简单频率计的制作
简易频率计设计(数电课设)
简易频率计设计1、设计目的综合运用数字电子技术相关知识设计具有指定用途的数字电路,学会由分立器件与集成电路组成电子电路的方法。
2、设计任务设计一简易频率计,要求如下:(1)频率测量范围:0—99Hz(2)输入电压幅度:300mv~5v(3)输入信号波形:方波、正弦波、三角波等周期信号(4)显示位数:2位3、设计要求(1)合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图;(2)选择常用的电器元件(说明电器元件选择的过程和依据);(3)对设计的电路进行仿真,验证各性能指标;(4)按照规范要求,按时提交课程设计报告,并完成答辩。
4、参考资料(l)李立主编. 电工学实验指导. 北京:高等教育出版社,2005(2)高吉祥主编. 电子技术基础实验与课程设计. 北京:电子工业出版社,2004(3)谢云等编著. 现代电子技术实践课程指导. 北京:机械工业出版社,2003目录一、设计方案的选择(原理) (3)二、电路设计计算与分析 (4)1.单元模块的设计 (4)(1)整形电路 (4)(2)时基电路 (6)(3)计数电路 (8)(4)锁存电路 (9)(5)译码显示电路 (9)2.电路中集成器件 (10)(1)555定时器 (11)(2)74HC160 (12)(3)74HC373 (13)(4)74LS48 (13)3.电路参数分析 (15)三、总结及心得 (16)四、附录: (17)五、参考文献 (19)一、设计方案的选择(原理)运用555定时器构成的多谐振荡器电路,使其产生时钟脉冲,即为有一定频率或周期的方波信号,再使用一个555定时器构成的施密特电路对待测波形进行调整,无论待测信号为方波、三角波还是正弦波都可以调成同一周期的方波信号,然后用一个与门将两个555产生的不同方波连接起来再与两个计数器连接,目的是为了当计数器在多谐震荡器输出一秒的高电平的情况下使计数器正确计数一秒内待测信号的高电平出现数目。
EDA简易数字频率计设计
EDA简易数字频率计设计摘要EDA(Electronic Design Automation)是电子设计自动化的缩写,是现代电子工业领域中的一种重要工具。
EDA工具可以帮助工程师完成电路设计、仿真、验证和布局等工作,从而提高设计效率和精度。
本文将介绍如何通过EDA工具设计一个简单的数字频率计。
设计原理数字频率计是一种可以实时测量电信号频率的仪器。
其工作原理是利用计数模型,通过计算信号周期数与时间,间隔测算信号频率。
本文设计的数字频率计采用2种常见的计数模型:频率分频计数和门限计数。
频率分频计数频率分频计数法是利用可编程可除模块,将输入的高频脉冲信号分频后,通过计数器来计算脉冲个数,最终计算出信号的频率。
其计数原理如下图所示:图1:频率分频计数法图1:频率分频计数法其中,n为分频系数,f为输入信号频率。
门限计数门限计数法是将输入信号经过比较门限后,产生一个矩形脉冲,再利用计数器计算脉冲个数,最终计算出信号的频率。
其计数原理如下图所示:图2:门限计数法图2:门限计数法其中,T表示输入信号周期,Δt为门限宽度。
设计流程本文采用EDA工具LTspice进行数字频率计的设计。
使用LTspice的原因是它是一款功能强大、易于学习、免费的EDA软件,广泛应用于电路设计和仿真领域。
设计流程如下:1.确定输入信号的电路参数:输入信号频率、振幅、时钟等。
2.选择计算频率的计数模型:这里采用频率分频计数和门限计数2种模型,建立计算模型电路。
3.进行仿真,测试电路的性能:可以通过分析波形图、输出计数结果等方式验证电路的正确性和有效性。
设计实例本文将以一个简单的设计实例来说明如何进行数字频率计的设计。
假设输入信号频率为1 kHz,振幅为5V,计数器工作电压为3.3V,门限计数的门限宽度为10 us,计数模型电路如下图所示:V1 IN 0 PULSE(0 5 0 10n 10n 1u 2u)R1 IN N1 50C1 N1 N2 10nD1 N2 0 DQ1 D Q3 VCC TXR2 TX N3 1megC2 N3 0 1uXU1 Q3 CLK TX DFFXU2 CLK 0 N5 D2R3 D2 N7 10kC3 N7 0 1n以上代码中,V1为输入信号源,R1和C1组成低通滤波器,滤除杂波信号,D1、Q1、R2、C2和D2构成频率分频计数器,XU1和XU2分别为D触发器和门限计数器。
简易数字频率计设计 完整版
河南科技大学课程设计说明书课程名称现代电子系统设计题目简易数字频率计设计学院__电信学院_____班级_______学生姓名____________________指导教师_________日期__2010-01-10______课程设计任务书(指导教师填写)课程设计名称现代电子系统课程设计学生姓名刘轮辉专业班级电信科071 设计题目简易数字频率计设计一、课程设计目的掌握高速AD的使用方法;掌握频率计的工作原理;掌握GW48_SOPC实验箱的使用方法;了解基于FPGA的电子系统的设计方法。
二、设计内容、技术条件和要求设计一个具有如下功能的简易频率计。
(1)基本要求:a.被测信号的频率范围为1~20kHz,用4位数码管显示数据。
b.测量结果直接用十进制数值显示。
c.被测信号可以是正弦波、三角波、方波,幅值1~3V不等。
d.具有超量程警告(可以用LED灯显示,也可以用蜂鸣器报警)。
e.当测量脉冲信号时,能显示其占空比(精度误差不大于1%)。
(2)发挥部分a.修改设计,实现自动切换量程。
b.构思方案,使整形时,以实现扩宽被测信号的幅值范围。
三、时间进度安排布置课题和讲解:1天查阅资料、设计:4天实验:3天撰写报告:2天四、主要参考文献何小艇《电子系统设计》浙江大学出版社2008.1潘松黄继业《EDA技术实用教程》科学出版社2006.10指导教师签字:2009年12月14日目录一、摘要 (4)二、系统方案论证 (4)2.1频率测量方案 (5)三、数字频率频率计的基本原理 (6)四、各个模块设计 (7)4、1 A/D模数转换模块 (8)4、2 比较模块 (9)4、3 频率和占空比测量模块 (10)五、各个模块仿真波形 (12)六、心得体会 (14)七、参考文献 (15)附录一 (16)附录二 (22)一.摘要频率计是数字电路中的一个典型应用,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,频率测量在科技研究和实际应用中的作用日益重要。
