深入了解红外热像仪的NETD(热灵敏度)
热像仪
应用
热像仪(1)对于发电机、电动机的不平衡负载,轴承温度过高,碳刷、滑环和集流环发热,绕组短路或开路, 冷却管路堵塞,过载过热等问题进行监测。
(2)可以对电气设备进行维修检查。而对于安全防盗,屋顶查漏,环保检查,节能检测,无损探伤,森林防 火,医疗检查,质量控制等也比较有帮助。
(3)可以监控像火山爆发、山体滑坡等突发的自然环境变化。 (4)对于变压器的套管过热,过载,接头松动,冷却管堵塞不畅,接触不良,三相负载不平衡等进行监测。 (5)对于电气装置的接触不良,过载,接头松动或,过热,不平衡负荷等隐患进行监测。 红外热像仪的应用范围愈来愈广泛,在科研领域、医疗领域、电子等行业都将发挥出举足轻重的作用。
4.空间分辨率/IFOV
IFOV是指能在单个像素上所能成像的角度,因为角度太小所以用毫弧度mrad表示。IFOV受到探测器和镜头的 影响可以发现镜头不变,像素越高,IFOV越小。反之像素不变,视场角越小,IFOV越小。同时,IFOV越小,成像 效果越清晰。
发展趋势
随着红外技术的不断提升,使得红外热像仪在社会各个领域中得到了广泛的应用,目前它正展现出极为广阔的 市场前景。不断发展中的红外热像仪已经从军用领域转向民用领域,并发挥着其它产品难以替代的重要作用。在民 用领域,红外热像仪被广泛应用于预防检测、消防、制程控制安防、汽车夜视环境监测、电力、建筑、石化以及医 疗等领域。此外,随着红外热像仪应用领域的不断拓展,未来它将渗透到国民经济的各个领域。可以预测,民用领 域的红外热像仪市场极有可能呈现出爆发性增长,潜在的需求市场将高达上千亿美元。
早先用于军事领域的红外热像仪,最近这些年不断向民用、工业用领域进行扩展。欧美一些发达国家自上世 纪70年代开始,先后开始探索红外热像仪在各个领域的使用。经过几十年的持续发展,红外热像仪从一个笨重的 机器已经发展成一个轻便、便携的用于现场测试的设备。
对NETD表达的红外热像仪探测距离的讨论
关键词 : 热像仪 ; 热成像 ; 红外探测 ; 探测距离; E D N T
中 图分类 号 :2 5 2 P 2 . 文献标 识码 : A
Dic s i n o he De e to n e o h e m a n r r d I a e s u so n t t c i n Ra g f t e Th r lI f a e m g r Ex r s e y NETD p esd b
B I i in , U Q a —iJA u n — n A — o g F u nx,I O G atueo i FreE g er gU i r t,ay a 180 C ia T eMi l Istt f r oc ni e n nv sy Snu n73 0 , hn ) se i A n i ei
关因素在公 式 中并 未得到 反映 ( 光学 仪器 的焦 如
距、 口径 、 测 器 波 段 等 ) 这 些 因 素 将 会 对 探 测 距 探 ,
红外 热像仪用于防空作战时, 探测距离是一个
至关重要 的指标。随着技术的不断发展 , 红外探测 器的探测能力也在不断提高 , 其参数 N T E D已由第 二代的 5 m 0 K发展到第三代 的 1m , 5 K 由此使得热像 仪在探测距 离上也得 到 了较大 的提高 , E D 已成 NT 为计算探测距离的一个关键参数 , 因此 , 于 △ 基 和 NT E D来计算热像仪的探测距离也就成为了一种重
△T — d N T b s d r g q a in t d n t e fc o h t f c h TD p r mee s as r vd d oa — E D a e a e e u t .S u y o a tr ta e tt e NE a a tr i l o p o i e .Ra g n n o h s a s ne e u t n o et e ma r e g r o a g t t lil r r d r d ain s u c s a d d f r n e e au e i q a i t r l i a d i e rtr eswi l o fh h f n r ma f l mu t e i a e a i t o r e i e e t mp r t r p n f o n t s d d c d i o cu i n e u e c n l so . n
红外热像仪在光伏电站的五大应用
红外热像仪在光伏电站的五大应用作为环保的新能源,光伏产业的前景一片光明。
但同时也面临诸多为题,比如光伏电站在运作中会存在质量隐患或意外事故,导致投资回报率不高,而红外热像仪是一个快速可靠的太阳能电池板检查工具,能够帮助光伏电站解决故障问题,可全面、简单的监控系统状态,下面将带你全面了解红外热像仪在光伏电站的五大应用。
一、太阳能逆变器电路板检测电子电路的故障一般分为短路、断路和接触不良。
电路正常工作与带故障时,电子元件所发出的红外线是不一样的,也就是说电路正常工作时,电路板热成像与有故障的电路板热成像有很大区别。
当电子元件发生故障时,有两种情况:一是短路,短路时电流较大,元件较热,其红外线辐射量大,此时热成像较正常是红外成像变化很大;二是当元件断路(接触不良)时,流过元件的电流值几乎为零,所以,元件温度较正常工作时低,几乎没有红外辐射,此时,热成像与正常时热成像差别较大。
利用这一原理很容易的就判断出电子电路故障点。
红外热成像为测试人员提供了一种独特的IC测试方法,通过一次红外扫描成像,即可获取板上每个IC 的功耗值,并变成可视信息供测试人员进行故障诊断。
热像仪能提供清晰的电路板温度场分布的图像和准确的温度测量。
同一块电路板的器件应尽可能的按其发热量大小及散热程度分区排列,采用合理的器件排列方式,可以有效的降低印制电路的温升,从而使器件及设备的故障率明显下降。
热像仪可以通过提供的红外热图,帮助工程师分析出整块线路板的温度分布,完善工程师的设计和应用。
电子元件工作的稳定性与老化速度是和环境温度息息相关的。
每当环境温度升高10℃时,主要功率元件的寿命减少50%,这就要求电子元器件应该工作在相对稳定和较低的温度范围内。
热像仪可以提供给工程师电路中各元器件的工作时发热情况热图,帮助工程师分析元器件对整个电路温度的影响,同时也能够帮助工程师选择合适负载能力的转换模块。
二、太阳能发电系统电气配电柜检测电气接触点长期处于高温状态,会导致绝缘下降或引发电气火灾。
FLIR菲力尔-红外热像仪
红外成像
探测器类型
非制冷焦平面阵列
非制冷焦平面阵列
非制冷焦平面阵列
红外热像像素
320x240
320x240
320*240
红外波长范围
7.5~13μm
7.5~13μm
7.5~13μm
热灵敏度NETD
<0.05℃<0.05℃<源自.05℃视场角/最小测试距离
25x19/0.4m
25x19/0.4m
LED显示
可选配置
可选镜头
6°长焦镜头、15°长焦镜头、45°广角镜头、90°超广角镜头;100um微距镜、50um微距镜、25um微距镜
6°长焦镜头、15°长焦镜头、45°广角镜头、90°超广角镜头;100um微距镜、50um微距镜、25um微距镜
红外镜头f=30mm,15°(含镜头套);红外镜头f=10mm,45°(含镜头套)
质保期
1年
册登记后,质保期延至2年
1年
106×201×125mm
246×97×184mm
重量
880克
880克
825克
EMC防护
电源
电池类型
可充电锂电池
可充电锂电池
可充电锂离子电池
工作时间
大于4小时
大于4小时
约4小时
交流电源
AC适配器:90~260VAC输入,12V输出
AC适配器:90~260VAC输入,12V输出
交流适配器
充电时间
LED显示
IP54,IEC360
IP54,IEC360
IP43(IEC 60529)
冲击
25G,IEC 68-2-29
25G,IEC 68-2-29
红外检测技术介绍及应用讲课文档
就像照相技术意味着“可见光写入”一样, 热成像技术意味着“热量写入”。
热成像技术生成的图片被称作“温度记录 图”或“热图”。
目标
空气
热像仪
热图
现在二十三页,总共五十一页。
红外热像十一页。
反射辐射 W 自身辐射Wε
物体发出的 辐射
Wex
现在十六页,总共五十一页。
➢反射(r)、辐射(a)、穿透(t): r+a+t=1
光滑表面的反射率较高,容易受环境影响。(反光) 粗躁表面的辐射率较高 • 不同的材料、不同的温度、不同的表面光度、不同 的 颜色等,所发出的红外辐射强度都不同(辐射率不 同)。
PM X90
适用:由於儀器工作在短波段,所以主要用於需要看 火焰的設備檢測,如:電廠的鍋爐及石化系統設備的 檢測.
