矩阵分析---第五章 向量与矩阵的范数

合集下载

教材第五章矩阵分析

教材第五章矩阵分析

第五章 矩阵分析本章将介绍矩阵微积分的一些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,首先简要介绍向量与矩阵范数的有关知识.§5.1 向量与矩阵的范数从计算数学的角度看,在研究计算方法的收敛性和稳定性问题时,范数起到了十分重要的作用.一、向量的范数定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的一个实值函数,如果该函数关系还满足如下条件1)非负性 对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有x =0;2)齐次性 对V 中任意向量x 及F 中任意常数k ,有;x k kx = 3)三角不等式 对任意V y x ∈,,有y x y x +≤+,则称此函数x (有时为强调函数关系而表示为⋅) 为V 上的一种向量范数.例1 对n C 中向量()T n x x x x ,,,21 =,定义222212nx x x x+++==H x x ,则2x 为n C 上的一种向量范数[i x 表示复数i x 的模],称为2-范数.证 首先,2n x C 是上的实值函数,并且满足1)非负性 当0x ≠时,0x >;当0x =时,0x =; 2)齐次性 对任意k C ∈及n x C ∈,有2221222||||||||n kx kx kx kx k x =+++= ;3)三角不等式 对任意复向量1212(,,,),(,,,)T T n n x x x x y y y y == ,有222221122||||||||n n x y x y x y x y +=++++++2221122()()()n n x y x y x y ≤++++++22111||2||||||nnni i i i i i i x x y y ====++∑∑∑ (由Cauchy-ВуНЯКОВСКИЙ不等式)222222222||||2||||||||||||(||||||||),x x y y x y ≤++=+因此 222||||||||||||x y x y +≤+. 所以2||||x 确为n C 上的一种向量范数. 例2 对n C [或n R ]上向量12(,,,)T n x x x x = 定义 112||||||||||n x x x x =+++ , 1m a x i i nxx ∞≤≤=,则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数.证 仅对后者进行证明. 1)非负性 当0x ≠时,max 0i ixx ∞=>,又显然有00∞=;2)齐次性 对任意向量()T n x x x x ,,,21 =及复数k , m a x m a x ;i i iikxkx kx k x∞∞===3)三角不等式 对任意向量1212(,,,),(,,,),T T n n x x x x y y y y ==()i i ii i iy x y x yx +≤+=+∞max maxi ii iy x m a x m a x+≤ =∞∞+y x .综上可知∞x 确为向量范数.上两例中的∞x x x ,,21是常用的三种向量范数.一般地,对于任何不小于1的正数p ,向量()T n x x x x ,,,21 =的函数pni p i px x11⎪⎭⎫ ⎝⎛=∑= 也构成向量范数,称为向量的p -范数.注:(1)当1p =时,1pxx =;(2)当2p =时,2x 为2-范数,它是酉空间范数;当i x 为实数时,12221()ni i x x ==∑为欧氏空间范数.由p -范数的存在,可知向量的范数有无穷多种,而且向量的范数并不仅限于p -范数.在验证向量的范数定义中,三角不等式的过程中常涉及到两个著名的不等式,即1、Hölder 不等式 设正实数,p q 满足111,p q+=则对任意的,,n x y C ∈有 11111()()nnnp q pqi ii i i i i x yx y ===≤∑∑∑.2、Minkowski 不等式 对任意实数1p ≥,及,,n x y C ∈有111111()()()nnnpp ppppi i i i i i i x y x y ===+≤+∑∑∑.例3 设()Tx 1,,1,1 =为n 维向量,则1,,21===∞xn x n x .各种范数值差距很大.但是,各种范数之间却存在着内在的制约关系,称为范数的等价性.定理1 设βα⋅⋅,为有限维线性空间V 的任意两种向量范数(它们不限于p -范数),则存在正的常数12,C C ,使对一切向量x ,恒有βαβx C xxC 21≤≤. (1)证 如果范数x α和x β都与一固定范数,譬如2-范数2x 满足式(1)的关系,则这两种范数之间也存在式(1)的关系,这是因为若存在正常数12,C C ''和12,C C '''',使 1222122,C x x C x C xx C x αββ''≤≤''''≤≤成立,则显然有1122||||||||||||C C x x C C x βαβ''''''≤≤. 令111222,C C C C C C ''''''==,则得式(1),因此只要对2β=证明式(1)成立即可.设V 是n 维的,它的一个基是12,,,n x x x ,于是V 中的任意向量x 可表示为1122n n x x x x ξξξ=+++ .从而,1122n n x x x x ααξξξ=+++ 可视为n 个变量12,,,n ξξξ 的函数,记为12(,,,)n x αϕξξξ= ,易证12(,,,)n ϕξξξ 是连续函数,事实上,若令1122n n x x x x V ξξξ''''=+++∈ ,则 12(,,,)n x αϕξξξ''''= . 1212(,,,)(,,,)n n x x x x αααϕξξξϕξξξ'''''-=-≤-11111()()nn n nn n x x x x αααξξξξξξξξ''''=-++-≤-++- . 由于ix α(1,2,,)i n = 是常数,因此i ξ'与i ξ充分接近时,12(,,,)n ϕξξξ''' 就与12(,,,)n ϕξξξ 充分接近,所以12(,,,)n ϕξξξ 是连续函数.所以在有界闭集{}2221212(,,,)1n S ξξξξξξ=+++= 上,函数12(,,,)n ϕξξξ 可达到最大值2C 及最小值1C .因为在S 中,i ξ不能全为零,所以10C >.记向量1212222nn y x x x xxxξξξ=+++,则其坐标分量满足222122221nxxxξξξ+++= ,因此,y S ∈.从而有11122220,,n C yC x x x αξξξϕ⎛⎫<≤=≤ ⎪ ⎪⎝⎭.但2,xy x =故122x C C x α≤≤.即 1222C x x C x α≤≤.二、矩阵的范数定义2 设V 是数域F 上所有n m ⨯矩阵的集合,A 是定义在V 上的一个实值函数,如果该函数关系还满足如下条件:对V 中任意矩阵A 、B 及F 中任意常数k 总有1)非负性 0≥A ,并且仅当0=A 时,才有0=A ;2)齐次性 A k kA =;3)三角不等式 B A B A +≤+, 则称()⋅A是V 上的一种矩阵范数.例4 对n m C ⨯(或n m R ⨯)上的矩阵()ij A a =定义∑∑===m i nj ij M a A111,∑∑===mi nj ijM a A1122,11max ij M i m j nAa ∞≤≤≤≤=,则∞⋅⋅⋅M M M ,,21都是n m C ⨯(或n m R ⨯)上的矩阵范数.