中考分类复习:三角函数应用题: 历年中考解答题

合集下载

历年深圳中考三角函数专题(有答案)

历年深圳中考三角函数专题(有答案)

历年深圳中考三角函数专题17(2019).计算:()101912cos60 3.148π-⎛⎫-++- ⎪⎝⎭20(2019).如图7所示,直线AC ∥DE ,DA ⊥AC ,隧道BC 在直线AC 上。

某施工队要测量隧道BC 的长,在点D 处观测点B ,测得45BDA ∠=,在点E 处观测点C ,测得53CEF ∠=,且测得AD =600米,DE =500米,试求隧道BC 的长。

(参考数据:4sin 535≈,3cos535≈,4tan 533≈)17.(2018)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.11(2017).如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10cm ,则树AB 的高度是( )m .图7 53°45°FC BA .20B .30C .30D .4017(2017).计算:|﹣2|﹣2cos45°+(﹣1)﹣2+20.(2016)某兴趣小组借助无人飞机航拍校园,如图,无人飞机从A 初飞行至B 处需8秒,在地面C 处同一方向上分别测得A 处的仰角为75°.B 处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)17(2015)、计算:01)2015()21(60sin 2|32|-++--o10(2014).小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12,的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )A .6002505- B. 6003250- C. 3503503+ D .500317(2014).计算:12-2tan60°+(2014-1)0-(31)-1参考答案:17【2018】解:原式=2﹣2×++1=3.11【2017】B17【2018】【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.20(2016)).解:如图,作AD⊥BC,BH⊥水平线由题意∠ACH=75°,∠BCH=30°,AB∥CH∴∠ABC=30°, ∠ACB=45°∵AB=4×8=32m∴AD=CD=AB·sin错误!未找到引用源。

中考数学专题 初中三角函数应用题10道-含答案

中考数学专题 初中三角函数应用题10道-含答案

初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。

“三角函数”中考试题分类汇编(含答案)

“三角函数”中考试题分类汇编(含答案)

1、锐角三角函数要点一:锐角三角函数的基本概念 一、选择题1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( )A .35B .43 C .34 D .452.(2008·威海中考)在△ABC 中,∠C =90°,tan A =13,则sin B =( )A .1010 B .23C .34D .310103.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .434.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .3sin A =B .1tan 2A = C .3cosB = D .tan 3B =5.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .436.(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( )(A )2 (B )22 (C )63(D )33二、填空题7.(2009·梧州中考)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . .(2009·孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .9.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形ACBD的面积= cm 2.答案:60 三、解答题10.(2009·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干? 【11.(2009·綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.12.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.DABCEFOEC D14.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题1.(2009·钦州中考)sin30°的值为( )A .32B .22C .12D .33答案:C2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .2,B .2),C .211),D .(121),答案:C3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83米 D 43米4.(2008·宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒805.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛⎫- ⎪ ⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭,C .1323⎛⎫-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭, 6.(2007·襄樊中考)计算:2cos 45tan 60cos30+等于( )(A )1 (B )2 (C )2 (D )3 二、填空题7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.答案:238.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).答案:439.(2008·江西中考)计算:(1)1sin 60cos302-= . 答案:1410.(2007·济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。

(完整版)九年级《三角函数》知识点、例题、中考真题,推荐文档

(完整版)九年级《三角函数》知识点、例题、中考真题,推荐文档

斜边 c ba九年级《三角函数》知识点、例题、中考真题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

a 2 + b 2 = c 22、如下图,在R t △A BC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B ):定 义 表达式取值范围 关 系正弦 sin A =∠A 的对边斜边 sin A = ac 0 < sin A < 1(∠A 为锐角)sin A = cos B cos A = sin Bsin 2 A + cos 2 A = 1余弦 cos A =∠A 的邻边斜边 cos A = bc 0 < cos A < 1(∠A 为锐角)正切tan A =∠A 的对边∠A 的邻边 tan A = abtan A > 0(∠A 为锐角)tan A = cot B cot A = tan Btan A = 1(倒数)cot Atan A ⋅ cot A = 1余切cot A =∠A 的邻边∠A 的对边cot A = bacot A > 0(∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

B由∠A + ∠B = 90︒得∠B = 90︒ - ∠AAC邻边4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

由∠A + ∠B = 90︒ 得∠B = 90︒ - ∠A5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数0° 30°45°60°90° sin0 1 22 23 21 cos 1 32 2 21 20 tan 0 3 31 3 - cot-313 36当 0°≤≤90°时,sin 随的增大而增大,cos 随的增大而减小。

中考数学——三角函数专题

中考数学——三角函数专题

三角函数1一.解答题(共10小题)1.如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?2.一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=35cm,(点A、B、C在同一条直线上),在箱体的底端装有一圆形滚轮⊙A,⊙A与水平地面切于点D,AE∥DN,某一时刻,点B距离水平面38cm,点C距离水平面59cm.(1)求圆形滚轮的半径AD的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点C处且拉杆达到最大延伸距离时,点C距离水平地面73.5cm,求此时拉杆箱与水平面AE所成角∠CAE的大小(精确到1°,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).3.如图,书桌上的一种新型台历和一块主板AB、一个架板AC和环扣(不计宽度,记为点A)组成,其侧面示意图为△ABC,测得AC⊥BC,AB=5cm,AC=4cm,现为了书写记事方便,须调整台历的摆放,移动点C至C′,当∠C′=30°时,求移动的距离即CC′的长(或用计算器计算,结果取整数,其中=1.732,=4.583)4.某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A 旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)(参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.46,sin12°≈0.20)5.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)6.如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)7.某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米,∠DCF=40°.请计算停车位所占道路的宽度EF(结果精确到0.1米).参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84.8.太阳能是可再生的绿色环保能源,太阳能热水器是最常见的一种太阳能应用方式,如图是某地一个屋顶太阳能热水器的安装截面图.房屋的金顶等腰△ABC中,屋面倾角∠B=21.8°,太阳能真空管MN=1.8m,可伸缩支架MA⊥BC,安装要求安装地区的正午太阳光线垂直照射真空管MN.已知该地正午时直立于水平地面的0.8m长测杆影长0.6m,求符合安装要求的支架MA的长度.(参考数据:tan21.8°=0.4,tan53.13°=,sin53.13°=,tan36.87°=,cos36.87°=)9.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,量得∠EOF=90°,∠ODC=30°,ON=40cm,EG=30cm.(1)求两支架落点E、F之间的距离;(2)若MN=60cm,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60°=,cos60°=,tan60°=≈1.73,可使用科学计算器)10.图1是小明利用废弃的钢条焊接成的创意书架,现将其结构简化成图2所示的图形,制作过程为:首先将两根钢条OA和OB焊接成∠AOB=45°,OB=70cm,BC=EF=HG=IJ=60cm,焊接点E、G、I分别为BC、EF、HG的中点,钢条KL、CD的长均为30cm,所有在点C,E,G,I,K焊接处的相邻两根钢条互相垂直.(1)求证:L,J所在直线与直线OA平行;(2)求书架的高度.(结果保留一位小数,)三角函数1参考答案与试题解析一.解答题(共10小题)1.如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?【分析】根据已知角的度数,易求得∠BAC=∠BCA=30°,由此得BC=AB=3米;可在Rt△CBF中,根据BC的长和∠CBF的余弦值求出BF的长,进而由x=BF﹣EF 求得汽车车头与斑马线的距离.【解答】解:如图:延长AB.∵CD∥AB,∴∠CAB=30°,∠CBF=60°;∴∠BCA=60°﹣30°=30°,即∠BAC=∠BCA;∴BC=AB=3米;Rt△BCF中,BC=3米,∠CBF=60°;∴BF=BC=1.5米;故x=BF﹣EF=1.5﹣0.8=0.7米.答:这时汽车车头与斑马线的距离x是0.7米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.2.一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=35cm,(点A、B、C在同一条直线上),在箱体的底端装有一圆形滚轮⊙A,⊙A与水平地面切于点D,AE∥DN,某一时刻,点B距离水平面38cm,点C距离水平面59cm.(1)求圆形滚轮的半径AD的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点C处且拉杆达到最大延伸距离时,点C距离水平地面73.5cm,求此时拉杆箱与水平面AE所成角∠CAE的大小(精确到1°,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).【分析】(1)作BH⊥AF于点G,交DM于点H,则△ABG∽△ACF,设圆形滚轮的半径AD的长是xcm,根据相似三角形的对应边的比相等,即可列方程求得x 的值;(2)求得CF的长,然后在直角△ACF中,求得sin∠CAF,即可求得角的度数.【解答】解:(1)作BH⊥AF于点G,交DM于点H.则BG∥CF,△ABG∽△ACF.设圆形滚轮的半径AD的长是xcm.则=,即=,解得:x=8.则圆形滚轮的半径AD的长是8cm;(2)CF=73.5﹣8=65.5(m).则sin∠CAF==≈0.77,则∠CAF=50°.【点评】此题考查了三角函数的基本概念,主要是正弦概念及运算,关键把实际问题转化为数学问题加以计算.3.如图,书桌上的一种新型台历和一块主板AB、一个架板AC和环扣(不计宽度,记为点A)组成,其侧面示意图为△ABC,测得AC⊥BC,AB=5cm,AC=4cm,现为了书写记事方便,须调整台历的摆放,移动点C至C′,当∠C′=30°时,求移动的距离即CC′的长(或用计算器计算,结果取整数,其中=1.732,=4.583)【分析】过点A′作A′D⊥BC′,垂足为D,先在△ABC中,由勾股定理求出BC=3cm,再解Rt△A′DC′,得出A′D=2cm,C′D=2cm,在Rt△A′DB中,由勾股定理求出BD=cm,然后根据CC′=C′D+BD﹣BC,将数据代入,即可求出CC′的长.【解答】解:过点A′作A′D⊥BC′,垂足为D.在△ABC中,∵AC⊥BC,AB=5cm,AC=4cm,∴BC=3cm.当动点C移动至C′时,A′C′=AC=4cm.在△A′DC′中,∵∠C′=30°,∠A′DC′=90°,∴A′D=A′C′=2cm,C′D=A′D=2cm.在△A′DB中,∵∠A′DB=90°,A′B=5cm,A′D=2cm,∴BD==cm,∴CC′=C′D+BD﹣BC=2+﹣3,∵=1.732,=4.583,∴CC′=2×1.732+4.583﹣3≈5.故移动的距离即CC′的长约为5cm.【点评】此题考查了解直角三角形的应用,难度适中,关键是把实际问题转化为数学问题加以计算.4.某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)(参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.46,sin12°≈0.20)【分析】(1)利用锐角三角函数关系得出sin24°=,进而求出即可;(2)利用锐角三角函数关系得出sin12°=,进而求出DE,AE的长,即可得出AD的长.【解答】解:(1)∵∠BAC=24°,CD⊥AB,∴sin24°=,∴CD=ACsin24°=30×0.40=12cm;∴支撑臂CD的长为12cm;(2)过点C作CE⊥AB,于点E,当∠BAC=12°时,∴sin12°==,∴CE=30×0.20=6cm,∵CD=12,∴DE=,∴AE==12cm,∴AD的长为(12+6)cm或(12﹣6)cm.【点评】此题主要考查了解直角三角形的应用,熟练利用三角函数关系是解题关键.5.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.答:二楼的层高BC约为5.8米.【点评】本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.6.如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD 和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)【分析】作FH⊥AB于H,DQ⊥AB于Q,如图2,FH=42cm,先在Rt△BFH中,利用∠FBH的正弦计算出BF≈48.28,则BC=BF+CF=≈90.3(cm),再分别在Rt △BDQ和Rt△ADQ中,利用正切定义用DQ表示出BQ和AQ,得BQ=,AQ=,则利用BQ+AQ=AB=43得到+=43,解得DQ≈56.999,然后在Rt△ADQ中,利用sin∠DAQ的正弦可求出AD的长.【解答】解:作FH⊥AB于H,DQ⊥AB于Q,如图2,FH=42cm,在Rt△BFH中,∵sin∠FBH=,∴BF=≈48.28,∴BC=BF+CF=48.28+42≈90.3(cm);在Rt△BDQ中,∵tan∠DBQ=,∴BQ=,在Rt△ADQ中,∵tan∠DAQ=,∴AQ=,∵BQ+AQ=AB=43,∴+=43,解得DQ≈56.999,在Rt△ADQ中,∵sin∠DAQ=,∴AD=≈58.2(cm).答:两根较粗钢管AD和BC的长分别为58.2cm、90.3cm.【点评】本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.7.某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米,∠DCF=40°.请计算停车位所占道路的宽度EF(结果精确到0.1米).参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84.【分析】在直角三角形中,利用三角函数关系,由已知角度和边求得ED和DF,而求得EF的长.【解答】解:由题意知∠DFC=90°,∠DEA=90°∠DCF=40°又∵ABCD是矩形∴AB=CD=5.4米BC=AD=2.2米且∠ADC=90°∵∠DCF+∠CDF=90°且∠ADE+∠CDF=90°∴∠DCF=∠ADE=40°在Rt△DCF中,sin∠DCF=DF=CDsin∠DCF=5.4×sin40°≈5.4×0.64=3.456在Rt△DAE中,COS∠ADE=DE=ADcos∠ADE=2.2×cos40°≈2.2×0.77=1.694EF=DE+DF≈3.456+1.694=5.2∴停车位所占道路宽度EF约为5.2米.【点评】本题考查三角函数关系的利用,正弦和余弦的灵活利用,而求得.8.太阳能是可再生的绿色环保能源,太阳能热水器是最常见的一种太阳能应用方式,如图是某地一个屋顶太阳能热水器的安装截面图.房屋的金顶等腰△ABC 中,屋面倾角∠B=21.8°,太阳能真空管MN=1.8m,可伸缩支架MA⊥BC,安装要求安装地区的正午太阳光线垂直照射真空管MN.已知该地正午时直立于水平地面的0.8m长测杆影长0.6m,求符合安装要求的支架MA的长度.(参考数据:tan21.8°=0.4,tan53.13°=,sin53.13°=,tan36.87°=,cos36.87°=)【分析】如图,DE=0.8,EF=0.6,则DF=1,作DQ⊥DF交EF于Q,即使太阳光线垂直于DQ,利用等角的余角相等得到∠Q=∠EDF,在Rt△EDF中,利用三角函数的定义得到cos∠EDF=0.8,sin∠EDF=0.6,再根据相似的判定易得△MNH∽△DQE,则∠MNH=∠Q,在Rt△MNH中,根据三角函数的定义可计算出NH=1.44,MH=1.08;则在Rt△ANH中,利用正切的定义计算出AH=0.576,然后利用MA=MH﹣AH进行计算即可.【解答】解:如图,DE=0.8,EF=0.6,则DF=1,作DQ⊥DF交EF于Q,∴∠Q=∠EDF,在Rt△EDF中,cos∠EDF===0.8,sin∠EDF==0.6,∵△MNH∽△DQE,∴∠MNH=∠Q,在Rt△MNH中,∵cos∠MNH==0.8,sin∠MNH==0.6,∴NH=0.8×1.8=1.44,MH=0.6×1.8=1.08,在Rt△ANH中,∵tan∠ANH=tan21.8°=,∴AH=1.44×0.4=0.576,∴MA=MH﹣AH=1.08﹣0.576=0.504(m).答:符合安装要求的支架MA的长度为0.504米.【点评】本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.9.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB 与DM交于点N,量得∠EOF=90°,∠ODC=30°,ON=40cm,EG=30cm.(1)求两支架落点E、F之间的距离;(2)若MN=60cm,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60°=,cos60°=,tan60°=≈1.73,可使用科学计算器)【分析】(1)利用平行线分线段成比例定理得出,利用平行四边形的判定与性质进而求出即可;(2)利用四边形ONHE是平行四边形,进而得出NH=OE=50cm,∠MHF=∠E=60°,利用MP=110sin60°求出即可.【解答】解:(1)连接EF.∵CD平行于地面,∴GD∥EF.∴.又∵AB∥EF,∴AB∥CD.而OE∥DM,则四边形OGDN是平行四边形.∴OG=DN,GD=ON.∵ON=40cm,∠EOF=90°,∠ODC=30°,∴GD=40cm,OG=GD=20cm,又EG=30cm,即,得EF=100cm.(2)延长MD交EF于点H,过点M作MP⊥EF于点P.∵四边形ONHE是平行四边形,∴NH=OE=50cm,∠MHF=∠E=60°.由于MN=60cm,∴MH=110cm.在Rt△MHP中,MP=MH•sin∠MHP,即MP=110sin60°=110×=55≈95(cm).答:躺椅的高度约为95cm.【点评】此题主要考查了解直角三角形以及平行四边形的判定与性质等知识,熟练应用锐角三角函数关系是解题关键.10.图1是小明利用废弃的钢条焊接成的创意书架,现将其结构简化成图2所示的图形,制作过程为:首先将两根钢条OA和OB焊接成∠AOB=45°,OB=70cm,BC=EF=HG=IJ=60cm,焊接点E、G、I分别为BC、EF、HG的中点,钢条KL、CD 的长均为30cm,所有在点C,E,G,I,K焊接处的相邻两根钢条互相垂直.(1)求证:L,J所在直线与直线OA平行;(2)求书架的高度.(结果保留一位小数,)【分析】(1)连接ED,先求得∠CED=45°,根据内错角相等求得OA∥ED,同理BG∥ED,IF∥BG,HK∥IF,LJ∥HK,即可证得L,J所在直线与直线OA平行;(2)延长JI交直线OA于点M,根据已知求得∠HIJ=∠HGF=∠BEF=90°,求得JM ∥EF,进而求得,∠M=45°,BM=OB=70cm,JB=90cm,进而得出JM=160cm,然后通过解正弦函数即可求得书架的高度.【解答】解:(1)连接ED,∵焊接点E为BC的中点,BC=60cm,∴EC=CD=30cm,∵CD⊥EC,∴∠CED=45°,∴∠AOB=∠CED,OA∥ED,同理BG∥ED,IF∥BG,HK∥IF,LJ∥HK,∴LJ∥OA;(2)延长JI交直线OA于点M,∵所有在点C,E,G,I,K焊接处的相邻两根钢条互相垂直,∴∠HIJ=∠HGF=∠BEF=90°,∴JM∥EF,∵BE=IG=IK=KJ=30cm,∴JM过点B,∠M=45°,BM=OB=70cm,JB=90cm,∴JM=160cm,∴书架的高度为:JM•sin45°=80≈113.1(cm).【点评】本题考查了平行线的判定和性质,解直角三角函数,把实际问题转化成为解直角三角形的问题是解题的关键.。

