2014年中考数学模拟试卷(三)

合集下载

【必考题】数学中考模拟试题(含答案)

【必考题】数学中考模拟试题(含答案)

【必考题】数学中考模拟试题(含答案)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A.14cm B.4cm C.15cm D.3cm6.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,在半径为13的Oe中,弦AB与CD交于点E,75DEB∠=︒,6,1AB AE==,则CD的长是()A.26B.210C.211D.4312.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.若一个数的平方等于5,则这个数等于_____.18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.分解因式:2x 2﹣18=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD22200100-3∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西中考模拟真题数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、单选题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列实数是无理数的是()AB C .12D .2-2.下列几何体放置在水平面上,其中俯视图是圆的几何体为()A .B .C .D .3.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,1402120∠=︒∠=︒,,则34∠+∠的值为()A .160︒B .150︒C .100︒D .90︒4.如图,墨迹污染了等式中的运算符号,则污染的是()A .+B .-C .×D .÷5.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围()A .2k <-B .2k >-C .0k >D .0k <6.如图,在菱形ABCD 中,延长BC 至点F ,使得2BC CF =,连接AF 交CD 于点E .若2CE =,则菱形ABCD 的周长为()A .12B .16C .20D .247.如图,在O 中,半径OA ,OB 互相垂直,点C 在劣弧A 上.若26BAC ∠=︒,则ABC ∠=()A .17︒B .18︒C .19︒D .20︒8.已知二次函数2(1)5y x =--+,当a x b ≤≤且0ab <时,y 的最小值为2a ,最大值为2b ,则a b +的值为()A .2B .12C .3D .32二、填空题(共5小题,每小题3分,计15分)9小的正整数.10.分解因式:2233m n -=.11.如图,在正五边形ABCDE 内,以CD 为边作等边CDF V ,则BFC ∠的数为.12.已知正比例函数图象与反比例函数图象都经过点()1,2-,那么这两个函数图象必都经过另一个点的坐标为.13.如图,在四边形ABDC 中,90A D ∠=∠=︒,3AC DC ==,5BC =,若点M ,点N 分别在AB 边和CD 边上运动,且AM DN =,连接MN ,则MN 的最小值为.三、解答题(共13小题,计81分,解答应写出过程)14()202441---.15.解方程:32544x x =---.16.解不等式组:322443x x x x ->+⎧⎪-⎨<⎪⎩17.已知:如图,ABC V .求作:以AC 为弦的O ,使O 到AB 和BC的距离相等.18.如图,在矩形ABCD 中,点E ,F 在BC 上,且BE CF =,连接AE DF ,.求证:ABE DCF △≌△.19.《九章算术》中有这样一道题:今有米在十斗桶中,不知其数.满中添粟而舂之,得粟七斗,问故米几何?(粟米之法:粟率五十,粝米三十.)大意为:今有米在容量为10斗的桶中,但不知道数量是多少;再向桶加满粟,再舂成米,共得米7斗.问原来有米多少斗?(出米率为35)请解答上面问题.20.甲、乙、丙三人玩捉迷藏游戏,一人为蒙眼人,捉另外两人,捉到一人,记为捉一次;被捉到的人成为新的蒙眼人,接着捉……一直这样玩(每次捉到一人).请用树状图解决下列问题,(1)若甲为开始蒙眼人,捉两次,求第二次捉到丙的概率;(2)若捉三次,要使第三次捉到甲的概率最小,应该谁为开始蒙眼人?21.电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻1R ,1R 与踏板上人的质量m 之间的函数关系式为1R km b =+(其中k ,b 为常数,0120)m ≤≤,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻0R 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为0U ,该读数可以换算为人的质量m .温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式U I R=;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.图1图2(1)求出1R 与踏板上人的质量m 之间的函数关系式并写出m 的取值范围;(2)求出当电压表显示的读数为2伏时,对应测重人的质量为多少千克?22.如图,某小区内有AB 和CD 两栋家属楼,竖直的移动支架EF 位于两栋楼之间,且高为4m ,点A ,E ,C 在同一条直线上.当移动支架EF 运动到如图所示的位置时,在点F 处测得点B ,D 的仰角分别为45︒、60︒,点A 的俯角为30︒,此时测得支架EF 到楼CD 的水平距离EC 为15m .求两楼的高度差.(结果精确到1m 1.41≈ 1.73≈)23.近日,教育部印发的《2023年全国综合防控儿童青少年近视重点工作计划》明确,要指导地方教育行政部门督促和确保落实学生健康体检制度和每学期视力监测制度,及时把视力监测结果记入儿童青少年视力健康电子档案,并按规定上报全国学生体质健康系统.按照国家视力健康标准,学生视力状况分为:视力正常、轻度视力不良、中度视力不良和重度视力不良四个类别,分别用A,B,C,D表示.某校为了解本校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力状况调查,根据调查结果,绘制了如下尚不完整的统计图.(1)此次调查的学生总人数为______;扇形统计图中,m ______;(2)补全条形统计图.(3)已知重度视力不良的四名学生中,甲、乙为九年级学生,丙、丁分别为七、八年级学生,现学校要从中随机抽取2名学生调查他们对护眼误区和保护视力习惯的了解程度,请用列表法或画树状图法求这2名学生恰好是同年级的概率.24.如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE 于点D.(l)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.25.在山体中修建隧道可以保护生态环境,改善公路技术状态,提高运输效率.某城市道路中一双向行驶隧道(来往方向各一车道,路面用黄色双实线隔开)图片如图所示.隧道的纵截面由一个矩形和一段抛物线构成。

河南省中考模拟数学考试试卷(三)

河南省中考模拟数学考试试卷(三)

河南省中考模拟数学考试试卷(三)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设a是有理数,则下列各式的值一定为正数的是()A . a2B . |a|C . a+1D . a2+12. (2分)(2017·河北) 把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A . 1B . ﹣2C . 0.813D . 8.133. (2分) (2016七上·仙游期末) 从不同方向观察如图所示的几何体,不可能看到的是()A .B .C .D .4. (2分) (2019八下·孝南月考) 下列计算:①()2=2;② =2;③(–2 )2=12;④( + )(–)=–1.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x≥﹣5B . x≤﹣5C . x≥5D . x≤56. (2分) (2016九下·吉安期中) 如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a2B . a2C . a2D . a27. (2分) (2020八下·武城期末) 如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A . 2B .C .D . 18. (2分)在盒子里放有三张分别写有整式a﹣3、a+1、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .9. (2分) (2021七上·肇源期末) 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A . a2﹣b2=(a+b)(a﹣b)B . a(a﹣b)=a2﹣abC . (a﹣b)2=a2﹣2ab+b2D . a(a+b)=a2+ab10. (2分)如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F为CD的三等分点,则∠ACB和∠AEB之和为()A . 45°B . 90°C . 60°D . 75°11. (2分) (2018九上·秦淮月考) 如图,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB.过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是()A .B .C .D .12. (2分) (2016九上·端州期末) 关于抛物线y=(x-1)2-2,下列说法中错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=1C . 当x>1时,y随x的增大而减小D . 开口方向向上二、填空题 (共4题;共4分)13. (1分)分解因式:2a2-8b2=________.14. (1分) (2019八上·垣曲期中) 若a,b为两个连续的正整数,且,则 ________.15. (1分)观察下列各等式:1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 ,则1+3+5+7+…+2017=________.16. (1分) (2016九上·南岗期中) 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N和0.5m,当撬动石头的动力F至少需要400N时,则动力臂l的最大值为________ m.三、解答题 (共6题;共60分)17. (5分)(2020·陕西模拟) 计算: .18. (5分)不等式组的解集是2<x<m+7,求m的最大负整数解.19. (10分) (2017八上·金堂期末) 2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:(1) n =________,小明调查了________户居民,并补全图1________;(2)每月每户用水量的中位数落在________之间,众数落在________之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20. (10分) (2019九上·偃师期中) 如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3 米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)21. (10分) (2020八上·红桥期末) 某茶店用4000元购进了A种茶叶若干盒,用8400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1) A,B两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?22. (20分)(2020·松滋模拟) 如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC 重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。