实用中涉及较多的是方阵的范数,即m n =的情形.定义 3 设F 是数域,⋅是n n F ⨯上的方阵范数.如果对任意的,n n A B F ⨯∈,总有AB A B ≤⋅,则说方阵范数⋅具有乘法相容性.注意 在某些教科书上,往往把乘法相容性直接纳入方阵范数的定义中作为第4个条件,在读书时,只要注意到各自定义的内涵就可以了.例5 对n n C ⨯上的矩阵][ij a A =,定义ij nj i a n A ≤≤⋅=,1max ,则⋅是一种矩阵范数,并且具备乘法相容性.证 非负性与齐次性显然成立,另两条证明如下. 三角不等式ij ij b a n B A +⋅=+max()m a x m a x i j i j n a b ≤+B A +=; 乘法相容性⎪⎭⎫⎝⎛⋅≤⋅=∑∑==n k kj ik nk kj ik b a n b a n AB 11max max()()B A b n a n ij ij =⋅≤max max , 证得A 为矩阵范数且具有乘法相容性.并不是所有的方阵范数都具有乘法相容性.例如对于22⨯R 上的方阵范数.M ∞就不具备相容性条件.此时ij j i M a A2,1max ≤≤=∞.取1110,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则有1==∞∞M M BA,而2M M M ABAB∞∞∞=>.定义4 如果n 阶矩阵A 的范数A 与n 维向量x 的范数x ,使对任意n 阶矩阵A 及任意n 维向量x 均有x AAx ≤,则称矩阵范数A 与向量范数x 是相容的.定理2 设x 是某种向量范数,对n 阶矩阵A 定义Ax xAx A x x 1max max=≠== (2)则A 为方阵范数,称为由向量范数x 导出的矩阵范数,而且它具有乘法相容性并且与向量范数x 相容.证 首先可证,由(2)式定义的函数关系||||A 满足与向量范数||||x 的相容性.对于任意n 阶矩阵A 及n 维向量x ,当0x ≠时,有0||||||||max ||||||||||||y Ax Ay A x y ≠≤=, 即 ||||||||||||;Ax A x ≤ (3) 而当0x =时,||||0||||||||Ax A x ==,于是总有(3)式成立.容易验证||||A 满足范数定义中的非负性、齐次性及三角不等式三个条件,因而A 是一种方阵范数.并且,对任意n 阶矩阵,A B ,利用(2)式和(3)式可得00maxmax max x x x A Bx ABx Bx AB A A B x x x≠≠≠=≤==.即说矩阵范数A 具备乘法相容性.一般地,把由向量p -范数p x 导出的矩阵范数记作p A .下面看常用的三种矩阵范数例6 证明对n 阶复矩阵[]i j A a =,有 1)111max nij j ni A a ≤≤==∑,称为A 的列和范数.2)11max nij i nj A a ∞≤≤==∑,称为A 的行和范数.证 1)设111max n nij ik j ni i w a a ≤≤====∑∑.若A 按列分块为12(,,,)n A ααα=则111max k j j nw αα≤≤==.对任意n 维向量12(,,)T n x x x x = ,有112211221111112111()max .n n n nn jj nAx x x x x x x x x x x w ααααααα≤≤+++≤+++≤+++≤于是,对任意非零向量x 有11Ax w x ≤. 以下证明存在非零向量k e 使11k kAe w e =.事实上,设k e 是第k 个分量为1而其余分量全为0的向量,则1k e =1,且n=11k ik i Ae a w ==∑,即11k kAe w e =.2)的证明与1)相仿,留给读者去完成. 例7 证明对n 阶复矩阵A ,有21max i i nA σ≤≤=,这里()n i i ,,2,1 =σ是A 的奇异值,称此范数为A 的谱范数.证 设H A A 的全部特征根为12,,n λλλ .不妨设11max i i nλλ≤≤=.于是111max i i nσλσ≤≤==.因为H A A 为H -矩阵,故有酉矩阵U ,使得12n (,),,H H U A AU diag λλλ=Λ= .如设12(,,,)n U u u u = 则i u 是H A A 相应于特征根i λ的单位特征向量,即有,H i i i A A u u λ= 21iu =.对任意满足2||||1x =的复向量12(,,,)T n x x x x = ,有22||||()()H HAx Ax Ax x ==H U U x Λ.令H y U x =,则222222||||||||||||1H y U x x ===,说明y 亦为单位向量.若设12(,,,)T n y y y y = ,则2221||||||1nii y y ===∑,于是22211||||||n Hi i i Ax y y y λλ==Λ=≤∑.即有12Ax σ≤.由x 的任意性,便得21221max x A Ax σ==≤ .特别取1x u =,则有211111112H H H Au u A Au u u λλ===,即112Au σ=.这说明2Ax 在单位球面{}21,n x x x C =∈上可取到最大值1σ,从而证明了21221max x A Ax σ===.各种矩阵范数之间也具有范数的等价性定理3 设,a A A β是任意两种矩阵范数,则有正实数12,,C C 使对一切矩阵A 恒有12a C AA C A ββ≤≤.§5.2 向量与矩阵序列的收敛性在这一节里,我们将把数列极限的概念,扩展到向量序列与矩阵序列上去.可数多个向量(矩阵)按顺序成一列,就成为一个向量(矩阵)序列.例如()()(12(,,,)k k k T k n x x x x = ,1,2,3,k = 是一个n 维向量序列,记为{}k x ,诸k x 的相应分量则形成数列{}k i x .定义5 设有向量序列()()()12{}:(,,,)k k k Tk k n x x x x x = .如果对1,2,,i n = , 数列(){}k i x 均收敛且有()lim k i i k x x →∞=,则说向量序列{}k x 收敛.如记12(,,,)T n x x x x = ,则称x 为向量序列{}k x 的极限,记为lim k k x x →∞=,或简记为k x x →.如果向量序列{}k x 不收敛,则称为发散.类似于数列的收敛性质,读者不难证明向量序列的收敛具有如下性质.设{},{}k k x y 是n C 中两个向量序列,,a b 是复常数,n ,m A C ⨯∈如果l i m ,l i m k k k k x x y y →∞→∞==,则1lim();2lim .k k k k k ax by ax by Ax Ax →∞→∞>+=+>=定理4 对向量序列{}k x ,x x k =∞→k lim 的充分必要条件是0lim =-∞→x x k k ,其中⋅是任意一种向量范数.证 1)先对向量范数i ni x x≤≤∞=1max 证明定理成立.i k i k k k x x x x =⇔=∞→∞→)(lim lim ,n i ,...,2,1=;,0lim )(=-⇔∞→i k i k x x n i ,...,2,1=;0max lim )(1=-⇔≤≤∞→i k i ni k x x ;0lim =-⇔∞∞→xx k k .2)由向量范数等价性,对任一种向量范数⋅,有正实数21,b b ,使∞∞-≤-≤-x x b x x x x b k k k 21.