中考总复习解三角形三角函数专项练习(含解析)

中考总复习解三角形三角函数专项练习(含解析)

第121讲解三角形微课锐角三角函数题一:在Rt△ABC中,∠C=90°,AC=12,cos A=1213,则tan A等于( )A.513B.1312C.125D.512题二:△ABC中,∠A和∠B均为锐角,AC=6,BC=33,且sin A=3,则cos B的值为______. 题三:计算:cos245º+tan30º·sin60º=______.题四:计算:sin30°+cos30°•tan60°.题五:如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°题六:如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tan B的值是( )教育选轻轻·家长更放心页1教育选轻轻·家长更放心 页 2A .45B .35C .34D . 43第122讲 解三角形微课 解直角三角形题一:如图,在Rt △ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为 ( ) A .4 B .25C .181313D .121313题二:如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sin B 的值为( )A .12B .22C .32D .1题三:把两块含有30°的相同的直角尺按如图所示摆放,连接AE ,若AC =6cm ,则△ADE 的面积是______.教育选轻轻·家长更放心页 3题四:把两块含有30°的相同的直角尺按如图所示摆放,连接CE 交AB 于D .若BC =6cm ,则①AB =____cm ;②△BCD 的面积S =______.题五:如图,在△ABC 中,∠ACB =90º,CD ⊥AB ,BC =1.(1)如果∠BCD =30º,求AC ;(2)如果tan ∠BCD = 1 3,求CD .教育选轻轻·家长更放心页 4题六:如图,在△ABC 中,∠ACB =90°,BC = 4,AC= 5,CD ⊥AB ,则sin ∠ACD 的值是______,tan ∠BCD 的值是______.教育选轻轻·家长更放心 页 5第123讲 解三角形微课 锐角三角函数的应用题一:如图,在塔AB 前的平地上选择一点C ,测出塔顶的仰角为30º,从C 点向塔底B 走100m 到达D 点,测出塔顶的仰角为45º,则塔AB 的高为( )A .503mB .1003mC .1003+1m D .10031-m题二:在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,已知小明距假山的水平距离BD 为12m ,他的眼睛距地面的高度为1.6m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为( )A .(43+1.6)mB .(123+1.6)mC .(42+1.6)mD .43m教育选轻轻·家长更放心 页6题三:某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行32小时到达B 处,那么tan ∠ABP =( ) A. 21 B.2 C. 55 D. 552 题四:如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A 、B 、C 在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.9063,cos65°≈0.4226,tan65°≈2.1445)教育选轻轻·家长更放心 页 7 第121讲解三角形微课 锐角三角函数题一:D详解:∵cos A =1213AC AB =,AC =12, ∴AB =13,BC =22AB AC -=5,∴tan A =512BC AC =. 故选D .题二:5. 详解:过点C 作CD ⊥AB 于点D .在Rt △ACD 中,AC =6,sin A =33, ∴CD =AC ×sin A =6×33=23. 在Rt △BCD 中,BC =33, ∴BD =22=15BC CD -.∴cos B =BD BC =53.题三:1教育选轻轻·家长更放心 页 8详解:cos 245º+tan30º·sin60º=223311122+⨯=+=(). 题四:2.详解:原式=131332222+⨯=+=. 题五:C.详解:由已知,根据锐角三角形函数定义对各选项作出判断:A 、由于在Rt △ABO 中∠AOB 是直角,所以B 到AO 的距离是指BO 的长. ∵AB ∥OC ,∴∠BAO =∠AOC =36°.在Rt △BOA 中,∵∠AOB =90°,AB =1,∴BO =AB sin36°=sin36°.故本选项错误.B 、由A 可知,选项错误.C 、如图,过A 作AD ⊥OC 于D ,则AD 的长是点A 到OC 的距离.在Rt △BOA 中,∵∠BAO =36°,∠AOB =90°,∴∠ABO =54°.∴AO =AB •sin54°= sin54°.在Rt △ADO 中, AD =AO •sin36°=AB •sin54°•sin36°=sin54°•sin36°.故本选项正确.D 、由C 可知,选项错误.故选C.题六:C.教育选轻轻·家长更放心页 9 详解:∵CD 是斜边AB 上的中线,CD =5,∴AB =2CD =10. 根据勾股定理,22221068BC AB AC -=-=. ∴63tan 84AC B BC ===.故选C. 第122讲 解三角形微课 解直角三角形题一:A.详解:∵cos B =23,∴23BC AB =. 又AB =6,∴2643BC=⨯=.故选A. 题二:C.详解:∵Rt △ABC 中,∠C =90°,AB =2BC ,∴sin A =122BC BC AB BC ==.∴∠A =30°.∴∠B =60°.∴sin B =o 3sin 602=.故选C. 题三:183cm 2.详解:∵AC =6cm ,∠ABC =30°,∴AB =12,∴BC 22126=63-=BE ,在△ADE 中,BE 是△ADE 的高,∴S △ADE =12×AD ×BE , ∵BD =6,AB =12,∴AD =6,∴S △ADE =12×AD ×BE =12×6×3=183cm 2.教育选轻轻·家长更放心页 10 题四:12; 63cm 2.详解:(1)∵△ABC 为直角三角形,∠BAC =30°,BC =6cm ,∴AB =sin BC BAC∠=12cm . (2)如图:过点D 作平行于AC 的直线交BC 于M ,交AE 于N .∵BC ∥AE ,∴△BCD ∽△AED ,△BDM ∽△ADN .∴BC AE =BD AD =DM DN =12, 又DM +DN =AC ,又AC 3DM 3∴△BCD 的面积S =12×BC ×DM =12×6×33cm 2. 题五:3310. 详解:(1)∵CD ⊥AB ,∴∠BDC =90°.∵∠DCB =30°,∴∠B =60°.在Rt △ACB 中,∠ACB =90°,∴tan60°=AC BC. ∵BC =1,∴31AC =,则AC =3(2)在Rt △BDC 中,tan ∠BCD =13BD CD =. 设BD = k ,则CD =3k ,教育选轻轻·家长更放心页 11 又BC =1,由勾股定理得:k 2+(3k )2=1,解得:k 10或k = 10(舍去). ∴CD =3k 310. 题六:54141;45详解:∵△ABC 中,∠ACB =90°,BC = 4,AC = 5,CD ⊥AB ,∴AB 2222=54=41AC BC ++在Rt △ABC 与Rt △ACD 中,∠A +∠B =90°,∠A +∠ACD =90°,∠ADC =∠ACB =90°. ∴∠B =∠ACD .Rt △ABC ∽Rt △ACD ,∠BCD =∠A .故sin ∠ACD =sin ∠B =AC AB =54141, tan ∠BCD = tan ∠A =BC AC =45. 第123讲 解三角形微课 锐角三角函数的应用题一:D详解:根据题意分析图形;本题涉及到两个直角三角形,由BC 3AB 和BC =AB +100求解即可求出答案在Rt △ABD 中,∵∠ADB =45°,∴BD =AB .在Rt △ABC 中,∵∠ACB =30°,∴BC 3AB .∵CD =100,∴BC =AB +100.∴AB 3AB ,解得AB 31-.故选D . 题二:A .教育选轻轻·家长更放心 页 12详解:如图,作AK ⊥CD 于点K ,∵BD =12米,李明的眼睛高AB =1.6米,∠AOE =60°,∴DB =AK =12米,AB =KD =1.6米,∠ACK =60°.∵tan AK ACK CK ∠=,∴o 121243tan tan 603AK CK ACK ====∠. ∴CD =CK +DK =43+1.6=(43+1.6)(米).故选A .题三:A .详解:∵灯塔A 位于客轮P 的北偏东30°方向,且相距20海里,∴PA =20.∵客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B 处, ∴∠APB =90° ,BP =60×23=40. ∴tan ∠ABP =201402AP BP ==.故选A .教育选轻轻·家长更放心页 13 题四:207米.详解:如图,作CD ⊥AB 交AB 的延长线于点D ,则∠BCD =45°,∠ACD =65°.在Rt △ACD 和Rt △BCD 中, 设AC =x ,则AD =x sin65°,BD =CD =x cos65°.∴100+x cos65°=x sin65°.∴o o100207sin 65cos65x =≈-(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.。

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。

中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总

中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总

精品文档3 三角函数在实际中的应用专题.1某数学兴趣小组在活动课上测量学校旗杆的高度•已知小亮站着测量,眼睛与自我诊断AB1.7E30 °小敏蹲着测量,眼睛与地面的米,看旗杆顶部)是地面的距离(的仰角为CD0.7E455B°)是米且位于旗杆同侧(点距离(米,看旗杆顶部•两人相距的仰角为DF .、在同一直线上)1DF (结果保留根号))求小敏到旗杆的距离.(2EF1.41.7 ' :'((结果保留整数,参考数据:)求旗杆,的高度.A.A2上方有一些管道,如图所示,某古代文物被探明埋于地下的自我诊断处, 由于点BCB处挖掘时,最短路线考古人员不能垂直向下挖掘,他们被允许从处或处挖掘,从30CBA56CA且与地面所成的锐角是处挖掘时,最短路线,从与地面所成的锐角是=0.83Bsin56BC=20m°,若考古人员最终从处挖掘,求挖掘的最短距离.(参考数据:1.48tan561.73.「,结果保留整数),地面 3 C跟踪训练11•年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为30°和60°如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据':■:2.6m45APQA。

向前走立在山坡上,从地面的点测得杆顶端点看,,的仰角为一电线杆60PQB0和,又测得杆顶端点的仰角分别为到达点和杆底端点30° BPQ1 的度数;()求/ PQ21m))求该电线杆(的高度.(结果精确到p3. AB的距离,飞机以距海、如图,为了开发利用海洋资源,某勘测飞机测量岛屿两端CA60AB。

的方向的俯角为平面垂直同一高度飞行,在点,然后沿着平行于处测得端点500DB45AB541.91。

的距离的俯角为,已知岛屿两端米,在点测得端点水平飞行了、 1.411.73H 卜才米,参考数据:,米,求飞机飞行的高度.(结果精确到4. DABABCBC在同一条直线上,小红在,且点,如图,某建筑物顶部有釘一旗杆,DE42D47AB。

三角函数应用中考数学题汇总

三角函数应用中考数学题汇总

三角函数应用中考数学题汇总三角函数应用是的必考考点,下面店铺为大家整理了一份三角函数应用的中考数学题汇总,欢迎大家阅读参考,更多内容请关注应届毕业生网!解直角三角形(三角函数应用)1、(绵阳市2013年)如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60º,又从A点测得D点的俯角β为30º,若旗杆底点G为BC的中点,则矮建筑物的高CD为( A )A.20米B. 米C. 米D. 米[解析]GE//AB//CD,BC=2GC,GE=15米,AB=2GE=30米,AF=BC=AB•cot∠ACB=30×cot60º=103 米,DF=AF•tan30º=103 ×33 =10米,CD=AB-DF=30-10=20米。