江苏省泰州市高港区2014年中考数学一模试题

江苏省泰州市高港区2014年中考数学一模试题

高港区九年级第一次模拟考试数学试题(考试时间:120分钟 满分150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题纸上,答案写在试卷上无效.第一部分 选择题(共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.−5的绝对值是 ( ▲ ) A. 5 B. −5 C.51 D. 51- 2.下列计算正确的是 ( ▲ )A.5)5(2-=- B.16412=⎪⎭⎫⎝⎛--C.236x x x =÷ D.()523x x =3.已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 ( ▲ ) A.1B.2C. 2-D. 1-4.下列标志图中,既是轴对称图形,又是中心对称图形的是 ( ▲ )A B C D5. 如图所示的几何体的左视图是 ( ▲ )A B C D6. 在一副扑克牌中,洗好,随意抽取一张,下列说法错误的是 ( ▲ )A .抽到大王的概率与抽到红桃3的概率相同B .抽到黑桃A 的概率比抽到大王的概率大C .抽到A 的概率与抽到K 的概率相同D .抽到A 的概率比抽到小王的概率大第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接写在答题卡相应位置.......上) 7.-27的立方根是 ▲ .8.计算:223a a ⋅= ▲ .9.命题“同位角相等”是 ▲ 命题(填“真”或“假”).10.2014年江苏省泰州市经信委对重点工业投资储备项目调查摸底, 工业总投资314.86亿元, 314.86亿这个数可用科学记数法表示为 ▲ . 11.不等式组⎩⎨⎧>+>-.36;02x x x 的解集是 ▲ .13.对角线 ▲ 的平行四边形是矩形.14.图中S □ABCD =18cm 2,P 为BC 边上任意一点,M 为AP 上的一个点,且MP AM 21=,图中阴影部分面积是 ▲ cm 2.15.如图△ABD 与△AEC 都是等边三角形,AB ≠AC ,下列结论中:①BE =DC ;②∠BOD =60°;③△BOD ≌△COE .正确的序号是 ▲ .16.如图,直线y =-x +b 与双曲线xy 1=(x >0)交于A 、B 两点,与x 轴、y 轴分别交于E 、F 两点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,当b= ▲ 时,△ACE 、△BDF 与△ABO 面积的和等于△EFO 面积的43. 三、解答题(本大题共10小题,满分102分。

2024年湖南省常德市初中学校教学教研共同体中考数学模拟试卷(3月份)+答案解析

2024年湖南省常德市初中学校教学教研共同体中考数学模拟试卷(3月份)+答案解析

2024年湖南省常德市初中学校教学教研共同体中考数学模拟试卷(3月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各数中,最小的数是()A. B. C.1 D.02.在以下几幅古代纹样图案中,利用中心对称进行整体构图的是()A. B. C. D.3.下列运算不正确的是()A. B. C. D.4.如图,平面镜MN放置在水平地面CD上,墙面于点D,一束光线AO照射到镜面MN上,反射光线为OB,点B在PD上.若,则的度数为()A.B.C.D.5.下列调查中,调查方式选择合理的是()A.为了解全国青少年儿童的睡眠时间,统计人员采用普查的方式B.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式C.为了解乘客是否携带危险物品,高铁站工作人员对部分乘客进行抽查D.为保证神舟十七号载人飞船顺利发射,对所有零件进行了全面检查6.我们在学习许多代数公式时,可以用几何图形来推理验证,观察下列图形,可以推出公式的是图()A. B.C. D.7.某次射击训练中,甲、乙、丙、丁四名运动员10次射击成绩的平均数单位:环与方差如表所示.根据表中数据,这四人中成绩好且发挥稳定的是()甲乙丙丁9899A.甲B.乙C.丙D.丁8.如图①,A ,B 表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O 是圆心,半径,点A ,B 是圆上的两点,,则的长为()A. B. C. D.9.若关于x 的一元二次方程的一个实数根为2024,则方程一定有实数根()A.2024B.C.D.10.如图,O 是坐标原点,点B 位于第一象限,轴于点D ,,,C 为OB 的中点,连接CD ,过点B 作交x 轴于点若反比例函数的图象经过OB的中点C,与线段AB交于点E,则AE的长为()A.B.C.D.二、填空题:本题共8小题,每小题3分,共24分。

11.人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为将用科学记数法表示为______.12.当时,代数式______.13.如图是我国清代康熙年间的八角青花碗,其轮廓是一个正八边形,正八边形的每一个内角是______.14.在如图所示的方格纸上建立适当的平面直角坐标系,若点B的坐标为,点C的坐标为,则点A的坐标为______.15.如图,在中,弦半径OA于点D,连接若,,则BC的长是______16.将9枚黑棋子和6枚白棋子装入一个不透明的空盒子里,这些棋子除了颜色外无其他差别.从盒子中随机取出一枚棋子,则取出的棋子是黑子的概率是______.17.如图,湖中有一个小岛A,一艘轮船由西向东航行,它在B处测得小岛A在北偏东方向上,航行20海里到达C处,这时测得小岛A在北偏东方向上,则小岛A到航线BC的距离为______海里.18.如图,在▱ABCD中,BD为对角线,分别以点A,B为圆心,以大于的长为半径画弧,两弧相交于点M,N,作直线MN交AD于点E,交AB于点若,,,则BD的长为______.三、解答题:本题共8小题,共66分。

2014年中考数学模拟试卷含答案(精选3套)

2014年中考数学模拟试卷含答案(精选3套)