令∞→k 取极限即知lim 0lim 0k k k k x x x x∞→∞→∞-=⇔-=.于是定理对任一种向量范数都成立.根据上述定义,向量序列有极限的根本之处在于各分量形成的数列都有极限.由于m n C ⨯中矩阵可以看作一个mn 维向量,其收敛性可以和mn C 中的向量一样考虑.因此,我们可以用矩阵各个元素序列的同时收敛来规定矩阵序列的收敛性.定义6 设有矩阵序列{}n m k ij k k a A A ⨯=][:)(,如果对任何,(1,i j i m ≤≤1j ≤)n ≤均有ij k ij k a a =∞→)(lim , 则说矩阵序列{}k A 收敛,如令n m ij a A ⨯=][,又称A 为{}k A 的极限.记为,lim A A k k =∞→或A A k →.矩阵序列不收敛时称为发散.讨论矩阵序列极限的性质,以下设所涉及的矩阵为n 阶矩阵. 1) 若A A k k =∞→lim ,{}k a 为数列且a a k k =∞→lim ,则()aA A a k k k =∞→lim .特别,当a 为常数时,()k k k k A a aA ∞→∞→=lim lim .2) 若A A k k =∞→lim ,B B k k =∞→lim ,则()B A B A k k k ±=±∞→lim .3) 若A A k k =∞→lim ,B B k k =∞→lim ,则()AB B A k k k =∞→lim .4) 若A A k k =∞→lim 且诸k A 及A 均可逆,则{}1-k A 收敛,并且11lim --∞→=A A k k .容易证明性质1)-3)成立,对性质4)注意到行列式k A 值定义的和式无非是k A 中元素()(,1,2,,)k ij a i j n = 的乘法与加法之组合,再由lim k →∞(),k ij ij a a =即可知lim k k A A →∞=.用()k ij A 表示k A 中(,)i j 元素的代数余子式,用ij A 表示A 中(,i j )元素的代数余子式,便有()lim k ij ij k A A →∞=.进而 **lim k k A A →∞=.这里*k A 是k A 的伴随矩阵,*A 是A 的伴随矩阵.又*1kkk A A A -=, 所以*11lim kk A A A A--→∞==. 定理 5 对于矩阵序列{}k A ,lim k k A A →∞=的充分必要条件是对任何一种矩阵范数⋅,有lim 0k k A A →∞-=.定理5的证明与定理4类似,由于矩阵范数的等价性,只需证明对矩阵范数,max ij i jA a =定理成立,其方法也与定理4的证明一致,这里从略.以下主要介绍范数在特征值估计方面的应用.定义7 设n n A C ⨯∈,1,,,,j n λλλ 为A 的n 个特征值,称()max j jA ρλ=为A 的谱半径.有了谱半径的概念,可以对矩阵范数作如下的初步估计. 定理6 设n n A C ⨯∈,则对n n C ⨯上的任一矩阵范数⋅,皆有()A A ρ≤.证 设λ是A 的特征值,x 为A 的属于特征值λ的特征向量,故0x ≠,所以0x ≠.另设v ⋅是n C 上与矩阵范数⋅相容的向量范数,由Ax x λ=,应有v v Ax x λ=,而v v Ax A x ≤,于是有v v x A x λ≤,同除0v x ≠,有A λ≤.故max jA λ≤,于是()A A ρ≤.定理7 设n n A C ⨯∈,lim 0k k A →∞=的充分必要条件是()1A ρ<.证 对n n A C ⨯∈,由第三章定理15知,存在n 阶的逆矩阵P 使得112(,,,)s P AP J diag J J J -== ,其中10110i ii ii i i n n J λλλλ⨯⎛⎫ ⎪⎪⎪= ⎪ ⎪⎪⎝⎭, 则112(,,)k k k k k s P A P J diag J J J -== .因此lim 0lim 0lim 0(1,2,,)k k k i k k k A J J i s →∞→∞→∞=⇔=⇔== .而(1)11()()()()2(1)()()1()2()()i n k i k i k i k i i k i k i ki k i k i k i f f f f n f f J f f f λλλλλλλλλ-⎛⎫''' ⎪- ⎪' ⎪ ⎪⎪= ⎪'' ⎪ ⎪' ⎪⎪⎝⎭!!!,其中()k k f λλ=,因为对任一多项式(),g λ当k →∞时,()01k i i g λλ→⇔<.而1(1,2,,)()1i i s A λρ<=⇔< .由定理6和定理7即得如下结果.定理8 设n n A C ⨯∈,如果存在n n C ⨯上的一种相容矩阵范数.使1A <,则lim k →∞0k A =.定理9 设λ是n 阶矩阵A 的任一特征根,那么对任一种矩阵范数⋅,都有A λ≤.证 设,A a =则0a ≥,对任意给定的0ε>,令AB a ε=+.于是,若设A 的全部特征根为12,,,,n λλλ 则B 的全部特征根恰是12,,,na a a λλλεεε+++ .又11aB A a a εε==<++.由定理8知0k B →,再由定理6知1,1,2,,,ii n a λε<=+ 即,1,2,,.i a i n λε<+= 由ε的任意性,令0ε→取极限,便有,1,2,,.i a i n λ≤= 即知对任一特征根λ,有a λ≤.§5.3 矩阵的导数本节讨论三种导数:矩阵对变量的导数、函数对矩阵的导数、矩阵对矩阵的导数.一、函数矩阵对变量的导数如果矩阵中诸元素都是某实变量x 的函数,则称这种矩阵为函数矩阵.它的一般形式是()⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a x A mn m m n n , 其中()()1,2,,;1,2,,ij a x i m j n == 都是实变量x 的函数.定义8 设函数矩阵()[()]ij m n A x a x ⨯=,如果对一切正整数,i j ,1i m ≤≤1j n ≤≤,均有()0lim ij ij x x a x b →=,则说当0x x →时函数矩阵()A x 有极限,n m ij b B ⨯=][叫做()A x 的极限,记为()0lim x x A x B →=.该定义的实质是如果()A x 的所有各元素()ij a x 在0x 处都有极限,则说()A x 在0x 处有极限.如果()A x 的所有各元素()ij a x 在0x 处连续,即00lim ()()ij ij x x a x a x →=,(1,2,,;1,i m jn == ,则称()A x 在0x x =处连续,且记0lim ()()x x A x A x →=.如果()A x 在某区间[,]a b 上处处连续,则说()A x 在[,]a b 上连续.容易验证下列等式是成立的: 设()()0lim ,lim x x x x A x A B x B →→==,则(1)0lim(()())x x A x B x A B →±=±;(2)()0lim ()x x kA x kA →=;(3)()0lim ()()x x A x B x AB →=.定义9 对于函数矩阵()n m ij x a x A ⨯=)]([,如果所有元素ij a ()x (1,2,i =,;1,2,,)m j n = 在某点x 处[或在某区间上]均可导,则称()x A 在x 处[或在某区间上]可导.导数[或导函数]记为()dA x dx ,简记为()x A '.