故选B.8.【答案】B【考点】空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:连接M,N,∵ MN为△DBE的中位线,∴ MN//EB,∴ M,N,E,B四点共线,∴ BM,EN相交;设AB=4,则AD=DC=CB=DE=CE=4;设P为CD中点,Q为DP中点,连接EP,MQ;∵ EP⊥DC,平面ECD⊥平面ABCD,EP⊂平面ECD,平面ECD∩平面ABCD=CD;∴ EP⊥平面ABCD,∴ EP⊥PN,同理MQ⊥QB,在△EPN中,EP=2√3,PN=2,则EN=4;在△MQB中,MQ=√3,BQ=5,则BM=2√7.∴ BM≠EN;故选B.9.【答案】C【考点】程序框图【解析】此题暂无解析【解答】解:∵ ε=0.01,①输入x=1,s=0,有s=1+0=1,x=12,x>ε;②输入x=12,s=1+12=2−12,x=122,x>ε;③输入x=122,s=2−12+122=2−122,x=123,x>ε;④输入x=123,s=2−122+123=2−123,x=124,x>ε;⑤输入x=124,s=2−123+124=2−124,x=125,x>ε;⑥输入x=125,s=2−124+125=2−125,x=126,x>ε;⑦输入x=126,s=2−125+126=2−126,x=127<ε,此时输出s=2−126.故选C . 10.【答案】 A【考点】双曲线的渐近线 【解析】 此题暂无解析 【解答】解:设点P =(x 0,y 0), ∵ a =2,b =√2, ∴ c =√6.由题知x 02+y 02=(x 0−√6)2+y 02,解得x 0=√62, 由于双曲线的渐近线方程为y =±√22, ∴ y 0=√32, ∴ S △PFO =12×√6×√32=3√24. 故选A. 11.【答案】 C【考点】幂函数的单调性、奇偶性及其应用 【解析】 此题暂无解析 【解答】解:|log 34−1|=|−log 34|>1, 2−32=√23<23=2−23,又∵ f(x)为偶函数,且在(0,+∞)上单调递减, ∴ f (2−32)>f (2−23)>f (log 314). 故选C.12.【答案】D【考点】正弦函数的周期性由y=Asin (ωx+φ)的部分图象确定其解析式 正弦函数的单调性 正弦函数的定义域和值域 【解析】 此题暂无解析 【解答】解:作出f(x)的大致图像,由图知f(x)在(0,2π)上有3个极大值点,①对;f(x)在(0,2π)上有2个或3个极小值点,②错; 5π−π5≤2πω<6π−π5,解得125≤ω<2910,④对;24π100≤π10ω<29100π,∵ π2−π5=310π.∴ f(x)在(0,π10)单调递增,③对.故选D .二、填空题 13.【答案】23【考点】数量积判断两个平面向量的垂直关系 数量积表示两个向量的夹角 单位向量 【解析】 此题暂无解析 【解答】解:由题可知, ∵ a →⋅b →=0,∴ a →⊥b →, ∵ c →=2a →−√5b →,∴ |c →|=√22+(√5)2=3,且c →与a →夹角小于π2,故cos (a →,c →)=a →⋅c→|a →|⋅|c →|=(2a →−√5b →)⋅a →|a →|⋅|c →|=23,故答案为:23. 14.【答案】 4【考点】等差数列的前n 项和 【解析】 此题暂无解析 【解答】解:∵ 数列{a n }为等差数列,a 2=3a 1, ∴ a 1+d =3a 1, 即d =2a 1, S n =na 1+n(n−1)d2, ∴S 10S 5=10a 1+(10×9)2d 5a 1+(5×4)2d,将d =2a 1代入,得S10S 5=4.故答案为:4. 15. 【答案】 (3,√15)【考点】 椭圆的应用 椭圆的定义 【解析】 此题暂无解析 【解答】解:因为M 在椭圆上,设M 横坐标为t ,则M(t,√180−5t 29);又因为△MF 1F 2为等腰三角形且M 在第一象限, 则MF 1=F 1F 2, 由题意得F 1F 2=8. (t +4)2+(√180−5t 29)2=64,解得t =3或t =−21(舍去). 当t =3时,M 的坐标为(3,√15).故答案为:(3,√15). 16.【答案】 118.8 【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】解:模型的体积为长方体的体积减去四棱锥的体积, 正方体的体积为:6×6×4=144cm 3, 四棱锥的体积为:13×6×4×12×3=12cm 3. 模型的体积为:144−12=132cm 3. 模型的质量为:132×0.9=118.8g . 故答案为:118.8. 三、解答题17.【答案】解:(1)由题意得:0.7=a +0.2+0.15, 解得:a =0.35.b =1−0.05−0.15−0.7=0.1.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 【考点】众数、中位数、平均数 频率分布直方图【解析】 此题暂无解析 【解答】解:(1)由题意得:0.7=a +0.2+0.15,解得:a=0.35.b=1−0.05−0.15−0.7=0.1.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.18.【答案】解:(1)由题设及正弦定理可得,sin A sin A+C2=sin B sin A,∵sin A≠0,∴sin A+C2=sin B,∵ A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2.∵cos B2≠0,故sin B2=12,∴ B=60∘.(2)由题设及(1)可知,S△ABC=12ac sin B=√34a,由正弦定理得a=c sin Asin C =sin(120∘−C)sin C=√32tan C+12,∵ △ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,∴30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32.答:△ABC面积的取值范围为(√38,√32).【考点】解三角形三角函数中的恒等变换应用【解析】此题暂无解析【解答】解:(1)由题设及正弦定理可得,sin A sin A+C2=sin B sin A,∵sin A≠0,∴sin A+C2=sin B,∵ A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2.