2、(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( )A. B. C. D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC= =3.2,∵S△ABC=AC•BC=AB•CD,∴CD= = .故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.3、(2013•绥化)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.考点:解直角三角形.分析:首先解Rt△ABD,求出AD、BD的长度,再解Rt△ADC,求出DC的长度,然后由BC=BD+DC即可求解.解答:解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴AD= AB=4,BD= AD=4 .在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴DC=AD=4,∴BC=BD+DC=4 +4.点评:本题考查了解直角三角形的知识,属于基础题,解答本题的关键是在直角三角形中利用解直角三角形的知识求出BD、DC的长度.4、(2013•鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.考点:直角三角形斜边上的中线.分析:连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长.解答:解:连接OP,∵△AOB是直角三角形,P为斜边AB的中点,∴OP= AB,∵AB=20cm,∴OP=10cm,故答案为:10.点评:此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.5、(2013安顺)在Rt△ABC中,∠C=90°,,BC=8,则△ABC的面积为 .考点:解直角三角形.专题:计算题.分析:根据tanA的值及BC的长度可求出AC的长度,然后利用三角形的面积公式进行计算即可.解答:解:∵tanA= =,∴AC=6,∴△ABC的面积为×6×8=24.故答案为:24.点评:本题考查解直角三角形的知识,比较简单,关键是掌握在直角三角形中正切的表示形式,从而得出三角形的两条直角边,进而得出三角形的面积.6、(11-4解直角三角形的实际应用•2013东营中考)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60︒,在教学楼三楼D处测得旗杆顶部的仰角为30︒,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.15. 9.解析:过B作BE⊥C D于点E,设旗杆AB的高度为x,在中,,所以,在中,,,,所以,因为CE=AB=x,所以,所以x=9,故旗杆的高度为9米.7、(2013•常德)如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB= ,AD=1.(1)求BC的长;(2)求tan∠DAE的值.考点:解直角三角形.分析:(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=1;解Rt△ADB,得出AB=3,根据勾股定理求出BD=2 ,然后根据BC=BD+DC即可求解;(2)先由三角形的中线的定义求出CE的值,则DE=CE﹣CD,然后在Rt△ADE中根据正切函数的定义即可求解.解答:解:(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB= ,AD=1,∴AB= =3,∴BD= =2 ,∴BC=BD+DC=2 +1;(2)∵AE是BC边上的中线,∴CE= BC= + ,∴DE=CE﹣CD= ﹣,∴tan∠DAE= = ﹣ .点评:本题考查了三角形的高、中线的定义,勾股定理,解直角三角形,难度中等,分别解Rt△ADC与Rt△ADB,得出DC=1,AB=3是解题的关键.8、(13年山东青岛、20)如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市。

中考分类汇总三角函数问题及答案

中考分类汇总三角函数问题及答案

中考分类汇总三角函数问题及答案题1 在△ABC 中,AB >AC ,AD 为∠BAC 的平分线,AD 的垂直平分线交BC 的延长线于点F ,分别交AB ,AC 于点E ,点G .题1图(1)求证:DF 2 =BF •CF .(2)如果AC ∶AB =3∶4,求CF ∶BF .(3)如果,ABAC =x ,BF =y ,写出y 关于x 的函数关系式,并写出定义域.题2 如图所示,△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =EF =9,∠BAC =∠DEF =90°.固定△ABC ,将△EFD 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转终止,不考虑旋转开始和结束时的重合情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线)于点G ,H ,如图所示.题2图(1)始终相似的三角形是和.(2)设CG =x ,BH =y ,求y 关于x 的函数关系式.(3)当x 为何值时,△AGH 是等腰三角形.题3 如图所示,在Rt△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,E 是AC 边上的一个动点(不与A ,C 重合),CF ⊥BE 于点F .题3图(1)BC 2 =•=•(填写有关线段的乘积).(2)求证:BF •AE =FD •AB .(3)若BC =3,BD =1.8,CE =x ,FD =y ,写出y 关于x 的函数关系式,并写出定义域.题4 如图所示,矩形DEFG 内接于锐角△ABC ,AH 是BC 边上的高,AH =6,BC =12.题4图(1)FG =2EF ,求矩形DEFG 的面积.(2)若FG =x ,S 矩形DEFG =y ,写出y 关于x 的函数关系式,并写出定义域.题5 如图所示,在△ABC 中,AB =AC ,∠B =30°,BC =8,点D 在边BC 上,点E 在线段DC 上,DE =4,△FDE 是等边三角形,边DF 交边AB 于点M ,边EF 交边AC 于点N .题5图(1)求证:△BMD ∽△CNE .(2)设BD =x ,五边形ANEDM 的面积为y ,写出y 关于x 的函数关系式,并写出定义域.题6 已知AB =2,AD =4,∠DAB =90°,AD ∥BC ,E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.题6图(1)设BE =x ,△ABM 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域.(2)连接BD ,交线段AM 于点N ,如果以A ,N ,D 为顶点的三角形与△BME 相似,求线段BE 的长.题7 如图所示,正方形ABCD 中,AB =1,点G 为CD 边的中点,点E 为BC 边上任一点(点E 与点B 、点C 不重合).设BE =x ,过点E 作EF ∥GA 交AB 于点F .设梯形AFEG 的面积为y ,写出y 与x 的函数关系式,并指出自变量x 的取值范围.题7图题8 如图所示,△ABC 中,∠A =120°,AB =AC =3,E 为BC 上任意一点,EP ⊥AB 于点P ,过点E 作AB 平行线交AC 于点F ,设BP =x ,四边形APEF 面积为y .题8图(1)写出y 与x 的函数关系式.(2)x 取何值时,四边形APEF 面积为?题9 如图所示,有一块直角梯形铁皮ABCD ,AD =3 cm,BC =6 cm,DC =4 cm,现要截出矩形EFCG (点E 在AB 上,与点A 、点B 不重合).设BE =x ,矩形EFCG 周长为y .题9图(1)写出y 与x 的函数关系式,并指出自变量x 的取值范围.(2)x 取何值时,矩形EFCG 的面积等于直角梯形ABCD 面积的题10 如图所示,等腰梯形ABCD 中,AD ∥BC ,AB =CD =5,AD =6,BC =12.点E 在AD 边上,AE =2,F 为AB 上任一点(点F 与点A ,B 不重合).过点F 作FG ∥CE 交BC 于点G .设BF =x,四边形EFGC 面积为y .题10图(1)写出y 与x 的函数关系式.(2)x 取何值时,EG ⊥BC ?题11 如图所示,△ABC 中,点M 在BC 边上移动(不与点B ,C 重合),作ME ∥CA 交AB 于点E ,作MF ∥AB 交AC 于点F ,S=10 cm2 .设,四边形AEMF 面积为y ,写出y 与x △ABC的函数关系式,并指出x 的取值范围.题11图题12 如图所示,已知一个三角形纸片ABC ,BC 边长为8,BC 边上的高为6,∠B 和∠C 都为锐角,M 为AB 上的一个动点(点M 与点A,B 不重合).过点M 作MN ∥BC ,交AC 于点N ,在△AMN 中,设MN 的长为x ,MN 上的高为h.题12图(1)请你用含x 的代数式表示h.(2)将△AMN 沿MN 折叠,使△AMN 落在四边形BCNM 所在平面,设点A 落在平面的点为A 1 ,△A 1 MN 与四边形BCNM 重叠部的面积为y ,当x 为何值时,y 最大?最大值为多少?1.(1)提示:如图所示,连接AF ,因为EF 是AD 的垂直平分线,所以DF =AF ,∠ADF =∠DAF ,∠B +∠BAD =∠DAC +∠CAF ,又AD 为∠BAC 的角平分线,所以∠B =∠FAC .因为∠BFA =∠CFA ,所以△ABF ∽△CAF ,得到AF 2=BF •CF ,因此DF 2=BF •C F .题1答案图(2)9∶16.提示:由(1)的结论△ABF ∽△CAF 得,因此CF ∶BF =9∶16.(3).提示:因为AD 为∠BAC 的角平分线,.因为BC =6,所以.由(1)的结论DF2=BF •CF ,代入得.2.(1)△AGH ,△ABH .提示:因为∠AGC =∠B +∠BAG =∠BAG +∠EAF =∠BAH ,又∠B =∠ACB =45°,所以△AGC ∽△HAB ,得∠GAC =∠H ,所以△AGC ∽△HGA .(2).提示:因为△AGC ∽△HGA ,所以 .(3)或9.提示:①当时,∠GAC =∠H<∠HAG ,所以AG <GH ,AH >GH ,所以△AGH 不可能是等腰三角形.②当时,见图(a),易得时,见图(b),因为△AGC ∽△HGA ,又因为在△ACG 中只可能AC =GC ,所以AG =AH ,得CG =AC =9.题2答案图3.(1)BC 2 =AB •BD =BE •BF .提示:由条件易得△ACB∽△CDB ,,因此BC 2 =AB •BD =BE •BF .(2)提示:由(1)的结论得AB •BD =BE •BF ,又因为∠ABE =∠ABE ,所以△ABE ∽△FBD ,从而得到,因此BF •AE =FD •AB .(3).提示:因为BC =3,BD =1.8,BC 2 =AB •BD ,得到AB =5,AC =4,.又因为BC 2 =BE •BF ,得到.由(2)中结论BF •AE =FD •FB得.4.(1)18.提示:设DG =a ,因为GF ∥DE ,所以,得a =3,因此S 矩形DEFG =3×6=18.(2).提示:由(1)中的结论,所以,NH =DG =.5.(1)提示:由题意得∠BDM =180°-∠FDC =180°-∠FED =∠CEN .又因为AB =AC ,所以∠B =∠C ,因此△BMD ∽△CNE .题5答案图(2).提示:如图所示,作MH ⊥BC ,由条件在△ABC 中,AB =AC ,∠B =30°,BC =8,易得.因为MD =BD =x ,∠MDH =60°,所以,又因为△BMD ∽△CNE ,所以,因此 .6.(1).提示:如图所示,取AB 中点H ,连接MH .由M 为DE 的中点,易得MH ∥BE ,所以,又AB ⊥BE ,所以MH ⊥AB ,因此.题6答案图(2)8或2.提示:因为以A ,N ,D 为顶点的三角形与△BME 相似,又易证得∠DAM =∠EBM .① 当∠ADN =∠BEM 时,因为AD∥BE ,所以∠ADN =∠DBE ,得∠BEM =∠DBE ,DB =DE ,易得BE =2AD ,因此BE =8;② 当∠ADB =∠BME 时,因为AD ∥BE ,所以∠ADB =∠DBE ,∠DBE =∠BME .又因为∠BED =∠MEB ,所以△BED ∽△MEB ;得,即BE 2=EM •DE ,因此,解得x 1 =2,x 2 =-10(舍去),即线段BE 的长为2.综上所述,所求线段BE 的长为8或2.7..提示:如图所示,延长AG ,BC 交于点H ,所以CH =AD =1,,y =S 阴=S ABCD -S △FBE -S △ECG -S △ADG ,.题7答案图8.(1).提示:∠B =30°,PE =,△ABC ∽△EFC ,.(2)x=2或x = .9.(1).提示:如图所示,过点A 作AH ⊥BC ,点H 为垂足,,FC =(舍去).题9答案图10.(1).提示:如图所示,延长CE 和BA 延长线交于点H ,AH =1,,BG =2x ,过点A 作AQ ⊥BC ,垂足为点Q ,AQ =4,过点F 作FM ⊥BC ,垂足为点M ,,y 阴=S 梯形ABCD -S △BFG -S △EDC -S △AFE , .题10答案图11.y =-20x 2 +20x (0<x <1).提示:设S △BME =S 1 ,S △FMC =S 2 ,(1-x )2,y =10-S 1 -S 2 =1 -20x2 +20x (0<x <1).12.(1) .提示:因为MN ∥BC ,△AMN ∽△ABC ,.题12答案图(2)当时,y 最大,最大为8.提示:已知△AMN ≌△A 1MN ,△A 1 MN 的边MN 上的高为h .① 当点A 1 落在四边形BCNM 内或B边上时,y =S △A MN =;② 当A 1 落在四边形BCNM 外时,如图所示(4<x <8),设△A 1 EF 的边EF 上的高为h 1 ,则 .因为EF ∥MN ,△AMN∽△ABC ,所以△A 1 EF ∽△ABC ,所以综上所述,当0<x ≤4时,,y 最大=8;所以对于重叠部分的面积来说,当时,y 最大,y 最大=8.。

[精品]中考一轮复习专题35 三角函数的综合运用(含答案).doc

[精品]中考一轮复习专题35 三角函数的综合运用(含答案).doc

13.三角函数的综合运用知识考点:木课时主要是解直角三角形的应用,涉及到的内容包括航空、航海、工稈、测量等领域。

要求能灵活地运用解育角三角形的有关知识,解决这些实际问题。

熟悉仰角、俯角、坡度、方位角等概念,常用的方法是通过数形结合、建立解玄角三角形的数学模型。

精典例题:【例1】如图,塔AB和楼CD的水平距离为80米,从楼顶C处及楼底D处测得塔顶A 的仰角分别为45°和60°,试求塔高与楼高(精确到()・()1米)。

(参考数据:忑=1.41421 …,V3 =1.73205-)分析:此题可先通过解RtAABD求出塔高AB,再利用CE=BD = 80米,ft? RtAAEC求出AE,最后求出CD = BE=AB-AEo解:在RtAABD 屮,BD = 80 米,ZBAD=60°A AB= BD - tan 60° = 80^3 - 13&56 (米)在RtAAEC »|', EC = BD=80 米,ZACE=45°AAE=CE=80 米ACD=BE=AB-AE= 80^3 -80 58.56 (米)答:塔AB的高约为13& 56米,楼CD的高约为58. 56米。

【例2]如图,肓升飞机在跨河大桥AB的上方P点处,此时飞机离地血的高度PO = 450米,且A、B、O三点在一条直线上,测得大桥两端的俯角分别为0 = 30°, 0 = 45°,求大桥AB的长(精确到1米,选用数据:V2 =1.41, 73=1.73)分析:要求AB,只须求出OA即可。

可通过解RtAPOA达到目的。

解:在RtAPAO •!', ZPAO=6r = 30°・•・OA = PO• cot= 450cot30° =450巧(米)在RtAPBO 中,ZPBO= 0 = 45°A OB=OP=450 (米)・・・AB=OA—OB = 450巧一450 = 329 (米)答:这廉大桥的长度约为329米。