并规定 ()()()()()()()()()()()111212122212n n m m mn a x a x a x a x a x a x d A x A x dxa x a x a x '''⎛⎫ ⎪''' ⎪'== ⎪ ⎪ ⎪'''⎝⎭, 其中()ija x '表示()x a ij 对x 的一阶导数. 矩阵对变量的导数运算具有如下一些性质1°若函数矩阵()()x B x A ,都可导,则它们的和亦可导,并且()()[]()()x B dxd x A dx d x B x A dx d+=+. 2°若()x A 可导,()f x 是x 的可导函数,则()x f ()x A 可导,且()()[]()()()()x A dx d x f x A x f dx d x A x f dx d +⎥⎦⎤⎢⎣⎡=, 特别地,当()x f 为常数k 时,有()[]()x A dxd k x kA dx d=. 3°若()x A 可导,则()x A T 可导,并且()()TT dx x dA x A dx d ⎪⎭⎫ ⎝⎛=. 4°若()x A ,()x B 可导且二者可乘,则()x A ()x B 亦可导,且()()[]()()()()x B dx d x A x B x A dx d x B x A dx d +⎥⎦⎤⎢⎣⎡=⋅. 推论 若()x A 可导,Q P ,为数字矩阵,则()[]()x A dxd P x PA dx d=, ()[]()Q x A dx d Q x A dx d ⎥⎦⎤⎢⎣⎡=. 5° 若()x A 为可逆的可导函数矩阵,则()x A 1-亦可导,且()[]()()()x A dxx dA x A x A dx d 111----=. 证 因为1()(),A x A x E -=所以111()()[()()]()()0d dA x dA x A x A x A x A x dx dx dx---=+=. 于是111()()()()dA x dA x A x A x dx dx---=-. 函数矩阵的导数本身也是一个函数矩阵,它可以再进行求导运算,下面我们给出函数矩阵对变量的高阶导数22()()()d A x d dA x dx dx dx =, 3232()()()d A x d d A x dx dx dx =,1()()()k k kd A x d d A x dx dx dx-=. 例1 设)(x A 为n 阶可导函数矩阵,求()x A 2的一、二阶导数. 解()()()[]()()()()x A x A x A x A x A x A dxdx A dx d '+'==2 [注意一般 2()2()()d A x A x A x dx'≠]()()()()()[]x A x A x A x A dx dx A dxd '+'=222()()()[]()()x A x A x A x A x A ''+'+''=22.例2 设()()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t x t x t x x n21,其中()t x i 均为t 的可导函数,n n ij a A ⨯=][为n 阶实对称矩阵,求二次型Ax x T 对t 的导数.解 []()x A x x A x Ax x Ax x dtd T T T T'+'+'=.又A 为数字矩阵,故0='A ,又x A x T '为t 的函数.而有()()()Ax x x A x x A x x A x T T TT T T '='='='.所以()x A x Ax x dxd T T'=2. 二、函数对矩阵的导数定义10 设n m ij x X ⨯=][为多元实变量矩阵,()()1111,,,,,,n m mn f X f x x x x =是以X 中诸元素为变量的多元函数,并且偏导数ijx f∂∂()1,2,,;1,2,,i m j n == 都存在,则定义函数)(X f 对矩阵X 的导数为⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=mn m m nn x f x f x f x f x f x f x f x f x f dX df212222111211. 特别,当X 为向量()Tn x x x x ,,,21 =时,函数()n x x x f ,,,21 对x 之导数为()x f x f x f x f dx df Tn ∇=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂=,,,21 . 例3 设[]()∑∑==⨯==m i nj ij nm ijx X f x X 112,,求dXdf . 解2,1,2,,;1,2,,ij ijfx i m j n x ∂===∂ .X x x x x x x x x x dX df mn m m n n 2222222222212222111211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=.例4 设1122,n n a x a x a x a x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,1122()T n n f x a x a x a x a x ==+++ ,则12n a a df a dx a ⎛⎫⎪ ⎪== ⎪⎪⎝⎭. 三、矩阵对矩阵的导数定义11 设矩阵n m kl a A ⨯=][中每一个元素kl a 都是矩阵q p ij b B ⨯=][中各元素(1,2,...,;1,2,...,)ij b i p j q ==的函数,当A 对B 中各元素都可导时,则称矩阵A 对矩阵B 可导,且规定A 对B 的导数为111212122212q q p p pq A A A b b b A A A dA b b b dB A A A b b b ∂∂∂⎛⎫ ⎪∂∂∂ ⎪ ⎪∂∂∂ ⎪∂∂∂= ⎪⎪⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭, 其中111122212212n ij ij ij n ijij ij ij m m mn ijijij a a a b b b a a a A b b b b a a a b b b ∂∂∂⎛⎫⎪∂∂∂ ⎪ ⎪∂∂∂ ⎪∂∂∂∂= ⎪∂⎪ ⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭,dBdA是一个nq mp ⨯矩阵.例5 设n m ij a A ⨯=][,求dAdA 解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=mn m m n n mn m m n n E E E E E E E E E a A a A a A a A a A a A a A a A a A dA dA212222111211212222111211. 这里),(j i E ij 是元素都是1,其余元素都是0的n m ⨯矩阵.例6 设()n x x x x ,,,21 =,()Tn y y y y ,,,21 =,其中()n i i x x x f y ,,,21 =,()m i ,,2,1 =.如果()1,2,,;1,2,i jy i m j n x ∂==∂ 都存在,则y 对x 可导且⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂=n mm m n n n x y x y x y x y x y x yx y x y x y x y x y x y dx dy21222121211121,,. 