人教版初中数学相交线与平行线难题汇编及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.6个B.5个C.4个D.3个
【答案】B
【解析】
【分析】
由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.
【详解】
解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,
【答案】D
【解析】
【分析】
【详解】
试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.
考点:平行线的性质;三角形的外角的性质.
5.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G,则图中与∠ECB相等的角有( )
9.下列命题是真命题的是()
A.同位角相等
B.对顶角互补
C.如果两个角的两边互相平行,那么这两个角相等
D.如果点 的横坐标和纵坐标互为相反数,那么点 在直线 的图像上.
【答案】D
【解析】
【分析】
根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.
【点睛】
此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD这条辅助线.
12.如图,在矩形 中, , ,若 是 上的一个动点,则 的最小值是()
A.16B.15.2C.15D.14.8
【答案】D
【解析】
【分析】
根据题意,当PC⊥BD时, 有最小值,由勾股定理求出BD的长度,由三角形的面积公式求出PC的长度,即可求出最小值.
B.由∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得BD//AE,故不符合题意;
C.由∠1=∠2可判定AB//CD,不能得到BD//AE,故符合题意;
D.由∠3=∠4,根据内错角相等,两直线平行可得BD//AE,故不符合题意,
故选C.
【点睛】
本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.
所以∠EBC+∠2=180°,
即∠DBC+∠2=2∠2=180°-∠1=140°.
可求出∠2=70°.
【点睛】
掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.
4.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为
A.80°B.50°C.30°D.20°
11.如图,已知 , 和 的平分线相交于 , ,则 的度数为()
A.100°B.130°C.140°D.160°
【答案】B
【解析】
【分析】
连接BD,因为AB∥CD,所以∠ABD+∠CDB=180°;又由三角形内角和为180°,所以∠ABE+∠E+∠CDE=180°+180°=360°,所以∠ABE+∠CDE=360°−100°=260°;又因为BF、DF平分∠ABE和∠CDE,所以∠FBE+∠FDE=130°,又因为四边形的内角和为360°,进而可得答案.
【详解】
解:给图中各角标上序号,如图所示:

∴ (两直线平行,同位角相等),
又∵ (对顶角相等),
∴ .
故C为答案.
【点睛】
本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.
17.如图,在 中, , ,直线 ,顶点 在直线 上,直线 交 于点 ,交 与点 ,若 ,则 的度数是()
【详解】
如图,由折叠的性质可知∠3=∠4,
∵AB∥CD,
∴∠3=∠1,
∵∠1=2∠2,∠3+∠4+∠2=180°,
∴5∠2=180°,即∠2=36°,
∴∠AEF=∠3=∠1=72°
故选B.
【点睛】
本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质及平行线的性质是解决问题的关键.
8.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=30°,则∠2等于()
【详解】
A.两直线平行,同位角相等,故A是假命题;
B.对顶角相等,故B是假命题;
C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;
D.如果点的横坐标和纵坐标互为相反数,那么点 在直线 的图像上,故D是真命题
故选:D
【点睛】
本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.
13.下列命题错误的是()
A.平行四边形的对角线互相平分
B.两直线平行,内错角相等
C.等腰三角形的两个底角相等
D.若两实数的平方相等,则这两个实数相等
【答案Βιβλιοθήκη BaiduD
【解析】
【分析】
根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.
【详解】
解:A、平行四边形的对角线互相平分,正确;
A.30°B.35°C.40°D.45°
【答案】C
【解析】
【分析】
先根据等腰三角形的性质和三角形内角和可得 度数,由三角形外角的性质可得 的度数,再根据平行线的性质得同位角相等,即可求得 .
【详解】
∵ ,且 ,
∴ ,
在 中,∵ ,
∴ ,
∵ ,
∴ ,
即 ,
故选: .
【点睛】
本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于 ;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.
2.下列说法中,正确的是()
A.过一点有且只有一条直线与已知直线垂直
B.过直线外一点有且只有一条直线与已知直线平行
C.垂于同一条直线的两条直线平行
D.如果两个角的两边分别平行,那么这两个角一定相等
【答案】B
【解析】
【分析】
根据平行线的性质和判定,平行线公理及推论逐个判断即可.
【详解】
A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;
③符合平行线的判定定理,故本小题正确;
④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.
故选B.
16.如图,直线 ,将一块含 角的直角三角尺( )按所示摆放.若 ,则 的大小是()
A. B. C. D.
【答案】C
【解析】
【分析】
先根据 得到 ,再通过对顶角的性质得到 ,最后利用三角形的内角和即可求出答案.
故选择B.
【点睛】
本题综合考查了平行线的判定及性质.
6.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()
A.∠D=∠DCEB.∠D+∠ACD=180°C.∠1=∠2D.∠3=∠4
【答案】C
【解析】
【分析】
根据平行线的判定方法逐项进行分析即可得.
【详解】
A.由∠D=∠DCE,根据内错角相等,两直线平行可得BD//AE,故不符合题意;
A.40°B.60°C.50°D.70°
【答案】B
【解析】
【分析】
根据两直线平行内错角相等得 ,再根据直角三角板的性质得 ,即可求出∠2的度数.
【详解】
∵a∥b∥c