人教全国中考数学锐角三角函数的综合中考真题分类汇总含答案解析

人教全国中考数学锐角三角函数的综合中考真题分类汇总含答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为AC 上的动点,且10cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB ;(2) 10AD AE ⋅=;(3)证明见解析.【解析】【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG)=3×10=10;3(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.已知:如图,在四边形 ABCD 中, AB∥CD,∠ACB =90°, AB=10cm, BC=8cm, OD 垂直平分 A C.点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s;当一个点停止运动,另一个点也停止运动.过点P作 PE⊥AB,交 BC 于点 E,过点 Q 作 QF∥AC,分别交 AD, OD 于点 F, G.连接 OP,EG.设运动时间为 t ( s )(0<t<5),解答下列问题:(1)当 t 为何值时,点 E 在BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE, OQ,在运动过程中,是否存在某一时刻 t ,使 OE⊥OQ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】 【分析】(1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQOC OG=,由此构建方程即可解决问题. 【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB , ∴∠BAC=∠DCO , ∵∠DOC=∠ACB , ∴△DOC ∽△BCA , ∴AC AB BCOC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ), ∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t ,当点E 在∠BAC 的平分线上时, ∵EP ⊥AB ,EC ⊥AC , ∴PE=EC ,∴34t=8-54t ,∴t=4.∴当t 为4秒时,点E 在∠BAC 的平分线上. (2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC ) =1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在.∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭,∴t=52时,四边形OPEG 的面积最大,最大值为683.(4)存在.如图,连接OQ . ∵OE ⊥OQ ,∴∠EOC+∠QOC=90°, ∵∠QOC+∠QOG=90°, ∴∠EOC=∠QOG ,∴tan ∠EOC=tan ∠QOG , ∴EC GQOC OG=, ∴358544345t tt -=-, 整理得:5t 2-66t+160=0, 解得165t =或10(舍弃) ∴当165t =秒时,OE ⊥OQ . 【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.3.已知:如图,在Rt △ABC 中,∠ACB=90°,点M 是斜边AB 的中点,MD ∥BC ,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以2114ACBS MDS AB⎛⎫==⎪⎝⎭,所以S△MCB=12S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1=25S1,由于1EBDS MES EB=,从而可知52MEEB=,设ME=5x,EB=2x,从而可求出AB=14x,BC=72,最后根据锐角三角函数的定义即可求出答案.【详解】(1)∵MD∥BC,∴∠DME=∠CBA,∵∠ACB=∠MED=90°,∴△MED∽△BCA;(2)∵∠ACB=90°,点M是斜边AB的中点,∴MB=MC=AM,∴∠MCB=∠MBC,∵∠DMB=∠MBC,∴∠MCB=∠DMB=∠MBC,∵∠AMD=180°﹣∠DMB,∠CMD=180°﹣∠MCB﹣∠MBC+∠DMB=180°﹣∠MBC,∴∠AMD=∠CMD,在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD SAB ⎛⎫== ⎪⎝⎭,∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1, ∵1EBDS MESEB=, ∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.4.如图,将一副直角三角形拼放在一起得到四边形ABCD ,其中∠BAC=45°,∠ACD=30°,点E 为CD 边上的中点,连接AE ,将△ADE 沿AE 所在直线翻折得到△AD′E ,D′E 交AC 于F点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.5.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:(1)点的坐标(用含的代数式表示);(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值.【答案】解:(1)过作轴于,,,,,点的坐标为.(2)①当与相切时(如图1),切点为,此时,,,.②当与,即与轴相切时(如图2),则切点为,,过作于,则,,.③当与所在直线相切时(如图3),设切点为,交于,则,,.过作轴于,则,,化简,得,解得,,.所求的值是,和.【解析】(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标⊙P与菱形OABC的边所在直线相切,则可与OC相切;或与OA相切;或与AB相切,应分三种情况探讨:①当圆P与OC相切时,如图1所示,由切线的性质得到PC垂直于OC,再由OA=+t,根据菱形的边长相等得到OC=1+t,由∠AOC的度数求出∠POC为30°,在直角三角形POC中,利用锐角三角函数定义表示出cos30°=oc/op,表示出OC,等于1+t列出关于t的方程,求出方程的解即可得到t的值;②当圆P与OA,即与x轴相切时,过P作PE垂直于OC,又PC=PO,利用三线合一得到E为OC的中点,OE为OC的一半,而OE=OPcos30°,列出关于t的方程,求出方程的解即可得到t的值;③当圆P与AB所在的直线相切时,设切点为F,PF与OC交于点G,由切线的性质得到PF垂直于AB,则PF垂直于OC,由CD=FG,在直角三角形OCD中,利用锐角三角函数定义由OC表示出CD,即为FG,在直角三角形OPG中,利用OP表示出PG,用PG+GF表示出PF,根据PF=PC,表示出PC,过C作CH垂直于y轴,在直角三角形PHC中,利用勾股定理列出关于t的方程,求出方程的解即可得到t的值,综上,得到所有满足题意的t的值.6.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tanPHPAH∠33,∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴3,∵60千米/时=503米/秒,∴时间503503+3≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

2024中考数学专题5.11用三角函数解决函数问题 (全国通用)

2024中考数学专题5.11用三角函数解决函数问题 (全国通用)