现在三十三页,总共五十一页。
在線檢測系統
A 20
A40
主要用於需要24小時監察的設備
现在三十四页,总共五十一页。
研究型热像仪
SC3000
P630
S 65 / 45
由於儀器各項指標都比較高,所 以主要用於研究及發展,多數用 戶是大學, 研究所等.
1800年英国的天文学家Mr.William Herschel 用分光棱镜将太阳光分解
成从红色到紫色的单色光,依次测量不同颜色光的热效应。他发现,当水银 温度计移到红色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反 而比红光区更高。反复试验证明,在红光外侧,确实存在一种人眼看不见的 “热线”,后来称为“红外线”,也就是“红外辐射”。
现在三十五页,总共五十一页。
远距离追踪,检测热像仪
红外探测器主要参数定义
红 外 探 测 器1.量子效率在某一特定波长上,每秒钟产生的光电子数与入射光子数之比。
对理想的探测器,入射一个光子发射一个电子,1)(=λη。
当然实际上不是所有的光子都可以被吸收,因此1)(<λη。
探测器对波长为λ处的量子效率可以表示为:hv P e I S //)(=λη 其中S J h .106260755.634-⨯=,是普朗克常数,e 是元电荷。
2. 响应率输出信号电压S 与输入红外辐射功率P 之比即:)或(W A W V P S R /)/(=3. 响应波长范围单色响应率与波长的关系,称为光谱响应曲线或响应光谱。
热敏型红外探测器的响应率与波长无关。
光电型红外探测器有峰值波长p λ和长波限c λ。
通常取响应率下降到p λ一半所在的波长为c λ。
光电探测器只有在小于c λ范围有响应,因此称为选择性红外探测器。
对于光子探测器,仅当入射光子的能量大于某一极小值时才能产生光电效应。
就是说,探测器仅对波长小于cλ,或者频率大于的光子才有响应。
因此,光子探测器的响应随波长线性上升,然后到某一截止波长cλ突然下降为零。
而热型探测器响应波长无选择性,对可见光到远红外的各种波长的辐射同样敏感,在室温工作。
灵敏度低、响应时间偏长,最快的响应时间也在毫秒量级。
热释电探测器主要应用于被动式的传感器中,主要应用于防盗报警、来客告知等被动探测以及石油化工、电力等行业的温度测量、温度检测等灵敏度不是很高的场合。
此外,热释电材料是还是制备非制冷红外成像设备的重要材料。
常见红外光子探测器及响应波段4.噪声如果测量探测器输出的电子系统有足够大的放大倍数,即使没有入射辐射。
也可以看到一些毫无规律的电压起伏,它的均方根称为噪声电压N,此噪声来源于探测器中的某些基本的物理过程。
探测器的噪声主要有以下几个来源:f/1噪声(闪烁噪声),暗电流噪声(热噪声)以及光电流噪声。
f/1噪声为低频噪声,在AlGaAsGaAs/QWIP中的影响很小,不是主要的制约因素。
美国RNO IR-384P技术参数及参数解析
美国RNO IR-384P技术参数在介绍热像仪技术参数之前,先简单介绍一下,热像仪的关键知识:1、影响热像仪成本的三大部件a、传感器,也就是探测器。
b、显示屏目前专业的热像仪显示屏,价格都在5000元左右,非专业的热像仪使用的是低分辨小屏,成本仅几百元。
c、镜头大小热像仪的镜头镜片是专业镜片,不是传统的夜视仪或者望远镜使用的那种镜片,热像仪的镜片在采购时是以克为单位的,越大的镜头,价格越贵。
2、所以同样分辨率的热像仪,专业型大镜头,高分辨率大屏幕的热像仪,比非专业型热像仪的成本要贵1万元以上。
3、目前市面上销售的价格在2万以内的比如高的热像仪,属于非专业型的热像仪,在性能、观测清晰度、观测距离上与RNO的热像仪都是没法比的。
然后,再介绍一下:热像仪的工作原理,红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏原件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量专为可见的热图像。
热图像的上面不同颜色代表被测物体的不同温度分布。
美国RNO手持式测温红外热像仪主要应用于工业检测、检测电路板、电力线路等。
下面是美国RNO热像仪IR- 384P的技术参数。
探测器类型:焦平面非制冷微型探测器。
探测器像素: 384*288波长范围: 8-14um像元间距 25um标准视场 25°×19°/0.1m空间分辨率 1.36mrad热灵敏度≤0.05℃在30℃时帧频 50/60Hz对焦手动电子对焦 2x可见光拍摄 320万像素液晶显示屏 2.7’’LCD测温范围 -20----650℃测温精度±2℃、±2%读数,取最大值测温模式 4个可移动点、3个可移动区域、2个线测温高温报警声音、颜色辐射率校正 0.01至1.0辐射率可调温度校正自动/手动语言简体中文存储介质最大支持16GB文件格式热图像JPEG格式带红外测量数据可见光JPEG格式语音注释 60秒语音注释,随图像一同存储激光指示器二级,1mW /635nm 红色电池类型锂电池,可充电电池工作时间 4小时连续工作省电模式自动休眠,自动关机外接电源 10-15V DC运行温度 -15℃~﹢50℃存储温度 -40℃~﹢70℃空气湿度≤95%(非冷凝)防护等级 IP 54跌落 2米尺寸 105mm×245mm×230mm重量 980g电源接口有音频输出有视频输出 PAL/NTSCUSB 图像、测量数据、语音传送至计算机下面把比较主要的技术参数,给大家做个介绍:红外热像仪按照工业温度分为制冷型和非制冷型。
红外热成像仪在狩猎领域的应用
红外热成像仪在狩猎领域的应用在介绍红外热成像仪在狩猎领域的应用之前,首先介绍一下什么是红外热成像仪?红外热成像仪在军民领域都有应用,最开始起源于军用,逐渐转为民用。
在民间一般叫热像仪。
红外热成像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏原件上,从而获得红外热像图,这种热像仪图与物体表面的热分布场相对应。
通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。
热图像上面的不同颜色代表被测物体的不同温度。
通过查看红外热像图,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。
现代红外热成像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。