∵cos B2≠0,故sin B2=12,∴ B=60∘.(2)由题设及(1)可知,S△ABC=12ac sin B=√34a,由正弦定理得a=c sin Asin C=sin(120∘−C)sin C=√32tan C+12,∵ △ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,∴30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32.答:△ABC面积的取值范围为(√38,√32).19.【答案】(1)证明:由已知得AD//BE,CG//BE,所以AD//CG,故AD,CG确定一平面,从而A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE,又因为AB⊂平面ABC,所以平面ABC ⊥平面BCGE . (2)解:作EH ⊥BC ,垂足为H , 因为EH ⊂平面BCGE , 平面BCGE ⊥平面ABC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60∘, 可求得BH =1,EH =√3.以H 为坐标原点,HC →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系H −xyz ,则A (−1,1,0),C (1,0,0),G (2,0,√3), CG →=(1,0,√3),AC →=(2,−1,0), 设平面ACGD 的法向量为n →=(x ,y ,z), 则{CG →⋅n →=0,AC →⋅n →=0,即{x +√3z =0,2x −y =0.所以可取n →=(3,6,−√3).又平面BCGE 的法向量可取为m →=(0,1,0), 所以cos <n →,m →>=n →⋅m→|n →||m →|=√32. 因此二面角B −CG −A 的大小为30∘. 【考点】用空间向量求平面间的夹角 平面与平面垂直的判定【解析】 此题暂无解析 【解答】(1)证明:由已知得AD//BE ,CG//BE , 所以AD//CG , 故AD ,CG 确定一平面, 从而A ,C ,G ,D 四点共面, 由已知得AB ⊥BE ,AB ⊥BC , 故AB ⊥平面BCGE , 又因为AB ⊂平面ABC , 所以平面ABC ⊥平面BCGE . (2)解:作EH ⊥BC ,垂足为H , 因为EH ⊂平面BCGE , 平面BCGE ⊥平面ABC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60∘,可求得BH =1,EH =√3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H −xyz ,则A (−1,1,0),C (1,0,0),G (2,0,√3), CG →=(1,0,√3),AC →=(2,−1,0), 设平面ACGD 的法向量为n →=(x ,y ,z),则{CG →⋅n →=0,AC →⋅n →=0,即{x +√3z =0,2x −y =0.所以可取n →=(3,6,−√3).又平面BCGE 的法向量可取为m →=(0,1,0), 所以cos <n →,m →>=n →⋅m→|n →||m →|=√32. 因此二面角B −CG −A 的大小为30∘. 20.【答案】解:(1)f ′(x)=6x 2−2ax =2x(3x −a). 令f ′(x)=0,得x =0或x =a3.若a >0,则当x ∈(−∞,0)∪(a3,+∞)时,f ′(x)>0;当x ∈(0,a3)时,f ′(x)<0.故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减; 若a =0,f(x)在(−∞,+∞)单调递增;若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0; 当x ∈(a3,0)时,f ′(x)<0.故f(x)在(−∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.(2)满足题设条件的a,b 存在.i 当a ≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b ,最大值为f(1)=2−a +b , 此时a ,b 满足题设条件当且仅当b =−1, 2−a +b =1,即a =0,b =−1. ii 当a ≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b ,最小值为f(1)=2−a +b . 此时a,b 满足题设条件当且仅当2−a +b =−1, b =1,即a =4,b =1.iii 当0<a <3时,由(1)知,f(x)在[0,1]的最小值为f (a3)=−a 327+b ,最大值为b 或2−a +b . 若−a 327+b =−1, b =1,则a =3√23,与0<a <3矛盾.若−a 327+b =−1,2−a +b =1,则a =3√3或a =−3√3或a =0,与0<a <3矛盾.综上,当且仅当a =0, b =−1或a =4, b =1时, f(x)在[0,1]的最小值为−1,最大值为1.【考点】利用导数研究函数的最值 利用导数研究函数的单调性【解析】 此题暂无解析 【解答】解:(1)f ′(x)=6x 2−2ax =2x(3x −a). 令f ′(x)=0,得x =0或x =a3.若a >0,则当x ∈(−∞,0)∪(a3,+∞)时,f ′(x)>0;当x ∈(0,a3)时,f ′(x)<0.故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减; 若a =0,f(x)在(−∞,+∞)单调递增;若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0;当x ∈(a3,0)时,f ′(x)<0.故f(x)在(−∞,a 3),(0,+∞)单调递增,在(a3,0)单调递减. (2)满足题设条件的a,b 存在.i 当a ≤0时,由(1)知,f(x)在[0,1]单调递增, 所以f(x)在区间[0,1]的最小值为f(0)=b ,最大值为f(1)=2−a +b ,此时a ,b 满足题设条件当且仅当b =−1, 2−a +b =1, 即a =0,b =−1.ii 当a ≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b ,最小值为f(1)=2−a +b . 