济南市2014年初三年级学业水平考试数学全真模拟试卷(时间:120分钟 满分:120分)第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.) 1.-2的绝对值是( )11A. B.2 C. D.222- -2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103 吨B.67.5×103吨C.6.75×104 吨D.6.75×105吨 3.16的平方根是( )A.4B.±4C.8 D .±84.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A.20°B.25°C.30°D.35° 5.下列等式成立的是( )A.a 2×a 5=a 10B.a b a b +=+C.(-a 3)6=a 18D.2a a =6.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是( )1125A. B. C. D.23367.分式方程12x 1x 1=-+的解是( ) A.1 B.-1 C.3 D.无解8.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )111A. B. C. D.248π π π π9.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )x 10x 10A. B.2x 02x 0x 10x 10C. D.x 20x 20+≥+≤⎧⎧ ⎨⎨-≥-≥⎩⎩+≤+≥⎧⎧ ⎨⎨-≥-≥⎩⎩10.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )11.化简2(21)÷-的结果是( )A.221B.22C.12D. 22- - - +12.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为( )A.22B.20C.18D.1613.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数64y y x x=-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC的面积为( )A.3B.4C.5D.1014.如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=( )A.28°B.42°C.56°D.84°15.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B→C→D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为( )第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:(a+2)(a-2)+3a=________.17.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_________.18.如图,两建筑物的水平距离BC为18 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为________ m(结果不作近似计算).19.三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为______cm.20.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_______.21.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)化简222x1x2x1. x1x x--+÷+-(2)解方程:15x2(x1)8x. 24++=+23.(本小题满分7分)(1)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.(2)如图所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.24.(本小题满分8分)五一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人、八年级同学少于100人.若七、八年级分别购票,两个年级共计应付门票费1 575元,若合在一起购买折扣票,总计应付门票费1 080元.(1)请你判断参加郊游的八年级同学是否也少于50人.(2)求参加郊游的七、八年级同学各为多少人?25.(本小题满分8分)某市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽取了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14∶9∶6∶1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽取了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?26.(本小题满分9分)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O 的距离为5,则r的取值范围为_________.27.(本小题满分9分)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.28.(本小题满分9分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于点F,∠1=∠2,连接CB与DG交于点N.(1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=14,求BN 的长.参考答案1.D2.C3.B4.A5.C6.A7.C8.A9.A 10.A 11.D 12.D 13.C 14.A 15.C 16.(a-1)(a+4) 17.-10 18.123 19.6 20.n 13-()21.25522.(1)解:原式=()()()2x 1x 1x x 1x.x 1x 1+--=+- () (2)解:原方程可化为3x+2=8+x,合并同类项得:2x=6, 解得:x=3.23.(1)证明:∵∠1=∠2, ∴∠1+∠EAC=∠2+∠EAC, 即∠BAC=∠EAD.∵在△ABC 中和△AED 中,D C,BAC EAD,AB AE,∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△AED(AAS) (2)证明:∵BE=DF,∴BE-EF=DE-EF,∴DE=BF.∵四边形ABCD 是平行四边形, ∴AD=BC,AD ∥BC, ∴∠ADE=∠CBF,在△ADE 和△CBF 中,DE BF,ADE CBF,AD BC,=⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF(SAS), ∴AE=CF. 24.解:(1)全票为15元,则八折票价为12元,六折票价为9元. ∵100×15=1 500<1 575,∴参加郊游的七、八年级同学的总人数必定超过100人,∴由此可判断参加郊游的八年同学不少于50人.(2)设七、八年级参加郊游的同学分别有x 人、y 人. 由(1)及已知可得,x<50,50<y<100,x+y>100. 依题意可得:()15x 12y 1 575,9x y 1 080,+=⎧⎨+=⎩ 解得:x 45,y 75.=⎧⎨=⎩答:参加郊游的七、八年级同学分别为45人和75人. 25.解:(1)D 等级所占比例为:111496130=+++,则共抽取的人数为:1260().30÷=人 (2)样本中B 等级的频率为:9100%30%;14961⨯=+++C 等级的频率为:6100%20%.14961⨯=+++ (3)样本中A 等级在扇形统计图中所占圆心角度数为:1430×360=168(度); D 等级在扇形统计图中所占圆心角度数为:130×360=12(度). (4)可报考示范性高中的总人数: 300×149()3030+=230(名). 26.(1)证明:∵∠CBF=∠CFB , ∴BC=CF. ∵AC=CF , ∴AC=BC ,∴∠ABC=∠BAC.在△ABF 中,∠ABC+∠CBF+∠BAF+∠F=180°, 即2(∠ABC+∠CBF)=180°, ∴∠ABC+∠CBF=90°, ∴BF 是⊙O 的切线;(2)解:连接BD.∵点D ,点E 是弧AB 的三等分点,AB 为直径, ∴∠ABD=30°,∠ADB=90°,∠A=60°. ∵AD=5,∴AB=10,()BFtan603ABBF 103;3535r 53 5.∴︒==∴=-<<+,27.解:(1)设二次函数的解析式为:y=ax 2+bx+c.221a c 4216a 4b c 0b 1b c 4,12a 1y x x 4.21D(2m)m 224 4.2⎧⎧=-⎪⎪=⎪⎪++==⎨⎨⎪⎪=⎪⎪-=⎩⎩=-++=-⨯++= ,,由题意有:,解得:,,所以,二次函数的解析式为:点,在抛物线上,即∴点D 的坐标为(2,4);(2)作DG 垂直于x 轴,垂足为G ,因为D (2,4),B (4,0), 由勾股定理得:BD=25,∵E 是BD 的中点, ∴BE=5.BE BQ 1QBE ABD BD BA 2AB 2BQ Q 10BQ BE 5QBE DBA BD BA 6557BQ 25OQ 6337Q 0.3==∴=∴==∴=⨯==∴ 当≌时,,,点的坐标为(,);当≌时,,,则,点的坐标(,) (3)如图,由A(-2,0),D(2,4),可求得直线AD 的解析式为:y=x+2,则点F 的坐标为:F(0,2).过点F作关于x轴的对称点F′,即F′(0,-2),连接CD,再连接DF′交对称轴于M′,交x轴于N′.由条件可知,点C,D关于对称轴x=1对称,∴DF′=210,F′N′=FN′,DM′=CM′,∴CF+FN′+M′N′+M′C=CF+DF′=2210+,∴四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C=2210+,即四边形CFNM的最短周长为:2210+,此时直线DF′的解析式为:y=3x-2,所以存在点N的坐标为2(,0)3,点M的坐标为(1,1)使四边形CMNF周长取最小值.28.(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB-∠BCO=∠FCO-∠BCO,即∠ACO=∠1,∴∠ACO=∠2,∵∠CAM=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=1 4,∴OE=CO ·cos ∠BOC=4×14=1, 由此可得:BE=3,AE=5,由勾股定理可得:222222222222CE CO OE 4115AC CE AE (15)5210,BC CE BE (15)326,=-=-==+=+==+=+= ∵AB 是⊙O 直径,AB ⊥CD , ∴由垂径定理得:CD=2CE=215,∵△ACM ∽△DCN ,∴CM AC,CN CD= ∵点M 是CO 的中点,11CMOA 42,22==⨯= CM CD 2215CN 6,AC 210BN BC CN 266 6.⨯∴===∴=-=-=济南市2014年初三年级学业水平考试数学全真模拟试卷2第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的).1.如果+30 m表示向东走30 m,那么向西走40 m表示为( )A.+40 mB.-40 mC.+30 mD.-30 m2.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.503.图中几何体的主视图是( )4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10-9B.3.4×10-9C.3.4×10-10D.3.4×10-115.已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cmD.6 cm6.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )1111A. B. C. D.34567.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )A.5种B.4种C.3种D.2种8.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票.根据题意,下列方程组正确的是( )9.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18°B.24°C.30°D.36°10.如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为( )A.4B. 22C.1D.211.如图,数轴上a,b两点表示的数分别为3和-1,点a关于点b的对称点为c,则点c所表示的数为( )A.23B.13C.23D.13-- -- -+ +12.如图,A、B、C是反比例函数kyx=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3∶1∶1,则满足条件的直线l共有( )A.4条B.3条C.2条D.1条13.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为( )A.3.5元B.6元C.6.5元D.7元14.已知关于x 的不等式组()4x 123x,6x ax 1,7⎧-+⎪⎨+-⎪⎩><有且只有三个整数解,则a 的取值范围是( )A.-2≤a-1B.-2≤a <-1C.-2<a ≤-1D.-2<a <-1 15.如图,直线l :y=-x-2与坐标轴交于A 、C 两点,过A 、O 、C 三点作⊙O 1,点E 为劣弧 AO上一点,连接EC 、EA 、EO ,当点E 在劣弧上运动时(不与A 、O 两点重合),EC EA EO-的值是( )A.2 B.3 C.2 D.变化的第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:a 3-ab 2=________. 17.计算124183-⨯=_________. 18.如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是______.19.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是______.20.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_____________.21.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--,现已知121x x 3=-,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2 013=____________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分)(1)解方程组2x 3y 3x 2y 2.-=⎧⎨+=-⎩,(2)化简:1a a ().22a 2a 1-÷++23.(本小题满分7分)(1)如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD ,垂足为E. 求证:BE=DE.(2)如图,AB 是⊙O 的直径,DF ⊥AB 于点D ,交弦AC 于点E ,FC=FE. 求证:FC 是⊙O 的切线.24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1 200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.26.(本小题满分9分)如图,O是菱形ABCD对角线AC与BD的交点,CD=5 cm,OD=3 cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.27.(本小题满分9分)如图,直线1yx 4=与双曲线ky x =相交于A 、B 两点,BC ⊥x 轴于点C (-4,0).(1)求A 、B 两点的坐标及双曲线的解析式;(2)若经过点A 的直线与x 轴的正半轴交于点D ,与y 轴的正半轴交于点E ,且△AOE 的面积为10,求CD 的长.28.(本小题满分9分) 如图,抛物线21y x 1=-交x 轴的正半轴于点A ,交y 轴于点B ,将此抛物线向右平移4个单位得抛物线y 2,两条抛物线相交于点 C.(1)请直接写出抛物线y 2的解析式;(2)若点 P 是x 轴上一动点,且满足∠CPA=∠OBA ,求出所有满足条件的P 点坐标; (3)在第四象限内抛物线y 2上,是否存在点Q ,使得△QOC 中OC 边上的高h 有最大值,若存在,请求出点Q 的坐标及h 的最大值;若不存在,请说明理由.参考答案1.B2.A3.D4.C5.B6.B7.C8.B9.A10.D 11.A 12.A 13.C 14.C 15.A19.2 20.40% 21.416.a(a+b)(a-b) 17.618.1323.(1)证明:作CF⊥BE,垂足为F.∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵四边形EFCD为矩形,∴DE=CF.在△BAE和△CBF中,有∠CBE=∠BAE,∠BFC=∠BEA=90°,AB=BC,∴△BAE≌△CBF,∴BE=CF=DE,即BE=DE.(2)证明:连接OC.∵FC=FE,∴∠FCE=∠FEC.又∵∠AED=∠FEC,∴∠FCE=∠AED.∵OC=OA,∴∠OCA=∠OAC,∴∠FCO=∠FCE+∠OCA=∠AED+∠OAC=180°-∠ADE.∵DF⊥AB,∴∠ADE=90°,∴∠FCO=90°,即OC⊥FC.又∵点C在⊙O上,∴FC是⊙O的切线;24.解法一:解:设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:()()3x 2y 363150%x 2120%y 45x 2:y 15.+=⎧⎨+++=⎩=⎧⎨=⎩,,,解得这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤), 这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤). 答:这天萝卜的单价是3元/斤,排骨的单价是18/斤. 解法二:解:设这天萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:32x y 36150%120%3x 2y 45x 3:y 18.⎧+=⎪++⎨⎪+=⎩=⎧⎨=⎩,,,解得 答:这天萝卜的单价是3元/斤,排骨的单价18元/斤. 25.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%, 利用条形图中喜欢武术的女生有10人, ∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50-10-16=24(人). 补充条形统计图,如图所示:(2)100(3)∵样本中喜欢剪纸的人数为30人,样本容量为100, ∴估计全校学生中喜欢剪纸的人数:1 200×30100=360人. 答:全校学生中喜欢剪纸的有360人. 26.解:(1)∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴直角△OCD 中,2222OC CD OD 53 4 cm =-=-=;(2)∵CE ∥DB ,BE ∥AC , ∴四边形OBEC 为平行四边形, 又∵AC ⊥BD ,即∠COB=90°, ∴平行四边形OBEC 为矩形; (3)∵OB=OD ,∴S 矩形OBEC =OB ·OC=4×3=12(cm 2). 27.解:(1)∵BC ⊥x 轴,C (-4,0),∴B 的横坐标是-4,代入y=14x 得:y=-1,∴B 的坐标是(-4,-1). ∵把B 的坐标代入ky k 4x==得:, ∴反比例函数的解析式是4y .x=∵解方程组12121y x x 4x 444y 1y 1y x⎧=⎪==-⎧⎧⎪⎨⎨⎨==-⎩⎩⎪=⎪⎩,,,得:,,,∴A 的坐标为(4,1),B 的坐标为(-4,-1);(2)设OE=a ,OD=b ,则△AOE 面积S △AOE =S △EOD -S △AO D,AOE 1110ab b 1,221S a 410,2=- == 即:①并且,②由①,②可解得:a=5,b=5,即OD=5. ∵OC=|-4|=4,∴CD 的长为:4+5=9.28.解:(1)y=x 2-8x+15;(2)当 y 1= y 2,即x 2-1 =x 2-8x+15, ∴x=2,y=3, ∴C (2,3).由题可知, A ( 1 , 0 ) , B ( 0 ,-1), ∴OA =OB= 1 ,∴∠OBA= 45°. 过点 C 作CD ⊥x 轴于点D, ∴D(2,0),∴CD=3.当∠CPA=∠OBA=45°时,∴PD=CD=3 ,∴满足条件的点P有2个,分别为P1 (5,0),P2(-1,0);(3)存在.过点C作CE⊥y轴于点E,过点Q作QF⊥y轴于点F,连接OC、QC、 OQ. 设Q (x0,y0) ,∵Q在y2上,∴y0=x02-8x0+15,∴CE=2,QF=x0,EF=3-y0,OE=3,OF=-y0.∵在△QOC中,OC边长为定值,∴当S△QOC取最大值时,OC边上的高h也取最大值.2014届中考数学模拟测试卷(本试卷满分150分,考试时间120分钟)一、选择题(本题有8小题,每小题3分,共24分) 1.12-的倒数为【 】 A .12B .2C .2-D .1-2.下列图形中,既是轴对称图形,又是中心对称图形的是【 】 A .平行四边形 B .等边三角形 C .等腰梯形 D .正方形3.已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)【 】A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 4.已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距0102=7cm ,则两圆的位置关系为【 】 A .外离 B .外切 C .相交 D .内切5.如图是由七个相同的小正方体堆成的几何体,这个几何体的俯视图是【 】6.某校在开展“爱心捐助”的活动中,初三(一)班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【 】A .10B .9C .8D .4 7.如图7,AB 是⊙O 的直径,点D 在AB 的延长线上, DC 切⊙O 于点C ,若∠A=25°,则∠D 等于【 】 A .20°B .30°C .40° D.50°8.已知二次函数2(0)y ax bx c a =++≠的图象如右图8所示,下列结论①abc >0 ②b<a+c③2a-b=0 ④4a+2b+c >0 ⑤2c<3b⑥a+b >m(am+b)(m 为任意实数), 其中正确的结论有【 】 A . 1个 B .2个 C . 3个D .4个二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-3℃,那么当天的日温差是 ▲ .10.函数12-+=x x y 中自变量x 的取值范围是 ▲ . 11.如图11,四边形ABCD 中,AB//CD ,要使四边形ABCD 为平行四边形,则可添加的条件为 ▲ .(填一个即可).12.因式分解:m 3n -9mn= ▲ .13.已知25-是一元二次方程240x x c -+=的一个根,则方程的另一个根是▲ .14.在平面直角坐标系中,如果抛物线y=3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是 ▲ . 15.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ▲ .16.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 ▲ cm .17.如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 ▲ . 18.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n 为正整数)的根,你的答案是: ▲ .(用n 的代数式 )三、解答题(本大题共有10小题,共96分) 19.(本题8分)(1) (4分)解方程组 ⎩⎨⎧=-=-;1383,32y x y x(2) (4分)821)14.3(45sin 2)31(02+-+︒--π 20.(本题8分)先化简:22a 1a 11a a +2a---÷,再选取一个合适的 a 值代入计算.21.(本题8分)如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D 。