例7 设12(,,,)n x x x x = ,求Tdx dx.解 111122221212n T n nn n n x x x x x x x x x dx x x x E dxx x x x x x ∂∂∂⎛⎫ ⎪∂∂∂ ⎪⎪∂∂∂ ⎪∂∂∂== ⎪ ⎪ ⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭. 以下我们考虑向量对向量的导数.设12(,,),n x x x x = 12n y y y y ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,其中12(,)(1,2,,).i i n y f x x x i m == 如果(1,2,,;1,2)ijy i m j n x ∂==∂ 都存在,则y 对x 可导,且 11112222121212(,,,)n n nm m m n y y y x x x y y y dy y y yx x x dx x x x y y y x x x ∂∂∂⎡⎤⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥∂∂∂==⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂⎣⎦(1) 在一些书上,往往对行向量和列向量不加区别,而规定任何一个m 维向量y 对另一个n 维向量x 的导数都以上面(1)式最后的矩阵形式来表达,这主要是为了应用的方便.例8 设数量函数()n x x x f y ,,,21 =的所有二阶偏导数都存在,记()Tn x x x x ,,,21 =,求梯度()dy f x dx ∇=,及海森[Hessian]矩阵22()d yH x dx=.解 12(),,,Tn dy y y y f x dx x x x ⎛⎫∂∂∂∇== ⎪∂∂∂⎝⎭. 222211212222221222222212()n n n n n yy y x x x x x yy y d y d dy H x x x x x x dx dx dx y y y x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂⎪ ⎪∂∂∂⎪⎛⎫===∂∂∂∂∂ ⎪ ⎪⎝⎭⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭. 当y 的所有二阶偏导数都连续时,Hessian 矩阵为n 阶对称矩阵.§5.4 矩阵的微分与积分定义12 当函数矩阵()[()]ij m n A x a x ⨯=可导时,其微分111212122212[]n n ij m nm m mn da da da da da da dA da da da da ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦,其中()ij ij da a x dx '=. (1) 矩阵的微分实质上就是各个元素分别微分,因此,相应于每一个导数运算性质都可以得到一个关于微分的相应性质,例如();d A B dA dB +=+ ()();d AB dA B AdB =+();d kA kdA =(k 为常数);()()()d fA df A f dA =+ (()f f x =为可微函数) 都是正确的.如果矩阵A 中每个元素都是以矩阵B 中诸元素为变量的多元函数,则称矩阵A 是矩阵B 的函数,记为()A B .此时矩阵A 作为一个多元函数矩阵,它的全微分仍可按(1)式定义,只不过其中元素ij da 应该换成全微分,即11p qij ij kl k l kla da db b ==∂=∂∑∑,这里,p q 分别是矩阵B 的行数和列数.定义13 若函数矩阵()(())ij m n A x a x ⨯=的所有各元素()(1,2,,;ij a x i m = 1,2,,)j n = 都在[,]a b 上可积,则称()A x 在[,]a b 上可积,且111212122212()()()()()()()()()()nn m m mn bbb a x dx a x dx a x dx a a a bbba x dx a x dx a x dxb A x dx aa a ab b b a x dx a x dx a x dx a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰.函数矩阵的定积分有如下简单性质(1)()()b bkA x dx k A x dx a a=⎰⎰, k R ∈(2)[]()()()()bb b A x B x dx A x dx B x dx a a a+=+⎰⎰⎰, 函数矩阵的不定积分也有类似的情况.例1 设sin cos ()cos sin x x A x x x -⎛⎫= ⎪⎝⎭,求()0x A x dx ⎰及2()0x d A x dx dx ⎰.解 s i n(c o s )001c o s s i n ()0sin 1cos cos sin 00xx xdx x dx x x x A x dx x x x x xdx xdx ⎛⎫- ⎪--⎛⎫⎪== ⎪ ⎪-⎝⎭ ⎪⎝⎭⎰⎰⎰⎰⎰. 因为若以()ij a x 表示()A x 中各元素(,1,2)i j =,则有22()2()0ij ij x d a x dx xa x dx =⎰. 所以有222222sin cos ()2()20cos sin x x x d A x dx xA x x dx xx ⎛⎫-== ⎪⎝⎭⎰. 习 题 五1、设nn n n ij Ca A ⨯⨯∈=)(,令12211()n nij Fi j Aa ===∑∑,则F A 为方阵范数,证明:F A 是一种与向量的2-范数2x 相容的方阵范数.称它为方阵A 的Frobenius 范数,简称F-范数.2、设V 是n 维(复的或实的)线性空间,n e e e ,,,21 是V 的一组基,则对任意的V x ∈,x 有唯一表示式n n e x e x e x x +++= 2211,规定 2112)(∑==ni i Ex x.证明:E x 是V 中元素的一种范数.3、对下列矩阵A ,求21,A A 及∞A .1)⎪⎪⎭⎫ ⎝⎛-=0123A 2)⎪⎪⎭⎫ ⎝⎛--+i i i i 114、证明:对n 阶矩阵][ij a A =,有∑=≤≤∞=nj ij ni a A 11max .5、考察下列向量序列}{k x 的敛散性: 1)Tk k x )21,1(=; 2)Tki ki i k ix )1,0,21(11∑∑===.6、设⎪⎪⎭⎫⎝⎛-+=)1(2121)(2x x x x A 计算)(),(1x A dxd x A dx d -. 7、计算矩阵对矩阵的导数dAdx. 1)⎪⎪⎭⎫⎝⎛=32121x x x e A x x ,),,(321x x x x =;2)22212123334242,sin(3)x x x x e x x A x x x x x ⎛⎫+⎛⎫== ⎪ ⎪-⎝⎭⎝⎭. 8、设==⨯)(,][A f a A n n ij 迹A .试求dAdf . 9、设∑∑==+==ni ni i iTn x x ix x f x x x x 121221)(,),,,( .试求梯度dxdfx f =∇)(及海森矩阵22)(dx fd x H =.10、已知函数矩阵⎪⎪⎪⎭⎫ ⎝⎛=-00302)(222x e ex xe e x A x xx x ,试求⎰10)(dx x A 和⎪⎭⎫ ⎝⎛⎰20)(x dt t A dx d .。