此时a,b 满足题设条件当且仅当2−a +b =−1, b =1,即a =4,b =1. iii 当0<a <3时,由(1)知,f(x)在[0,1]的最小值为f (a3)=−a 327+b ,最大值为b 或2−a +b . 若−a 327+b =−1, b =1,则a =3√23,与0<a <3矛盾. 若−a 327+b =−1,2−a +b =1,则a =3√3或a =−3√3或a =0,与0<a <3矛盾. 综上,当且仅当a =0, b =−1或a =4, b =1时, f(x)在[0,1]的最小值为−1,最大值为1. 21. 【答案】解:(1)设D (t,−12), A (x 1,y 1),则x 12=2y 1.由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1.整理得2tx 1−2y 1+1=0.设B (x 2,y 2),同理可得2tx 2−2y 2+1=0. 故直线AB 的方程为2tx −2y +1=0. 所以直线AB 过定点(0,12).(2)由(1)得直线AB 的方程为y =tx +12.由{y =tx +12,y =x22可得x 2−2tx −1=0. 于是x 1+x 2=2t, x 1x 2=−1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB|=√1+t 2|x 1−x 2| =√1+t 2×√(x 1+x 2)2−4x 1x 2=2(t 2+1).设d 1,d 2分别为点D,E 到直线AB 的距离, 则d 1=√t 2+1, d 2=√t 2+1.因此,四边形ADBE 的面积S =12|AB|(d 1+d 2)=(t 2+3)√t 2+1. 设M 为线段AB 的中点,则M (t,t 2+12).由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0, 解得t =0或t =±1.当t =0时,S =3;当t =±1时S =4√2, 因此,四边形ADBE 的面积为3或4√2. 【考点】 直线恒过定点利用导数研究曲线上某点切线方程 直线与圆的位置关系【解析】 此题暂无解析 【解答】解:(1)设D (t,−12), A (x 1,y 1),则x 12=2y 1.由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1.整理得2tx 1−2y 1+1=0.设B (x 2,y 2),同理可得2tx 2−2y 2+1=0. 故直线AB 的方程为2tx −2y +1=0. 所以直线AB 过定点(0,12).(2)由(1)得直线AB 的方程为y =tx +12.由{y =tx +12,y =x22可得x 2−2tx −1=0. 于是x 1+x 2=2t, x 1x 2=−1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB|=√1+t 2|x 1−x 2|=√1+t 2×√(x 1+x 2)2−4x 1x 2=2(t 2+1). 设d 1,d 2分别为点D,E 到直线AB 的距离,则d 1=√t 2+1, d 2=√t 2+1.因此,四边形ADBE 的面积S =12|AB|(d 1+d 2)=(t 2+3)√t 2+1.设M 为线段AB 的中点,则M (t,t 2+12).由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0, 解得t =0或t =±1.当t =0时,S =3;当t =±1时S =4√2, 因此,四边形ADBE 的面积为3或4√2. 22. 【答案】解:(1)由题设可得,弧AB̂,BC ̂,CD ̂所在圆的极坐标方程分别为, ρ=2cos θ, ρ=2sin θ, ρ=−2cos θ, 所以M 1的极坐标方程为ρ=2cos θ(0≤θ≤π4),M 2的极坐标方程为ρ=2sin θ(π4≤θ≤3π4),M 3的极坐标方程为ρ=−2cos θ(3π4≤θ≤π). (2)设P(ρ,θ),由题设及(1)知, 若0≤θ≤π4,则2cos θ=√3, 解得θ=π6; 若π4≤θ≤3π4,则2sin θ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cos θ=√3,解得θ=5π6.综上,P 的极坐标为(√3,π6)或(√3,π3)或(√3,2π3)或(√3,5π6). 【考点】圆的极坐标方程 极坐标刻画点的位置 【解析】 此题暂无解析【解答】解:(1)由题设可得,弧AB̂,BC ̂,CD ̂所在圆的极坐标方程分别为, ρ=2cos θ, ρ=2sin θ, ρ=−2cos θ, 所以M 1的极坐标方程为ρ=2cos θ(0≤θ≤π4),M 2的极坐标方程为ρ=2sin θ(π4≤θ≤3π4),M 3的极坐标方程为ρ=−2cos θ(3π4≤θ≤π).(2)设P(ρ,θ),由题设及(1)知, 若0≤θ≤π4,则2cos θ=√3,解得θ=π6; 若π4≤θ≤3π4,则2sin θ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cos θ=√3,解得θ=5π6.综上,P 的极坐标为(√3,π6)或(√3,π3)或(√3,2π3)或(√3,5π6).23.【答案】(1)解:由于[(x −1)+(y +1)+(z +1)]2 =(x −1)2+(y +1)2+(z +1)2+2[(x −1)(y +1)+(y +1)(z +1)+(z +1)(x −1)] ≤3[(x −1)2+(y +1)2+(z +1)2],故由已知得(x −1)2+(y +1)2+(z +1)2≥43,当且仅当x =53, y =−13, z =−13时等号成立.(2)证明:由于[(x −2)+(y −1)+(z −a)]2=(x −2)2+(y −1)2+(z −a)2+2[(x −2)(y −1)+(y −1)(z −a)+(z −a)(x −2)] ≤3[(x −2)2+(y −1)2+(z −a)2], 由已知得,(x −2)2+(y −1)2+(z −a)2≥(2+a)23,当且仅当x =4−a 3, y =1−a 3, z =2a−23时等号成立,因此(x −2)2+(y −1)2+(z −a)2的最小值为(2+a)23,由题设知(2+a)23≥13,解得a ≤−3或a ≥−1.