红外热成像仪利用红外探测和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体的分布场相对应。
在狩猎领域为什么要采用红外热成像仪呢?在夜间以及恶劣气象条件下,采用红外热成像仪可以对猎物进行跟踪监测,发现目标,击中目标。
夜间可见光器材(如望远镜等)已经不能正常工作,观测距离极短。
如果采用人工照明(如手电筒等)可能很容易暴露目标。
如果采用微光设备(如夜视仪等),它同样也需要辅助光才能看的稍远些。
而红外热成像仪是被动接受目标的红外热辐射,与气候条件无关,无论白天夜晚均可正常工作,而且不容易暴露目标,有着得天独厚的优势,是其他设备所不能比拟的。
如果猎物躲藏在草丛后面,也可以轻松发现目标。
传统夜视设备是不能比拟的。
红外热成像仪在狩猎领域的应用效果图展示:红外热成像仪的发展红外热成像仪最早是因为军事目的而研发的,近年来迅速向民用工业领域扩展。
自上世纪70年代,一些欧美发达国家先后开始使用红外热成像仪在各个领域进行探索。
红外热成像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热成像图,这种红外热成像图与物体表面的热分布场相对应。
上海肯强仪器 Fluke TiR32 红外热像仪 说明书
Fluke TiR32 红外热像仪详细技术指标 温度温度量程温度量程((-10°C 以下未校准)-20 °C 至 +150 °C (-4 °F 至 +1112 °F ) 温度测量准确度 ± 2 °C 或 2 %(处于 25 °C 额定温度时,取较大值) 屏显发射率校正 是 屏显反射背景温度补偿 是 屏显传输校正 是成像性能探测器类型 320 x 240 焦平面阵列,非制冷微量热型探测器热敏度(NETD) (NETD) 30 °C 目标温度时 ≤ 0.05 °C (50 mK) 红外光谱带 7.5 µm 至 14 µm (长波) 可视可视((可见光可见光))照相机工业性能,200 万像素最小焦距 46 厘米(约 18 英寸)标准红外镜头类型视场:23 ° x 17 °空间分辨率 (IFOV):1.25 mRad 最小焦距:15 厘米(约 6 英寸)可选长焦红外镜头类型视场:11.5 ° x 8.7 °空间分辨率 (IFOV):0.63 mRad 最小焦距:45 厘米(约 18 英寸)可选广角红外镜头类型视场:46 ° x 34 ° 空间分辨率 (IFOV):2.50 mRad 最小焦距:7.5 厘米(约 3 英寸)对焦机制 手动,单手智能对焦功能图像演示调色板标准:铁红、蓝红、高对比度、琥珀色、反琥珀色、热金属、灰色、反灰色Ultra Contrast™:超铁红、超蓝红、超高对比度、超琥珀色、超反琥珀色、超热金属、超灰色、超反灰色级别和范围 平滑自动调节和手动调节级别及范围在手动与自动模式之间快速自动切换 是手动模式下的快速自动重新调节是 最小范围(手动模式下)2.0 °C (3.6 °F) 最小范围(自动模式下) 3 °C (5.4 °F)IR IR--Fusion® 信息自动对准的(视差校正视差校正))可见光和红外光混合 是 画中画(PIP) (PIP)LCD 中心处可显示三种屏显红外混合级别全屏红外LCD 中心处可显示三种屏显红外混合级别颜色报警颜色报警((温度报警温度报警)) 露点温度报警(用户可选)语音评论 每幅图像最长 60 秒的录音;可在热像仪上回放查看图像捕捉和数据存储Ti32 允许用户在保存所拍摄的图像之前调节图像的色板、混合、级别、范围、IR-Fusion® 模式、发射率、反射背景温度补偿和传输校正。
艾睿光电石化用红外产品技术参数
功耗
额定1.5W,峰值2.5W
POE供电
支持
电源电压
12V DC
配件
配件
选配 接口线缆、支架、散热板
AM61
实时温度监测在线式红外热像仪
工业测温
项目
AM61
红外模组
探测器分辨率
640×512
像元尺寸
12μm
热灵敏度(NETD)
<60mk
镜头焦距
6.8/13/19/25/35mm
FOV
640×512/22.9°×18.4°/17.5°×14°
在线式监控测温热像仪
工业测温
项目
A8Z3
红外模组
探测器分辨率
384×288
像元尺寸
17μm
热灵敏度(NETD)
<60mk
镜头焦距
6.8mm
FOV
51.3° x 39.6
IFOV
2.5
调焦模式
定焦
帧频
25Hz
测温功能
测温功能
中心点/最高点/最低点/点/线/区域/鼠标
测温范围
-20℃~+400℃
测温精度
无
双光功能
无
系统功能
伪彩
6种
温度报警
I/O 输出、日志、保存图像、文件发送(FTP)、电子邮件(SMTP)、通知
图像记录
拍照/录像
组网功能
同界面四个(可扩展)
环境适应性
工作温度
-30℃~+60℃
存储温度
-40℃~+70℃
工作湿度
防护等级/跌落
IP40
尺寸
54×40×42mm
重量
2016 FLIR T420热像仪参数
咨询电话:135227187273.5英寸明亮触摸屏自动调焦/图像捕捉手动调焦LED灯&激光指示器310万像素可见光相机安装于T640和T660的取景器大型4.3英寸电容式触摸屏自动调焦/图像捕捉500万像素数码相机LED灯&激光指示器手动调焦不带MSX 的图像带MSX 的图像ULTRAMAX (超级放大)FLIR 新推出的UltraMax (超级放大)功能是一种独特的图像处理技术,有助于生成带图像的报告,其图像像素是普通热图像的4倍之多,且图像噪点降低50%,因此您将能够前所未有地放大并更精确地测量更小的目标。