简单数字频率计的设计与制作
简单数字频率计的设计与制作1结构设计与方案选择1.1设计要求(1)要求用直接测量法测量输入信号的频率(2)输入信号的频率为1~9999HZ1.2设计原理及方案数字频率计是直接用十进制的数字来显示被测信号频率的一种测量装置。
它不仅可以测量正弦波、方波、三角波和尖脉冲信号的频率,而且还可以测量它们的周期。
所谓频率就是在单位时间(1s)内周期信号的变化次数。
若在一定时间间隔T内测得周期信号的重复变化次数为N,则其频率为f=N/T(1-1)据此,设计方案框图如图1所示:图1 数字频率计组成框图图中脉冲形成的电路的作用是将被测信号变成脉冲信号,其重复频率等于被。
时间基准信号发生器提供标准的时间脉冲信号,若其周期为测信号的频率fX1s,则们控电路的输出信号持续时间亦准确的等于1s。
闸门电路由标准秒信号进行控制当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数器译码显示电路。
秒信号结束时闸门关闭,技计数器得的脉冲数N是在1秒时间内的累计= N Hz。
数,所以被测频率fX被测信号f经整形电路变成计数器所要求的脉冲信号○1,其频率与被测信X号的频率相同。
时基电路提供标准时间基准信号○2,其高电平持续时间t1=1 秒,当l秒信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到l秒信号结束时闸门关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为N,则被测信号频率f=NHz,如图2(a)所示,即为数字频率计的组成框图。
图2(a)数字频率计的组成框图图2(b)数字频率计的工作时序波形逻辑控制单元的作用有两个:其一,产生清零脉冲④,使计数器每次从零开始计数;其二,产生所存信号⑤,是显示器上的数字稳定不变。
这些信号之间的时序关系如图2(b)所示数字频率计由脉冲形成电路、时基电路、闸门电路、计数锁存和清零电路、译码显示电路组成。
1.3数字频率计的主要技术指标1.3.1 频率准确度:一般用相对误差来表示,本文设计的频率准确度并没有要求。
频率计的制作实验报告
频率计的制作实验报告实验目的:本实验的目的是通过制作一个简单的频率计,了解频率计的工作原理以及实际应用。
实验仪器与材料:1. 模块化电子实验箱2. 函数信号发生器3. 示波器4. 电压表5. 电阻、电容等基本元件实验原理:频率计是用于测量信号频率的一种仪器。
其基本原理是利用周期性信号的周期长度与频率之间的倒数关系,通过计算周期长度来确定信号的频率。
实验步骤:第一步:搭建电路1. 将函数信号发生器的输出接入电路板上的输入端,作为输入信号源。
2. 将电路板上的元件按照电路图连接,包括电容、电阻等。
确保电路连接正确。
第二步:调试电路1. 将函数信号发生器的频率设置为一个已知的数值,例如1000Hz。
2. 使用示波器测量电路输出端信号的周期长度。
3. 使用计算器计算出信号的频率。
4. 调整电路参数,直到测量到的频率与设定的频率相等。
第三步:验证测量准确性1. 将函数信号发生器的频率调整到其他已知值,例如2000Hz。
2. 重复上述步骤,测量并计算信号的频率。
3. 比较测量到的频率与设定的频率,验证测量准确性。
实验结果与分析:通过实验,我们成功制作了一个简单的频率计。
在调试电路的过程中,我们可以通过测量输出信号的周期长度,并利用频率的倒数与周期长度的关系计算出信号的频率。
通过与设定的频率进行比较,验证了测量的准确性。
实验中可能存在的误差主要来自于电路元件的稳定性以及测量设备的精度。
为了提高测量准确性,可以选择更稳定的元件,并使用更精确的测量设备。
实验结论:本实验通过制作一个简单的频率计,深入了解了频率计的工作原理和实际应用。
通过测量信号的周期长度并计算出频率,我们可以准确地测量信号的频率。
实验结果验证了测量的准确性,并提出了进一步提高准确性的建议。
频率计在电子测量中具有重要的应用价值,可以广泛应用于通信、电子设备维修等领域。
简易数字频率计设计
简易数字频率计设计简易数字频率计是一种统计计算工具,用于频率统计,使用适当的算法来测量特定序列中给定元素或者元素组合出现的频率,主要用于数据分析和统计工作,帮助使用者深入分析数据,得到较为精准的结果。
本文将详细说明一种简易的数字频率计的设计实现过程和分步流程。
设计步骤第一步:准备设计简易数字频率计所需要的硬件设备设计简易数字频率计需要的硬件设备有:计算机、网络设备、数据存储器、输入输出设备等。
计算机配备相应的硬件设备和软件,网络设备用于连接多台计算机,数据存储器用于存储数据,输入输出设备允许输入和输出各种不同类型的数据。
第二步:制定相应的算法根据具体情况,应制定出相应的算法,用于计算数据序列中给定元素或者元素组合出现的频率,主要包括排序算法,查找算法,求和算法,概率分布算法等。
比如:可以使用冒泡排序或者快速排序对数据序列进行排序,使用二分查找等技术快速查找元素,在运算时可以使用求和、乘法、平方等算法来计算数据,使用贝叶斯理论等方法来求取概率分布。
第三步:实现数据处理根据设计上的算法,使用计算机及其相应的软件和硬件设备,进行数据处理,对相关的数据序列进行相应的操作,实现频率的统计计算,得到精准的统计结果。
第四步:测试并可视化在完成简易数字频率计的设计之后,应当对数据处理过程进行测试,以验证所编写算法的正确性和可靠性。
完成测试之后,可以通过图表和表格的方式可视化频率计算结果,更加直观地显示出数据之间的关系以及频率变化趋势。
以上就是一种简易数字频率计的设计实现过程,它可以为使用者提供准确的统计数据和频率结果,促进数据深入分析等工作,为企业的发展带来重要的帮助。
数字频率计的制作与调试
如电路正常,或消除故障后频率计仍不能正常工作,则检测计数器电路。
(7)控制门检测