∵直角三角板的直角顶点落在直线b上

∵∠1=30°

故答案为:B.
【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
【详解】
解:如图,当PC⊥BD时, 有最小值,
在矩形ABCD中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,
由勾股定理,得

∴ ,
在△BCD中,由三角形的面积公式,得

即 ,
解得: ,
∴ 的最小值是: ;
故选:D.
【点睛】
本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P的位置,得到PC最短.
B、∠1和∠C是同位角,故本选项错误;
C、∠3和∠4是邻补角,故本选项错误;
D、∠1和∠C是同位角,故本选项正确;
故选:D.
【点睛】
本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
A.不相交的两条直线是平行线
B.过一点有且只有一条直线与已知直线平行
C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离
D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.
【答案】D
【解析】
【分析】
运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.
【详解】
A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;
10.如图,直线AB,AB相交于点O,OE,OF为射线,则对顶角有()
A.1对B.2对C.3对D.4对
【答案】B
【解析】
【分析】
根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.
【详解】
图中对顶角有:∠AOC与∠BOD、∠AOD与∠BOC,共2对.
故选B.
【点睛】
本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的反向延长线形成的夹角即可
B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;
C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;
D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;
故选:B.
【点睛】
此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.
【详解】
连接BD,
∵AB∥CD,
∴∠ABD+∠CDB=180°,
∴∠ABE+∠E+∠CDE=180°+180°=360°,
∴∠ABE+∠CDE=360°−100°=260°,
又∵BF、DF平分∠ABE和∠CDE,
∴∠FBE+∠FDE=130°,
∴∠BFD=360°−100°−130°=130°,
故选B.
B、两直线平行,内错角相等,正确;
C、等腰三角形的两个底角相等,正确;
D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;
故选:D.
【点睛】
本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.
14.下列说法中,正确的是( )
B、过直线外一点有且只有一条直线与已知直线平行,故B选项错误;
C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C选项错误;
D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.
故选:D.
【点睛】
本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.
7.如图,ABCD为一长方形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )
A.75°B.72°C.70°D.65°
【答案】B
【解析】
【分析】
如图,由折叠的性质可知∠3=∠4,已知AB∥CD,根据两直线平行,内错角相等可得∠3=∠1,再由∠1=2∠2,∠3+∠4+∠2=180°,可得5∠2=180°,即可求得∠2=36°,所以∠AEF=∠3=∠1=72°
3.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()
A.40°B.50°C.60°D.70°
【答案】D
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
人教版初中数学相交线与平行线难题汇编及答案
一、选择题
1.如图,下列说法一定正确的是( )
A.∠1和∠4是内错角B.∠1和∠3是同位角
C.∠3和∠4是同旁内角D.∠1和∠C是同位角
【答案】D
【解析】
【分析】
根据内错角、同位角以及同旁内角的定义进行判断即可.
【详解】
解:A、∠2和∠4是内错角,故本选项错误;
15.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
解:①符合对顶角的性质,故本小题正确;
②两直线平行,内错角相等,故本小题错误;
相关文档
最新文档