最新人教版八年级数学上册 专题复习:整式的运算

最新人教版八年级数学上册  专题复习:整式的运算

专题 整式的运算☞2年中考【2015年题组】 1.(2015北海)下列运算正确的是( )A .3412a b a +=B .326()ab ab = C .222(5)(42)3a ab a ab a ab --+=- D .1262x x x ÷=【答案】C . 【解析】试题分析:A .3a 与4b 不是同类项,不能合并,故错误;B .3226()ab a b =,故错误; C .正确;D .1266x x x ÷=,故错误;故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.去括号与添括号;4.同底数幂的除法. 2.(2015南宁)下列运算正确的是( )A .ab a ab 224=÷B .6329)3(x x =C .743a a a =•D .236=÷【答案】C .考点:1.整式的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的乘除法. 3.(2015厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .22xy -B .23xC .32xyD .32x【答案】D . 【解析】试题分析:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A .22xy -系数是﹣2,错误;B .23x 系数是3,错误;C .32xy 次数是4,错误;D .32x 符合系数是2,次数是3,正确; 故选D .考点:单项式.4.(2015厦门)32-可以表示为( )A .2522÷ B .5222÷ C .2522⨯ D .(2)(2)(2)-⨯-⨯-【答案】A . 【解析】试题分析:A .2522÷=252-=2522÷,故正确;B .5222÷=32,故错误; C .2522⨯=72,故错误;D .(2)(2)(2)-⨯-⨯-=3(2)-,故错误;故选A .考点:1.负整数指数幂;2.有理数的乘方;3.同底数幂的乘法;4.同底数幂的除法. 5.(2015镇江)计算3(2)4(2)x y x y --+-的结果是( ) A .2x y - B .2x y + C .2x y -- D .2x y -+ 【答案】A .考点:整式的加减. 6.(2015广元)下列运算正确的是( )A .23222()()ab ab ab -÷=-B .2325a a a +=C .22(2)(2)2a b a b a b +-=-D .222(2)4a b a b +=+【答案】A . 【解析】试题分析:A .23222()()ab ab ab -÷=-,正确;B .325a a a +=,故错误;C .22(2)(2)4a b a b a b +-=-,股错误; D .222(2)44a b a b ab +=++,故错误. 故选A .考点:1.平方差公式;2.合并同类项;3.同底数幂的除法;4.完全平方公式.7.(2015十堰)当x=1时,1ax b ++的值为-2,则()()11a b a b +---的值为的值为( )A .﹣16B .﹣8C .8D .16 【答案】A . 【解析】试题分析:∵当x=1时,1ax b ++的值为﹣2,∴12a b ++=-,∴3a b +=-,∴()()11a b a b +---=(﹣3﹣1)×(1+3)=﹣16.故选A .考点:整式的混合运算—化简求值. 8.(2015黄冈)下列结论正确的是( )A .2232a b a b -= B .单项式2x -的系数是1-C .使式子2+x 有意义的x 的取值范围是2x >-D .若分式112+-a a 的值等于0,则1a =±【答案】B .考点:1.合并同类项;2.单项式;3.分式的值为零的条件;4.二次根式有意义的条件.9.(2015佛山)若n mx x x x ++=-+2)1()2(,则m n +=( ) A .1 B .﹣2 C .﹣1 D .2【答案】C . 【解析】试题分析:∵(2)(1)x x +-=2+2x x -=2x mx n ++,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选C .考点:多项式乘多项式. 10.(2015天水)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④ 【答案】A .考点:1.整式的混合运算;2.有理数的混合运算;3.新定义. 11.(2015邵阳)已知3a b +=,2ab =,则22a b +的值为( ) A .3 B .4 C .5 D .6 【答案】C . 【解析】试题分析:∵3a b +=,2ab =,∴22a b +=2()2a b ab +-=9﹣2×2=5,故选C .考点:完全平方公式.12.(2015临沂)观察下列关于x 的单项式,探究其规律: x ,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是( )A .2015x2015B .4029x2014C .4029x2015D .4031x2015 【答案】C . 【解析】 试题解析:系数的规律:第n 个对应的系数是2n ﹣1.指数的规律:第n 个对应的指数是n .故第2015个单项式是4029x2015.故选C . 考点:1.单项式;2.规律型. 13.(2015日照)观察下列各式及其展开式:222()2a b a ab b +=++; 33223()33a b a a b ab b +=+++; 4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .66【答案】B .考点:1.完全平方公式;2.规律型;3.综合题.14.(2015连云港)已知m n mn +=,则(1)(1)m n --= . 【答案】1. 【解析】试题分析:(1)(1)m n --=mn ﹣(m+n )+1,∵m+n=mn ,∴(m ﹣1)(n ﹣1)=mn ﹣(m+n )+1=1,故答案为:1.考点:整式的混合运算—化简求值.15.(2015珠海)填空:2+10x x + =2(_____)x +.【答案】25;5. 【解析】试题分析:∵10x=2×5x ,∴2+1025x x +=2(5)x +.故答案为:25;5.考点:完全平方式. 16.(2015郴州)在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为 .【答案】12.考点:1.列表法与树状图法;2.完全平方式.17.(2015大庆)若若52=n a ,162=n b ,则()nab = . 【答案】45±. 【解析】试题分析:∵52=n a ,162=n b ,∴2280n na b ⋅=,∴2()80nab =,∴()n ab =45±,故答案为:45±.考点:幂的乘方与积的乘方.18.(2015牡丹江)一列单项式:2x -,33x ,45x -,57x ,…,按此规律排列,则第7个单项式为 . 【答案】213x -.【解析】试题分析:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x 的指数为8,所以,第7个单项式为213x -.故答案为:213x -.考点:1.单项式;2.规律型.19.(2015安顺)计算:201320111(3)()3-⋅-= .【答案】9.考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2015铜仁)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则6()a b += .【答案】654233245661520156a a b a b a b a b ab b ++++++. 【解析】试题分析:6()a b +=654233245661520156a a b a b a b a b ab b ++++++.故本题答案为:654233245661520156a a b a b a b a b ab b ++++++.考点:1.完全平方公式;2.规律型:数字的变化类;3.综合题. 21.(2015南宁)先化简,再求值:(1)(1)(2)1x x x x +-++-,其中12x =.【答案】2x ,1. 【解析】试题分析:先利用乘法公式展开,再合并得到答案,然后把12x =代入计算即可.试题解析:原式=22121x x x -++-=2x ,当12x =时,原式=2×12=1.考点:整式的混合运算—化简求值. 22.(2015无锡)计算: (1)02(5)3)3--+-;(2)2(1)2(2)x x +--. 【答案】(1)1;(2)25x +.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.23.(2015内江)填空:()()a b a b -+= ;22()()a b a ab b -++= ; 3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+. 【答案】(1) 22a b -,33a b -,44a b -;(2) n na b -;(3)342. 【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可; (2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果. 试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -; 3223()()a b a a b ab b -+++=44a b -;故答案为:22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=nna b -,故答案为:nna b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型;3.阅读型;4.综合题.24.(2015咸宁)(1)计算:0 128(2)-++-;(2)化简:2232(2)()a b ab b b a b--÷--.【答案】(1)32;(2)22b-.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.25.(2015随州)先化简,再求值:5322(2)(2)(5)3()a a a ab a b a b+-+-+÷-,其中12ab=-.【答案】42ab-,5.【解析】试题分析:利用平方差公式、单项式乘以多项式法则、单项式除法运算,合并得到最简结果,把ab的值代入计算即可求出值.试题解析:原式=22453a a ab ab-+-+=42ab-,当12ab=-时,原式=4+1=5.考点:整式的混合运算—化简求值.26.(2015北京市)已知22360a a+-=.求代数式3(21)(21)(21)a a a a+-+-的值.【答案】7.【解析】试题分析:利用单项式乘以多项式法则、平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:∵22360a a+-=,即2236a a+=,∴原式=226341a a a+-+=2231a a++=6+1=7.考点:整式的混合运算—化简求值.27.(2015茂名)设y ax=,若代数式()(2)3()x y x y y x y+-++化简的结果为2x,请你求出满足条件的a 值. 