检测控制门U3C(74HC11)输出信号波形。正常时,每间隔 1s时间,可以在荧屏上观测到被测信号的矩形波。如观测不到 波形,则应检测控制门的两个输入端的信号是否正常,并通过 进一步的检测找到故障电路,消除故障。如电路正常,或消除 故障后频率计仍不能正常工作,则检测计数器电路。
在自制电路板上将IC插座及各种器件焊接好;装配 时,先焊接IC等小器件,最后固定并焊接变压器等大器 件。电路连接完毕后,先不插IC。
(3)电源测试
将与变压器连接的电源插头插入220V电源,用万用表 检测稳压电源的输出电压。输出电压的正常值应为+5V。 如果输出电压不对,应仔细检查相关电路,消除故障。稳 压电源输出正常后,接着用示波器检测产生基准时间的全 波整流电路输出波形。正常情况应观测到如下图(a)所 示波形。
则应检测这一部分电路,消除故障。如该部分电路正常,或消 如电路正常,或消除故障后频率计仍不能正常工作,则检测锁存器电路。
装配时,先焊接IC等小器件,最后固定并焊接变压器等大器件。
检输测出控 电除制压门的故U正3常障C(值7应后4H为C+频115)V。率输出计信号仍波形不。 能正常工作,则检测控制门。
数(字9)频锁率存计器的电从制路作的被与检调测测试 信号输入端输入幅值在1V左右频率为1kHz 左右的正弦信号,如果电路正常,数码管可以显示被 如有兴趣,也可对LED数码管进行检测,检测方法由自己确定。
正常情况时,各电平值或波形应与电路中给出的状态一致。
测信号的频率。如果数码管没有显示,或显示值明显 如电路正常,或消除故障后频率计仍不能正常工作,则检测锁存器电路。
简易数字频率计的设计与制作
简易数字频率计的设计与制作作者:赵玉龙【摘要】:本设计是基于单片机内部的两个定时器/计数器与外围硬件相结合,并通过一定的软件控制达到测量频率的目的的简易数字频率计,可以直接精确测量1KHZ到65.535KHZ的频率范围。
本设计的优点在于直接利用单片机进行频率的测量,更加的方便,实用。
【关键词】:单片机频率测量前言单片机即单片微控制器单元,由微处理器,存储器,I/O接口,定时器/计数器等电路集成在一块芯片上构成,现在应用于工业控制,家用民用电器以及智能化仪器仪表,计算机网络,外设,通信技术中,具有体积小、重量轻、性价比高、功耗低等特点, 同时具有较高的抗干扰性与可靠性可供设计开发人员灵活的运用各种逻辑操作,实现实时控制和进行必要的运算.目前单片机更朝着大容量、高性能与小容量、低廉化、外围电路内装化以及I/O接口的增强和能耗降低等方向发展.本设计的意义在于如何利用较少的硬件达到直接测量较高精度频率的目的,更加的方便,快捷,相对于传统的数字频率计实用性更高。
第一章 系统硬件电路的设计1.1方案的选择:方案一.采用组合电路和时序电路等大量的硬件电路来构成,利用555多谐振荡产生闸门时间,两个D 触发器来进行门控信号的选择,数码管,以及其他硬件电路组成。
方案二.利用一块AT89C51单片机芯片直接来驱动数码管。
比较方案一与方案二在实现功能一样的情况下,我们可以发现纯粹利用硬件电路来实现不仅产品体积较大,运行速度慢,而且增加了许多的硬件成本,而利用单片机体积小、功能强、性能价格比较高等特点,在实际使用时节约了很多的硬件成本,符合设计的要求,故而本设计选择方案二来实现频率的测量.1.2系统功能分析本系统是基于单片机的简易数字频率计,在硬件的基础上通过软件的控制达到频率测量的目的,整个系统工作由软件程序控制运行。
整个系统主要可以分为两个部分,频率测量单元和频率显示单元。
频率测量单元主要完成对被测信号的测量,而显示单元主要完成用数码形式将测量结果显示出来。
简易频率测量仪设计
摘要数字频率计是一种能够直接用十进制数字来显示被测信号频率的测量装置。
用数字显示被测信号频率的仪器,被测信号能够是正弦波、方波或其它周期性转变的信号。
如配以适当的传感器,能够对多种物理量进行测试,比如机械振动的频率、转速、声音的频率和产品的计件等等.该频率计使咱们能够迅速取得未知信号的频率,其读数方便,原理简单,精准度较高,能读出四位小数,有较高的有效价值.因此,数字频率计是一种应用很普遍的仪器。
关于本次课题“简易频率测量仪”,我选用了双可重单稳态触发器74LS123来操纵电路中的“锁存”和“清零”,计数器74LS90来计数,555芯片来产生时基信号。
运用数字集成芯片给设计减少了很多没必要要的麻烦。
关键词:数字频率计;译码;时基电路;计数ABSTRACTDigital frequency meter can be directly used as a decimal to show the measu red signal frequency measuring device.Figures show that the measured signal with the frequency of the apparatus,the measured signal can be sine wave,square wave or other periodic signal change.Such as with the appropriate sensors,can test a wi de range of physical quantities,such as the frequency of mechanical vibration, spe ed,sound frequency,as well as piece-rate products and so on.The frequency allows us to quickly signal the frequency of the unknown,to facilitate their reading,The principle is simple,high accuracy,four decimal places allowed to deliv ide range.For this issue,"Simple frequency measurement",I re-selected double 74LS123 monostable multivibrator circuit to control the "latch" and "Clear",74LS90 counter to