型号FLIR T420FLIR T440FLIR T460 成像与光学参数热灵敏度/NETD<0.04°C@+30°C <0.04°C@+30°C<0.03°C@+30°C数字变焦2倍与4倍变焦2倍,4倍与8倍变焦2倍,4倍与8倍变焦测量精度±2°C或读数的2%±2°C或读数的2%±1°C或读数的±1%(限制温度)±2°C或读数的2%目标温度范围-20°C至+120°C; 0°C至+650°C -20°C至+120°C; 0°C至+650°C;+250°C至+1200°C-20°C至+120°C; 0°C至+650°C;+250°C至+1500°C测量分析线温分布图1条线温分布图,含最高/最低温度值1条线温分布图,含最高/最低温度值自动热点/冷点检测区域内自动标记热点或冷点;热/冷点温度数据显示区域或线温图内自动标记热点或冷点;热/冷点温度数据显示区域或线温图内自动标记热点或冷点;热/冷点温度数据显示测量预设值无测量,中心点,热点,冷点,3个测温点,热点-点,热点-温度无测量,中心点,热点,冷点,3个测温点,热点-点,热点-温度,用户预设值1,用户预设值2无测量,中心点,热点,冷点,3个测温点,热点-点,热点-温度,用户预设值1,用户预设值2用户预设值用户可选择和组合任何数量的测温点/输入框/圆圈/线温分布图/三角形进行测量用户可选择和组合任何数量的测温点/输入框/圆圈/线温分布图/三角形进行测量设置设置命令保存选项,可编程按钮,预设值选项,热像仪设置,Wi-Fi,指南针,蓝牙,语言,时间&单位,热像仪信息定义用户预设值,预设值选项,保存选项,可编程按钮,热像仪设置,Wi-Fi,指南针,蓝牙,语言,时间&单位,热像仪信息定义用户预设值,预设值选项,保存选项,可编程按钮,热像仪设置,Wi-Fi,指南针,蓝牙,语言,时间&单位,热像仪信息草图在热图像/数码图片绘图或添加预定义标记在热图像/数码图片绘图或添加预定义标记热像仪视频流录制全辐射红外视频录制CSQ存储至记忆卡中非辐射红外视频录制MPEG-4视频存储至记忆卡中MPEG-4视频存储至记忆卡中MPEG-4视频存储至记忆卡中可见光视频录制MPEG-4视频存储至记忆卡中MPEG-4视频存储至记忆卡中MPEG-4视频存储至记忆卡中视频流录制全辐射红外视频流使用USB全辐射传输至PC或通过Wi-Fi全辐射传输至移动设备使用USB全辐射传输至PC或通过Wi-Fi全辐射传输至移动设备使用USB全辐射传输至PC或通过Wi-Fi全辐射传输至移动设备非辐射红外视频流使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频可见光视频流使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频成像与光学参数红外分辨率320x240像素UltraMax(超级放大)功能有(增强到640x480像素)视场角(FOV)/最小焦距25°x19°/0.4 m焦距18 mm空间分辨率(IFOV)1.36 mrad图像帧频60 Hz调焦自动(单次拍摄)或手动探测器参数探测器类型焦平面阵列(FPA),非制冷型红外探测器波长范围7.5-13 µm图像显示显示器触摸屏,3.5 in. LCD显示器,320x480像素自动定向自动切换为横立或竖立模式MSX(多波段动态成像)带有细节增强显示的热图像图像调节自动或手动测量分析点测温5区域测温5个区域(输入框或圆圈),含最大值/最小值/平均值温差各温度测量值与参考温度之间的温度差参考温度使用温差手动设置发射率校正0.01至1.0,或从材料清单中选择测量校正发射率,反射温度,相对湿度,大气温度,目标距离,外部红外窗口补偿调色板铁红色,彩虹色,高对比彩虹色,白热,黑热,极光色,熔岩色报警颜色报警(等温线)高于/低于及温度区间测量功能报警针对选定测量功能执行的声音/可视报警(过高/过低)甄别温差报警(发声)服务功能热像仪软件升级使用PC软件F LIR Tools图像存储图像存储记忆卡存储标准JPEG图片,包括数码图片和测量数据图像存储模式以相同的JPEG格式同步存储热图像和数码图片,可选择以单独的JPEG格式存储数码图片延时拍摄15秒-24小时图像注释(静止图像)声音60秒(通过蓝牙),与图像一同存储文本添加表格选择预定义模板或在F LIR Tools中创建个性化模板图像描述添加简短说明(存储于JPEG exif标签中)METERLiNK无线连接(蓝牙功能)至带有METERLiNK功能的FLIR仪表报告生成热像仪内生成含红外和可见光图像的即时报告(*.pdf文件);带有报告生成功能的单独PC软件地理信息系统指南针将热像仪方位直接添加至每张静止图像中数码相机内置数码相机310万像素,带LED灯(图片可作为单独的图像)数码相机,焦距固定焦距数码相机,视场角(FOV)可根据红外镜头调节内置数码镜头参数FOV 53°x41°数码相机,屏幕高宽比4:3激光指示器激光由专用按钮激活激光对准位置自动显示在红外图像上激光分类2级激光类型半导体AlGaInP二极管激光激光功率 1 mW激光波长635 nm(红色)数据通信接口接口mini-USB,USB-A,蓝牙,Wi-Fi,复合视频输出METERLiNK/蓝牙通过耳机和外部传感器通信Wi-Fi点对点(Ad-Hoc)或基础设施(网络)SD卡1个适用于可拆卸SD存储卡的插槽USBUSB USB-A:连接外部USB设备,mini-USB-B:从/向PC传输数据或未压缩彩色视频USB,标准迷你USB-B:2.0复合视频视频输出复合视频视频,标准CVBS (ITU-R-BT.470 PAL/SMPTE 170M NTSC)视频,连接器类型4针3.5mm插孔无线电Wi-Fi标准:802.11 b/g,频率范围:2412–2462 MHz,最大输出功率:15 dBmMETERLiNK/蓝牙频率范围:2402-2480 MHz天线内置电源系统电池类型可充电锂离子电池电池电压 3.7 V电池容量+20°C至+25°C时4.4 Ah电池工作时间+25°C环境温度以及一般用途时约4小时充电系统直充(交流适配器或12V车载充电器)或双座充电器充电时间4h充满电量的90%,由LED灯指示充电状态充电温度0°C至+45°C电源管理自动关机与睡眠模式(用户选择)交流电运行交流电适配器,90–260 VAC输入,12V输出至热像仪由睡眠模式启动的时间瞬时超短环境参数工作温度范围-15°C至+50°C储存温度范围-40°C至+70°C湿度(工作和存储)IEC 60068-2-30/24小时,95%相对湿度,+25°C至+40°C/2 次循环电磁兼容性(EMC)ETSI EN 301 489-1(无线电)ETSI EN 301 489-17EN 61000-6-2(抗干扰)EN 61000-6-3(抗辐射)FCC 47 CFR第15部分B类(抗辐射)ICES-003抗无线电干扰ETSI EN 300 489328FCC第15.247部分RSS-210磁场EN 61 000-4-8,连续场测试等级5(适用于苛刻的工业环境)封装IP 54 (IEC 60529)抗撞击25 g (IEC 60068-2-29)抗振性 2 g (IEC 