【答案】a=﹣2或0. 【解析】试题分析:因式分解得到原式=2()x y +,再把当y ax =代入得到原式=22(1)a x +,所以当2(1)1a +=满足条件,然后解关于a 的方程即可.试题解析:原式=2()x y +,当y ax =时,代入原式得222(1)a x x +=,即2(1)1a +=,解得:a=﹣2或0.考点:1.整式的混合运算;2.平方根. 28.(2015河北省)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式; (2)若16+=x ,求所捂二次三项式的值.【答案】(1)221x x -+;(2)6.考点:整式的混合运算—化简求值.【2014年题组】 1.(2014年百色中考) 下列式子正确的是( ) A .(a ﹣b )2=a2﹣2ab+b2 B . (a ﹣b )2=a2﹣b2 C .(a ﹣b )2=a2+2ab+b2 D .(a ﹣b )2=a2﹣ab+b2 【答案】A . 【解析】试题分析:A .(a ﹣b )2=a2﹣2ab+b2,故A 选项正确;B .(a ﹣b )2≠a2﹣b2,故B 选项错误;C .(a ﹣b )2≠a2+2ab+b2,故C 选项错误;D .(a ﹣b )2≠a2﹣ab+b2,故D 选项错误;故选A .考点:完全平方公式.A.()339x x = B.()332x 6x -=- C.22x x x -= D.632x x x ÷=【答案】A .考点:1.幂的乘方和积的乘方;2.合并同类项;3.同底幂乘除法. 3.(2014年常州中考)下列运算正确的是( ) A. 33a a a⋅= B.()33ab a b= C.()236a a = D. 842a a a ÷=【答案】C .【解析】试题分析:根据同底幂乘法,同底幂乘除法,幂的乘方和积的乘方运算法则逐一计算作出判断: A. 31343a a aa a+⋅==≠,选项错误; B.()3333ab a b a b=≠,选项错误;C.()23326a a a ⨯==,选项正确; D. 848442a a aa a -÷==≠,选项错误.故选C .考点:1.同底幂乘法;2.同底幂乘除法;3.幂的乘方和积的乘方. 4.(2014年抚顺中考)下列运算正确的是( ) A .-2(a-1)=-2a-1B .(-2a )2=-2a2C .(2a+b )2=4a2+b2 D . 3x2-2x2=x2 【答案】D . 【解析】 试题分析:A 、-2(a-1)=-2a+2,故A 选项错误;B 、(-2a )2=4a2,故B 选项错误;C 、(2a+b )2=4a2+4ab+b2,故C 选项错误;D 、3x2-2x2=x2,故D 选项正确. 故选D .考点:1.完全平方公式;2.合并同类项;3.去括号与添括号;4.幂的乘方与积的乘方. 5.(2014年眉山中考)下列计算正确的是( )A .235x x x +=B .236x x x ⋅=C .236()x x =D .632x x x ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.A.a3+a4=a7 B. 2a3•a4=2a7 C.(2a4)3=8a7 D. a8÷a2=a4【答案】B.【解析】试题分析:A、a3和a4不能合并,故A错误;B、2a3•a4=2a7,故B正确;C、(2a4)3=8a12,故C错误;D、a8÷a2=a6,故D错误;故选B.考点:整式的运算.7.(2014年镇江中考)化简:()()x1x11+-+=.【答案】2x.【解析】试题分析:第一项利用平方差公式展开,去括号合并即可得到结果:()()22x1x11x11x+-+=-+=.考点:整式的混合运算.8.(2014年吉林中考)先化简,再求值:x(x+3)﹣(x+1)2,其中x=+1.【答案】x﹣1;2.【解析】试题分析:先利用整式的乘法和完全平方公式计算,再进一步合并化简,最后代入数值即可.试题解析:原式=x2+3x﹣x2﹣2x﹣1=x﹣1,当x=2+1时,原式=2+1﹣1=2.考点:1.整式的运算;2.化简求值.9.(2014年绍兴中考)先化简,再求值:()()()2a a3b a b a a b-++--,其中1a1b2 ==-,.【答案】a2+b2,5 4.考点:整式的混合运算—化简求值.10.(2014年杭州中考)设y kx=,是否存在实数k,使得代数式2222222(x y )(4x y )3x (4x y )--+-能化简为4x ?若能,请求出所有满足条件的k 值,若不能,请说明理由. 【答案】能. 【解析】试题分析:化简代数式,根据代数式恒等的条件列关于k 的方程求解即可 试题解析:∵y kx =,∴222222222222222(x y )(4x y )3x (4x y )(4x y )(x y 3x )(4x y )--+-=--+=- ()2222242(4x k x )x 4k =-=-.∴要使代数式22222224(x y )(4x y )3x (4x y )x --+-=,只要()224k1-=.∴24k 1-=±,解得k=±3或k=±5.考点:1. 代数式的化简;2. 代数式恒等的条件;3.解高次方程.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:整式:单项式与多项式统称整式. (1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数. 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项.2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同. 【例1】下列式子中与3m2n 是同类项的是( ) A.3mn B.3nm2 C.4m D.5n 【答案】B .考点:同类项. 归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:am ·an =am +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(am )n =amn (m ,n 都是整数,a ≠0)(3)积的乘方:(ab )n =an ·bn (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:am ÷an =am -n (m ,n 都是整数,a ≠0) 注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】下列运算正确的是( ) A. 33a a a⋅= B.()33ab a b= C.()236a a = D. 842a a a ÷=【答案】C .考点:幂的运算.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:,实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma+mb ; ②多项式乘多项式:(a +b )(c +d )=ac+ad+bc+bd ③乘法公式:平方差公式:(a+b )(a-b )=a2-b2;完全平方公式:(a ±b )2=a2±2ab+b2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】下列计算正确的是( ) A .2x -x =x B .a3·a2=a6 C .(a -b )2=a2-b2 D .(a +b )(a -b )=a2+b2 【答案】A .【解析】A 、原式=x ,正确;B 、原式=x5,错误;C 、原式=a2-2ab+b2,错误;D 、原式=a2-b2,故选A .考点:整式的运算.【例4】先化简,再求值:()()()22a b a b b a b b +-++-,其中1a =、2b =-.【答案】-1.【解析】原式222222a b ab b b a ab =-++-=+;当1a =、2b =-时,原式()2112121=+⨯-=-=-.考点:整式的混合运算—化简求值.【例5】计算21()(21)(41)2x x x +-÷-【答案】12.【解析】原式=12(2x+1)(2x ﹣1)÷[(2x ﹣1)(2x+1)]=12.考点:整式的混合运算. ☞1年模拟 1、(2015届云南省剑川县九上第三次统一模拟考试数学试卷)下列运算正确的是( )A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=【答案】C .考点:整式的运算. 2.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)下列运算正确的是( ).A .623a a a =⋅ B .6223)(b a ab = C .222)(b a b a -=- D .235=-a a【答案】B . 【解析】试题分析:因为32235a a a a +⋅==,所以A 错误;因为6223)(b a ab =,所以B 正确;因为222()2a b a ab b -=-+,所以C 错误;因为532a a a -=,所以D 错误;故选B .考点:1.幂的运算;2.整式的加减. 3.(2015届重庆市合川区清平中学等九年级模拟联考数学试卷)下列运算正确的是( )A .23a a ⋅=6aB .33()y y x x = C .55a a a ÷= D .326()a a =【答案】D .考点:1.同底数幂的除法;2.幂的乘方与积的乘方;3.同底数幂的乘法. 4.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)下列运算正确的是( )A .642a a a =+ B .523)(a a =C .2328=+D .222))((b ab a b a b a ---=---【答案】C .【解析】试题分析:A .2a 和4a 不能合并,故错误;B .3265()a a a =≠,故错误;C 8222232==D .2222()()()a b a b a b a b ---=--=-+,故错误;故选C .考点:1.二次根式的混合运算;2.整式的混合运算. 5.(2015届山东省日照市中考一模)观察下列各式及其展开式: (a+b )2=a2+2ab+b2(a+b )3=a3+3a2b+3ab2+b3(a+b )4=a4+4a3b+6a2b2+4ab3+b4(a+b )5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 …请你猜想(a+b )10的展开式第三项的系数是( ) A .36 B .45 C .55 D .66 【答案】B .考点:完全平方公式.6.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)若3223y x mm -与3852y x m +-能够进行加减运算,则21m +=_________________;【答案】-1或9.【解析】试题分析:∵3223y x mm -与3852y x m +-能够进行加减运算,∴2258m m m -=+,即:2340m m --=,解得:1m =-或4m =,①当1m =-时,21m +=-1,②当4m =时,21m +=9.故答案为:-1或9.考点:1、同类项;2、解一元二次方程-因式分解法;3、分类讨论.7.(2015届广东省佛山市初中毕业班综合测试)已知a2-2a-3=0,求代数式2a (a-1)-(a+2)(a-2)的值. 【答案】7.考点:整式的混合运算—化简求值.。