count,555-chip time base signal togenerate.The use of the number of integrate. Key words:Figure frequency meter; decoding; time-base circuit; count目录1绪论 (1)...........................................................................1 1.2 课题的意义 (1)1.3 频率计设计的指导思想 (2)1.4 本课题要解决的要紧问题 (2)2 频率计的设计原理 (3)2.1 数字频率计的原理 (3)原理框图 (3)组成图与波形 (4)数字频率计的要紧技术指标 (5)3 数字频率计的电路设计 (6)时刻基准T产生电路 (6)555电路 (6)晶振 (7)计数脉冲形成电路 (7)放大电路 (8)整形电路 (9)逻辑操纵电路 (10)计数器 (14)锁存器 (16)显示部份 (17)LED显示原理 (17)LED显示器 (18)七段LED显示器的工作原理 (19)硬件译码显示口 (20)4 数字频率计的电路总图 (23)总结 (25)致谢 (26)参考文献 (27)1 绪论在现今电子系统超级普遍的应用领域内,处处可见处处置离散信息的数字电路。
简易数字频率计
简易数字频率计设计摘要在电子领域内,频率是一种最基本的参数,并与其他许多电参量的测量方案和测量结果都有着十分密切的测量精度。
因此,频率的测量就显示得尤为重要,测频方法的研究越来越受到重视。
频率计作为测量仪器的一种,常称为电子计数器,它的基本功能是测量信号的频率和周期,频率计的应用范围很广,它不仅应用于一般的简单仪器测量,而且还广泛应用于教学、科研、高精度仪器测量、工业控制等其他领域。
数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字,显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号,方波信号以及其他各种单位时间内变化的物理量。
在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精度高,显示直观,所以经常要用到数字频率计。
下面我们就来设计一种简易数字频率计。
数字频率计的设计包括时基电路、整形电路、控制电路和计数显示电路四部分组成。
由时基电路产生一标准时间信号控制阀门,调节时基电路中的电阻可产生需要的标准时间信号。
信号输入整形电路中,经过整形,输出一方波,通过阀门后,计时器对其计数。
当计数完毕,时基电路输出一个上升沿,使锁存器打开,计数器计数结果输入译码器,从而让显示器显示,达到测量频率的目的。
关键词时基电路闸门电路计数锁存电路显示电路1 设计概述1.1 整体功能要求1.1.1 系统结构要求:数字频率计的整体结构要求如图所示。
图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的范围,,若测量范围不合适则进一步选图1-1 数字频率计整体方案结构方框图1.1.2 电气指标被测信号波形:正弦波、三角波和矩形波。
测量频率范围:分四档:*1,*10,*100,*10001.2 整体设计方案1.2.1 算法设计频率是周期信号每秒钟内所含的周期数值。
可根据这一定义采用如图2-1所示的算法。
图图1-2测频法测量原理被测信号图1-3频率测量算法对应的方框图在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s的闸门信号。
简单频率计的制作
一.设计的基本原理和框图1.1基本原理:数字频率计是用数字显示被测信号的频率的仪器,被测信号可以是正弦波,方波或者其他周期性变化的信号,它的基本原理是时基信号发生器提供标准的时基脉冲信号,若其周期为1s则门控电路的输出信号持续时间亦准确到1s。
闸门电路有标准秒信号控制,当秒信号到来时闸门开通,信号通过闸门送到计数译码显示电路,秒信号结束时闸门关闭,计数器停止计数,由于计数器记得脉冲数N 的是一秒内的累积数,所以被测频率是NHZ。
闸门时间可以取大于或者小于1秒的值,测得的频率时间间隔与闸门时间的取值成正比,在这里取的闸门时间为1s。
在此,数字频率计由分频器,片选电路,计数器,锁存器,译码电路和显示电路作为主要组成部分。
1.2设计框图如图1.1所示:图1.1二.单元电路设计2.1分频电路模块分频器在总电路中有两个作用。
由总图框图中分频器有两个输出,一个给计数器,一个给锁存器。
时钟信号经过分频电路形成了20分频后的门信号。
另一个给锁存器作锁存信号,当信号为低电平时就锁存计数器中的数。
分频电路图如图2.1图2.1 分频电路图2.2片选信号电路模块这个电路有两个用途:一是为后面的片选电路产生片选信号,二是为译码模块提供选择脉冲信号。
电路图如图2.2图2.2 片选信号电路图2.3计数器模块计数器模块为该电路中的核心模块,它的功能是:当门信号为上升沿时,电路开始计算半个周期内被测信号通过的周期数,到下升沿后结束。
然后送给锁存器锁存。
计数器电路图如图2.3所示:图2.3 计数器电路图2.4锁存器模块在分频信号的下降沿到来时,锁存器将计数器的信号锁存,然后送给编译模块中。
其电路图如图2.4所示:图2.4 锁存器电路图2.5译码信号模块此模块是对四个锁存器进行选择,按顺序的将四个锁存器中的数值送给译码模块中译码。
其电路图如图2.5图2.5 译码信号电路图2.6片选模块该模块接收到片选信号后,输出给显示器,选择显示那个显示管。
基于AT89C51单片机的频率计设计
基于AT89C51单片机的频率计设计频率计是一种测量信号频率的仪器。
在工业自动化、仪器仪表和电子实验等领域广泛应用。
本文将基于AT89C51单片机设计一个简单的频率计。
一、设计原理频率计的工作原理是通过计数单位时间内输入信号的脉冲数量,并将其转化为频率进行显示。
本设计使用AT89C51单片机作为控制核心,采用外部中断引脚INT0作为计数脉冲输入口,通过对计数器的计数值进行处理,最终转化为频率并在LCD1602液晶屏上进行显示。