【考点】 柯西不等式 【解析】 此题暂无解析 【解答】(1)解:由于[(x −1)+(y +1)+(z +1)]2 =(x −1)2+(y +1)2+(z +1)2+2[(x −1)(y +1)+(y +1)(z +1)+(z +1)(x −1)] ≤3[(x −1)2+(y +1)2+(z +1)2],故由已知得(x −1)2+(y +1)2+(z +1)2≥43, 当且仅当x =53, y =−13, z =−13时等号成立. (2)证明:由于[(x −2)+(y −1)+(z −a)]2 =(x −2)2+(y −1)2+(z −a)2+2[(x −2)(y −1)+(y −1)(z −a)+(z −a)(x −2)] ≤3[(x −2)2+(y −1)2+(z −a)2], 由已知得,(x −2)2+(y −1)2+(z −a)2≥(2+a)23,当且仅当x =4−a 3, y =1−a 3, z =2a−23时等号成立,因此(x −2)2+(y −1)2+(z −a)2的最小值为(2+a)23,由题设知(2+a)23≥13,解得a ≤−3或a ≥−1.。
2019年高考全国各地数学理科真题分类汇编18个专题(解析版)

2019年高考全国各地数学理科真题分类汇编(解析版)专题一集合-------------------------------------------------------------- 2 专题二函数-------------------------------------------------------------- 3 专题三三角函数 ------------------------------------------------------ 16 专题四解三角形 ------------------------------------------------------ 26 专题五平面向量 ------------------------------------------------------ 29 专题六数列------------------------------------------------------------ 34 专题七不等式--------------------------------------------------------- 46 专题八复数------------------------------------------------------------ 48 专题九导数及其应用 ------------------------------------------------ 50 专题十算法初步 ------------------------------------------------------ 62 专题十一常用逻辑用语 --------------------------------------------- 65 专题十二概率统计 --------------------------------------------------- 67 专题十三空间向量、空间几何体、立体几何-------------------- 75 专题十四平面几何初步 -------------------------------------------- 95 专题十五圆锥曲线与方程 ----------------------------------------- 99 专题十六计数原理------------------------------------------------- 118 专题十七不等式选讲 ---------------------------------------------- 120 专题十八坐标系与参数方程--------------------------------------- 123专题一 集合(2019·全国Ⅰ理科)1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅱ理科)设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅲ理科)已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A【分析】先求出集合B 再求出交集.【详解】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A . 【点睛】本题考查了集合交集的求法,是基础题. (2019·天津理科)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R …,则()A CB =( )A. {}2B. {}2,3C. {}1,2,3-D. {}1,2,3,4【答案】D【分析】先求A B ⋂,再求()A C B 。
(完整word)2019年高考试题汇编理科数学--数列,推荐文档

解答: 13,设等比数列公比为q3、25•- (ag )ag••• q 3• S 121 …S 53(1)证明:a nb n 是等比数列,a n b n 是等差数列;(2 )求a n 和b n 的通项公式. 答案: (1) 见解析 1 x n 11 x n 1(2)a n () n,b n () n2222解析:(1)将 4a n 1 3a n b n 4 , 4b n 1 3b n a n 4 相加可得 4a n1 4b n 1 3a n 3b n a n b n ,11 整理可得a n 1 b n 1丄(a n b n ),又玄1 Q 1,故a . b n 是首项为1,公比为1的等比数列22将 4a n 1 3a n b n 4, 4b n 13b n a n 4 作差可得 4a n14b n13a n 3b n a . b n 8,整理可得a n 1 b n 1a nb n 2,又a 1 Q 1,故a .b n 是首项为1,公差为2的等差数列1 1A. a n 2n 5B.3n 3n 10 CS2n 28nD.S n■In 2 2n 2答案:A解析:S 4 4冃 6d 0a 1 3 5, S n2依题意有 可得 a nn 4n .3S 31 4d 5 d 2 n(2019全国1理)9•记S n 为等差数列 a n 的前n 项和•已知S 40 , a 5 5,则(2(2019全国1理)14.记S n 为等比数列 a n 的前 n 项和,a 436,则 S5答案: S 51213 2019全国2理)19.已知数列a n 和b n满足a 10 , 4a n 1 3a n b n 4, 4b n 1 3b n a n 4.