四川省自贡市富顺县中考数学模拟试卷(三)(含解析)-人教版初中九年级全册数学试题

四川省自贡市富顺县中考数学模拟试卷(三)(含解析)-人教版初中九年级全册数学试题

某某省某某市富顺县2016年中考数学模拟试卷(三)一.选择题(共10个小题,每小题4分,共40分)1.在﹣3,4,﹣5,﹣6,7中,任取两个数相乘,积最大的是()A.15 B.18 C.28 D.302.下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9 C. =a﹣1 D.(﹣2x)3=﹣8x33.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C. a,D.,4.把分式的x、y均扩大为原来的10倍后,则分式的值()A.不变 B.为原分式值的10倍C.为原分式值的D.为原分式值的5.下列各式中,不能用完全平方公式分解的个数为()①x2﹣4x+8;②﹣x2﹣2x﹣1;③4m2+4m﹣1;④﹣m2+m﹣;⑤4a4﹣a2+.A.1个B.2个C.3个D.4个6.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个8.如若正方形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(x>0)的图象上,则E点的坐标是()A.B.C.D.(1,1)9.△ABC经过一定的运动得到△A1B1C1,然后以点A1为位似中心按比例尺A1B2:A1B1=2:1,△A1B1C1放大为△A1B2C2,如果△ABC上的点P的坐标为(a,b),那么这个点在△A1B2C2中的对应点P2的坐标为()A.(a+3,b+2) B.(a+2,b+3) C.(2a+6,2b+4)D.(2a+4,2b+6)10.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.二.填空题(共5个小题,每小题4分,共20分)11.已知在Rt△ABC中,∠C=90°,若sinA=,则tanA的值为______.12.一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P(A)=(M和D 分别表示相应区域的面积).如图,现有一边长为a的等边△ABC,分别以此三角形的三个顶点为圆心,以一边的一半长为半径画圆与△ABC的内切圆有重叠(见图中阴影部分);现在在等边△ABC内注射一个点,则该点落在△ABC内切圆中的概率是______.13.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为______.14.观察下列的有序数对:(3,﹣1),,根据你发现的规律,第2016个有序数对是______.15.二次函数y=ax2+bx+c(a、b、c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④2a+b=0;⑤b2﹣4ac<0;⑥当﹣1<x<3时,y>0.其中正确的是______ (把正确的序号都填上).三.解答题(共2个题,每题8分,共16分)16.计算:﹣2|1﹣|.17.解不等式组:,并在数轴上表示出解集.四、解答题(共2个题,每小题8分,共16分)18.在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2016•富顺县校级模拟)近几年我国高速公路的建设有了飞速的发展,现正在修建中的某段高速公路要招标.现有甲乙两个工程队,若甲、乙两队合作,24天可完成任务,需要费用120万元;若甲队单独做20天,剩下的工程由乙做,还需要40天才能完成此项工程,这样需要110万元,问:(1)甲乙两队单独完成此项工程,各需多少天?(2)甲乙两队单独完成此项工程,各需费用多少万元.五、解答题(共2个题,每题10分,共20分)20.(10分)(2016•富顺县校级模拟)在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边上的中点,点M是AB上的一动点(不与点A重合),延长ME交射线CD于点N,连结MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM=______ 时,四边形AMDN是矩形;②当AM=______ 时,四边形AMDN是菱形.21.(10分)(2016•富顺县校级模拟)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.六、解答题(本题满分12分)22.(12分)(2016•富顺县校级模拟)用换元法解分式方程: =2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即: =﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?七、解答题(本题满分12分)23.(12分)(2001•某某)如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否成立?请说明理由;(2)如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时,⊙O与AC相切?八、解答题(本题满分14分)24.(14分)(2009•某某)已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴交于A,B两点,与y轴交于点C,其中A(﹣3,0),C(0,﹣2).(1)求这条抛物线的函数表达式;(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.2016年某某省某某市富顺县中考数学模拟试卷(三)参考答案与试题解析一.选择题(共10个小题,每小题4分,共40分)1.在﹣3,4,﹣5,﹣6,7中,任取两个数相乘,积最大的是()A.15 B.18 C.28 D.30【考点】有理数大小比较.【分析】根据乘法法则:同号得正,异号得负计算,最大的两个正数相乘与最大的两个负数相乘,作比较,得出结论.【解答】解:﹣5×(﹣6)=30,4×7=28,故选D.【点评】本题考查了有理数的乘法和大小比较,熟练掌握乘法法则是关键;对于有理数的大小比较中,正数大于一切负数;本题属于易错题,容易漏乘.2.下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9 C. =a﹣1 D.(﹣2x)3=﹣8x3【考点】二次根式的性质与化简;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据二次根式的性质、完全平方公式、积的乘方,可得答案.【解答】解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、差的平方等于平方和减积的二倍,故B错误;C、二次根式开方是非负数,故C错误;D、积的乘方每一个因式分别乘方,再把所得的幂相乘,故D正确;故选:D.【点评】本题考查了二次根式的性质与化简,根据法则计算是解题关键.3.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C. a,D.,【考点】中位数;算术平均数.【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.【解答】解:由平均数定义可知:(a1+a2+a3+0+a4+a5)=×5a=a;将这组数据按从小到大排列为0,a5,a4,a3,a2,a1;由于有偶数个数,取最中间两个数的平均数.∴其中位数为.故选D.【点评】本题考查了平均数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.4.把分式的x、y均扩大为原来的10倍后,则分式的值()A.不变 B.为原分式值的10倍C.为原分式值的D.为原分式值的【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的结果不变,可得答案.【解答】解:分式的x、y均扩大为原来的10倍后,则分式的值变为原分式的,故选:C.【点评】本题考查了分式的基本性质,注意分母扩大了100倍,分子扩大了10倍.5.下列各式中,不能用完全平方公式分解的个数为()①x2﹣4x+8;②﹣x2﹣2x﹣1;③4m2+4m﹣1;④﹣m2+m﹣;⑤4a4﹣a2+.A.1个B.2个C.3个D.4个【考点】因式分解-运用公式法.【分析】利用完全平方公式的结构特征判断即可.【解答】解:①x2﹣4x+8,不能;②﹣x2﹣2x﹣1,能;③4m2+4m﹣1,不能;④﹣m2+m﹣,能;⑤4a4﹣a2+,不能,则不能用完全平方公式分解的个数为3个,故选C【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】根的判别式;一次函数的图象.【分析】一次函数y=kx+b的图象,根据k、b的取值确定直角坐标系的位置.在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在无实数根下必须满足△=b2﹣4ac<0.【解答】解:一元二次方程nx2﹣2x﹣1=0无实数根,说明△=b2﹣4ac<0,即(﹣2)2﹣4×n×(﹣1)<0,解得n<﹣1,所以n+1<0,﹣n>0,故一次函数y=(n+1)x﹣n的图象不经过第三象限.故选C【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.对于一次函数y=kx+b,当k<0,b>0时,它的图象经过一、二、四象限.7.如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个【考点】由三视图判断几何体.【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【解答】解:综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.8.如若正方形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(x>0)的图象上,则E点的坐标是()A.B.C.D.(1,1)【考点】反比例函数图象上点的坐标特征;解一元二次方程-公式法;反比例函数系数k的几何意义;正方形的性质.【分析】在正方形ABCO中四边都相等,由反比例函数比例系数k的几何意义可得,正方形OABC的面积为1,求得OA=1.若设AD=DE=m,则OD=1+m,再根据反比例函数图象上点的坐标特征,可列方程求得m的值,即可得出E点的坐标.【解答】解:依据反比例函数比例系数k的几何意义可得,正方形OABC的面积为1,∴OA的长为1,设AD=DE=m,则OD=1+m,∴E(1+m,m),将E(1+m,m)代入反比例函数y=可得,m(1+m)=1,解得,m1=,m2=(不合题意,舍去),∴1+m=,故点E的坐标是(,).故选(B)【点评】本题主要考查反比例函数图象上点的坐标特征,根据正方形的四条边都相等,并利用两正方形的边长表示出点B、E的坐标是解题的关键.在反比例函数y=图象上任取一点,过这点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,这是反比例函数比例系数k的几何意义.9.△ABC经过一定的运动得到△A1B1C1,然后以点A1为位似中心按比例尺A1B2:A1B1=2:1,△A1B1C1放大为△A1B2C2,如果△ABC上的点P的坐标为(a,b),那么这个点在△A1B2C2中的对应点P2的坐标为()A.(a+3,b+2) B.(a+2,b+3) C.(2a+6,2b+4)D.(2a+4,2b+6)【考点】位似变换;坐标与图形性质.【分析】观察图形,看△A1B1C1是如何从△ABC得到的,发现其变化规律.再根据位似变换,得到△A1B2C2中各点的坐标特点,从而得到P2的坐标.【解答】解:△A1B1C1是由△ABC通过平移得到的,其平移规律是右移三个单位后,再上移2个单位,所以点P移到P1的坐标为(a+3,b+2).△A1B2C2是由三角线A1B1C1通过位似变换得到的,所以在△A1B2C2上的各点坐标,都做了相应的位似变换,即乘以了2.∴点P1的对应点P2的坐标为(2a+6,2b+4).故选C.【点评】本题考查了平移变化和位似变化及相关知识,点的变化与平移规律和位似变化规律相一致.10.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.【考点】三角形的内切圆与内心;解一元一次方程;正方形的判定与性质;切线的性质;相似三角形的判定与性质.【分析】连接OE、OD,根据AC、BC分别切圆O于E、D,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD,设圆O的半径是r,证△ODB∽△AEO,得出=,代入即可求出r=;设圆的半径是x,圆切AC于E,切BC于D,且AB于F,同样得到正方形OECD,根据a﹣x+b ﹣x=c,求出x即可;设圆切AB于F,圆的半径是y,连接OF,则△BCA∽△OFA得出=,代入求出y即可.