60068-2-6)安全EN/UL/CSA/PSE 60950-1物理参数热像仪重量(含电池)0.855 kg热像仪尺寸(长x宽x高)内置镜头前伸时106x201x125mm三脚架安装UNC ¼"-20(需要适配器)材料聚碳酸酯+ABS树脂(PC-ABS)熔铸式镁合金热塑性弹性塑料(TPE)颜色石墨灰和黑色运输信息带有镜头的红外热像仪;电池(2块);电池充电器;蓝牙耳机;热像仪镜头盖;校验证书;F LIR Tools+下载卡;用户文档CD-ROM光盘;打印文档;硬质便携箱;存储卡;颈带;具有多种插头的电源;遮阳罩;USB数据线;视频电缆型号FLIR T600 FLIR T610 FLIR T620 FLIR T640FLIR T660成像与光学参数红外分辨率480x360像素640x480像素640x480像素640x480像素640x480像素UltraMax(超级放大)功能无有(增强到1280x960像素)有(增强到1280x960像素)有(增强到1280x960像素)有(增强到1280x960像素)热灵敏度/NETD<0.04°C@ +30°C<0.04°C@ +30°C<0.04°C@+30°C<0.03°C@+30°C<0.02°C@+30°C空间分辨率IFOV(25°镜头)0.92 mrad0.68 mrad0.68 mrad0.68 mrad0.68 mrad调焦自动(单次拍摄)或手动自动(单次拍摄)或手动自动(单次拍摄)或手动连续,自动(单次拍摄)或手动连续,自动(单次拍摄)或手动数字变焦1-4倍连续变焦1-4倍连续变焦1-4倍连续变焦1-8倍连续变焦1-8倍连续变焦图像显示取景器内置800x480像素内置800x480像素测量精度 ±2°C或读数的2% ±2°C或读数的2% ±2°C或读数的2% ±2°C或读数的2% ±1°C或读数的±1%(限制温度)±2°C或读数的2%测量分析线温分布图1条线温分布图,含最高/最低温度值1条线温分布图,含最高/最低温度值自动热点/冷点检测区域内自动标记热点或冷点;热/冷点温度数据显示区域内自动标记热点或冷点;热/冷点温度数据显示区域内自动标记热点或冷点;热/冷点温度数据显示区域或线温图内自动标记热点或冷点;热/冷点温度数据显示区域或线温图内自动标记热点或冷点;热/冷点温度数据显示用户预设值测温点/输入框/圆圈/三角形测温点/输入框/圆圈/三角形测温点/输入框/圆圈/三角形测温点/输入框/圆圈/三角形/线温分布图测温点/输入框/圆圈/三角形/线温分布图设置设置命令定义用户预设值,保存选项,可编程按钮,预设值选项,热像仪设置,Wi-Fi,蓝牙,语言,时间&单位,热像仪信息定义用户预设值,保存选项,可编程按钮,预设值选项,热像仪设置,Wi-Fi,蓝牙,语言,时间&单位,热像仪信息,GPS&指南针定义用户预设值,保存选项,可编程按钮,预设值选项,热像仪设置,Wi-Fi,蓝牙,语言,时间&单位,热像仪信息,GPS&指南针定义用户预设值,保存选项,可编程按钮,预设值选项,热像仪设置,Wi-Fi,蓝牙,语言,时间&单位,热像仪信息,GPS&指南针定义用户预设值,保存选项,可编程按钮,预设值选项,热像仪设置,Wi-Fi,蓝牙,语言,时间&单位,热像仪信息,GPS&指南针图像注释(静止图像)报告生成带有报告生成功能的单独PC软件带有报告生成功能的单独PC软件带有报告生成功能的单独PC软件带有报告生成功能的单独PC软件带有报告生成功能的单独PC软件热像仪中生成即时报告(*.pdf文件)热像仪中生成即时报告(*.pdf文件)热像仪中生成即时报告(*.pdf文件)热像仪中生成即时报告(*.pdf文件)地理信息系统GPS将位置数据从内置GPS自动添加至每张静止图像中将位置数据从内置GPS自动添加至每张静止图像中将位置数据从内置GPS自动添加至每张静止图像中将位置数据从内置GPS自动添加至每张静止图像中指南针将热像仪方位直接添加至每张静止图像中将热像仪方位直接添加至每张静止图像中将热像仪方位直接添加至每张静止图像中将热像仪方位直接添加至每张静止图像中热像仪视频流录制全辐射红外视频录制CSQ存储至记忆卡中非辐射红外视频录制MPEG-4 视频存储至记忆卡中MPEG-4 视频存储至记忆卡中MPEG-4 视频存储至记忆卡中MPEG-4 视频存储至记忆卡中MPEG-4 视频存储至记忆卡中可见光视频录制MPEG-4 视频存储至记忆卡中MPEG-4 视频存储至记忆卡中MPEG-4 视频存储至记忆卡中MPEG-4 视频存储至记忆卡中MPEG-4 视频存储至记忆卡中视频流录制全辐射红外视频流使用USB全辐射传输至PC;通过Wi-Fi 全辐射传输至移动设备使用USB全辐射传输至PC;通过Wi-Fi 全辐射传输至移动设备使用USB全辐射传输至PC;通过Wi-Fi 全辐射传输至移动设备使用USB全辐射传输至PC;通过Wi-Fi 全辐射传输至移动设备非辐射红外视频流使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频可见光视频流使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频使用Wi-Fi传输MPEG-4视频使用USB传输未压缩彩色视频成像与光学参数视场角(FOV)/最小焦距25°x19°/0.25 m镜头识别自动图像帧频30 Hz数字图像增强自适应数字降噪探测器参数探测器类型焦平面阵列(FPA),非制冷型红外探测器波长范围7.5–14 µm探测器像元间距17 µm图像显示显示器内置触摸屏,4.3 in.