-31 2 3436(2)由a n b n是首项为1 ,公比为?的等比数列可得a n b n ()"①;由a n bn 是首项为1公差为2的等差数列可得a n b n 2n 1②;【解析】 【分析】首先确定公差,然后由通项公式可得 a 5的值,进一步研究数列中正项 ?负项的变化规律,得到和的最小值.【详解】等差数列 a n 中,8s 5a 3 10,得a 3 2& 3,公差da 3 a ?1, a§% 2d 0,由等差数列a n 的性质得n 5时,a n 0, n 6时,a n 大于0,所以S n 的最小值为S 4或S 5,即为10.①②相加化简得a n(!)n n 1,①②相减化简得b n 2 2(2019全国3理)5.已知各项均为正数的等比数列的前4项和为15,且a s 3a 3 4印,则a ?()A. 16B. 8 答案: C解答:C. 4D.设该等比数列的首项 a i ,公比由已知得,4a©3dq 24a i , 因为a 0且q 0, 则可解得2,又因为 a i (1q 3) 15,即可解得c 1,则4.(2019全国3理)14.记S n 为等差数列 a n 的前n 项和,若q0, a 2 3a ,则 3°S 5答案:4解析:设该等差数列的公差为d 2a 1 a 1 0,d 0 ,10 a 1 a 10S 0____________2S 55 a 1 a 522 2a 1 9d3 4.2a 1 4d 5d(2019北京理)10.设等差数列 的前n 项和为S n,若a 2=-3 ,S s =-10,则a s = ,S n 的最小值为【答案】 (1). 0. (2). -10.【点睛】本题考查等差数列的通项公式?求和公式?等差数列的性质,难度不大,注重重要知识?基础知识?基本运算能力的考查a i (2019北京理)20.已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i l<i2<・・Vm),若a h a2则称新数列a h, a i2, , a m为{a n}的长度为m的递增子列•规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(I)写出数列1 , 8, 3, 7, 5, 6, 9的一个长度为4的递增子列;(H)已知数列{a n}的长度为p的递增子列的末项的最小值为a m o,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m°<a n°;(川)设无穷数列{a n}的各项均为正整数,且任意两项均不相等若{ a n}的长度为s的递增子列末项的最小值为2s -, 且长度为S末项为2s-1的递增子列恰有2s-1个(s=1 , 2,…),求数列{a n}的通项公式.【答案】(I )1,3,5,6.(n )见解析; (川)见解析.【解析】【分析】(I )由题意结合新定义的知识给出一个满足题意的递增子列即可;(n )利用数列的性质和递增子列的定义证明题中的结论即可;(川)观察所要求解数列的特征给出一个满足题意的通项公式,然后证明通项公式满足题中所有的条件即可•【详解】(I )满足题意的一个长度为4的递增子列为:1,3,5,6.(n)对于每一个长度为q的递增子列a n a2丄a q,都能从其中找到若干个长度为p的递增子列色总丄a p,此时a p a q ,设所有长度为q的子列的末项分别为:a q, ,a q2,a q3 ,L ,所有长度为p的子列的末项分别为:a p1,a p2,a p3,L ,则a n0 min a q1,a q2,a q3,L ,注意到长度为P的子列可能无法进一步找到长度为q的子列,故a m0 min a p1,a p2,a p3,L ,据此可得:a m0a n0n 1, n为偶数(川)满足题意的一个数列的通项公式可以是a n 斗才来朴2,1,4,3,6,5,8,7,L ,n 1,n为奇数面说明此数列满足题意很明显数列为无穷数列,且各项均为正整数,任意两项均不相等.长度为s 的递增子列末项的最小值为2s-1,下面用数学归纳法证明长度为s 末项为2s-1 的递增子列恰有2s 1个s 1,2,L :当n 1 时命题显然成立,假设当n k时命题成立,即长度为k末项为2k-1的递增子列恰有21个,则当n k 1时,对于n k 时得到的每一个子列a s1,a s2,L ,a s k 1,2k 1,可构造:aq,a s2丄,a s「2k 1,2 k 1 1和a5^,a S2,L ,a^l,2k,2 k 1 1两个满足题意的递增子列,则长度为k+1 末项为2k+1 的递增子列恰有 2 2k 12k2k 1 1个,n 1, n为偶数综上可得,数列a n、,卄沁.2,1,4,3,6,5,8,7,L是一个满足题意的数列的通项公式•n 1, n为奇数注:当s 3时,所有满足题意的数列为:2,3,5 , 1,3,5 , 2,4,5 , 1,4,5 ,当s 4 时,数列2,3,5 对应的两个递增子列为:2,3,5,7 和2,3,6,7 .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.2019天津理) 19.设a n 是等差数列,b n 是等比数列.已知a1 4,b1 6,b2 2a2 2,b3 2a3 4.(I)求a n和b n的通项公式;(n)设数列q满足G 1,c n X 2 J 2「其中k Nn 1 n b k,n 2k ,i )求数列a2n c2n1 的通项公式;2nii )求a i c i n Ni1答案】(I )a n 3n 1 ; b n 3 2n(n )(i )a2n c2n 1 9 4n1 (ii )* 2n 1n 1 *aqnN 27 25 2 n 12 nNi 1【解析】 【分析】(I )由题意首先求得公比和公差,然后确定数列的通项公式即可; (n )结合(I )中的结论可得数列a 2n c 2n 1的通项公式,结合所得的通项公式对所求的数列通项公式进行等2n价变形,结合等比数列前n 项和公式可得aG 的值.i 12 4 d 26 2d,解得2 4 2d 4 12 4d故a n 4 (n 1) 33n1 ,b n6 2n13 2n.所以,a n的通项公式为 a n 3n 1 , b n的通项公式为b n3 2n (n )( i ) a 2n C 2n 1 a ?n b n 1 3 2n 1 3 2n 19 4n 1所以,数列 a ?n c?n1 的通 项公式 :为a2nc 2n 19 4n 12n 2n2n2n(ii )a &a i a C i 1a ia c 2i1i 1i 1i 1i 12n 2n 1n2 n4-39 412i 14 1 4n3 ?2 n5 2n 19n1 427 _2n•1J 112N*25 2n n【点睛】本题主要考查等差数列 ?