二、硬件设计硬件电路主要包括AT89C51单片机、LC1602液晶显示屏、脉冲输入引脚INT0,以及供电电路等。
其中,AT89C51单片机的P0口用于与LC1602液晶屏的数据口连接,P2口用于与液晶屏的控制口连接。
脉冲输入引脚INT0连接到外部信号源,通过中断请求实现计数器的计数功能。
液晶显示屏的VDD和VDDA引脚接5V电源,VSS和VSSA引脚接地,RW引脚接地,RS引脚接P2.0,E引脚接P2.1,D0-D7引脚接P0口。
三、软件设计软件设计主要包括初始化设置、中断服务程序、计数器计数和频率转换、液晶屏显示等模块。
1.初始化设置:首先设置P0和P2为输出端口,中断引脚INT0为外部触发下降沿触发中断,计数器为初始值0。
2.中断服务程序:中断服务程序负责处理外部脉冲输入引脚INT0的中断请求。
每当INT0引脚检测到下降沿时,计数器加13.计数和频率转换:在主函数中,通过读取计数器的值并根据单位时间计算频率。
通过AT89C51单片机的定时器模块,我们可以设置一个单位时间进行计数。
在单位时间结束后,将计数器的值除以单位时间得到频率。
4.液晶屏显示:通过P0口向液晶屏的数据口发送频率值,并通过P2口向液晶屏的控制口发送控制信号,完成频率的显示。
四、测试结果将生成的二进制固件烧录到AT89C51单片机中,将脉冲信号输入到INT0引脚,即可在LCD1602液晶显示屏上看到实时的频率值。
数字频率计(51单片机)
数字频率计(51单片机)数字频率计(51单片机)数字频率计(Digital Frequency Counter)是一种常用的电子测量仪器,可用于测量信号的频率。
在本文中,我们将介绍如何使用51单片机实现一个简单的数字频率计。
一、原理简介数字频率计的基本原理是通过计算信号波形周期内的脉冲数来确定频率。
在实际应用中,我们通常使用51单片机作为微控制器,通过计数器和定时器模块来实现频率计算。
二、硬件设计1.信号输入首先,我们需要将待测信号输入到频率计中。
可以使用一个输入接口电路,将信号连接到51单片机的IO口上。
2.计时模块我们需要使用51单片机的定时器/计数器来进行计时操作。
在这里,我们选择使用定时器0来进行计数,同时可以利用定时器1来进行溢出次数的计数,以扩展计数范围。
3.显示模块为了显示测量结果,我们可以使用数码管、LCD液晶显示屏等显示模块。
通过将结果以可视化的方式呈现,方便用户进行观察和读数。
三、软件设计1.定时器配置首先,我们需要对定时器进行配置,以确定计时器的计数间隔。
通过设置定时器的工作模式、计数范围和时钟频率等参数,可以控制定时器的计数精度和溢出时间。
2.中断服务程序当定时器溢出时,会触发中断,通过编写中断服务程序,实现对计数器的相应操作,例如将计数值累加,记录溢出次数等。
3.数字频率计算根据计数器的值和溢出次数,我们可以计算出信号的频率。
通过简单的公式计算,即可得到测量结果。
四、实验步骤1.搭建硬件电路,将待测信号连接到51单片机的IO口上,并连接显示模块。
2.根据硬件设计要求,配置定时器的工作模式和计数范围。
3.编写中断服务程序,实现对计数器的相应操作。
4.编写主程序,实现数字频率计算和显示。
5.下载程序到51单片机,进行测试。
五、实验结果与分析通过实验,我们可以得到信号的频率测量结果,并将结果以数码管或LCD屏幕的形式进行显示。
通过对比实际频率和测量频率,可以评估数字频率计的准确性和稳定性。
如何设计一个简单的频率计
如何设计一个简单的频率计频率计是一种用于测量信号频率的设备,广泛应用于电子、通信、自动化等领域。
本文将介绍如何设计一个简单的频率计,并提供相关原理和步骤。
一、简介频率计是一种测量频率的仪器。
它可以通过测量信号周期的时间来计算频率。
频率计可以根据测量的频率范围和精度要求,选择不同的设计方案。
下面将介绍一种简单的频率计设计。
二、设计原理该频率计设计基于计数器原理。
其思想是通过计数已知时间内信号周期的脉冲数来确定频率。
三、所需元器件1. 计数器芯片:选择适合频率范围的计数器芯片。
2. 晶振:提供稳定的时钟信号作为计数器的时基。
3. 预处理电路:用于处理输入信号,确保其满足计数器的输入要求。
四、设计步骤1. 确定测量范围和精度要求:根据应用需求确定频率计所需要测量的频率范围和精度要求,选择合适的计数器芯片。
2. 选择计数器芯片和晶振:根据测量范围和精度要求,选择适合的计数器芯片和晶振。
计数器芯片的型号选择要能满足测量范围,并具有足够的计数位数。
晶振的频率要足够稳定。
3. 设计输入信号预处理电路:根据计数器芯片的输入要求,设计合适的输入信号预处理电路。
例如,如果输入信号幅值过大或过小,需要进行合适的电平转换或调整。
五、连接设计1. 将输入信号接入预处理电路,确保信号满足计数器芯片的输入要求。
2. 将预处理后的信号接入计数器芯片的计数端。
3. 将晶振连接至计数器芯片的时钟输入端。
4. 连接供电电源,确保设计正常工作。
六、测试与调试1. 给设计供电,确保所有连接正确。
2. 输入已知频率的信号,观察频率计是否能准确测量。
3. 如果测量结果不准确,检查元器件连接是否正确、晶振频率是否稳定等。
4. 根据实际情况调整设计参数,直至测量结果满足要求。
七、注意事项1. 设计中要注意信号的幅值范围和频率范围。
2. 选择合适的计数器芯片和晶振,以保证测量精度和稳定性。
3. 调试时要注意设计的连通性和元器件的正确连接。
八、总结设计一个简单的频率计需要确定测量范围和精度要求,选择适合的计数器芯片和晶振,并设计合适的输入信号预处理电路。
基于51单片机的简易频率计设计
基于51单片机的简易频率计设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言在电子测量领域,频率计是一种常用的仪器,用于测量信号的频率大小。
数字频率计自己动手制作
数字频率计自己动手制作一、系统设计用数字频率计测量信号频率,需要将被测信号转换成脉冲形式,再用计数器记录一秒内信号脉冲的个数,即得到信号频率值,最后将该频率值进行锁存、显示,这就完成了一次频率测量,如果需要进行实时测量,则应对计数器清零之后再次重复上述操作。