宽屏LCD显示器,800x480像素显示器类型电容式触摸屏自动定向自动切换为横立或竖立模式自动图像调节连续调节,基于直方图手动图像调节基于线温分布图;可调节电平/跨度/最大值/最小值图像显示模式红外图像全彩色红外图像可见光图像全彩色可见光图像多波段动态成像(MSX)热图像带有细节增强显示的热图像画中画(PiP)可见光图像上设有可调节和可移动的红外区域测量分析点测温10区域测温5个区域(输入框或圆圈),含最大值/最小值/平均值测量预设值无测量,中心点,热点,冷点,用户预设值1,用户预设值2温差各温度测量值与参考温度之间的温度差参考温度使用温差手动设置大气传递校正自动,基于距离、大气温度及相对湿度的输入值光学镜头传输校正自动,基于内部传感器发出的信号发射率校正0.01至1.0,或从材料清单中选择发射率表预定义材料的发射率表反射表观温度校正自动,基于反射温度输入值温差各温度测量值与参考温度之间的温度差参考温度使用温差手动设置温差各温度测量值与参考温度之间的温度差报警颜色报警(等温线)高于/低于及温度区间测量功能报警针对选定测量功能执行的声音/可视报警(过高/过低)服务功能热像仪软件升级使用PC软件F LIR Tools图像存储图像存储记忆卡存储标准JPEG图片,包括数码图片和测量数据存储介质可拆卸SD存储卡图像存储模式以相同的JPEG格式同步存储热图像和数码图片,可选择以单独的JPEG格式存储数码图片延时拍摄15秒-24小时文件格式标准JPEG,包含测量数据文件格式,可见光图像标准JPEG格式,自动与对应的热图像关联图像注释(静止图像)声音60秒(通过蓝牙),与图像一同存储文本添加表格选择预定义模板或在F LIR Tools中创建个性化模板图像描述添加简短说明(存储于JPEG exif标签中)草图在热图像/数码图片绘图或添加预定义标记METERLiNK无线连接(蓝牙功能)至带有METERLiNK功能的FLIR仪表数码相机内置数码相机500万像素,带LED灯(图片可作为单独的图像)数码相机,视场角(FOV)可根据红外镜头调节视频灯内置LED灯激光指示器激光由专用按钮激活激光对准位置自动显示在红外图像上激光分类2级激光类型半导体AlGaInP二极管激光,1 mW, 635 nm(红色)数据通信接口接口mini-USB,USB-A,蓝牙,Wi-Fi,数字视频输出METERLiNK/蓝牙通过耳机和外部传感器通信Wi-Fi点对点(adhoc)或基础设施(网络)SD卡1个适用于可拆卸SD存储卡的插槽USBUSB USB-A:连接外部USB设备,mini-USB-B:从/向PC传输数据或未压缩彩色视频USB(Std),标准USB 2.0高速接口视频输出视频输出数字视频输出(DVI)视频,连接器类型HDMI兼容无线电:Wi-Fi标准:802.11 b/g,频率范围:2412–2462 MHz,最大输出功率:15 dBmMETERLiNK/蓝牙频率范围:2402-2480 MHz天线内置电源系统电池类型可充电锂离子电池电池工作时间25°C一般用途时 > 2.5小时充电系统直充(交流适配器或12V车载充电器)或双座充电器充电时间 2.5h充满电量的90%,由LED灯指示充电状态充电温度0°C至+45°C以太网供电运行AC适配器90-260VAC,50/60Hz或12V车载供电(带有标准插头的电缆,可选配)电源管理自动关机与睡眠模式(用户选择)环境参数工作温度范围-15°C至+50°C储存温度范围-40°C至+70°C湿度(工作和存储)IEC 60068-2-30/24小时,95%相对湿度,+25°C至+40°C/2 次循环电磁兼容性(EMC)ETSI EN 301 489-1(无线电),ETSI EN 301 489-17,EN 61000-6-2(抗干扰),EN 61000-6-3(抗辐射),FCC 47 CFR第15部分B类(抗辐射),ICES-003抗无线电干扰ETSI EN 300 489328,FCC第15.247部分,RSS-210封装IP 54 (IEC 60529)抗撞击25 g (IEC 60068-2-29)抗振性 2 g (IEC 60068-2-6)安全性EN/UL/CSA/PSE 60950-1物理参数重量1.3 kg (2.87 lb.)热像仪尺寸,不含镜头(长x宽x高)143x195x95mm(5.6x7.7x3.7 in.)三脚架安装UNC ¼"-20外壳材料镁合金运输信息带有镜头的红外热像仪;电池(2块);电池充电器;蓝牙耳机;校验证书;F LIR Tools+下载卡;用户文档CD-ROM 光盘;打印文档;HDMI-DVI数据线;HDMI-HDMI数据线;硬质便携箱;镜头盖;存储卡;颈带;具有多种插头的电源;三脚架适配器;USB数据线本文所述设备如用于出口,须获得美国政府的授权。
t620红外测温使用说明
t620红外测温使用说明产品概述:FLIR T620型便携式红外热像仪, FLIR T620是检测热点和排除电气故障不可或缺的工具,以便您快速维修和避免代价高昂的停机事故。
凭307,200 (640×480)像素的红外分辨率和明亮的4.3英寸液晶触摸屏,您可以轻松识别电阻、机械磨损和其它热量相关问题的迹象。
利用这款灵活可靠的红外热像仪保持设备安好运行,同时防止发生损失严重的停机事故。
极限分辨率FLIR 具有成像性能和精度的手持产品3大优异的热成像功能,包含640×480原始分辨率。
1.2M像素热分辨率,具有UltraMax?(超级放大)功能—分辨率改善4倍,获得更细微的细节信息和精度。
MSX增强功能将重要的可见光细节信息,如:数字、标签等添加入实时拍摄、存储和UltraMax(超级放大)热图像中,便于轻松定位。
产品的灵敏度<0.02°C,获得更出众的图像质量和更精细的热图像。
人体工程学覆盖所有角度-更快成像-工作更舒适T系列相机具有无与伦比的灵活性,能够非常轻松地瞄准、聚焦和使用。
旋转的聚光装置可上下旋转120 度自动定向可切换屏幕数据为肖像视图或风景视图快速的自动对焦、手动控制,以及更出色的成像快速通信即时生成数据,更快速地返回决策,借助无线途经或FLIR 工具(PC 或Mac 版)分享图像和嵌入表数据。
FLIR工具移动应用程序可连接相机与移动设备,从而使您能够对现场热视频进行流处理、采取远程控制、分析存储的图像,并迅速通过电子邮件传送现场发现。
FLIR MeterLink测试与测量工具可直接向相机传输可读数据,相机会在您捕获数据时存储辐射图像的数据,以用于报告中。
FLIR工具报告软件还提供更多功能,可以将更多测量工具添加到图像中,生成深入的报告以及更新相机固件等。
提高生产力更多内置功能带来更强大的效能技术规格:型号FLIR T620成像与光学参数红外分辨率640x480像素UltraMax(超级放大)功能有(增强到1280x960像素) 热灵敏度/NETD <0.04°C @ 30°C空间分辨率IFOV(25°镜头) 0.68 mrad调焦自动(单次拍摄)或手动标准配置带有标准镜头的红外热像仪;电池(2块);电池充电器;蓝牙耳机;校验证书;FLIR Tools 下载卡;用户文档CD-ROM 光盘;打印文档;HDMI-DVI数据线;HDMI-HDMI数据线;硬质便携箱;镜头盖;存储卡;颈带;具有多种插头的电源;三脚架适配器;USB数据线。