【解答】解:A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a﹣x+b﹣x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OFA,∴ =,∴=,解得:y=,故本选项错误;C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴=,=,解得:r=,故本选项正确;从上至下三个切点依次为D,E,F;并设圆的半径为x;容易知道BD=BF,所以AD=BD﹣BA=BF﹣BA=a+x﹣c;又∵b﹣x=AE=AD=a+x﹣c;所以x=,故本选项错误.故选:C.【点评】本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.二.填空题(共5个小题,每小题4分,共20分)11.已知在Rt△ABC中,∠C=90°,若sinA=,则tanA的值为.【考点】同角三角函数的关系.【分析】直接利用已知结合勾股定理表示出AC,BC的长,再利用锐角三角函数关系得出答案.【解答】解:如图所示:∵∠C=90°,sinA=,∴设BC=2x,AB=3x,则AC=x,故tanA的值为: ==.故答案为:.【点评】此题主要考查了同角三角函数关系、勾股定理等知识,正确表示出AC的长是解题关键.12.一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P(A)=(M和D 分别表示相应区域的面积).如图,现有一边长为a的等边△ABC,分别以此三角形的三个顶点为圆心,以一边的一半长为半径画圆与△ABC的内切圆有重叠(见图中阴影部分);现在在等边△ABC内注射一个点,则该点落在△ABC内切圆中的概率是.【考点】几何概率;等边三角形的性质;三角形的内切圆与内心.【分析】利用等边三角形以及其内切圆的性质以及锐角三角函数关系得出DO,AD的长,从而可以求得△ABC的面积和内切圆的面积,本题得以解决.【解答】解:作AD⊥BC于点D,作BE⊥AC于点E,∵等边△ABC的边长为a,∴∠OBD=30°,BD=,AD=∴OD=BD•tan30°=,∴内切圆⊙O的面积是:,等边△ABC的面积是:,∴该点落在△ABC内切圆中的概率是:,故答案为:.【点评】此题主要考查了几何概率以及三角形内切圆的性质以及等边三角形的性质等知识,得出等边三角形与内切圆的关系是解题关键.13.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm .【考点】勾股定理的应用.【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.14.观察下列的有序数对:(3,﹣1),,根据你发现的规律,第2016个有序数对是(﹣4033,).【考点】规律型:数字的变化类.【分析】先不看符号找规律:第一个数:连续奇数;第二个数是序号的倒数;再看符号的规律,最后得出答案.【解答】解:根据题意得:第一个数:3=2×1+1,﹣5=﹣(2×2+1),7=2×3+1,﹣9=﹣(2×4+1),…,所以第2016个有序数对的第一个数为:﹣(2×2016+1)=﹣4033,第二个数:﹣1,,﹣,,…,所以第2016个有序数对的第二个数为:,故答案为:(﹣4033,).【点评】本题是数字类的变化题,此类题应该从第一个数起,分析其形成过程及与其它数的关系,找出满足条件的通项公式,并一一检验,最后确定其变化规律.15.二次函数y=ax2+bx+c(a、b、c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④2a+b=0;⑤b2﹣4ac<0;⑥当﹣1<x<3时,y>0.其中正确的是①②③④(把正确的序号都填上).【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;由抛物线和x轴的交点个数判断b2﹣4ac的符号;然后由图象确定当x取何值时,y>0.【解答】解:①∵开口向下,∴a<0,∵对称轴在y轴右侧,∴﹣>0,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故正确;②∵对称轴为直线x=1,抛物线与x轴的一个交点横坐标在2与3之间,∴另一个交点的横坐标在0与﹣1之间;∴当x=﹣1时,y=a﹣b+c<0,故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故正确;④∵对称轴x=﹣=1,∴2a+b=0;故正确;⑤∵抛物线和x轴有2个交点,∴b2﹣4ac>0,故错误;⑥如图,当﹣1<x<3时,y不只是大于0.故错误;∴正确的有4个.故答案为①②③④.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c 决定抛物线与y轴交点,抛物线与y轴交于(0,c).三.解答题(共2个题,每题8分,共16分)16.计算:﹣2|1﹣|.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,算术平方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣8﹣6×+9×﹣2(﹣1)=﹣8﹣2+﹣2+2=﹣6﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.解不等式组:,并在数轴上表示出解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据解不等式组的方法可以求得不等式组的解集,从而可以将不等式组的解集在数轴上表示出来.【解答】解:,解不等式①,得x≥﹣12,解不等式②,得x<,不等式①、②的解集在数轴上表示如下图所示,故原不等式组的解集是﹣12≤x<.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.四、解答题(共2个题,每小题8分,共16分)18.在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2016•富顺县校级模拟)近几年我国高速公路的建设有了飞速的发展,现正在修建中的某段高速公路要招标.现有甲乙两个工程队,若甲、乙两队合作,24天可完成任务,需要费用120万元;若甲队单独做20天,剩下的工程由乙做,还需要40天才能完成此项工程,这样需要110万元,问:(1)甲乙两队单独完成此项工程,各需多少天?(2)甲乙两队单独完成此项工程,各需费用多少万元.【考点】二元一次方程组的应用;分式方程的应用.【分析】(1)两个等量关系为:甲工效+乙工效=;甲工效×20+乙工效×40=1.(2)两个等量关系为:(甲每天需要的工程费+乙每天需要的工程费)×24=120;甲每天需要的工程费×20+乙每天需要的工程费×40=110.【解答】解:(1)设甲队独做需a天,乙队独做需b天.建立方程组,解得a=30(天),b=120(天)经检验a=30,b=120是原方程组的解.答:甲队独做需30天,乙队独做需120天.(2)设甲队独做需x万元,乙队独做需y万元,建立方程组,解得x=135,y=60答:甲队独做需135万元,乙队独做需60万元.【点评】本题主要考查了分式方程以及二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:甲工效+乙工效=;甲工效×20+乙工效×40=1.(甲每天需要的工程费+乙每天需要的工程费)×24=120;甲每天需要的工程费×20+乙每天需要的工程费×40=110.列出方程组,再求解.五、解答题(共2个题,每题10分,共20分)20.(10分)(2016•富顺县校级模拟)在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边上的中点,点M是AB上的一动点(不与点A重合),延长ME交射线CD于点N,连结MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM= 1 时,四边形AMDN是矩形;②当AM= 2 时,四边形AMDN是菱形.【考点】矩形的判定;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.【解答】(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;故答案为:1;②当AM的值为2时,四边形AMDN是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定、以及等边三角形的判定和性质,解题的关键是掌握特殊图形的判定以及重要的性质.21.(10分)(2016•富顺县校级模拟)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.【考点】垂径定理;三角形中位线定理.【分析】(1)如图(1),根据垂径定理可得BD=BC,然后只需运用勾股定理即可求出线段OD的长;(2)连接AB,如图(2),用勾股定理可求出AB的长,根据垂径定理可得D和E分别是线段BC和AC的中点,根据三角形中位线定理就可得到DE=AB,DE保持不变;【解答】解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==4,即线段OD的长为4.(2)存在,DE保持不变.理由:连接AB,如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=,∴DE保持不变.【点评】本题考查了垂径定理、三角形中位线定理、等腰三角形的性质、三角函数、勾股定理等知识,运用垂径定理及三角形中位线定理是解决第(2)小题的关键.六、解答题(本题满分12分)22.(12分)(2016•富顺县校级模拟)用换元法解分式方程: =2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即: =﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?【考点】换元法解分式方程;分式方程的解.【分析】先仿照题例,设=m,将原方程化为m2﹣m﹣2=0,然后解这个整式方程,再还元求得原方程的解,另外要注意求代数式的值时,注意a的取值之合理性.【解答】解:()2﹣()﹣2=0设=m,则原方程可化为m2﹣m﹣2=0,解这个整式方程得:m1=2,m2=﹣1即: =2或=﹣1;解得:x=4或x=﹣经检验:x=4或 x=﹣是原方程的解.故原方程的解为:x1=4,x2=﹣.因为a是方程的根,所以,a=4或a=﹣=÷=÷=•=则①当a=4时,原式===2;②当a=﹣时,原式===﹣1即:所求代数式的值为2或﹣1【点评】此题是换元法解分式方程,换元法解分式方程是难点,关键是换元之后把方程化成整式方程,要将所解整式方程的解还原回来,求出原分式方程的解,并要进行验根;七、解答题(本题满分12分)23.(12分)(2001•某某)如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否成立?请说明理由;(2)如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时,⊙O与AC相切?【考点】切线的判定.【分析】(1)结论仍然成立.在连接OD后,因为OD=OB,AB=AC,则有∠ABC=∠ACB=∠ODB,所以OD和AC永远平行;又DE和AC垂直,所以DE和OD也垂直,即DE是⊙O的切线.(2)当⊙O与AC相切时,若假设切点为F,⊙O与AB相交于G,则OF和AC垂直,即△AOF 是一个以AO为斜边的直角三角形;从而根据三角函数求得OF,OB的长,即可确定圆心O在AB的什么位置时,⊙O与AC相切.【解答】解:(1)结论成立.理由如下:如图,连接OD;∵OD=OB,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠ODB,∴OD∥AC;又∵DE⊥AC,∴DE⊥OD,即DE是⊙O的切线.(2)当圆心O在AB上距B点为3x=时,⊙O与AC相切.如图所示,⊙O与AC相切于F,⊙O与AB相交于G.则OF⊥AC;在RT△AOF中,sinA=OF:AO=3:5;设OF=3x,AO=5x,则OB=OG=OF=3x,AG=2x,∴8x=AB=5,∴x=,此时OB=3x=时,即当圆心O在AB上距B点为3x=时,⊙O与AC相切.【点评】此题主要考查了切线的判定,以及圆中一些基本性质.八、解答题(本题满分14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年中考数学模拟试卷(三)
一、选择题(本大题共有8小题,每小题3分,共24分.请将正确选项的字母代号填涂在答题卡相应位置上)