考向5.11 用三角函数解决函数问题例1、(2020·山东济南·中考真题)如图,矩形OABC 的顶点A ,C 分别落在x 轴,y 轴的正半轴上,顶点B (2,k y x =(x >0)的图象与BC ,AB 分别交于D ,E ,BD =12.(1)求反比例函数关系式和点E 的坐标;(2)写出DE 与AC 的位置关系并说明理由;(3)点F 在直线AC 上,点G 是坐标系内点,当四边形BCFG 为菱形时,求出点G 的坐标并判断点G 是否在反比例函数图象上.解:(1)∵B (2,BC =2,而BD =12,∴CD =2﹣12=32,故点D (32,将点D 的坐标代入反比例函数表达式得:32K,解得k =,故反比例函数表达式为y,当x =2时,yE (2(2)由(1)知,D (32,),点E (2B (2,则BD =12,BE故BD BC =122=14,EB AB=14=BD BC ,∴DE ∥AC;(3)①当点F 在点C 的下方时,如下图,过点F 作FH ⊥y 轴于点H ,∵四边形BCFG 为菱形,则BC =CF =FG =BG =2,在RT △OAC 中,OA =BC =2,OB =AB =则tan ∠OCA =AO CO ∠OCA =30°,则FH =12FC =1,CH =CF•cos ∠OCA =故点F (1G (3当x =3时,y G 在反比例函数图象上;②当点F 在点C 的上方时,同理可得,点G (1,同理可得,点G 在反比例函数图象上;综上,点G 的坐标为(31,一、单选题1.(2021·重庆万州·模拟预测)在平面直角坐标系中,平行四边形ABCD的顶点A在y轴上,点C坐标为(﹣4,0),E为BC上靠近点C的三等分点,点B、E均在反比例函数y=kx(k<0,x<0)的图象上,若tan∠OAD=12,则k的值为( )A.﹣2B.﹣C.﹣6D.﹣2.(2019·山东济南·中考模拟)如图,菱形OABC的一条边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OA=2,∠C=120°,则点B′的坐标为( )A)B)C.(3D.(33.(2019·湖北武汉·中考模拟)如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=kx的图象恰好经过点A′、B,则k的值是( )A.9B.133C.16915D.4.(2020·浙江·育海外国语学校一模)如图,在Rt △ABC 中,∠ABC=90°,tan ∠BAC=2,A (0,a ),B (b ,0),点C 在第二象限,BC 与y 轴交于点D (0,c ),若y 轴平分∠BAC ,则点C 的坐标不能表示为( )A .(b+2a ,2b )B .(﹣b ﹣2c ,2b )C .(﹣b ﹣c ,﹣2a ﹣2c )D .(a ﹣c ,﹣2a ﹣2c )5.(2017·河南·中考模拟)如图,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=2k x在第一象限内的图象交于点B ,连接BO .若S △OBC =1,tan ∠BOC=13,则k 2的值是( )A .﹣3B .1C .2D .36.(2019·广东·中考模拟)如图,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=2k x在第一象限内的图象交于点B ,连接BO .若S △OBC =1,tan ∠BOC=13,则k 2的值是( )A .﹣3B .1C .2D .37.(2015·福建莆田·一模)如图(1),点E 为矩形ABCD 边AD 上一点,点P ,Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们的运动速度都是1cm/s,设P ,Q 出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图(2)则下列正确的是()A.AE=6cm;B.sin∠EBC=C.当0<t≤10时,D.当t=12时,△BPQ是等腰三角形8.(2014·江苏苏州·二模)如图,直线y=12x+2交x轴于A(-4,0)点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=12x+2上,若N点在第二象限内,则tan∠AON的值为( )A.12B.13C.14D.159.(2014·江苏无锡·一模)如图,点A在反比例函数y=4x(x>0)的图像上,点B在反比例函数y=-9x(x<0)的图像上,且∠AOB=90°,则tan∠OAB ().A.B.C.D.二、填空题10.(2022·浙江温州·一模)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在反比例函数k yx(0k >,0x >)的图象上,且AB =.将矩形OABC 沿x 轴正方向平移32个单位得矩形O A B C ''',A B ''交反比例函数图象于点D ,且30DAA '∠=︒,则k 的值为______.11.(2021·广东·东莞市石龙第二中学一模)如图,在平面直角坐标系中,已知点A (10,0),OA 绕点O 逆时针旋转60°得到OB ,连接AB ,双曲线y =k x(x >0)分别与AB ,OB 交于点C ,D (C ,D 不与点B 重合).若CD ⊥OB ,则k 的值为______________.12.(2020·广东·深圳市龙岗区布吉贤义外国语学校模拟预测)如图,Rt △ABC 中,∠A=30°,∠C=90°,BC ⊥y轴,交y 轴于点F ,点C 在第一象限,斜边AB 与x 轴,y 轴分别相交于E 、D 两点,且AD BE ⋅=,设过C 点的双曲线为k y x=,则k =_______.13.(2019·浙江温州·一模)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B ,5),△ACD 与△ACO 关于直线AC 对称(点D 和O 对应),反比例函数y =k x(k ≠0)的图象与AB ,BC 分别交于E ,F 两点,连结DE ,若DE ∥x 轴,则点F 的坐标为_____.14.(2019·吉林吉林·一模)如图,在平面直角坐标系中,抛物线y=ax 2+x 的对称轴为x=2,顶点为A .点P 为抛物线的对称轴上一点,连接OA 、OP.当OA ⊥OP 时,点P 的坐标为________.15.(2019·广东深圳·一模)如图,在△ABC 中,∠ACB=90°,BC 在x 轴中,且点B 与点C 关于原点对称,边AC 上的点P 满足∠COP=∠CAO,且双曲线y=k x经过P 点,则k 值等于_____________.16.(2018·四川成都·中考模拟)如图,直线-8分别交x 轴,y 轴于点A 和点B ,点C 是反比例函数y=k x(x >0)的图象上位于直线上方的一点,CD ∥x 轴交AB 于D ,CE ⊥CD 交AB 于E ,AD ·BE=4,则k 的值为_______.17.(2016·河南·模拟预测)如图,点P (a ,a )是反比例函数16y x=在第一象限内的图象上的一个点,以点P 为顶点作等边△PAB ,使A 、B 落在x 轴上(点A 在点B 左侧),则△POA 的面积是___________.18.(2017·广东深圳·中考模拟)如图,矩形AOCB 的两边OC 、OA 分别位x 轴、y 轴上,点B 的坐标为B (203-,5),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是_____.19.(2015·河北石家庄·一模)如图,抛物线y=13x 2与x 轴交于A ,B 两点,与y 轴交于点C ,点M 的坐标为( 1).以M 为圆心,2为半径作⊙M .则下列说法正确的是________ (填序号).①tan ∠②直线AC 是⊙M 的切线;③⊙M 过抛物线的顶点;④点C 到⊙M 的最远距离为6;⑤连接MC ,MA ,则△AOC 与△AMC 关于直线AC 对称.三、解答题20.(2022·河南信阳·一模)如图,点P 为函数112y x =+与函数(0)m y x x =>图象的交点,点P 的纵坐标为4,PB x ⊥轴,垂足为点B .(1)求m 的值;(2)点M 是函数(0)m y x x =>图象上一动点,过点M 作MD BP ⊥于点D ,若1tan 2PMD ∠=,求点M 的坐标.21.(2021·四川成都·二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3过点A (﹣3,0),B (1,0),与y 轴交于点C ,顶点为点D ,连接AC ,BC .(1)求抛物线的解析式;(2)在直线CD 上是否存在点P ,使∠PBC =∠BCO ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点M 为抛物线对称轴l 上一点,点N 为抛物线上一点,当直线AC 垂直平分线段MN 时,请直接写出点M 和点N 的坐标.一、单选题1.(2013·四川乐山·中考真题)如图,已知第一象限内的点A 在反比例函数y=的图象上,第二象限内的点B 在反比例函数y=的图象上,且OA ⊥OB ,cosA=,则k 的值为( )A .﹣3B .﹣4C .﹣D .﹣22.(2015·贵州铜仁·中考真题)如图,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=2k x在第一象限内的图象交于点B ,连接BO .若S △OBC =1,tan ∠BOC=13,则k 2的值是( )A .﹣3B .1C .2D .33.(2021·辽宁鞍山·中考真题)如图,ABC 是等边三角形,6cm AB =,点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动到点B ,同时点N 从点C 出发沿射线CA 方向以2cm/s 的速度匀速运动,当点M 停止运动时,点N 也随之停止.过点M 作//MP CA 交AB 于点P ,连接MN ,NP ,作MNP △关于直线MP 对称的MN P ' ,设运动时间为ts ,MN P ' 与BMP 重叠部分的面积为2cm S ,则能表示S 与t 之间函数关系的大致图象为( )A .B .C .D .4.(2020·辽宁辽宁·中考真题)如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .5.(2020·黑龙江牡丹江·中考真题)如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,,将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为( )A .(2--,或2)-B .(2,C .(2,-D .(2--,或(2,6.(2020·贵州黔西·中考真题)如图,在菱形ABOC 中,AB =2,∠A =60°,菱形的一个顶点C 在反比例函数y =k x(k≠0)的图象上,则反比例函数的解析式为( )A .y =B .y =C .y =3x -D .y 7.(2019·内蒙古赤峰·中考真题)如图,点P 是反比例函数(0)k y k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M .若POM 的面积等于2,则k 的值等于( ).A .-4B .4C .-2D .28.(2015·山东烟台·中考真题)如图,Rt △ABC 中∠C=90°,∠BAC=30°,AB=8,以DEFG 的一边GD 在直线AB 上,且点D 与点A 重合,现将正方形DEFG 沿A ﹣B 的方向以每秒1个单位的速度匀速运动,当点D 与点B 重合时停止,则在这个运动过程中,正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是( )A .B .C .D .9.(2021·湖南怀化·中考真题)如图,菱形ABCD 的四个顶点均在坐标轴上,对角线AC 、BD 交于原点O ,AE BC ⊥于E 点,交BD 于M 点,反比例函数0)y x =>的图象经过线段DC 的中点N ,若4BD =,则ME 的长为( )A .53ME = B .43=ME C .1ME = D .23ME =二、填空题10.(2016·内蒙古包头·中考真题)如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB=30°,AB =BO ,反比例函数y =k x(x <0)的图象经过点A ,若S △AOB k 的值为________.11.(2021·海南·中考真题)如图,ABC 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是_____.12.(2021·湖北荆门·中考真题)如图,在平面直角坐标系中,Rt OAB 斜边上的高为1,30AOB ∠=︒,将Rt OAB 绕原点顺时针旋转90︒得到Rt OCD △,点A 的对应点C 恰好在函数(0)k y k x=≠的图象上,若在k y x=的图象上另有一点M 使得30MOC ∠=︒,则点M 的坐标为_________.13.(2021·江苏淮安·中考真题)如图(1),△ABC 和△A ′B ′C ′是两个边长不相等的等边三角形,点B ′、C ′、B 、C 都在直线l 上,△ABC 固定不动,将△A ′B ′C ′在直线l 上自左向右平移.开始时,点C ′与点B 重合,当点B ′移动到与点C 重合时停止.设△A ′B ′C ′移动的距离为x ,两个三角形重叠部分的面积为y ,y 与x 之间的函数关系如图(2)所示,则△ABC 的边长是___.14.(2021·辽宁本溪·中考真题)如图,AB 是半圆的直径,C 为半圆的中点,(2,0)A ,(0,1)B ,反比例函数(0)ky x x=>的图象经过点C ,则k 的值为________.15.(2020·湖南永州·中考真题)AOB ∠在平面直角坐标系中的位置如图所示,且60AOB ∠=︒,在AOB ∠内有一点()4,3P ,M ,N 分别是,OA OB 边上的动点,连接,,PM PN MN ,则PMN 周长的最小值是_________.16.(2020·湖南怀化·中考真题)如图,11OB A △,122A B A △,233A B A △,…,1n n n A B A -△,都是一边在x 轴上的等边三角形,点1B ,2B ,3B ,…,n B 都在反比例函数0)y x =>的图象上,点1A ,2A ,3A ,…,n A ,都在x 轴上,则n A 的坐标为________.17.(2019·辽宁铁岭·中考真题)如图,Rt Rt AOB COD ≌,直角边分别落在x 轴和y 轴上,斜边相交于点E ,且tan 2OAB ∠=.若四边形OAEC 的面积为6,反比例函数()0k y x x=>的图象经过点E ,则k 的值为_____.18.(2019·福建·中考真题)如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k的值为______.19.(2018·湖南郴州·中考真题)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是_____.20.(2018·湖北随州·中考真题)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____.三、解答题21.(2021·山东泰安·中考真题)如图,点P 为函数112y x =+与函数(0)m y x x =>图象的交点,点P 的纵坐标为4,PB x ⊥轴,垂足为点B .(1)求m 的值;(2)点M 是函数(0)m y x x =>图象上一动点,过点M 作MD BP ⊥于点D ,若1tan 2PMD ∠=,求点M 的坐标.22.(2019·江苏宿迁·中考真题)如图,抛物线2y x bx c =++交x 轴于A 、B 两点,其中点A 坐标为()1,0,与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)如图①,连接AC ,点P 在抛物线上,且满足2PAB ACO ∠=∠.求点P 的坐标;(3)如图②,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM DN +是否为定值?如果是,请求出这个定值;如果不是,请说明理由.23.(2013·黑龙江牡丹江·中考真题)如图,平面直角坐标系中,矩形OABC 的对角线AC=12,tan ∠ACO=,(1)求B 、C 两点的坐标;(2)把矩形沿直线DE 对折使点C 落在点A 处,DE 与AC 相交于点F ,求直线DE 的解析式;(3)若点M 在直线DE 上,平面内是否存在点N ,使以O 、F 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.1.C【解析】【分析】根据已知条件运用点B,E都在反比例函数图象上,再运用tan∠OAD=12即可求解.【详解】如图所示,过点B作BN⊥x轴,过点E作EM⊥x轴∴EM∥BN∴△ECM∽△BCN∵E为BC三等分点∴EC=13 BC∴13 EC EM CM BC BN CN===设B点的坐标为:(-m,n)∵C(-4,0)∴OC=4∴ON=m,BN=n则CN=4-m∴EM=13BN=3nCM=13CN=4-3mOM=OC-CM=4-4-3m=83m+∴E(-83m+,3n)∵tan ∠OAD =12∴tan ∠OAD =12=OF OA 则OA =2OF∴tan ∠AFO =2∵四边形ABCD 是平行四边形∴AD ∥BC∴∠ECM =∠AFO∴tan ∠ECM =2EM CM=即3n ÷4-3m =2n =8-2m∴B (-m ,8-2m )E (-83m +,823m -),两点都在k y x =上∴-m (8-2m )=-83m +×823m -解得m =1∴B (-1,6)∴k =-1×6=-6故选:C .【点拨】本题考查了反比例函数上点的坐标特征平行四边形的性质及解直角三角形,本题的解题关键是确定B ,E 点的坐标,利用tan ∠OAD =12的关系即可得出答案.2.A【解析】【分析】首先根据菱形的性质,即可求得∠AOB 的度数,求出OB 的长,又由将菱形OABC 绕原点O 顺时针旋转75°至OA ′B ′C ′的位置,可求得∠B ′OA 的度数,然后在Rt △B ′OF 中,利用三角函数即可求得OF 与B ′F 的长,则可得点B ′的坐标.【详解】解:连接AC 交OB 于G ,过点B 作BE ⊥OA 于E ,过点B ′作B ′F ⊥OA 于F ,∴∠BE 0=∠B ′FO =90°,∵四边形OABC 是菱形,∴OA ∥BC ,∠AOB =12∠AOC ,OG =BG ,∴∠AOC +∠C =180°,∵∠C =120°,∴∠AOC =60°,∴∠AOB =30°,∴AG =12OA =1,∴OG =3√AG =3√,∴OB =23√,∵菱形OABC 绕原点O 顺时针旋转75°至OA ′B ′C ′的位置,∴∠BOB ′=75°,OB ′=OB =23√,∴∠B ′OF =45°,在Rt △B ′OF 中,OF =OB ′•cos45°=23√×22√=6√,∴B ′F =6√,∴点B ′的坐标为:(6√,﹣6√).故选A .【点拨】此题考查了平行四边形的性质,旋转的性质以及直角三角形的性质与三角函数的性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.3.C【解析】【分析】设B (2k ,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k .【详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x 轴于F ,设B (2k ,2),在Rt △OCD 中,OD =3,CD =2,∠ODC =90°,∴OC由翻折得,AA′⊥OC ,A′E =AE ,∴sin ∠COD =AE CD OA OC=,∴AE=CD OA OC⋅=,∵∠OAE+∠AOE =90°,∠OCD+∠AOE =90°,∴∠OAE =∠OCD ,∴sin ∠OAE =EF OD AE OC ==sin ∠OCD ,∴EF=313OD AE k OC ⋅==,∵cos ∠OAE =AF CD AE OC ==cos ∠OCD ,∴213CD AF AE k OC =⋅=,∵EF ⊥x 轴,A′G ⊥x 轴,∴EF ∥A′G ,∴12EF AF AE A G AG AA ==='',∴6213A G EF k '==,4213AG AF k ==,∴14521326OG OA AG k k k =-=-=,∴A′(526k ,613k),∴562613k k k ⋅=,∵k≠0,∴169=15k ,故选C .【点拨】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B 的坐标,表示出点A′的坐标.4.C【解析】【分析】作CH ⊥x 轴于H ,AC 交OH 于F .由△CBH ∽△BAO ,推出2BH CH BC AO BO AB ===,推出BH=﹣2a ,CH=2b ,推出C (b+2a ,2b ),由题意可证△CHF ∽△BOD ,可得CH HF BO OD=,推出2b FH b c =,推出FH=2c ,可得C (﹣b ﹣2c ,2b ),因为2c+2b=﹣2a ,推出2b=﹣2a ﹣2c ,b=﹣a ﹣c ,可得C (a ﹣c ,﹣2a ﹣2c ),由此即可判断;【详解】解:作CH ⊥x 轴于H ,AC 交OH 于F .∵tan ∠BAC=BC AB=2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO ,∵∠CHB=∠AOB=90°,∴△CBH ∽△BAO ,∴2BH CH BC AO BO AB===,∴BH=﹣2a ,CH=2b ,∴C (b+2a ,2b ),由题意可证△CHF ∽△BOD ,∴CH HF BO OD =,∴2b FH b c=,∴FH=2c ,∴C (﹣b ﹣2c ,2b ),∵2c+2b=﹣2a ,∴2b=﹣2a ﹣2c ,b=﹣a ﹣c ,∴C (a ﹣c ,﹣2a ﹣2c ),故选C .【点拨】本题考查解直角三角形、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题.5.D【解析】【详解】试题分析:先求得直线y=k 1x+2与y 轴交点C 的坐标为(0,2),然后根据△BOC 的面积求得BD 的长为1,然后利用∠BOC 的正切求得OD 的长为3,,从而求得点B 的坐标为(1,3),代入y=2k x求得k 2=3.故答案选D.考点:反比例函数与一次函数的交点问题.6.D【解析】【详解】试题分析:先求得直线y=k 1x+2与y 轴交点C 的坐标为(0,2),然后根据△BOC 的面积求得BD 的长为1,然后利用∠BOC 的正切求得OD 的长为3,,从而求得点B 的坐标为(1,3),代入y=2k x 求得k 2=3.故答案选D.考点:反比例函数与一次函数的交点问题.7.B【解析】【详解】试题分析:根据动点和函数图象可得sin ∠EBC=45.考点:函数图形的性质.8.B【解析】【详解】试题分析:过O 作OC ⊥AB 于C ,过N 作ND ⊥OA 于D ,∵N 在直线y=12x+2上,∴设N 的坐标是(x ,12x+2),则DN=12x+2,OD=-x ,∵y=12x+2,∴当x=0时,y=2,∴A (-4,0),B (0,2),即OA=4,OB=2,在△AOB 中,由勾股定理得:=∵在△AOB 中,由三角形的面积公式得:AO×OB=AB×OC ,∴,∴∵在Rt △NOM 中,OM=ON ,∠MON=90°,∴∠MNO=45°,∴sin45°=OC ON =∴在Rt △NDO 中,由勾股定理得:ND 2+DO 2=ON 2,即(12x+2)2+(-x )2=325,解得:x 1=-1225,x 2=3725,即ND=425,OD=1225,∴tan ∠AON=13ND OD =.故选B .考点:1.全等三角形的判定与性质;2.一次函数图象上点的坐标特征.9.C【解析】【详解】试题分析:过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC ,∴△OBD ∽△AOC ∴2()OBD AOC S OB S OA= ,∵点A 在反比例函数y=4x的图象上,点B 在反比例函数y=-9x 的图象上,∴S △OBD =4.5,S △AOC =2,∴32OB OA =,∴tan ∠OAB=32OB OA =.故选C .考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质.10【解析】【分析】由矩形的性质可得出点B将x=即可求出点A和B的横坐标为.再根据平移方式可得出点A'和D32+,再将32x=+代入反比例函数解析式,可求得点D的纵坐标.最后根据30DAA∠'=︒,结合锐角三角形函数和两点的距离公式即可求得k的值.【详解】∵AB=OABC为矩形,∴点B将y=kx=,解得:x=,∴点A和B.∴点A'和D32+,将32x=+代入反比例函数解析式,得:y==∴点D.∵30DAA∠'=︒,∴tanA DDAAAA'∠'==',∴D AA Ay yx x'-=-=,解得:k=.【点拨】本题考查矩形的性质,反比例函数图象上点的坐标特征,锐角三角形函数和两点的距离公式.根据各知识点用k表示出各点坐标是解题关键.11.【解析】【分析】如图,作DE⊥x轴于点E,作CF⊥x轴于点F,设OE=a,由等边三角形性质及三角函数可表示出点D坐标(a )、点C 坐标(15﹣2a )25a -),因为点D 、C 在反比例函数图象上,故根据k =xy建立方程())15225a a a =-﹣求解满足要求的a 值,然后得到D 点坐标,代入k =xy 中计算求解即可.【详解】解:如图,作DE ⊥x 轴于点E ,作CF ⊥x 轴于点F由题意知△OAB 为等边三角形∴∠BOA =∠B =∠BAO =60°设OE =a ,则DE ,OD =2a∴D (a ),BD =10﹣2a∴BC =cos 60BD ︒=2×(10﹣2a )=20﹣4a ∴AC =10﹣(20﹣4a )=4a ﹣10∴FA =AC •cos60°=12(4a ﹣10)=2a ﹣5,CF =AC •sin60°))41025a a -=-∴OF =AO ﹣FA =10﹣2a +5=15﹣2a∴C (15﹣2a )25a -)∵点D 、C 在反比例函数图象上∴())15225a a a =-﹣解得:a 1=3,a 2=5(不合题意,舍去)∴a =3,D (3,∴3k xy ==⨯=故答案为:.【点拨】本题考查了反比例函数与几何综合,三角函数值,等边三角形,旋转的性质.解题的关键在于表示出C D 、两点坐标.12.34.【解析】【分析】过B 点作BM x ⊥轴于点M ,过D 点作DN AC ⊥交AC 于点N ,设C 点的坐标为(x ,y ),则BM y =,DN x =,则有//AC BM ,//DN BC ,根据30MBE A ∠=∠=︒,得到BE =,22AD DN x ==,再根据AD BE ⋅=,化简即可得34xy =,即可得到结果.【详解】解:如图示,过B 点作BM x ⊥轴于点M ,过D 点作DN AC ⊥交AC 于点N ,设C 点的坐标为(x ,y ),则BM y =,DN x =,Rt △ABC 中,∠A=30°,∠C=90°,BC ⊥y 轴,则有://AC BM ,//DN BC ,∴30MBE A ∠=∠=︒,∴BM BE ,12DN AD =,∴BE y ==,22AD DN x ==,又∵AD BE ⋅,∴2x AD BE == 即有:34xy =,∵C 点在双曲线k y x =上,∴34xy k ==,故答案为:34.【点拨】本题考查了特殊锐角的三角函数,平行线的性质和反比例函数的性质,熟悉相关性质是解题的关键.13.5)【解析】【分析】由已知条件可知OA、OC的长,利用勾股定理求出AC,在利用等积法求出OD的值.过点D作DG⊥x轴于点G,连接OD,则∠OAC=∠ODG,利用角的余弦即可求出DG的长,从而求出E点的坐标,再利用待定系数法求出反比例函数的解析式,从而求出F点的坐标.【详解】过点D作DG⊥x轴于点G,连接OD,则∠OAC=∠ODG.∵点B5),∴OA OC=5,由勾股定理得AC=∴cos∠OAC==cos∠ODG,∵OD==,∴在Rt△ODG中,DG=OD×cos∠ODG53 =,∵DE∥x轴,∴点E的坐标为53⎫⎪⎭,∵点E在反比例函数y=kx(k≠0)的图象上,代入E点坐标得k∴,∵点F也在反比例函数y=kx(k≠0)的图象上,点F的纵坐标为5,∴点F,点F5).5).【点拨】本题考查了反比例函数与图形的综合,熟练掌握对称的性质、三角函数定义及待定系数法求反比例函数解析式是解题的关键.14.(2,-4)【解析】【分析】根据抛物线的对称轴求出a的值,即可得到抛物线解析式,从而求出顶点A的坐标,根据锐角三角函数的定义求出tan∠OAE的值,然后根据同角的余角相等得到∠OAE=∠EOP,再次利用锐角三角函数的定义求出EP 的长,从而求出点P的坐标.【详解】解:如图∵抛物线y=ax2+x的对称轴为x=2 ,∴-12a=2,∴a=-1 4 ,∴抛物线y=-14x2+x,∴A(2,1)∴在Rt△AOE中,tan∠OAE=OEAE=2,∠OAE+∠AOE=90°,∵ OA⊥OP ,∴∠AOP=∠AOE+∠EOP=90°,∴∠OAE=∠EOP,∴tan∠EOP=EPOE=2,∵OE=2,∴EP=4,∴P(2,-4)故答案为(2,-4).【点拨】本题是二次函数综合题型,主要利用了二次函数的对称轴公式,二次函数图象上点的坐标特征,锐角三角函数的定义,正确的理解题意是解题的关键.15.8 3【解析】【分析】根据勾股定理求出OC=2,AC=3,再由tan∠COP=tan∠CAO,求出PC=43,进而求出P点坐标(2,43),即可求解;【详解】解:∵点B与点C关于原点对称,∴BC=2OC,在Rt△ABC中,AB2=AC2+BC2,∵AB=5,∴25=AC2+4OC2,在Rt△AOC中,AO2=AC2+OC2,∵AO∴13=AC2+OC2,∴OC=2,AC=3,∵∠COP=∠CAO,∴tan∠COP=tan∠CAO,∴2 23 PC,∴PC =43,∴P (2,43),∴k =83,故答案为83.【点拨】本题考查反比例函数的图象及性质,直角三角形勾股定理,三角函数值;熟练掌握直角三角形的边角关系是解题的关键.16.【解析】【详解】分析:过点E 作EM ⊥y 轴于点M ,过点D 作DF ⊥x 轴于点F ,然后求出OA 与OB 的长度,即可求出∠OAB 的正弦值与余弦值,再设C(x ,y),从而可表示出AD 与BE 的长度,根据AD·BE=4列出即可求出k 的值.详解:过点E 作EM ⊥y 轴于点M ,过点D 作DF ⊥x 轴于点F ,,∴点B 的坐标为(0,-8),点A 的坐标为0),∴OB=8,,由勾股定理可知: ∴sin ∠OAB=OB AB =,cos ∠OAB=12,设C(x ,y), ∴DF=-y ,ME=x , sin ∠OAB=DF AD ,∴AD=y ,∵cos ∠OAB=cos ∠MEB=ME Be ,∴BE=2x ,∵AD·BE=4,∴y ×2x=4,∴xy= 即k=点睛:本题主要考查的是三角函数的应用以及反比例函数的性质,综合性比较强,难度较大.解决这个问题的关键就是将AD 和BE 用点C 的坐标表示出来.17【解析】【详解】如图,过点P 作PH ⊥OA 于点H ,∵点P (a ,a )是反比例函数16y x=在第一象限内的图象上的一个点,∴16=a 2,且a >0,解得,a=4. ∴PH=OH=4.∵△PAB 是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得∴OA=4﹣∴S △POA =12OA•PH=12.考点:1.反比例函数系数k 的几何意义;2.等边三角形的性质;3.锐角三角函数定义;1.特殊角的三角函数值.18.y =-12x.【解析】【详解】解:过E 点作EF ⊥OC 于F由条件可知:OE=OA=5,EF OF =tan ∠BOC=BC OC =5203=34所以EF=3,OF=4则E 点坐标为(-4,3)设反比例函数的解析式是y=k x 则有k=-4×3=-12∴反比例函数的解析式是y=12x -19.①②③④【解析】【详解】试题分析:过点M 作MN ⊥AB 于点N ,交⊙M 于点D ,则AN=BN ,∵抛物线y=13x 2与x 轴交于A ,B 两点,与y 轴交于点C ,∴A ,B 0),(0),点C 的坐标为(0,3),∴OC=3,∴tan ∠OAC=OC OA =∴①正确,∠CAO=60°,∵点M 的坐标为(1),∴MN=1,∵tan ∠MAN=MN AN ==,∴∠MAN=30°,∴MA ⊥AC ,∴直线AC 是⊙M 的切线,∴②正确,∵⊙M 的半径为2,∴DN=1,∴D点的坐标为(-1),∵抛物线y=13x 2的顶点坐标为(-1),∴⊙M 过抛物线的顶点,∴③正确,∵∠ACO=30°,∴∵MA ⊥AC ,∴4==,∴点C 到⊙M 的最远距离为4+2=6,∴④正确,∵∠AOC=90°,∠AMC≠90°,∴△AOC 与△AMC 关于直线AC 不对称,∴⑤错误,故答案为①②③④.考点:二次函数综合题.20.(1)24;(2)M 点的坐标为(8,3)【解析】【分析】(1)根据交点坐标的意义,求得点P 的横坐标,利用k =xy 计算m 即可;(2)利用分类思想,根据正切的定义,建立等式求解即可.【详解】解:(1)∵点P 纵坐标为4,∴1412x =+,解得6x =,(6,4)P ∴∴4=6m ,∴24m =.(2)∵1tan 2PMD ∠=,∴12PD PM =,设(0)PD t t =>,则2DM t =,当M 点在P 点右侧,∴M 点的坐标为(62,4)t t +-,∴(6+2t )(4-t )=24,解得:11t =,20t =(舍去),当11t =时,(8,3)M ,∴M 点的坐标为(8,3),当M 点在P 点的左侧,∴M 点的坐标为(62,4)t t -+,∴(6-2t )(4+t )=24,解得:10t =,21t =-,均舍去.综上,M 点的坐标为(8,3).【点拨】本题考查了一次函数与反比例函数的交点问题,反比例函数解析式的确定,三角函数,一元二次方程的解法,熟练掌握函数图像交点的意义,灵活运用三角函数的定义,构造一元二次方程并准确解答是解题的关键.21.(1)y =x 2+2x ﹣3;(2)存在,(1,﹣2)或(﹣5,﹣8);(3)M (﹣1﹣2),N (﹣1,﹣2)或M '(﹣12),N '(﹣,﹣2).【解析】【分析】(1)23(3)(1)y ax bx a x x =+-=+-,即可求解;(2)分点P (P ′)在点C 的右侧、点P 在点C 的左侧两种情况,分别求解即可;(3)设()()21,,,23M m N n n n -+-,根据MN AC l l ⊥,可求出:3AC l y x =--,进而可得结论.【详解】解:(1)根据二次函数交点式为()()()120=--≠y a x x x x a ,抛物线过A (﹣3,0),B (1,0)两点,∴设()()2331y ax bx a x x =+-=+-,∵x =0时,y =ax 2+bx ﹣3=-3,∴将()0,3-代入()()31y a x x =+-∴﹣3a =﹣3,∴a =1,故抛物线的表达式为:y =x 2+2x ﹣3.(2)由抛物线的表达式知,点C 、D 的坐标分别为(0,﹣3)、(﹣1,﹣4),由点C 、D 的坐标知,直线CD 的表达式为:y =x ﹣3①,1tan 3BCO ∠=,则cos BCO ∠=当点P (P ′)在点C 的右侧时,如图所示:∵∠P 'BC =∠BCO ,故P ′B ∥y 轴,则点P ′(1,﹣2),当点P 在点C 的左侧时,设直线PB 交y 轴于点H ,过点H 作HN ⊥BC 于点N ,∵∠P 'BC =∠BCO ,∴△BCH 为等腰三角形,则2cos 2BC CH BCO CH =⋅∠=⨯= 解得:53CH =,则433OH CH =-=,故点4(0,3H =,由点B 、H 的坐标得,直线BH 的表达式为:4433y x =-②,联立①②并解得:58x y =-⎧⎨=-⎩, 故点P 的坐标为(﹣5,﹣8),综上所述,满足条件的点P 坐标为(1,﹣2)或(﹣5,﹣8).(3)如图2中,设M (﹣1,m ),2(,23)N n n n +-,∵(3,0),(0,3)A C --,则313AC k -==-,∵MN AC l l ⊥,∴1MN k =,则22311n n m n +--=+,∴240n n m +--=,且AC 垂直平分MN ,则MN 的中点在直线AC 上,则中点坐标可得为:2123(,21n n n m n -+--+,且由A 、C 坐标可得::3AC l y x =--,则2231322n n m n +---=--,∴2320n n m +++=,联立240n n m +--=,可得:1n =或1n =,则2m =或2m =,∴N (12)--,N ′(12)--,∴M (2)--,M ′(1,2)-,综上所述,M (2)-,N (12)---或M '(1,2)-,N '(12)--.【点拨】本题是二次函数综合运用,考查了二次函数的性质,一次函数的性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.参考答案:1.B【解析】【详解】过A 作AE ⊥x 轴,过B 作BF ⊥x 轴,∵OA ⊥OB ,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO ,∵∠BFO=∠OEA=90°,∴△BFO ∽△OEA ,在Rt △AOB 中,cos ∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB :OA=:1,∴S △BFO :S △OEA =2:1,∵A 在反比例函数y=上,∴S △OEA =1,∴S △BFO =2,则k=﹣4.故选B2.D【解析】【详解】试题分析:先求得直线y=k 1x+2与y 轴交点C 的坐标为(0,2),然后根据△BOC 的面积求得BD 的长为1,然后利用∠BOC 的正切求得OD 的长为3,,从而求得点B 的坐标为(1,3),代入y=2k x求得k 2=3.故答案选D.考点:反比例函数与一次函数的交点问题.3.A【解析】【分析】首先求出当点N '落在AB 上时,t 的值,分02t <≤或23t <≤两种情形,分别求出S 的解析式,可得结论.【详解】解:如图1中,当点N '落在AB 上时,取CN 的中点T ,连接MT .CM t = ,2CN t =,CT TN =,CT TN t ∴==,ABC 是等边三角形,60C A ∴∠=∠=︒,MCT ∴ 是等边三角形,TM TC TN ∴==,90CMN ∴∠=︒,//MP AC ,60BPM A MPN ∴∠=∠=∠=︒,60BMP C ∠=∠=︒,180C CMP ∠+∠=︒,120CMP ∴∠=︒,BMP 是等边三角形,BM MP ∴=,180CMP MPN ∠+∠=︒ ,//CM PN ∴,//MP CN ,∴四边形CMPN 是平行四边形,2PM CN BM t ∴===,36t ∴=,2t ∴=,如图2中,当02t <≤时,过点M 作MK AC ⊥于K ,则sin60MK CM =⋅︒=,21(6)2S t ∴=⋅-=.如图3中,当23t <≤时,21)2S t =-,观察图象可知,选项A 符合题意,故选:A .【点拨】本题考查动点问题,等边三角形的性质,二次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.4.A【解析】【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,AC BC ==,∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴sin AE PE AP A ===,∴CE =,∴四边形CEPF 的面积为2122y x x ⎛⎫==-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())4sin 454CE PE x x ==-︒=-,∴四边形CEPF 的面积为)2214482x x x y ⎤-=-+⎥⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点拨】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.5.D【解析】【分析】如图所示,过点A 作AE ⊥x 轴于点E ,根据题意易得△AOB 为等边三角形,在旋转过程中,点A 有两次落在x 轴上,当点A 落在x 轴正半轴时,点C 落在点C′位置,利用旋转的性质和菱形的性质求解,当A 落在x 轴负半轴时,点C 落在点C′′位置,易证此时C′′与点A 重合,即可求解.【详解】解:如图所示,过点A 作AE ⊥x 轴于点E ,则tan ∠,∴∠AOE=60°,∵四边形ABCD 是菱形,∴△AOB是等边三角形,当A落在x轴正半轴时,点C落在点C′位置,此时旋转角为60°,∵∠BOC=60°,∠COF=30°,∴∠C′OF=60°-30°=30°,∵OC′=OA=4,∴OF=C'O cos∠,∠,C′F=C'Osin C'OF=2∴C′(2,--当A落在x轴负半轴时,点C落在点C′′位置,∵∠AOC=∠AOC+∠BOC=120°,∴∠A′′OC=120°,∠GOC′=30°又∵OA=OC′′,∴此时C′′点A重合,C C′′(2,,综上,点C的对应点的坐标为(2--,或(2,,故答案为:D.【点拨】本题考查菱形的性质,解直角三角形和旋转的性质,解题的关键是根据题意,分析点A的运动情况,分情况讨论.6.B【解析】【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【详解】解:因为在菱形ABOC中,∠A=60°,菱形边长为2,所以OC=2,∠COB=60°.如答图,过点C作CD⊥OB于点D,则OD=OC·cos∠COB=2×cos60°=2×1=1,CD=OC·sin∠COB=2×sin60°=2因为点C在第二象限,所以点C的坐标为(-1。