Fluke TIX系列 红外热像仪用户手册及技术参数
9
开启无限红外应用
高速温度变化 / 快速位移
烟花快速升空后的燃放瞬间
相关应用:
● 材料研究; ● 摩擦力 / 碰撞 / 力学研究; ● 车床刀具研究; ● 发动机趋势研究; ● 感应加热研究; ● 点胶应用; ● 焊接 / 包装应用; ● 其他应用:激光脱毛。
相关应用:
● 材料 / 发动机等高温目标检测 ● 低温目标(培养皿保温)检测 ● 严寒地区外部环境下 / 高低温
案例:
目标尺寸通常超过 10 米,检测距离达到数十米,而需要查验的损坏部位的尺寸只有几十厘米,例如: 钢厂热风炉的直径为 10 米,高度 30-50 米,但每块耐火砖宽度只有 20 厘米,客户需要既可以看 到目标的整体热像图,也要能够看到耐火砖的脱落问题。
设备要求:
1 超过 300 万像素,足够的视场角度及优异的空间分辨率,可以实现对较大面积 / 区域的目标进 行整体和远距离全面地分析要求,同时又可以分辨 / 检测出很多难以发现的细节或细小问题点, 提高检测全面性和效率的同时,避免遗漏或意外事故风险。
6
小温差
胚胎孵化监测(蓝色低温代表死胎)
植物病虫害检测(病虫害导致无法自然蒸发)
案例:
当检测目标的温差低至 0.1 ℃ 以内时,需要有极高热灵敏度的热像仪才能发现细微差别,尤其是在 科学研究领域。
设备要求:
1 超高分辨率图像:在精密位移成像技术模式下,分辨率和像素是标准模式的 4 倍 (TiX1000 的 红外像素高达 310 万,TiX660 的红外像素高达 120 万 ),可获得锐利的图像,提供目标更多细节。
2 超优异的热灵敏度:此类现场的温差只有 0.1℃ ,需要清晰地看到微小温差的问题点;TiX 系 列产品拥有更高的热灵敏度,如 TiX640/660 热灵敏度可达 0.03℃,对于 1℃的温差,可用超 过 30 种颜色表示其温度的变化,能够显示出更体现更小的温差,提供更清晰的热像。
红外热像仪原理、主要参数和应用
红外热像仪原理、主要参数和应用红外热像仪原理、主要参数和应用1. 红外线发现与分布1672年人们发现太阳光(白光)是由各种颜色的光复合而成的。
当时,牛顿做出了单色光在性质上比白光跟简单的著名结论。
我们用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。
1800年英国物理学家赫胥尔从热的观点来研究各色光时,发现了红外线。
红外线的发现标志着人类对自然的又一个飞跃。
随着对红外线的的不断探索与研究,已形成红外技术这个专门学科领域。
红外线的波长在0.76--100μM之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。
通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。
运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。
2. 红外热像仪的原理红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像仪进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。
这种热像图与物体表面的分布场相对应;实际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩描绘等高线和直方进行运算、打印等。
红外热像仪测温技术
不同的物质和目标在红外波段范围内有不同的辐射特性,因 此选择合适的波段范围对于准确测量温度至关重要。常见的 波段范围包括短波、中波和长波,分别对应不同的应用场景 。
空间分辨率
总结词
空间分辨率决定了红外热像仪能够分 辨目标细节的能力。
详细描述
空间分辨率越高,热像仪能够捕捉到 的目标细节越丰富。这有助于在复杂 背景下准确识别目标,并对其温度分 布进行更精确的测量。
红外热像仪在安全监控、消防 救援和军事侦察等领域中具有
广泛的应用。
02 红外热像仪的组成与分类
红外探测器
探测器类型
探测器阵列
红外探测器分为热探测器和光子探测 器两类,其中热探测器根据工作原理 又可以分为热电堆、热电偶、热敏电 阻等。
红外探测器阵列分为一维线阵和二维 面阵,面阵又可以分为非制冷和制冷 两种类型。
康复理疗
红外热像仪还可用于康复理疗领域, 通过红外热像仪的监测,可以对康复 治疗效果进行量化评估,为康复治疗 方案提供科学依据。
安全监控领域的应用案例
消防安全
在消防安全领域,红外热像仪能够快速定位火源、检测高温区域和人员,为灭火救援提供重要信息,提高救援效 率。
夜间监控
在夜间或低光照条件下,红外热像仪能够清晰地捕捉到目标物体的温度分布,为安全监控提供有力支持。
测温范围
总结词
测温范围决定了红外热像仪能够测量的最高和最低温度。
详细描述
测温范围越宽,热像仪的应用场景就越广泛。了解测温范围对于选择适合应用的 红外热像仪至关重要,以确保能够准确测量目标温度。
04 红外热像仪测温技术的优 势与局限性
优势
非接触式测温
响应速度快
红外热像仪通过接收物体发射的红外辐射 进行测温,无需直接接触被测物体,可在 一定距离内进行快速测量。
红外热成像仪参数
浙江大立科技有限公司红外热成像仪参数性能参数:项目TE探测器性能探测器类型非制冷焦平面微热型像素160×120图像性能视场角/最小焦距18o×13o /0.3m空间分辨率1.9mrad热灵敏度≤0.1℃@30℃帧频60Hz聚焦手动电子变焦N/A波长范围8~14um图像显示液晶显示屏高分辨率2.5〞彩色LCD测量测温范围-20℃~+350℃精度±2℃或±2%(读数范围),取大值测温较正自动/手动测量模式实时可移动点,可移动区域(最高温、最低温捕捉、平均温度测量),等温分析,温差测量,温度报警(声音、颜色)调色板3种调色板可选图像调整自动/手动调整对比度、亮度设置功能日期/时间,温度单位℃/℉/K,语言辐射率校正0.01至1.0辐射率可调背景温度校正自动,根据输入的背景温度大气透过率修正N/A图像存储存储卡内置存储器,存储容量1000幅存储方式手动单帧图像存储文件格式JPEG格式,带14位测量数据图像语音注释N/A激光指示激光指示器二级,1mW/635nm红色电源系统电池类型锂电池,可充电电池工作时间3小时连续工作充电类型智能充电器或电源适配器(可选)本机充电省电模式有外接电源N/A环境参数操作温度-15℃- +50℃防护等级IP54湿度≦90%(非冷凝)物理重量0.6Kg尺寸250mm×100mm×72mm特性接口电源接口N/A音频输出N/A有视频输出N/A