,买
、某种彩票中奖的概率是,只是一种可能性,买
6.(3分)(2010•海南)在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值
对于函数来说,当
解:反比例函数的图象上的每一条曲线上,
生对解析式中
7.(3分)(2013•江都市模拟)如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()
=
8.(3分)(2013•惠山区一模)已知点A,B分别在反比例函数y=(x>0),y=(x>0)的图象上且OA⊥OB,则tanB为()

),﹣
=(﹣
),﹣
=,
(﹣
tanB====.
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题
卡相应位置上)
9.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为
2.5×10﹣6.
10.(3分)(2011•邵阳)函数y=中,自变量x的取值范围是x≥1.
11.(3分)分解因式:m3﹣4m2+4m=m(m﹣2)2.
12.(3分)(2013•江都市模拟)已知⊙O1与⊙O2相交,两圆半径分别为2和m,且圆心距为7,则m的
取值范围是5<m<9.
13.(3分)(2013•江都市模拟)若点(a,b)在一次函数y=2x﹣3上,则代数式3b﹣6a+1的值是﹣8.
14.(3分)(2011•枣阳市模拟)方程的解为x=9.
15.(3分)(2013•江都市模拟)如图,⊙O的直径CD⊥EF,∠OEG=30°,则∠DCF=30°.
,由垂径定理可得=,又由∠
=,

16.(3分)如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是﹣1≤x≤2.
17.(3分)(2013•江都市模拟)如图,点E、F分别是正方形纸片ABCD的边BC、CD上一点,将正方形纸片ABCD分别沿AE、AF折叠,使得点B、D恰好都落在点G处,且EG=2,FG=3,则正方形纸片ABCD的边长为6.
18.(3分)(2013•惠山区一模)图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB的长为+1.
a2a+
2a+2a+
2a+=8+4AB=1+
三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(10分)(1)计算:2﹣1+cos30°+|﹣5|﹣(π﹣2013)0.
(2)化简:(1+)÷.

+×+5
++5
=
20.(6分)解不等式组,并将解集在数轴上表示.
解:
在数轴上表示不等式组的解集为
21.(8分)(2011•青岛)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.
根据图中信息,解答下列问题:
(1)将图2补充完整;
(2)这8天的日最高气温的中位数是 2.5℃;
(3)计算这8天的日最高气温的平均数.
22.(6分)(2012•苏州)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形
是等腰三角形的概率是;
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,
求所画四边形是平行四边形的概率是(用树状图或列表法求解).

P=.
,.
23.(8分)在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.
解:
=10
×=5
×
MD=BM=5,
24.(10分)(2011•莆田)如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A在y轴正半轴上.点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数的图象与边
BC交于点F.
(1)若△OAE、△OCF的面积分别为S1、S2.且S1+S2=2,求k的值;
(2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少?
))k

y=(

=
=2

,,


本题考查了反比例函数
25.(10分)如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.
(1)求⊙O的半径长;
(2)求线段CF长.
AC=4

OA=
tanA=,

CE=DE=
=,即=,

26.(12分)(2013•江都市模拟)已知A、B两地相距630千米,在A、B之间有汽车站C站,如图1所示.客车由A地驶向C站、货车由B地驶向A地,两车同时出发,匀速行驶,货车的速度是客车速度的.图
2是客、货车离C站的路程y1、y2(千米)与行驶时间x(小时)之间的函数关系图象.
(1)求客、货两车的速度;
(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;
(3)求E点坐标,并说明点E的实际意义.
,则货车的速度为km/h
,则货车的速度为
9a+
=45

解之
27.(12分)如图1,已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.点P由B出发沿BA方向向点A 匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.以AQ、PQ为边作平行四边形AQPD,连接DQ,交AB于点E.设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
(1)用含有t的代数式表示AE=5﹣t.
(2)当t为何值时,平行四边形AQPD为矩形.
(3)如图2,当t为何值时,平行四边形AQPD为菱形.
AE=
t=
t=
BAC==
t=
t=
28.(14分)(2012•漳州二模)如图,在平面直角坐标系中,O是坐标原点,直线与x轴,y 轴分别交于B,C两点,抛物线经过B,C两点,与x轴的另一个交点为点A,动点P从
点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.
(1)求抛物线的解析式及点A的坐标;
(2)以OC为直径的⊙O′与BC交于点M,当t为何值时,PM与⊙O′相切?请说明理由.
(3)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点
N从点C出发沿CA以每秒个单位长度的速度向点A运动,运动时间和点P相同.
①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?
②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.
时对应的
x+9
,解得x
,得﹣x x+9=0
OB=6
=.
=,解得QD=t
=QD=S=
S=时,.
=.∴=,解得t=
=.∴=,解得
的值为.。

相关文档
最新文档