等比数列的通项公式及其前 n 项和公式等基础知识.考查化归与转化思想和数列 求和的基本方法以及运算求解能力.【详解】(I )设等差数列a n 的公db n 的公比为q .依题意得6q6q 2(2019上海)18•已知数列{a n } , a 1 3,前n 项和为S n •(1)若{an }为等差数列,且 a 4 15, 求S n ;(2)若{a n }为等比数列,且 lim n S n 12,求公比 q 的取值范围 【解答】解:(1) Q a 4 a 3d 3 3d 15 ,d 4 ,n(n 1),S n 3n4 2n 2 n;2lim S n 存在,nlim 3(^ 2 ,n1 q 1 q3 4公比q 的取值范围为(1 , 0) (0 , 3).42综上,d -或者d3Hm S n存在, lim S n n (2019上海)21.已知等差数列{务}的公差d (0, ],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n2 、(1 )若a 1 0,d 一,求集合 30,d —,3{乜,0, △.2 2根据三角函数线,①等差数列 {a n }的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时此时d —,3(2)若a 1,求d 使得集合 2 S 恰好有两个(3)若集合S 恰好有三个元素: b n T b n , T 是不超过7的正整数,求 T 的所有可能的值.【解答】解:(1) Q 等差数列{a n }的公差d (0,],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n当a 1集合S (2) Q,数列{b n }满足 b n sin (a .),2集合S x|x N *恰好有两个元素,如图:②a 1终边落在OA 上,要使得集合 S 恰好有两个元素,可以使 a 2, a 3的终边关于y 轴对称,如图OB , OC ,(3)①当T 3 时,b n 3 b n,集合S {bl,b2, b3},符合题意.②当T 4 时,b n 4 b n ,sin(a n 4d) sina. a n 4d a n 2k ,或者a n 4d 2k a n ,4d a n 2k,又k 1,2当k1时满足条件,此时S {,1, 1}.③当T 5时,b n 5b n,si n(a n5d)sina n,故k1,2.当k1时,S{sin—,1,sin}满足题意1010④当T 6时,b n 6b n,sin (an6d)sina n,a na n等差数列{a n}的公差d (0,],故a n5d a n 2k ,或者a n 5d 2k a n,因为 d (0 ,所以6d a n 2k 或者a n 6d 2k a n,d (0,1 , 2, 3.1时,S {-^O, —3},满足题意.2 2⑤当T 7 时,b n 7 b n,si n(a n 7d) si na n si na n,所以a n 7d a n 2k ,或者a n 7d 2k a n,d (0,故k 1 , 2, 31时,因为b i ~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d m 7,不符合条件.k 2时,因为b i~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d n不是整数,不符合条件.k 3时,因为bi ~ b7对应着3 个正弦值,故必有一个正弦值对应着3个点,必然有a m a n—,或者d7—,此时,m n均不是整数,不符合题意.7综上,T3,4,5,6.(2019江苏)8.已知数列{a n}( n N*)是等差数列,S n是其前n项和若a2^ 兎0,S9 27 ,则Q的值是 _____________________ 【答案】16【解析】【分析】由题意首先求得首项和公差,然后求解前8项和即可.a 2a 5CBa 1 d a-i 4d7d 0【详解】由题意可得:9 8S99a 1 9 8d227解得: a 1 51 ,则 S 8 8a 1 8 7d40 28 216.d 22【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应 用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建a 1, d 的方程组.(2019江苏)20.定义首项为1且公比为正数的等比数列为“M—数列”.(1)已知等比数列{a n }满足:a ?a 4 a 5,a 3 4a ? 4印 0 ,求证:数列{a n }为“M—数列”;u . 1 2 2(2)已知数列{b n }满足:b 1 1,S b b ,其中S 为数列{b n }的前n 项和.S n b n b n 1① 求数列{b n }的通项公式;② 设m 为正整数,若存在 “M—数列” {} (n € N *),对任意正整数k ,当k 呦 时,都有C k b k q 1成立,求m 的 最大值.【答案】(1)见解析; (2[① b n = n n N * :② 5. 【解析】 【分析】(1 )由题意分别求得数列的首项和公比即可证得题中的结论; (2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定b k 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得【详解】(1)设等比数列{a n }的公比为q ,所以a 1^0, q 丰0.因此数列{a n }为M —数列”1 22 (2) ①因S n—,所以b nb nbn11 2 2由b| 1,S 1th 得1 1 ,则 b 22.1由2 2 得 S nb n b n 1m 的最大值.a 2&4 a s由a 3 4a : 4ci|。
2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)

题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。
2019年理科数学重点题7805.docx