矩阵分析第5章课件

矩阵分析第5章课件
例:取n维线性空间的分量全为1的向量 e=(1,…,1)T为例. 易见 ‖e‖=1; ‖e‖2=n; ‖e‖1=n. 它们之间的大小关系是: ‖e‖<‖e‖2<‖e‖1. 命题:对n维线性空间的任意向量x成立 ‖x‖ ‖x‖2 ‖x‖1 n‖x‖ n‖x‖2 n‖x‖1 n2‖x‖ … 证:‖x‖= max{|x1|,…,|xn|} (i=1n|xi|2)1/2 = ‖x‖2 ((|x1|+…+|xn|)2)1/2 = ‖x‖1 n max{|x1|,…,|xn|} = n‖x‖
第五章 向量与矩阵范数 前言
• 向量与矩阵范数是向量与矩阵的一个重要数 字特征---用它可以建立向量集或矩阵集的 拓扑结构,从而便于研究向量或矩阵序列,向 量或矩阵级数的收敛性质.因此,这一章的理 论在数值分析及其它领域中十分有用. • 本章是本课程重点内容之一.所有5节都要认 真学好.最后一节(矩阵幂级数)是研究矩阵 函数的重要工具.
Holder不等式与Minkowski不等式
• 下面两个不等式对本章的理论推导十分有用 • Holder不等式:对任意给定p>1和q=p/(p-1) (>1,即(1/p)+(1/q)=1)及任意ak,bk0成立 k=1nakbk (k=1nakp)1/p(k=1nbkp)1/p. (C-S不等式为其(p=2时)特例) • Minkowski不等式:对任意给定p1成立 (k=1n|ak+bk|p)1/p (k=1n|ak|p)1/p+(k=1n|bk|p)1/p
ACmn 定义 ‖A‖= maxi,k|aik| 则‖A‖显然是向量范数(向量的无穷大范数),但它 不是矩阵范数,反例如下:
1 1 1 1 1 2 A 1 1 , B 0 1 , AB 1 2

第五章 矩阵分析基础1

第五章 矩阵分析基础1

的矩阵 H 为上Hessenberg(海森伯格)阵,或拟上三角阵。
( i 2 , 3 , 如果次对角线元素 h ii , 1 , n ) 全不为零,则称该矩阵为
不可约的上Hessenberg阵。 定理5.2.4 对任意矩阵ARnn ,总存在正交阵 Q 使得 Q 1AQ 为上Hessenberg阵。 5.2.6 对角占优阵 定义11 设矩阵
i j 1
元素得到矩阵
1 J (i, j , ) 1 cos 1 1 sin cos 1 sin
iLeabharlann j 为旋转角。 称为Givens旋转矩阵,或称Givens变换,
T (2) 矩阵 H 是正交矩阵,即 Η Η Ι;
Ε(u, v;)中,
定理5.2.2 Householder矩阵 H 具有以下性质:
(3) H 变换保持向量长度不变,即对任意向量
v2 v2 ; v R n,H
(4) 设S 为以 u 为法向量过原点的超平面,对任意的非零 n 向量 v R , 有 H v 与v 关于超平面 S 对称。 定理5.2.3 对任意的非零向量 v R n ,可以适当选择合适的
(3)三角不等式:即对任意两个向量X、Y R n,恒有
X YX Y
三个常用的范数: 设X = (x1, x2,…, xn)T,则有 (1) (2) (3)
X x x x 1 2 n 1
T 2 2 2 X X X x x x 1 2 n 2
X max x i
m ax i A
1in
并且如果A为对称矩阵,则
m a x A ( 谱 范 数 ) i 2

第5章 向量与矩阵的范数

第5章 向量与矩阵的范数
1 p 1 p
kx
p
= (∑ kxi ) = k (∑ xi ) = k x p ,
p p i =1 i =1
n
满足齐次性条件. 所以 ⋅ p 满足齐次性条件
(3)当 x = ( x1 , x 2 , L , x n ) , y = ( y1 , y2 , L , yn ) ∈ C 时,因为 )
T
为共轭指数, 定理 5. 1.1 设 p, q 为共轭指数,则对任意的实数 α ≥ 0, β ≥ 0 , 不等式
αβ ≤
. 2αβ ≤ α 2 + β 2 )
αp
p
+
βq
q
(5.1.2) )
成 立 ( 如 果 p = q = 2 , 那 么 ( 5.1.2 ) 就 是 最 基 本 的 不 等 式
证 明 当 α = 0 或 者 β = 0 时 , 5.1.2 ) 显 然 成 立 , 以 下 假设 ( α > 0, β > 0 .令
T n
n
n
定义
x
n
p
= (∑ xi ) ,
p i =1
n
1 p
(5.1.5) )
上的一种向量范数, 范数, 则 ⋅ p 是 C 上的一种向量范数,称为向量的 p − 范数,而当 p 等于 1 或 范数. 2 时,则分别称为 C 上向量的 1 − 范数及 2 − 范数. 并且 (5.1.6) ) lim x p = max xi ,
p i =1
1 p
满足正定性条件. x = ( x1 , x2 , L , xn ) = 0 ,所以 ⋅ p 满足正定性条件.
kx = (kx1 , kx2 ,L, kxn ) ,所以

第五章矩阵分析

第五章矩阵分析

一般地,对于任何不小于1的正数 p , 向量
x x1, x2 ,, xn T 的函数
1
x
p
n i1
xi
p p
也构成向量范数,称为向量的P-范数。
由 p 范数的存在,可知向量的范数有无穷多种,而且,向量的范数并不
仅限于 p 范数.在验证向量的范数定义中,三角不等式的过程中常涉及到两 个著名的不等式,即: 1、Hölder 不等式 设正实数 p, q 满足 1 1 1, 则对任意的 x, y Cn , 有
有了谱半径的概念,可以对矩阵范数作如下的初步估计.
定理 6 设 A C nn ,则对 C nn 上的任一矩阵范数 ,皆有
( A) A
证 设 是 A 的特征值, x 为 A 的属于特征值 的特征向量,故 x 0 ,所 以 x 0 .另设 是 Cn 上与矩阵范数 相容的向量范数,由 Ax x ,应有
则有正实数 C1,C2 , 使对一切矩阵 A 恒有
C1
A
A
C2
A
第二节 向量与矩阵序列的收敛性
定义5:设有向量序列xk : xk x1(k) , x2(k) ,, xn(k) T ,
如果对i 1,2,, n ,
数列
x(k) i
均收敛且有lim k
xi( k
)
xi
则说向量序列xk 收敛,如记 x (x1, x2,...,xn)T ,
k
xi(k
)
xi
i 1,2,...,n
lim
k
xi(k )
xi
0,
i 1,2,...,n
lim
k
max
1in
xi(k
)
xi