解答题三角函数应用(针对河南中考18题)

解答题三角函数应用(针对河南中考18题)

像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,
他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4 m,在A
处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结
果精确到0.1 m.参考数据:sin 37.5°≈0.61,cos 37.5°≈0.79,tan 37.5°≈0.77).
在Rt△DHE中,∠DEH=34°,



.
tan34° tan34°
∴EH=
∵EF=15,∴EH-FH=15,

-x=15.
tan34°

解得x≈30.5.
∴DC≈30.5+1.5=32.
答:拂云阁DC的高度约为32 m.
方法总结
解锐角三角函数实际应用题的一般步骤
1.正确画出平面图或截面示意图,并通过图形找出已知量和未知量.
端D的仰角为45°.已知测角仪的高度为1.5 m,测量点A,B与拂云阁DC的底部C在同
一水平线上,求拂云阁DC的高度(结果精确到1 m.参考数据:sin 34°≈0.56,cos
34°≈0.83,tan 34°≈0.67).
解:延长EF交DC于点H,由题意知,EH⊥DC.
设DH=x m,在Rt△DHF中,∠DFH=45°,∴FH=DH=x.
∴BC=
≈25,
sin53°
∴x=
∴B船到达C船处约需时间:25÷25=1(小时).
在Rt△ADC中,AC= 2x≈1.41×20=28.2,
∴A船到达C船处约需时间:28.2÷30=0.94(小时),
而0.94<1,所以C船至少要等待0.9ห้องสมุดไป่ตู้小时才能得到救援.