因此可以将整个系统划分为下列模块:(1)放大模块,将小信号放大,以便测量信号频率;(2)整形模块,将放大后的被测信号进行过零比较,变成方波供计数器识别;(3)计数模块,计量输入脉冲信号的个数;(4)锁存模块,将得到的频率值锁存,并输出到LED进行显示;(5)控制模块,控制计数器的启动、停止和清零,锁存器的数据置入;(6)秒脉冲模块,由晶振产生精度较高的时间基准,为控制电路提供触发信号。
整个系统框图如下图所示。
二、模块分析1.放大模块放大模块比较简单,但参数要求较高,需达到60dB,同时保证500kHz的带宽。
可使用给定的TLV2464芯片构成多级放大器,既得到高增益,又保证电路工作的稳定性。
如果采用三级放大,则每级只需放大10倍,如下图所示即为10倍放大的反相放大器,因输入信号为交流,应采用±3V双电源供电。
由于输入信号幅度很小,而且频率最低达10Hz,所以应采用直接耦合的方式级联。
2.整形模块整形模块应使用给定的TLC372芯片构成过零电压比较器,将放大信号转换成TTL电平,因此采用+5v单电源供电即可,如下图所示。
3.计数模块计数模块使用给定的CC4518芯片构成,EN端作为时钟输入端以便级联使用,CLK作为计数控制端,MR接清零信号,即实现十进制计数,如下图所示。
其最高位输出Q3直接连接次级EN,即可实现级联,每个CC4518包含两个计数器,因此至少需要3片CC4518才能完成lOOk计数。
4.锁存模块锁存模块使用给定的SN74LS175芯片构成,由于测量精度为lOHz~lOOkHz,因此至少需要显示4个数据。
每个锁存器存储4位BCD二进制码,DO—D3接计数器的数据输出,CLK接锁存控制信号,MR接高电平禁止清零,输出接LED显示,如下图所示。
简易信号发生器和频率计
简易信号发生器和频率计一、设计目的1、掌握正弦波、方波及三角波信号发生器的设计、组装与调试方法;2、掌握数字频率计的设计与调试方法;二、设计任务及技术指标1、设计一个的正弦波、方波和三角波发生器:(1) 频率可调范围:2Hz—20KHz,分为4档:2—20Hz;20—200Hz;200Hz—2KHz;2—20KHz;(2) 幅度可调范围:0—5V;(3) 可调偏置。
2、设计一个简易数字频率计:(1) 测量频率范围:1Hz~100 KHz,显示单位为Hz;(2) 输入电压幅度VPP:100mV~10V;(3) 输入信号波形:任意周期信号;(4) 显示方式: 6位十进制数显示。
三、设计步骤和方法1.原理了解,清楚设计内容。
2.方案设计:画出原理草图,一人一张。
3.教师检查通过原理设计。
4.原理图绘制,仿真结果正确,一组一张。
5.安装实际电路。
6.调试,功能实现。
7.教师检查及答辩。
8.完成设计报告。
四、基本原理(一)简易信号发生器运用集成运算放大器为主要器件,设计一个正弦波、方波和三角波产生电路,具有输出幅度调节、直流偏置调节和频率调节的功能。
实现此功能的方框图如下图所示:1、正弦波震荡电路由RC桥式正弦波震荡电路产生的正弦波,正弦波的频率可以通过R和C来调节。
要求设计的电路频率为四个量程,可以通过电容值来进行量程的切换,但所选择的最大电容不应当超过几个微法。
RC桥式振荡电路为了实现频率的微调功能,可将R选择为符合要求的电位器。
当量程确定后,通过电位器便可实现频率的微调。
为了保护电路,电位器通常要和一个小电阻串联。
为了使RC桥式正弦波震荡电路产生对称的正弦波,应选用双电源供电的运算放大器。
2、调偏电路通常RC桥式正弦波振荡电路产生的正弦波的偏移不会很大,但是经过逐级放大、器件自身的离散性以及高频时电容充放电的影响,输出三角波会产生严重偏移,所以需要在电路中设置直流偏置电路,来调节偏移。
偏置电路可有运算放大器组成的加法运算电路来实现,即实现正弦波和可调直流电压的叠加。
简易数字频率计设计
引言数字频率计是直接用十进制数字来显示被测信号频率的一种测量装置。
它不仅可以测量正弦波、方波、三角波、尖脉冲信号和其他具有周期特性的信号的频率,而且还可以测量它们的周期。
经过改装,可以测量脉冲宽度,做成数字式脉宽测量仪;可以测量电容做成数字式电容测量仪;在电路中增加传感器,还可以做成数字脉搏仪、计价器等。
因此数字频率计在测量物理量方面应用广泛。
在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
测量频率的办法有多种,其中电子计数器测量频率具有精度高、使用方便,测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
电子计数器测频有两种方法:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。
直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量。
其测频原理总框图如下图1所示:图1 数字频率计整体方案结构方框图本次设计要求设计一个频率计数器,能够用来测量正弦信号和矩形信号波形工作频率的电路。
其测量结果直接由四位十进制数字显示。
其原理是根据每个闸门时间内高频标准脉冲的个数,求得被测信号的个数,从而求得被测信号频率。
设计主要由时基电路,放大整形电路,闸门电路,计数器等实现。
电路的涉及主要依据了数字电路和模拟电路的知识,并将完成其对信号的频率和周期的测量。
关键词:频率频率计设计1 系统概述1.1 整体功能要求频率计主要用于测量正弦波、方波、三角波等周期信号的频率值和周期,以及脉冲波的脉冲宽度。
1.2 系统结构要求数字频率计的整体结构要求如图1-1所示。
图中被测信号为外部信号,送入测量电路进行处理、测量。
图1-1 数字频率计整体结构框图上图各单元电路的工作原理如下:(1)整形电路:将输入的非矩形周期信号(如正弦波、三角波等)进行整形,使之成为矩形脉冲。
整形输出波形频率不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.设计的基本原理和框图基本原理:数字频率计是用数字显示被测信号的频率的仪器,被测信号可以是正弦波,方波或者其他周期性变化的信号,它的基本原理是时基信号发生器提供标准的时基脉冲信号,若其周期为1s则门控电路的输出信号持续时间亦准确到1s。