2019年理科数学重点题单选题(共5道)1、已知函数,若,则的最小值为()A6B8C9D122、已知函数,若,则的最小值为()A6B8C9D123、已知函数,若,则的最小值为()A6B8C9D124、已知函数,若,则的最小值为()A6B8C9D125、已知函数,若,则的最小值为()A6B8C9D12多选题(共5道)6、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)7、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)8、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)9、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)10、已知函数,若互不相等,且,则的取值范围是()ABCD填空题(本大题共4小题,每小题____分,共____分。
)简答题(共5道)11、、、(1)若的值;(2)若12、、、(1)若的值;(2)若13、、、(1)若的值;(2)若14、、、(1)若的值;(2)若15、、、(1)若的值;(2)若书面表达(共5道)16、车身总重量大于40公斤等指标)上了牌照,算是给予它们临时合法的出行身份,但是牌照有效期到今年2月底止,这也就是说,从今年3月1日起,该市城区4万多辆超标电动车已被禁行,违者将受到严厉的处罚。
一方面是诸多管理的必要,一方面是便捷出行的需求;事实上要彻底禁行这几万辆超标电动车,管理者和骑行者都会感到很不容易。
假定你也是在该市市区生活的市民,请以管理部门代言人或超标电动车骑行者身份就禁行超标电动车这事表达你的看法。
要求选定你的写作身份,选好角度,确定立意,明确文体,自拟标题;不要脱离材料内容及含意的范围作文,不要套作,不得抄袭。
17、车身总重量大于40公斤等指标)上了牌照,算是给予它们临时合法的出行身份,但是牌照有效期到今年2月底止,这也就是说,从今年3月1日起,该市城区4万多辆超标电动车已被禁行,违者将受到严厉的处罚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题组层级快练(七十七)1.不等式x 2-|x|-2<0(x ∈R )的解集是( )A .{x|-2<x<2}B .{x|x<-2或x>2}C .{x|-1<x<1}D .{x|x<-1或x>1}答案 A解析 方法一:当x ≥0时,x 2-x -2<0,解得-1<x<2,∴0≤x<2. 当x<0时,x 2+x -2<0,解得-2<x<1,∴-2<x<0.故原不等式的解集为{x|-2<x<2}.方法二:原不等式可化为|x|2-|x|-2<0,解得-1<|x|<2.∵|x|≥0,∴0≤|x|<2,∴-2<x<2.∴原不等式的解集为{x|-2<x<2}.2.ab ≥0是|a -b|=|a|-|b|的( )A .充分不必要条件B .必要不充分条件C .充要条件 `D .既不充分也不必要条件 答案 B解析 当ab ≥0,a<b 时,|a -b|≠|a|-|b|,故条件不充分.当|a -b|=|a|-|b|时,则ab ≥0且|a|≥|b|.故条件必要.综上可知,ab ≥0是|a -b|=|a|-|b|的必要不充分条件.3.已知a ,b ∈R ,ab>0,则下列不等式中不正确的是( )A .|a +b|≥a -bB .2ab ≤|a +b|C .|a +b|<|a|+|b|D .|b a +a b |≥2 答案 C解析 当ab>0时,|a +b|=|a|+|b|.4.若2-m 与|m|-3异号,则m 的取值范围是( )A .m>3B .-3<m<3C .2<m<3D .-3<m<2或m>3答案 D 解析 方法一:2-m 与|m|-3异号,所以(2-m)·(|m|-3)<0,所以(m -2)(|m|-3)>0.所以⎩⎪⎨⎪⎧m ≥0,(m -2)(m -3)>0或⎩⎪⎨⎪⎧m<0,(m -2)(-m -3)>0.解得m>3或0≤m<2或-3<m<0.方法二:由选项知,令m =4符合题意,排除B ,C 两项,令m =0符合题意,可排除A 项.5.(2018·四川成都模拟)对任意实数x ,若不等式|x +2|+|x +1|>k 恒成立,则实数k 的取值范围是( )A .k<1B .k ≥1C .k>1D .k ≤1答案 A解析 由题意得k<(|x +2|+|x +1|)min ,而|x +2|+|x +1|≥|x +2-(x +1)|=1,所以k<1,故选A.6.设不等式|2x -1|<1的解集为M ,且a ∈M ,b ∈M.则( )A .ab +1>a +bB .ab +1≥a +bC .ab +1<a +bD .ab +1≤a +b 答案 A解析 由|2x -1|<1得,-1<2x -1<1,解得0<x<1,∴M ={x|0<x<1},∵a ,b ∈M ,∴0<a<1,0<b<1,ab +1-a -b =(a -1)(b -1)>0,∴ab +1>a +b.7.(2018·广州综合测试一)若不等式|x -a|<1的解集为{x|1<x<3},则实数a 的值为________.答案 2解析 由题意可得,1和3是方程|x -a|=1的根,则有⎩⎪⎨⎪⎧|1-a|=1,|3-a|=1,解得a =2.8.(2018·重庆五区抽测)若函数f(x)=|x +2|+|x -m|-4的定义域为R ,则实数m 的取值范围为________.答案 (-∞,-6]∪[2,+∞)解析 根据题意,不等式|x +2|+|x -m|-4≥0恒成立,所以(|x +2|+|x -m|-4)min ≥0.又|x +2|+|x -m|-4≥|m +2|-4,所以|m +2|-4≥0⇒m ≤-6或m ≥2.9.若关于x 的不等式|x -1|-|x -2|≥a 2+a +1(x ∈R )的解集为空集,则实数a 的取值范围是________.答案 (-∞,-1)∪(0,+∞)解析 ∵|x -1|-|x -2|=|x -1|-|2-x|≤|x -1-x +2|=1,若不等式|x -1|-|x -2|≥a 2+a +1(x ∈R )的解集为空集,则|x -1|-|x -2|<a 2+a +1恒成立,即a 2+a +1>1,解得a<-1或a>0,∴实数a 的取值范围是(-∞,-1)∪(0,+∞).10.(2018·重庆)若函数f(x)=|x +1|+2|x -a|的最小值为5,则实数a =________.答案 -6或4解析 当a =-1时,f(x)=3|x +1|≥0,不满足题意;当a<-1时,f(x)=⎩⎪⎨⎪⎧-3x -1+2a ,x ≤a ,x -1-2a ,a<x ≤-1,3x +1-2a ,x>-1,f(x)min =f(a)=-3a -1+2a =5,解得a=-6;当a>-1时,f(x)=⎩⎪⎨⎪⎧-3x -1+2a ,x ≤-1,-x +1+2a ,-1<x ≤a ,3x +1-2a ,x>a ,f(x)min =f(a)=-a +1+2a =5,解得a =4.11.