三角函数中考集锦带答案

三角函数中考集锦带答案

三角函数1. (2011湖南衡阳,9,3分)如图所示,河堤横断面迎水坡AB的坡比是1BC=5m,则坡面AB的长度是()A.10m B.C.15m D.【答案】A2. (2011山东东营,8,3分)河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:BC与水平宽度AC之比),则AC的长是()A.B.10米C.15米D.【答案】A3.(2011宁波市,9,3分)如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为a,那么滑梯长l为A.hsin a B.htan a C.hcos a D.h·sin a【答案】A4. (2011山东潍坊,10,3分)身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A.甲B.乙C.丙D.丁【答案】D5. (2011四川绵阳10,3)周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A 处测得她看塔顶的仰角α为45°,小丽站在B 处测得她看塔顶的仰角β为30°.她们又测出A 、B 两点的距离为30米。

假设她们的眼睛离头顶都为10cm ,则 可计算出塔高约为(结果精确到0.01,参考数据:2=1.414,3=1.73)A.36.21 米B.37. 71 米C.40. 98 米D.42.48 米 【答案】D6. (2010湖北孝感,10,3分)如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP=α,地球半径为R ,则航天飞船距离地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A.sin R α,180R πα B.sin RR α-,()90180R απ- C.sin RR α-,()90180R απ+ D. cos R R α-,()90180R απ- 【答案】B 二、填空题1. (2011山东济宁,15,3分)如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .【答案】tan tan m n αα-⋅2. (2011浙江衢州,13,4分)在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B C 、两地相距 m.【答案】2003. (2011甘肃兰州,17,4分)某水库大坝的横断面是梯形,坝内斜坡的坡度i =1坝外斜坡的坡度i =1∶1,则两个坡角的和为 。

初三三角函数的应用试题与答案

初三三角函数的应用试题与答案

姓 名学 号密封教师填写内容 考试类型 考试【 】 考查【 】 审 批绝密★启用前三角函数的应用测试时间:35分钟一、选择题1、在台风来临之前,有关部门用钢管加固树木(如图),固定点A 离地面的高度AC=m,钢管与地面所成角∠ABC=∠α,那么钢管AB 的长为( )A.mcosα B.m·sin α C.m·cos α D.msinα2、如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A.tanαtanβB.sinβsinαC.sinαsinβD.cosβcosα3、如图,要测量小河两岸相对的两点P 、A 的距离,可以在小河边取PA 的垂线PB 上一点C,测得PC=100米,∠PCA=35°,则小河宽PA 等于( )A.100sin 35°米B.100sin 55°米C.100tan 35°米D.100tan 55°米4、在东西方向的海岸线上有A,B 两个港口,甲货船从A 港口沿东北方向以5海里/小时的速度出发,同时乙货船从B 港口沿北偏西60°的方向出发,2 h 后在点P 处相遇,如图所示,则A 港口和B 港口之间的距离为( )A.10√2 海里B.(5√2+5√6)海里C.(10+5√6)海里D.20海里5、如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与底面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台的坡面CD 的坡度i=1∶0.75,坡长CD=2米,若旗杆底部到坡面CD 的水平距离BC=1米,则旗杆AB 的高度约为( ) (参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)A.12.6米B.13.1米C.14.7米D.16.3米二、填空题6、为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12√3米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tan E=3√313,则CE 为 米.7、我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C 附近捕鱼作业,已知海岛C 位于海岛A 的北偏东45°方向上,在渔船B 上测得海岛A 位于渔船B 的北偏西30°的方向上,此时海岛C 恰好位于渔船B 的正北方向的18(1+√3)n mile 处,则海岛A,C 之间的距离为 n mile.三、解答题8、如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工.从AC 上取一点B 使∠ABD=120°,BD=520 m,∠D=30°,当另一边开挖点E 离D 多远时,正好使A,C,E 三点在同一条直线上?(√3取1.732,结果取整数)横线以内不许答题9、如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500 m 的A 点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2 000 m 后到达B 点,在B 处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C 点距离海面的深度(结果保留根号).10、由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37°方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75,sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11、据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C 到公路的距离CD=200 m,检测路段的起点A 位于点C 的南偏东60°方向上,终点B 位于点C 的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A 处行驶到B 处的时间为10 s,问此车是否超过了该路段16 m/s 的限制速度?(观测点C 离地面的距离忽略不计,参考数据:√2≈1.41,√3≈1.73)参考答案一、选择题1.答案 D 在Rt △ABC 中,AC=m,∠ABC=∠α,sin ∠ABC=AC AB ,∴AB=msinα,故选D.2.答案 B 根据直角三角形中边与角的关系即可得到答案.在Rt △ABC 中,AB=ACsinα,在Rt △ADC中,AD=AC sinβ,所以AB AD =ACsinαAC sinβ=sinβsinα.3.答案 C 在Rt △PCA 中,PC=100米,∠PCA=35°,∠APC=90°,tan ∠PCA=PAPC,所以PA=PC·tan ∠PCA=100tan 35°米.4.答案 B 如图,作PC ⊥AB 于点C,∵甲货船从A 港口沿东北方向以5海里/小时的速度出发,2 h 到P 处, ∴∠PAC=45°,AP=5×2=10海里,∴PC=AC=5√2 海里, ∵乙货船从B 港口沿北偏西60°的方向出发, ∴∠PBC=30°,∴BC=√3PC=5√6 海里, ∴AB=AC+BC=(5√2+5√6)海里,故A 港口与B 港口之间的距离为(5√2+5√6)海里,故选B.5.答案 B 如图,延长AB 交ED 的延长线于M,作CJ ⊥DM 于J,则四边形BMJC 是矩形.在Rt △CJD 中,CJ DJ =10.75=43,设CJ=4k 米,DJ=3k 米,k>0,∵CD=2米,∴9k 2+16k 2=4,解得k=25, ∴BM=CJ=85米,DJ=65米,又∵BC=MJ=1米, ∴EM=MJ+DJ+DE=465米, 在Rt △AEM中,tan ∠AEM=AMEM ,∴tan 58°=AB+85465≈1.60,∴AB≈13.1米.故旗杆AB 的高度约为13.1米.故选B.横线以内不许答题二、填空题6.答案 8解析 分别过A 、D 作AF ⊥BC,DG ⊥BC,垂足分别为F 、G,如图所示.在Rt △ABF 中,AB=12米,∠B=60°,sin B=AFAB ,∴AF=AB·sin B=12×sin 60°=12×√32=6√3米, ∴DG=6√3米.在Rt △DGC 中,CD=12√3米,DG=6√3米, ∴GC=√CD 2-DG 2=18米. 在Rt △DEG中,tan E=DG GE =3√313,∴6√3GE =3√313,∴GE=26米,∴CE=GE -CG=26-18=8(米), 即CE 为8米. 7.答案 18√2解析 如图,过A 作AD ⊥BC 于D,由题意可得,∠ABC=30°,∠DAC=45°,设AC=x n mile,在Rt △ACD 中,AD=AC·cos ∠DAC=√22x n mile,则CD=√22x n mile,在Rt △ABD 中,BD=AD tan∠ABD =√62x n mile,则√22x+√62x=18(1+√3),解得x=18√2.故海岛A,C 之间的距离为18√2 n mile.三、解答题8.解析 ∵∠ABD=120°,∠D=30°,∴∠E=90°.∵在Rt △BDE 中,cos D=DEBD ,∴DE=BD·cos D=BD·cos 30°=520×√32=260√3=260×1.732≈450(m). 答:当另一边开挖点E 离D 约450 m 时,正好使A,C,E 三点在同一条直线上. 9.解析 如图,过C 作CD ⊥AB,交AB 的延长线于D,交海面于点E,设BD=x m,∵∠CBD=60°,∠CDB=90°, ∴tan ∠CBD=CDBD , ∴CD=√3x m.∵AB=2 000 m,∴AD=(x+2 000)m.∵∠CAD=45°,∴tan ∠CAD=CDAD ,∴CD=AD·tan 45°=AD, ∴√3x=x+2 000,解得x=1 000√3+1 000, ∴CD=√3×(1 000√3+1 000)=(3 000+1 000√3)m, ∴CE=CD+DE=3 000+1 000√3+500=(3 500+1 000√3)m. 答:海底黑匣子C 点距离海面的深度为(3 500+1 000√3)m. 10.解析 由题意可知,∠ACD=70°,∠BCD=37°,AC=80海里. 在Rt △ADC 中,cos ∠ACD=CD AC ,∴CD=AC·cos ∠ACD=80×cos 70°≈80×0.34=27.2(海里). 在Rt △BDC 中,tan ∠BCD=BD CD , ∴BD=CD·tan ∠BCD=27.2×tan 37°≈27.2×0.75=20.4(海里). 答:还需航行的距离BD 的长约为20.4海里. 11.解析 ∵CD=200 m,∠DCB=45°, ∴BD=CD=200 m.在Rt △ACD 中,∠DCA=60°,AD=CD·tan ∠DCA=200√3 m. ∴AB=AD -BD=200√3-200≈146 m. ∴此车的实际车速为146÷10=14.6 m/s. ∵14.6<16,∴此车没有超过该路段16 m/s 的限制速度.。

2023中考九年级数学分类讲解 -第九讲 直角三角形、锐角三角函数及其应用(含答案)(全国通用版)

2023中考九年级数学分类讲解 -第九讲  直角三角形、锐角三角函数及其应用(含答案)(全国通用版)