向量和矩阵的范数

向量和矩阵的范数

向量和矩阵的范数一、引言向量和矩阵是线性代数中最基本的概念之一,而范数则是线性代数中一个非常重要的概念。

范数可以用来度量向量或矩阵的大小,也可以用来衡量它们之间的距离。

在本文中,我们将讨论向量和矩阵的范数。

二、向量范数1. 定义向量范数是一个函数,它将一个向量映射到一个非负实数。

它满足以下条件:(1)非负性:对于任意的向量x,有||x||≥0;(2)齐次性:对于任意的标量α和向量x,有||αx||=|α|·||x||;(3)三角不等式:对于任意的向量x和y,有||x+y||≤||x||+||y||。

2. 常见范数(1)L1范数:也称为曼哈顿距离或城市街区距离。

它定义为所有元素绝对值之和:||x||1=∑i=1n|xi| 。

(2)L2范数:也称为欧几里得距离。

它定义为所有元素平方和再开平方根:||x||2=(∑i=1nxi^2)1/2 。

(3)p范数:它定义为所有元素p次方和的p次方根:||x||p=(∑i=1n|xi|^p)1/p 。

(4)无穷范数:它定义为所有元素绝对值中的最大值:||x||∞=ma xi|xi| 。

三、矩阵范数1. 定义矩阵范数是一个函数,它将一个矩阵映射到一个非负实数。

它满足以下条件:(1)非负性:对于任意的矩阵A,有||A||≥0;(2)齐次性:对于任意的标量α和矩阵A,有||αA||=|α|·||A||;(3)三角不等式:对于任意的矩阵A和B,有||A+B||≤||A||+||B||。

2. 常见范数(1)Frobenius范数:也称为欧几里得范数。

它定义为所有元素平方和再开平方根:||A||F=(∑i=1m∑j=1naij^2)1/2 。

(2)一范数:它定义为每列元素绝对值之和的最大值:||A||1=maxj(∑i=1m|aij|) 。

(3)二范数:它定义为矩阵A的最大奇异值:||A||2=σmax(A) 。

(4)∞范数:它定义为每行元素绝对值之和的最大值:||A||∞=maxi(∑j=1n|aij|) 。

第五章 向量范数和矩阵范数

第五章  向量范数和矩阵范数
T
n
,由
|| x ||1 º | x1 | + | x2 | + L + | xn |
定义的 || ||1 是 F n 上的向量范数,称为1-范数或 l1 范数或和范数,也被风趣地称为Manhattan范数。
遗憾的是,当
0 p1
2
时,由
1/ p
骣 p || x || p º 琪 | x | 琪 å i 琪 琪 桫
2 2
2
在广义实数范围内,P能否取到正无穷大呢?具体而
言,如何计算这种范数呢?
例 9 对任意
x ( x1 , x2 , , xn ) F || x ||¥ º lim || x || p
T
n
,由
也就是
p?
?
|| x ||¥ º max | xi |
i
定义的|| || 是 F n上的向量范数,称为 -范数或 l 范数或极大范数。
由于
A
为Hermite正定矩阵,故存在酉矩阵 U ,使得
U T AU = Λ = diag ( λ1 , λ 2 , L , λ n ) 这里 A 的特征值 λ i ( i = 1, 2, L , n) 都为正数。
从而有 此时
A = UΛU T = U Λ ? Λ U T º BT B
|| x || A xT Ax xT BT Bx ( Bx )T Bx || Bx ||2
x ( x1 , x2 , , xn ) F
T
n 1/ p
n
,由
骣 p || x || p º 琪 | x | 琪 å i 琪 琪 桫
i= 1
, p³ 1
定义的 || || p 是 F n 上的向量范数,称为p -范数或 l p 范数。