(2018·江西九江一模)已知函数f(x)=|x -3|-|x -a|.(1)当a =2时,解不等式f(x)≤-12;(2)若存在实数x ,使得不等式f(x)≥a 成立,求实数a 的取值范围.答案 (1){x|x ≥114} (2)(-∞,32]解析 (1)当a =2时,f(x)=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x<3,-1,x ≥3,f(x)≤-12等价于⎩⎨⎧x ≤2,1≤-12或⎩⎨⎧2<x<3,5-2x ≤-12或⎩⎨⎧x ≥3,-1≤12,解得114≤x<3,或x ≥3,所以原不等式的解集为{x|x ≥114}.(2)由不等式的性质可知f(x)=|x -3|-|x -a|≤|(x -3)-(x -a)|=|a -3|.所以若存在实数x ,使得f(x)≥a 成立,则|a -3|≥a ,解得a ≤32,故实数a 的取值范围是(-∞,32].12.(2018·山西忻州四校二次联考)已知函数f(x)=|x +2|+|2x -4|.(1)求f(x)<6的解集;(2)若关于x 的不等式f(x)≥m 2-3m 的解集是R ,求m 的取值范围.答案 (1){x|0<x<83} (2)-1≤m ≤4解析 (1)由题设知,当x ≥2时,不等式等价于x +2+2x -4<6,即2≤x<83;当-2<x<2时,不等式等价于x +2+4-2x<6,即0<x<2; 当x ≤-2时,不等式等价于-x -2+4-2x<6,即无解. 所以不等式的解集是{x|0<x<83}.(2)由图像或者分类讨论可得f(x)=|x +2|+|2x -4|的最小值为4,则m 2-3m ≤4,解得-1≤m ≤4.13.(2018·辽宁大连双基考试)设函数f(x)=|x -1|+12|x -3|.(1)求不等式f(x)>2的解集;(2)若不等式f(x)≤a(x +12)的解集非空,求实数a 的取值范围.答案 (1)(-∞,13)∪(3,+∞) (2)(-∞,-32)∪[47,+∞)解析 (1)原不等式等价于⎩⎨⎧-32x +52>2,x ≤1或⎩⎨⎧12x +12>2,1<x ≤3或⎩⎨⎧32x -52>2,x>3,解得不等式的解集为(-∞,13)∪(3,+∞).(2)f(x)=|x -1|+12|x -3|=⎩⎪⎨⎪⎧-32x +52,x ≤1,12x +12,1<x ≤3,32x -52,x>3.f(x)图像如图所示,其中A(1,1),B(3,2),直线y =a(x +12)绕点(-12,0)旋转,由图可得不等式f(x)≤a(x +12)的解集非空时,a 的取值范围为(-∞,-32)∪[47,+∞).14.(2018·新课标全国Ⅰ)已知函数f(x)=|x +1|-2|x -a|,a>0.(1)当a =1时,求不等式f(x)>1的解集;(2)若f(x)的图像与x 轴围成的三角形面积大于6,求a 的取值范围.答案 (1){x|23<x<2} (2)(2,+∞)解析 (1)当a =1时,f(x)>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x<1时,不等式化为3x -2>0,解得23<x<1;当x ≥1时,不等式化为-x +2>0,解得1≤x<2.所以f(x)>1的解集为{x|23<x<2}.(2)由题设可得,f(x)=⎩⎪⎨⎪⎧x -1-2a ,x<-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x>a.所以函数f(x)的图像与x 轴围成的三角形的三个顶点分别为A(2a -13,0),B(2a +1,0),C(a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a>2.所以a 的取值范围为(2,+∞).1.(2018·天津南开区上学期一模)已知函数f(x)=|mx|-|x -n|(0<n<1+m),若关于x 的不等式f(x)<0的解集中的整数恰有3个,则实数m 的取值范围为( )A .3<m<6B .1<m<3C .0<m<1D .-1<m<0答案 B解析 不等式f(x)<0的解集中的整数恰有3个,即|mx|<|x -n|(0<n<1+m)的解集中的整数恰有3个.|mx|<|x -n|可化为(mx)2-(x -n)2<0,即[(m +1)x -n]·[(m -1)x +n]<0,由于不等式解集中整数恰有3个,所以m -1>0,m>1,不等式的解为-n m -1<x<n m +1<1,从而解集中的3个整数为-2,-1,0,-3≤-n m -1≤-2,即2<n m -1≤3,2m -2<n ≤3m -3,结合0<n<1+m ,得2m -2<m +1,m<3,即1<m<3,选B.2.关于x 的不等式|2 014-x|+|2 015-x|≤d 有解时,d 的取值范围是________.答案 [1,+∞)解析 因为|2 014-x|+|2 015-x|≥|(2 014-x)-(2 015-x)|=1,所以当不等式|2 014-x|+|2 015-x|≤d 有解时,只需d ≥1即可.3.不等x +3>|2x -1|的解集为________.答案 {x|-23<x<4}解析 不等式等价于⎩⎪⎨⎪⎧2x -1≥0,x +3>2x -1或⎩⎪⎨⎪⎧2x -1<0,x +3>1-2x ,解得12≤x<4或-23<x<12,故不等式的解集为{x|-23<x<4}.4.(2018·河南郑州质量预测)设函数f(x)=|x -4|+|x -a|(a<4).(1)若f(x)的最小值为3,求a 的值;(2)求不等式f(x)≥3-x 的解集.答案 (1)1 (2)R解析 (1)因为|x -4|+|x -a|≥|(x -4)-(x -a)|=|a -4|, 又a<4,所以当且仅当a ≤x ≤4时等号成立.故|a -4|=3,所以a =1为所求.(2)不等式f(x)≥3-x 即不等式|x -4|+|x -a|≥3-x(a<4),①当x<a 时,原不等式可化为4-x +a -x ≥3-x ,即x ≤a +1. 所以,当x<a 时,原不等式成立.②当a ≤x ≤4时,原不等式可化为4-x +x -a ≥3-x. 即x ≥a -1.所以,当a ≤x ≤4时,原不等式成立.③当x>4时,原不等式可化为x -4+x -a ≥3-x ,即x ≥a +73,由于a<4时,4>a +73.所以,当x>4时,原不等式成立.综合①②③可知:不等式f(x)≥3-x 的解集为R .。