PAL/NTSCUSB图像,测量数据传送至计算机图像,测量数据,语音传送至计算机美国flir i7参数红外成像探测器类型非制冷焦平面多晶硅红外热像像素120*120红外波长范围7.5~13μm热灵敏度NETD <0.1℃视场角/最小测试距离25º x 25º/0.6m空间分辨率3.71mrad调焦方式免调焦数码变焦无可见光像素无图像显示显示屏2.8英寸彩色液晶显示屏调色板黑白、铁红和彩虹闪光灯无融合功能无激光指示无红外帧频9Hz测温温度范围-20°C ~ +250°C可扩展温度范围无测温准确度±2ºC 或读数±2%温度分析功能中心点温度,中心方框内自动最高&最低温度点捕捉发射率校正预先设定材质的发射率表,校正范围0.1 ~ 1.0内可调反射温度校正基于输入的反射温度自动校正红外窗口校正无温度报警功能之上/之下温度等温线报警存储和传输存储格式标准JPEG,包含14位测量数据存储方式迷你SD卡全景模式无全辐射红外视频流无非辐射红外视频流无语音注释无文本注释无传输方式USB接口迷你USB与电脑相互进行数据通讯物理数据操作温度0°C ~ +50°C存储温度-40°C ~ +70°C湿度IEC 60068-2-30/24h 95%相对湿度IP等级IP43(IEC 60529)冲击25 g (IEC 60068-2-29)振动2 g (IEC 60068-2-6)尺寸223×79×83mm重量340克EMC防护EN61000-6-2:2005(抗干扰),EN61000-6-3:2007(抗辐射),FCC 47CFR Part 15 class B(抗辐射)电源电池类型可充电锂离子电池工作时间约5小时交流电源交流适配器,90~260 VAC输入,5V输出至热像仪充电时间充至90%电量需要3小时可选配置可选镜头无可选软件Reporter标准配置标准配置清单红外热像仪,便携箱,电池,标定证书, QuickReport软件光盘,手带,迷你SD卡(512MB)和读卡器,电源/充电器,入门指南,USB电缆,用户手册光盘。
福禄克Ti400红外热像仪使用说明及产品介绍
福禄克锐智系列红外热像仪Ti400/Ti300/Ti200将现代科技融入红外热像,带来前所未有的工作体验。
触摸屏高清视频2福禄克锐智系列红外热像仪Ti400/Ti300/Ti200这些现代技术改变着我们的生活,现在也开始改变您的工作。
LaserSharp TM激光自动对焦高清视频输出数据输出高灵敏触摸屏无线传输SmartView® App 应用福禄克锐智系列红外热像仪3LaserSharpTM激光自动对焦实现快速、精准对焦对焦不准确的热图其他自动对焦系统,往往仅对焦于最近距离的物体,例如图中清晰显示的防护网,而其内部管线无法实现精准对焦,导致无法获取精准温度。
现场可见光图某些自动对焦系统对许多检查现场不适用。
对焦正确的热图福禄克 LaserSharp TM 激光自动对焦技术在任何情况下都可以轻松捕获被测目标,测量更精准、更快速、更方便。
激光器发出的红点明示对焦位置。
图像对焦不准时,温度测量值可能不准确 (有时会偏差20度),存在漏检风险。
福禄克锐智系列红外热像仪4呈现完美热像从显示到输出,唯有锐智能做到!HDMI 高清视频输出•连接即可使用•将视频信号传输至 HDMI 兼容的显示设备• 1080 分辨率,看到更多细节,图像不失真•标准接口,直接在显示设备上播放高清实时视频500 万像素工业级高清数码相机• 提供高清现场可见光图片• 利用内置照明,即使黑暗环境也可轻松应用高分辨率 LCD 显示屏福禄克锐智系列红外热像仪5福禄克锐智系列红外热像仪SmartView® APP 应用您的工具,无线互连!应用,无需返回办公室,现场即可进行分析、报告或指示。
•现场分析•无需现场值守,随时随地发送图像或报告•无线发送,更快捷、更高效•同样的时间完成更多的检测工作•及时反馈,获取下一步行动指示•实时查看报告,满足紧急任务需求•针对不同移动设备优化用户界面 (iOS 、iPhone ® 和 iPad ®)6.5 m1 m1.5 m 5 ft3.25 ft1.6 ft2 m 6.5 ft承诺多角度 2 米抗跌落具有传奇色彩的坚固性、耐用性和可靠性丰富的可选附件卓越的工业设计应对千变万化的恶劣工况•符合人体工程学、布局及大小合理的菜单设计•高灵敏度,极易触摸和滑动•高清晰度,呈现完美画质另有传统按钮支持单手操作,更安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、NETD的定义
NETD即热灵敏度,又被称为噪声等效温差,是红外热像仪的重要参数之一,用来描述红外热像仪可探测的最小温差值,NETD数值越小,表示灵敏度越高,图像越清晰。
NETD常用毫开式温标(mK)表示,当噪声与最小可测量温差想当时,探测器已达到其解析有用热信号能力的极限。
噪声越大,探测器的NETD值越大,灵敏度越低。
二、NETD的测量
为了测量探测器的噪声等效温差,红外热像仪必须对着一个温控黑体。
开始测量前,需要将黑体固定,然后在特定的温度时测量噪声等效温差。
这不是简单的快照测量,而是噪声的临时测量。
二、影响NETD的因素:
1.校准的测温范围。
选定不同的测温范围与物体温度,噪声读数会有所不同。
只要图像中存在显著的热对比度,而且目标区域的温度
比背景温度高很多,便不会对测量精度产生太大影响。
2.探测器温度。
如果将红外热像仪放在较高的环境温度中,系统噪声可能
会增加,这取决于红外热像仪内部稳定性如何。
内部温度漂移可在非均匀性校准或NUC之间观测到,可能是几分钟的间隔。
3.镜头的光圈级数。
镜头的光圈级数或光圈数决定了热辐射如何抵达探测器。
总体而言,光圈级数越低,噪声值越优。
红外热像仪NETD在25℃时为60mK,最优可达到40mK,灵敏度比较高,测温精准,图像清晰,性能稳定。
格物优信为多家冶金、电力、危废、煤矿、养殖、铁路、科研等行业客户提供了行之有效的红外热成像可行性红外监控方案,深入解决了多家行业客户的难题,获得了客户的广泛信赖,更多详细方案介绍、业绩及技术咨询可至格物优信官网,格物优信致力于为各大行业贡献更多力量,携手客户共赢未来。