第九讲直角三角形、锐角三角函数及其应用专项一直角三角形知识清单1. 直角三角形的性质(1)直角三角形的两个锐角;(2)直角三角形斜边上的中线等于斜边的;(3)勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a,b,c满足;(4)直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的.2. 直角三角形的判定(1)有一个角是直角的三角形是直角三角形;(2)有两个角的三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形;(4)如果一个三角形一边上的中线等于这条边的,那么这个三角形是直角三角形.(这个结论在做填空、选择题时可直接用)3. 勾股数:能够成为的三个正整数,称为勾股数.考点例析例1 如图1,AB∥CD,CE⊥AD,垂足为E.若∠A=40°,则∠C的度数为()A.40°B.50°C.60°D.90°图1分析:根据平行线的性质,得∠D=∠A=40°,再在Rt△CED中,根据“直角三角形的两个锐角互余”即可求得∠C的度数.例2 如图2,在Rt△ABC中,∠ABC=90°,BF是AC边上的中线,DE是△ABC的中位线.若DE=6,则BF的长为()A.6 B.4 C.3 D.5图2分析:根据三角形的中位线定理可求出AC 的长,再根据“直角三角形斜边上的中线等于斜边的一半”即可求得BF 的长.例3 如图3,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8.若E ,F 是BC 边上的两个动点,以EF 为边的等边三角形EFP 的顶点P 在△ABC 的内部或边上,则等边三角形EFP 的周长的最大值为 .图3分析:当点F 与点C 重合,点P 落在AB 边上时,△EFP 的边长最长,周长也最长,根据“直角三角形中,30°角所对的直角边等于斜边的一半”可求出AC 的长,再利用三角函数,或求出AP 利用勾股定理均可求得△EFP 边长的最大值,进而得解.例4 如图4,某港口P 位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A ,B 处,且相距20海里.若甲船沿北偏西40°方向航行,则乙船沿 方向航行.图4分析:由题意,知AP =12,BP =16,AB =20,根据勾股定理的逆定理,可推出△APB 是直角三角形,且∠APB =90°,结合甲船的航行方向可推出乙船的航行方向.例5 如图5,在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形,正方形的顶点E ,F ,G ,H ,M ,N 都在同一个圆上.记该圆的面积为S 1,△ABC 的面积为S 2,则12S S 的值是( ) A .5π2 B .3π C .5π D .11π2图5分析:设Rt △ABC 的三边长为a ,b ,c ,其中c 为斜边,设⊙O 的半径为r ,根据图形的特点找出a ,b ,c,r的等量关系,用含c的式子表示S1和S2,即可求出比值.跟踪训练1.如图,△ABC中,∠ACB=90°,AC=8,BC=6,将△ADE沿DE翻折,使点A与点B重合,则CE的长为()A.198B.2 C.254D.74第1题图第2题图第3题图2.如图,已知A(8,0),C(-2,0),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B 的坐标为()A.(0,5)B.(5,0)C.(6,0)D.(0,6)3.(2021·成都)如图,图中数字代表所在正方形的面积,则A所代表的正方形的面积为.4.(2021·西宁)如图,在Rt△ABC中,∠BAC=90°,D,E分别是AB,BC的中点,连接AE,DE.若DE=92,AE=152,则点A到BC的距离是.第4题图第5题图5.如图,在▱ABCD中,点E在AD上,且EC平分∠BED.若∠EBC=30°,BE=10,则▱ABCD的面积为.6.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.第6题图第7题图7.如图,在四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4.若M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.专项二锐角三角函数知识清单1. 锐角三角函数如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边长分别为a,b,c,则∠A的正弦:sin A=ac;∠A的余弦:cos A=;∠A的正切:tan A=.∠A的正弦、余弦、正切都是∠A的锐角三角函数.2. 特殊角的三角函数值考点例析例1如图1,点A,B,C在边长为1的正方形网格格点上,下列结论错误的是()A.1sin3B=B.25sin C C.1tan2B=D.22sin sin1B C+=图1分析:利用正方形网格的特点,由勾股定理得出AB,AC,BC的长,进而利用勾股定理的逆定理推出△ABC 是直角三角形,最后根据锐角三角函数的定义对选项逐一判断即可.归纳:锐角三角函数使用的前提一定是直角三角形,并能准确地找出某个角的对边、邻边和斜边.例2 如图2,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.35B5C.45D25三角函数α30°45°60°sin αcos αtan α图2分析:根据“直角三角形斜边上的中线等于斜边的一半”,得CE =AE =BE ,进而得到∠BEC =2∠A ,连接BF ,由EF ⊥AB ,得∠BFC =2∠A ,所以∠BEC =∠BFC ,从而有∠CEF =∠CBF .根据三角形的面积公式求出AF 的长,在Rt △BCF 中,利用勾股定理求出CF ,再根据锐角三角函数的定义求解即可.归纳:一个锐角的三角函数值仅与这个锐角的大小有关,而与这个锐角在何处、在何种三角形中无关(即与三角形三边的长短无关).当一个锐角的三角函数值求解较烦琐或不易直接求得时,可转化为求与其相等的角的三角函数值.跟踪训练1.tan 30°的值等于( )A B C .1 D .22.如图,在平面直角坐标系内有一点P (3,4),连接OP ,则OP 与x 轴正方向所夹锐角α的正弦值是( )A .34B .43C .35D .45第2题图 第3题图 第4题图3.如图,在△ABC 中,O 是角平分线AD ,BE 的交点.若AB =AC =10,BC =12,则tan ∠OBD 的值是( )A .12B .2CD 4.如图,在正方形网格中,每个小正方形的边长都是1,⊙O 是△ABC 的外接圆,点A ,B ,O 在网格线的交点上,则sin ∠ACB 的值是 .专项三 解直角三角形知识清单解直角三角形的几种常见类型及解法:考点例析例1 在△ABC 中,∠ABC =90°.若AC =100,sin A =35,则AB 的长是( ) A .5003 B .5035 C .60 D .80分析:利用锐角三角函数的定义求出BC 的长,然后再利用勾股定理即可求得AB 的长.例2 如图,△ABC 底边BC 上的高为h 1,△PQR 底边QR 上的高为h 2,则有( )A .h 1=h 2B .h 1<h 2C .h 1>h 2D .以上都有可能分析:分别作出△ABC 底边BC 上的高和△PQR 底边QR 上的高,再利用锐角三角函数分别表示出h 1和h 2,即可确定其大小关系.跟踪训练1.如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD 若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D第1题图 第2题图2.如图,△ABC 的顶点B ,C 的坐标分别是(1,0),(,且∠ABC =90°,∠A =30°,则顶点A 的坐标是 .3.在△ABC 中,∠A =45°,AB =BC =5,则△ABC 的面积为 .4.在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,边角总满足关系式:sin sin sin a b c A B C ==. (1)如图①,若a =6,∠B =45°,∠C =75°,求b 的值;(2)某公园准备在园内一个锐角三角形水池ABC 中建一座小型景观桥CD (如图②所示).若CD ⊥AB ,AC =14米,AB =10米,sin ∠ACB ,求景观桥CD 的长度.① ②第4题图专项四 锐角三角函数的实际应用知识清单锐角三角函数的实际应用主要是测量物体的高度、测量两点之间的距离等,常用到下面几个概念:1. 仰角、俯角如图1,在视线与水平线所成的锐角中,视线在水平线上方的角叫做 ,视线在水平线下方的角叫做 .图1 图2 图32. 坡度、坡角如图2,坡面的铅直高度h 和水平宽度l 的比叫做坡面的坡度(或坡比),用字母i 表示;坡面与水平面的夹角α叫做坡角,i = = ,坡度越大,α越 ,坡面越 .3. 方位角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向,旋转到目标的方向所成的小于90°的角.如图3,点A位于点O的北偏东方向,点B位于点O的60°方向,点C位于点O的(或)方向.考点例析例1 无人机低空遥感技术已广泛应用于农作物监测.如图1,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135 m的A处测得试验田右侧边界N处的俯角为43°,无人机垂直下降40 m至B处,又测得试验田左侧边界M处的俯角为35°,则M,N之间的距离为(参考数据:tan 43°≈0.9,sin 43°≈0.7,cos 35°≈0.8,tan 35°≈0.7)()A.188 m B.269 m C.286 m D.312 m图1分析:在Rt△AON中,由AO的长和∠N的度数求出ON的长,再在Rt△BOM中,由BO的长和∠M的度数求出MO的长,结合MN=MO+ON即可求得M,N之间的距离.例2 某商场准备改善原有楼梯的安全性能,把坡角由37°减至30°.已知原楼梯长为5米,调整后的楼梯会加长(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75)()A.6米B.3米C.2米D.1米分析:画出示意图如图2所示,在Rt△BAD中,由AB=5,∠BAD=37°,求出BD的长,在Rt△BCD中,根据“直角三角形中,30°角所对的直角边等于斜边的一半”求出BC的长,进而得解.图2例3 如图3,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为海里.(结果保留根号)图3分析:过点P作PC⊥AB于点C,在Rt△APC中,由P A的长和∠A的度数求出PC的长,再在Rt△BPC 中,由PC的长和∠B的度数即可求得PB的长.跟踪训练1.如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E处,即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为()A.15sin 32°B.15tan 64°C.15sin 64°D.15tan 32°第1题图第2题图第3题图2.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A 点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A,B,C,D,E在同一平面内,斜坡AD的坡度i=1∶2.4.根据小颖的测量数据,计算筑物BC)()A.136.6米B.86.7米C.186.7米D.86.6米3.某景区A,B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C处才能到达.观测得景点B在景点A的北偏东30°方向,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.(1)求景点B和C处之间的距离;(结果保留根号)(2)当地政府为了便捷游客游览,打算修建一条从景点A到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B)专项五锐角三角函数中的建模思想知识清单根据实际问题建立数学模型,再通过解决数学问题达到解决实际问题的目的,这种思想被称为建模思想.考点例析例一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B,C,D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32 cm,∠BDE=75°,其中一段支撑杆CD=84 cm,另一段支撑杆DE=70 cm.求支撑杆上的点E到水平地面的距离EF是多少?(结果保留整数;参考数据:sin 15°≈0.26,cos 15°≈0.97,tan 15°≈0.27)分析:过点D作DM⊥EF于点M,DN⊥BA交BA的延长线于点N,解Rt△ABC求出BC的长,再解Rt△BDN 求出DN的长,易得四边形MFND是矩形,利用矩形的性质可得MF=DN及∠BDM的度数,进而求得∠EDM,最后解Rt△EMD求出EM的长,进而得解.解:归纳:解直角三角形的前提是在直角三角形中进行,对于非直角三角形问题,要注意观察图形特点,作恰当的辅助线,将其转化为直角三角形求解.跟踪训练1.如图①是一台手机支架,图②是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8 cm,AB =16 cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,点C到AE的距离为cm.(结果精确到0.1 cm;参考数据:sin 70°≈0.94)①②①②③第1题图第2题图2.某种落地灯如图①所示,AB为立杆,其高为84 cm;BC为支杆,可绕点B旋转,其中BC长为54 cm;DE为悬杆,滑动悬杆可调节CD的长度.已知支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图②,当支杆BC与地面垂直,且CD的长为50 cm时,求灯泡悬挂点D距离地面的高度;(2)在图②所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图③),此时测得灯泡悬挂点D到地面的距离为90 cm,求CD的长.(结果精确到1 cm;参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)参考答案专项一直角三角形例1 B 例2 A 例3例4 北偏东50°例5 C 解析:如图,取AB的中点O,AC的中点D,连接OC,OD,OE,OG.因为圆心在线段EF和MN的垂直平分线上,所以点O为圆心.设AC=a,BC=b,AB=c,则a2+b2=c2.在Rt△ABC中,O为AB的中点,所以OA=OB=OC.又D为AC的中点,所以OD∥BC.所以OD⊥AC.因为OG,OE为⊙O的半径,所以OD2+DG2=OB2+BE2,即2222222a cb cb⎛⎫⎛⎫⎛⎫++=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.整理,得a=b.所以215π4Sc=,224Sc=.所以12SS=5π.1.D 2.D 3.100 4.3655.50 6.20 7.2专项二锐角三角函数例1 A例2 A 解析:连接BF.在Rt△ABC中,CE是斜边AB上的中线,所以CE=AE=BE,所以∠A=∠ACE.所以∠BEC=2∠A.因为EF⊥AB,所以EF是AB的垂直平分线.所以S△BEF=S△AEF=5,∠FBA=∠A.所以∠BFC=2∠A.所以∠BEC=∠BFC.又∠BEF=∠BCF=90°,所以∠CEF=∠CBF.因为S △AFB =2S △AEF =10,所以12AF ·BC =10.因为BC =4,所以AF =BF =5.所以CF 3. 所以sin ∠CEF =sin ∠CBF =35CF BF =.1.A 2.D 3.A 4 专项三 解直角三角形例1 D 例2 A1.C 2.( 3.2或144.解:(1)因为∠B =45°,∠C =75°,所以∠A =180°-∠B -∠C =60°.所以6sin 60sin 45b =︒︒,解得b =(2)因为sin sin AB AC ACB B =∠14sin B =,解得sin B .所以∠B =60°.所以tan B =CD BD =BD CD .在Rt △ACD 中,AC 2=CD 2+AD 2,即196=CD 2+210⎛⎫ ⎪ ⎪⎝⎭,解得CD =CD =-(舍去). 所以景观桥CD 的长度为专项四 锐角三角函数的实际应用例1 C 例2 D 例3 1.C 2.A3.解:(1)过点C 作CD ⊥AB 于点D .在Rt △ACD 中,∠A =30°,AC =600,所以CD =12AC =300.在Rt △BCD 中,∠B =75°-∠A =45°,所以BC =sin 45CD ︒=.答:景点B 和C 处之间的距离为m .(2)在Rt △ACD 中,∠A =30°,AC =600,所以AD =AC ·cos 30°=.在Rt △BCD 中,∠B =45°,所以BD =CD =300.所以AB =AD +BD =.所以AC +BC -AB =600+-(300+≈205(m ).答:大桥修建后,从景点A 到景点B 比原来少走约205 m .专项五 锐角三角函数中的建模思想例 过点D 作DM ⊥EF 于点M ,DN ⊥BA 交BA 的延长线于点N .在Rt △ABC 中,∠ABC =60°,AB =32,所以BC =AB ·cos 60°=16.因为CD =84,所以BD =BC +CD =16+84=100.在Rt △BDN 中,DN =BD ·sin 60°==.易得四边形MFND 是矩形,所以MF =DN =,MD ∥FN .所以∠BDM =∠ABC =60°.因为∠BDE =75°,所以∠EDM =∠BDE -∠BDM =75°-60°=15°.在Rt △EMD 中,DE =70,所以EM =DE ·sin 15°≈70×0.26=18.2.所以EF =EM +MF =18.2+≈105.答:支撑杆上的点E 到水平地面的距离EF 约是105 cm .1.6.32.解:(1)如图①,过点D 作DF ⊥BC 于点F .在Rt △DCF 中,CD =50,∠FCD =60°,所以FC =CD ·cos 60°=25.所以F A =AB +BC -FC =84+54-25=113(cm ).答:灯泡悬挂点D 距离地面的高度为113 cm .(2)如图②,过点C 作CG 垂直于地面于点G ,过点B 作BN ⊥CG 于点N ,过点D 作DM ⊥CG 于点M . 在Rt △BCN 中,BC =54,∠BCN =20°,所以CN =BC ·cos 20°≈54×0.94=50.76.所以CM =CN +NG -MG =CN +AB -MG =50.76+84-90=44.76.在Rt △DCM 中,∠DCM =∠BCD -∠BCN =40°,所以CD =cos40CM ≈44.760.77≈58(cm ). 答:CD 的长约为58 cm .① ②第2题图。

中考分类复习:三角函数应用题: 历年中考解答题

中考分类复习:三角函数应用题: 历年中考解答题

中考分类复习:三角函数应用题:历年中考解答题1、(2013•无锡6分)21、如图,在Rt△ABC中,∠C=90°,AB=10,sin∠A=,求BC的长和tan∠B的值.2、(2015•南通8分)20、如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).3、(2014•南通8分)21、如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?4、(2014•苏州3分)9、如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()5、(2014年江苏盐城)23.(10分)盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB.小明在D处用高1.5m的测角仪CD,测得电视塔顶端A的仰角为30°,然后向电视塔前进224m到达E处,又测得电视塔顶端A的仰角为60°.求电视塔的高度AB.(取1.73,结果精确到0.1m)6、(2014•淮安)24.(8分)为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.7、(2013•泰州)22.(10分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD 底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)8、(2013•镇江)23.(6分)如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)9、(5分)25、如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡角(即∠ABC)的度数等于▲度;(2)求A、B两点间的距离(结果精确到0.1).10、(2013•苏州、7分)25、如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)11、(2012年扬州)25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C 处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73).12、(2013•宿迁8分)21、某景区为方便游客参观,在每个景点均设置两条通道,即楼梯和无障碍通道.如图,已知在某景点P处,供游客上下的楼梯倾斜角为30°(即∠PBA=30°),长度为4m(即PB=4m),无障碍通道PA的倾斜角为15°(即∠PAB=15°).求无障碍通道的长度.(结果精确到0.1m,参考数据:sin15°≈0.21,cos15°≈0.98)13、(2012江苏连云港10分)24、已知B港口位于A观测点北偏东53.2°方向,且其到A 观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50≈1.4114、(2015盐城、10分)25、如图所示,一幢楼房AB背后有一台阶CD,台阶每层高2.0米,且AC=2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(3取73.1)(1)求楼房的高度约为多少米?(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.第25题图DBAC15、(2015宿迁)22、(本题满分6分)如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考分类复习:三角函数应用题:历年中考解答题
1、(2013•无锡6分)21、如图,在Rt△ABC中,∠C=90°,AB=10,sin∠A=,求BC的长和tan∠B的值.
2、(2015•南通8分)20、如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A
处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).
3、(2014•南通8分)21、如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?
4、(2014•苏州3分)9、如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()
5、(2014年江苏盐城)23.(10分)盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB.小明在D处用高1.5m的测角仪CD,测得电视塔顶端A的仰角为30°,然后向电视塔前进224m到达E处,又测得电视塔顶端A的仰角为60°.求电视塔的高度AB.(取1.73,结果精确到0.1m)
6、(2014•淮安)24.(8分)为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)
参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.
7、(2013•泰州)22.(10分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD 底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,
tan36°52′≈0.75)
8、(2013•镇江)23.(6分)如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)
9、(5分)25、如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡
上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:3,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度数等于▲度;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:3≈1.732).
10、(2013•苏州、7分)25、如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.
(1)求点P到海岸线l的距离;
(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)
11、(2012年扬州)25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20
海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C 处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73).
12、(2013•宿迁8分)21、某景区为方便游客参观,在每个景点均设置两条通道,即楼梯和无障碍通道.如图,已知在某景点P处,供游客上下的楼梯倾斜角为30°(即∠PBA=30°),长度为4m(即PB=4m),无障碍通道PA的倾斜角为15°(即∠PAB=15°).求无障碍通道的长度.(结果精确到0.1m,参考数据:sin15°≈0.21,cos15°≈0.98)
13、(2012江苏连云港10分)24、已知B 港口位于A 观测点北偏东53.2°方向,且其到A 观测点正北方向的距离BD 的长为16km ,一艘货轮从B 港口以40km /h 的速度沿如图所示的BC 方向航行,15min 后达到C 处,现测得C 处位于A 观测点北偏东79.8°方向,求此时货轮与A 观测点之间的距离AC 的长(精确到0.1km ).(参考数据:sin 53.2°≈0.80,cos 53.2°≈0.60,sin 79.8°≈0.98,cos 79.8°≈0.18,tan 26.6°≈0.50,2≈1.41,5≈2.24)
14、(2015盐城、10分)
25、如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(3取73.1)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由. αN 第25题图D M
B
A C
15、(2015宿迁)22、(本题满分6分)
如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°。

已知旗杆DE的高度为12米,试求楼房CB的高度。

(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)
16、(2014•泰州)22.(10分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).
(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)。

相关文档
最新文档