向量与矩阵的范数

向量与矩阵的范数

a12 a1n A 1 max ai j 列范数 1j n i1 n a22 a2n A max aij 行范数 1i n j1 T an2 ann A 2 λm a x( A A) AF
|λ | || X ||= ||λ X ||= || A X || ≤|| A || || X ||
由X ≠0 ,所以 || X || >0 ,
计算方法三⑤
故有:
|λ | ≤|| A ||
所以特征值的最大值≤||A||,即ρ(A)≤||A||
18/35
定理3.7 设A为任意n阶方阵,则对任意 矩阵范数||A||,有: ρ(A)≤||A|| 定理3.8 设A为n阶对称方阵,则有: ||A||2= ρ(A)
1 2 3 A 4 5 6 7 8 0
计算方法三⑤
14/35
例6. 计算矩阵A的各种范数
1 2 A= 3 4 2 3 4 1 3 4 1 2 4 1 2 9
解:A=[1,2,3,4;2,3,4,1;3,4,1,2;4,1,2,9]; n1=norm(A,1), n2=norm(A), n3=norm(A,inf),n4=norm(A, 'fro') n1=16,n2=12.4884,n3=16,n4=13.8564
解: E A ( 1) ( 2)
2
(A) 2
计算方法三⑤
17/35
矩阵范数与谱半径之间的关系为: ρ(A) ||A|| 定理3.7设A为任意n阶方阵,则对任意矩阵范 数||A||,有: ρ(A)≤||A||
证:设λ为A的任意一个特征值, X为对应的特征向量 AX= λ X 两边取范数,得: || A X || = ||λ X || =|λ | || X ||
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是矩阵
d1 , d
A 的任意两
2 使得
d1 A A d2 A , ACmn
诱导范数
定 数义 ,: 如设果对X于任是何向矩量阵范A数与,向A量
是矩阵范
X 都有
AX A X
则称矩阵范数 的。
A 与向量范数
X 是相容
例 1 :矩阵的Frobenius范数与向量的2-范 数是相容的.
证明: 因为
2
(
aij )( x j )
i1 j1
j 1
A 2X 2
F
2
于是有
AX A X
2
F
2
例 2 :设 X 是向量的范数,则
AX
A max
X i
X 0
满足矩阵范数的定义,且 A 是与向量范
X 相容的矩阵范数。
i
证明:首先我们验证此定义满足范数的四
条性质。非负性,齐次性与三角不等式易
证。现在考虑矩阵范数的相容性。
A 2
15 。
练习 :设
0 1 i
1 0 0
A 1 0 0 或 A 0 1 0
i 0 0
0 0 1
分别计算这两个矩阵的 A , A , A
和A 。
1
2
F
例 :证明:对于任何矩阵 A Cmn 都有
(a) AH AT A
1
1
(b) AH AT A
2
2
2
(c) AH A A 2
2
2
(d) A 2 A A
bkj
A B
因此 A 为矩阵 A 的范数。
例 3 :对于任意 A Cmn,定义
m n
21
A ( F
aij ) 2
i1 j1
可以证明 A 也是矩阵 A 的范数。我们称此 范数为矩阵 A 的Frobenious范数。
证明:此定义的非负性,齐次性是显然的。
利用Minkowski不等式容易证明三角不等式。 现在我们验证乘法的相容性。
解:取 0 1
0 T 。设
X x1 x2
xn T
那么
n
X X H *
xi
X 1
i 1
矩阵的谱半径及其性质
定义:设 A Cmn ,A 的 n 个特征值为 1, 2, , n ,我们称
(A) max{1 , 2 , , n }
为矩阵 A 的谱半径。
例 :设 A Cmn ,那么
(A) A
那么我们称 A 是矩阵 A 的范数。
例 1:对于任意 A Cmn ,定义
mn
A aij
i1 j1
可以证明如此定义的 A 的确为矩阵 A 的范
数。
证明:只需要验证此定义满足矩阵范数的 四条性质即可。非负性,齐次性与三角不 等式容易证明。现在我们验证乘法的相容
性。设 A Cmp , B C pn ,则
必要性:设
lim
k
A(k )
A
[aij ]
那么由定义可知对每一对 i, j 都有
lim
k
a (k) ij
aij
0
(i 1, 2, , m; j 1, 2, , n)
从而有
mn
lim
k
a (k) ij
aij
0
i1 j1
上式即为
lim A(k) A 0
k
充分性:设
AX
A
i
X
AX A X
i
这说明 A 与 X 是相容的。
i
定义:上面所定义的矩阵范数称为由向量范
数 X 所诱导的诱导范数或算子范数。由
向量 P--范数 X 所诱导的矩阵范数称为矩
阵P--范数。即 p
AX
A max
p
p
X 0 X
p
常用的矩阵P--范数为 A , A 和 A 。
1
2
定理:设 A Cmn ,则
d1
b
a
d2
,
b
V
定理:有限维线性空间 V 上的任意两个向
量范数都是等价的。
利用向量范数可以去构造新的范数。
例 :设 b是 Cm 上的向量范数,且
ACmn , rank( A) n ,则由
A , Cn
a
b
所定义的 a是 Cn 上的向量范数。
例 : 设 V 数域 F 上的 n 维线性空间,
a (k) 21
1
r k (r
1),
那么
a (k) 22
k2 k2
k k
1 lim A(k) A 3
0
k
1 1
定理: 矩阵序列{A(k )} 收敛于 A 的充分必
要条件是
lim A(k) A 0
k
其中 A(k) A 为任意一种矩阵范数。
证明:取矩阵范数
mn
A aij
i1 j1
定理:设 A 是矩阵范数,则存在向量范数 X 使得 *
AX A X *
证明:对于任意的非零向量 ,定义向量范
数 X X H ,容易验证此定义满足向
量范数的三个性质*,且
AX AX H A X H
*
*
*
A X *
例:已知矩阵范数
mn
A A *
aij
i1 j1
求与之相容的一个向量范数。
则有
A1 1 A
例 :如果 A 1 ,则 I A 均为可逆矩
阵,且
1 (I A)1 1
1 A
1 A
这里 A 是矩阵 A 的算子范数。
矩阵序列与极限
定义:设矩阵序列 {A(k )} ,其中
A(k
{aij
()k)},aij
(k
i
) Cmn
1,2,
,如果 mn 个数列
,m; j 1,2, ,n
1,2, ,n 为其一组基底,那么对于 V 中的任意一个向量 可唯一地表示成
n
xii , X x1, x2, , xn F n
i 1
又设 是 F n上的向量范数,则由
X V
所定义的
V
是 V 上的向量范数。
矩阵范数
定义:对于任何一个矩阵 A Cmn ,用
A 表示按照某一确定法则与矩阵 A 相对
mn p
mn p
AB
aikbkj
aik bkj
i1 j1 k 1
i1 j1 k 1
mn
p
p
[( aik )( bkj )]
i1 j1 k 1
k 1
mp
np
( aik )( bkj )
i1 k 1
j1 k 1
A B
例 2 :设矩阵 A Cnn ,证明:
A
n max i, j
aij
是矩阵范数。
m
(1)
A 1
max( j i1
aij
),
j 1, 2,
,n
我们称此范数为矩阵A 的列和范数。
(2)
A
2
max( j
j
(
AH
A))
1 2
,
j ( AH A)
表示矩阵AH A 的第 j 个特征值。我们称此范 数为矩阵 A 的谱范数。
n
(3)
A
max( i
j 1
aij
),
i 1, 2,
,m
我们称此范数为矩阵 A的行和范数。
第五章 向量与矩阵的范数
定义: 设V 是实数域 R(或复数域 C )上 的 n 维线性空间,对于V 中的任意一个向量 按照某一确定法则对应着一个实数,这个
实数称为 的范数,记为 ,并且要求
范数满足下列运算条件:
(1)非负性:当 0, 0 只 有且仅有当 0, 0
(2) 齐次性: k k , k 为任
命题: n 阶复矩阵 A 的谱半径不大于其任何
一种范数。
AX X , X 0 X X AX A X A
例 已知
2 1 0 A 0 2 3
1 2 0
计算 A ,A ,A 和 A 。
1
2
F
解: A 5 1
A 23 F
A 5
因为
5 0 0
AH A 0 9 6
0 6 9
所以
2
1
(c)
AH
A
2 2
max j
j
[(
AH
A)H ( AH
A)]
max j
j
[(
AH
A)2
]
[max j
j
(
AH
A)]2
A4 2
AH A A 2
2
2
(d )
A
2 2
max j
j
(
AH
A)
根据前面的命题可知
A
2 2
max j
j
( AH
A)
AH A 1
AH A A A
11
1
如何由矩阵范数构造与之相容的向量范数?
引理(Minkowski不等式):设
a1,a2, ,an T , b1,b2, ,bn T Cn

n
(
ai bi p ) 1 p ( n
ai p ) 1 p ( n
bi p ) 1 p
i 1
i 1
i 1
其中实数 p 1 。
几种常用的范数
定义:设向量 a1, a2, , an T ,对任
于是有
n
x(
p
yi p ) 1 p
i 1
另一方面 n
1 yi p n
i 1
n
1
1
相关文档
最新文档