闸门电路有标准秒信号控制,当秒信号到来时闸门开通,信号通过闸门送到计数译码显示电路,秒信号结束时闸门关闭,计数器停止计数,由于计数器记得脉冲数N的是一秒内的累积数,所以被测频率是NHZ。
闸门时间可以取大于或者小于1秒的值,测得的频率时间间隔与闸门时间的取值成正比,在这里取的闸门时间为1s。
在此,数字频率计由分频器,片选电路,计数器,锁存器,译码电路和显示电路作为主要组成部分。
设计框图如图所示:计数器模块计数器模块为该电路中的核心模块,它的功能是:当门信号为上升沿时,电路开始计算半个周期内被测信号通过的周期数,到下升沿后结束。
然后送给锁存器锁存。
计数器电路图如图所示:图计数器电路图锁存器模块在分频信号的下降沿到来时,锁存器将计数器的信号锁存,然后送给编译模块中。
其电路图如图所示:图锁存器电路图译码信号模块此模块是对四个锁存器进行选择,按顺序的将四个锁存器中的数值送给译码模块中译码。
其电路图如图图译码信号电路图片选模块该模块接收到片选信号后,输出给显示器,选择显示那个显示管。
其电路图如图所示:图片选电路图译码模块译码模块的作用就是将译码信号模块中选择出的信号进行译码,并将其送给显示器。
其电路图如图所示:图译码电路图总电路图图总电路图三.编程下载分频模块的程序library ieee;use fen isport(clk:in std_logic;q:out std_logic);end fen;architecture fen_arc of fen isbeginvariable cnt:integer range 0 to 9;variable x:std_logic;beginif clk'event and clk='1'then if cnt<9 thencnt:=cnt+1;elsecnt:=0;x:=not x;end if;end if;q<=x;end process;end fen_arc;片选信号模块的程序library ieee;use sel isport(clk:in std_logic;q:out std_logic_vector(2 downto 0));end sel;architecture sel_arc of sel isbeginprocess(clk)variable cnt:std_logic_vector(2 downto 0);beginif clk'event and clk='1' thencnt:=cnt+1;end if;q<=cnt;end sel_arc;计数器模块的程序library ieee;use corna isport(clr,sig,door:in std_logic;alm:out std_logic;q3,q2,q1,q0,dang:out std_logic_vector(3 downto 0)); end corna;architecture corn_arc of corna isbeginprocess(door,sig)variable c3,c2,c1,c0:std_logic_vector(3 downto 0); variable x:std_logic;beginif sig'event and sig='1' thenif clr='0' thenalm<='0';c3:="0000";c2:="0000";c1:="0000";c0:="0000";elsif door='0' thenc3:="0000";c2:="0000";c1:="0000";c0:="0000";elsif door='1' thenif c0<"1001" thenc0:=c0+1;elsec0:="0000";if c1<"1001" thenc1:=c1+1;else c1:="0000";if c2<"1001" thenc2:=c2+1;elsec2:="0000";if c3<"1001" thenc3:=c3+1;elsec3:="0000";alm<='1';end if;end if;end if;end if;end if;if c3/="0000" thenq3<=c3;q2<=c2;q1<=c1;q0<=c0;dang<="0100";elsif c2/="0000" thenq3<="0000";q2<=c2;q1<=c1;q0<=c0;dang<="0011";elsif c1/="0000" thenq3<="0000";q2<="0000";q1<=c1;q0<=c0;dang<="0010";elseq3<="0000";q2<="0000";q1<="0000";q0<=c0;dang<="0001";end if;end if;end process;end corn_arc;锁存器模块的程序library ieee;use lock isport(l:in std_logic;a4,a3,a2,a1,a0:in std_logic_vector(3 downto 0);q4,q3,q2,q1,q0:out std_logic_vector(3 downto 0));end lock;architecture lock_arc of lock isbeginprocess(l)variable t4,t3,t2,t1,t0:std_logic_vector(3 downto 0);beginif l'event and l='0' thent4:=a4;t3:=a3;t2:=a2;t1:=a1;t0:=a0;end if;q4<=t4;q3<=t3;q2<=t2;q1<=t1;q0<=t0;end process;end lock_arc;译码信号模块的程序library ieee;use ch isport(sel:in std_logic_vector(2 downto 0);a3,a2,a1,a0,dang:in std_logic_vector(3 downto 0);q:out std_logic_vector(3 downto 0));end ch;architecture ch_arc of ch isbeginprocess(sel)begincase sel iswhen "000"=>q<=a0;when "001"=>q<=a1;when "010"=>q<=a2;when "011"=>q<=a3;when "111"=>q<=dang;when others=>q<="1111";end case;end process;end ch_arc;片选模块的程序library ieee;use ym isport(d:in std_logic_vector(2 downto 0);q:out std_logic_vector(7 downto 0)); end ym;architecture ym_arc of ym isbeginprocess(d)begincase d iswhen "000"=>q<="00000001";when "001"=>q<="00000010";when "010"=>q<="00000100";when "011"=>q<="00001000";when "100"=>q<="00010000";when "101"=>q<="00100000";when "110"=>q<="01000000";when others=>q<="00000000";end case;end process;end ym_arc;译码器模块的程序library ieee;use disp isport(d:in std_logic_vector(3 downto 0);q:out std_logic_vector(6 downto 0));end disp;architecture disp_arc of disp isbeginprocess(d)begincase d iswhen "0000"=>q<="0111111";when "0001"=>q<="0000110";when "0010"=>q<="1011011";when "0011"=>q<="1001111";when "0100"=>q<="1100110";when "0101"=>q<="1101101";when "0110"=>q<="1111101";when "0111"=>q<="0100101";when "1000"=>q<="1111111";when "1001"=>q<="1101111";when others=>q<="0000000";end case;end process;end disp_arc;顶层文件的程序library ieee;use plj isport(sig,clr,clk:in std_logic;alm:out std_logic;q:out std_logic_vector(6 downto 0);se:out std_logic_vector(7 downto 0));end plj;architecture art of plj iscomponent cornaport(clr,sig,door:in std_logic;alm:out std_logic;q3,q2,q1,q0,dang:out std_logic_vector(3 downto 0));end component;component fenport(clk:in std_logic;q:out std_logic);end component;component lockport(l:in std_logic;a4,a3,a2,a1,a0:in std_logic_vector(3 downto 0);q4,q3,q2,q1,q0:out std_logic_vector(3 downto 0));end component;component selport(clk:in std_logic;q:out std_logic_vector(2 downto 0));end component;component chport(sel:in std_logic_vector(2 downto 0);a3,a2,a1,a0,dang:in std_logic_vector(3 downto 0);q:out std_logic_vector(3 downto 0));end component;component dispport(d:in std_logic_vector(3 downto 0);q:out std_logic_vector(6 downto 0));end component;component ymport(d:in std_logic_vector(2 downto 0);q:out std_logic_vector(7 downto 0));end component;signal t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t12:std_logic_vector(3 downto 0);signal t11:std_logic;signal t20:std_logic_vector(2 downto 0);beginu1:corna port map(clr=>clr,sig=>sig,door=>t11,alm=>alm,q3=>t1,q2=>t2,q1=>t3,q0=>t4,dang=>t5);u2: fen port map (clk=>clk,q=>t11);u3: lock port map(l=>t11,a4=>t1,a3=>t2,a2=>t3,a1=>t4,a0=>t5,q4=>t6,q3=>t7,q2=>t8,q1=>t9,q0=>t10);u4: sel port map (clk=>clk,q=>t20);u5: ch port map (sel=>t20,a3=>t6,a2=>t7,a1=>t8,a0=>t9,dang=>t10,q=>t12);u6: disp port map (d=>t12,q=>q);u7: ym port map (d=>t20,q=>se);end architecture art;四.仿真与调试分频电路模块的仿真在quartus II中打开事先编译好的程序,然后建立工程文件,再打开波形图显示窗口,设置好参数,保存后编译,编译无错误既可以生成电路图。