低频信号发生器
低频信号发生器实习报告

实习报告:低频信号发生器的设计与实现一、实习背景随着现代电子技术的快速发展,信号发生器在科研、生产和教学等领域发挥着越来越重要的作用。
低频信号发生器作为一种基础电子测试仪器,能够产生各种低频电信号,用于测试电子电路的性能、调试和校准等。
本次实习旨在了解低频信号发生器的基本原理,掌握其设计和实现方法,并在此基础上,自行设计并制作一款低频信号发生器。
二、实习内容1. 了解低频信号发生器的基本原理低频信号发生器主要基于模拟电子技术和数字电子技术实现。
其基本原理包括正弦波振荡、幅度调制、频率调制等。
通过调整振荡器、放大器、滤波器等电路参数,可以产生不同频率、幅度和波形的信号。
2. 学习低频信号发生器的设计方法在本次实习中,我们学习了基于单片机和DAC0832数模转换器的低频信号发生器设计方法。
单片机和DAC0832数模转换器协同工作,通过软件编程和查表方法,实现波形信号的生成。
采样点越密,信号失真度越小。
程序设定寄存器T0作定时器,T1作计数器,以控制信号的频率和相位。
3. 进行Proteus计算机软件仿真为了验证设计的正确性和可行性,我们使用Proteus软件对低频信号发生器进行了仿真。
通过调整仿真参数,观察不同波形信号的输出,确保信号发生器能够正常工作。
4. 实际制作与调试根据设计方案,我们购买了所需的元器件,并进行焊接、组装和调试。
在实际制作过程中,我们遇到了一些问题,如电路故障、参数设置不当等。
通过请教老师和查阅资料,我们逐步解决了这些问题,最终成功制作出一款低频信号发生器。
三、实习心得通过本次实习,我对低频信号发生器的设计和实现有了更深入的了解。
在实际制作过程中,我学会了如何解决电路故障和调整参数,提高了自己的动手能力和解决问题的能力。
同时,我也认识到团队合作的重要性,与同学们共同解决难题,共同完成实习任务。
总之,本次实习使我受益匪浅,不仅提高了自己的专业技能,还培养了团队合作精神。
在今后的学习和工作中,我将继续努力,不断拓展自己的知识面和技能,为我国的电子科技事业贡献自己的力量。
低频信号发生器测试

❖ d)在表3中记录测试结果
信号频 10H 100H 1kHz 10kH 100k 200k 1MHz 2MH
率
zz
z
Hz Hz
z
失真系 数(%)
低频函数信号发生器性能测试
❖ 4)脉冲上升(下降)沿时间测试
❖ a)按照测试工艺,信号源通电,测试仪器通电,预热大约10分 钟;
❖ b)连接信号源与测试仪器;
❖ 概述
❖ EE1641B型 函数信号发生器是一种精密的测试仪器,因其具有连续 信号、扫频信号、函数信号、脉冲信号等多种输出信号和外部测频功 能,故定名为函数信号发生器/计数器。本仪器是电子工程师、电子 实验室、生产线及教学、科研需配备的理想设备。
❖ EE1641B函数信号发生器为 波段式(按十进制分类共分七档)的低 频函数信号发生器,采用大规模单片集成精密函数发生器电路,使得 该机具有很高的可靠性及优良性能/价格比。
❖ 式中 f 为仪器读盘或数字显示的输出信号频率;为实际输出频率。
❖f
3)频率稳定度 指在其他外界条件恒定不变的情况下,在规定时间内 o,信号源输出频率相对于预调值变化的大小。频率稳定度实际上是频
率不稳定度,它表示频率源能够维持恒定频率的能力。对于频率稳定
度的描述往往引入时间概念,如4×10-3/小时,5×10-9/天。
❖ 3)信号源输出波形置“方波”(或脉冲波),幅度5Vp-p,频率 “校准位置,使被测波形占满屏幕的 80%,读取稳态幅度10%~90%(或90%~10%)部分所对应的 时间,按式(4)计算上升(下降)沿时间
t r = L×K
(4)
式中:L—上升(下降)沿部分所占水平刻度;
5 )在规定的预热时间后,调节信号源输出频率,分别在每个波段选取高 、中、低3个频率点进行频率测量,频率误差按式计算。
低频函数信号发生器讲解学习

浙江大学 蔡忠法
电子系统综合设计
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。
➢ 模拟电路实现信号产生电路的多种方式
对于信号产生电路的模拟电路实现方案,也 有几种电路方式可供选择。如用正弦波发生器产 生正弦波信号,然后用过零比较器产生方波,再 经过积分电路产生三角波,电路框图如图所示。
vO1 1R R32V2R R32VZ
电子系统综合设计
浙江大学 蔡忠法
若VΘ2>0,则三角波上移; 若VΘ2<0,则三角波下移。
其上幅度为:
1
R2 R3
V2
R2 R3
VZ
其下幅度为:
1
R2 R3
V2
R2 R3
VZ
而三角波的峰峰值为:
VO1(PP)
2 R2 R3
VZ
电子系统综合设计
浙江大学 蔡忠法
方
波
这种电路在一定的频率范围内,具有良好 的三角波和方波信号。而正弦波信号的波形质 量,与函数转换电路的形式有关,这将在后面 的单元电路分析中详细介绍。
该电路方式是本实验信号产生部分的推 荐方案。
浙江大学 蔡忠法
电子系统综合设计
根据实验任务中对输出电压、输出电流及 输出功率的要求,原则上在输出级只需采用不 同的负反馈方式便可。即要求电压输出时,采 用电压负反馈;要求电流输出时,采用电流负 反馈。这将在单元电路分析中进行详细介绍。
元 电
路路
元器件
浙江大学 蔡忠法
电子系统综合设计
电子系统设计过程:
方案论证 总体设计 软硬件设计 组装调试 产品定型
低频信号发生器的使用说明

附录一低频信号发生器的使用说明一.概述AS1033型低频信号发生器采用了中央处理器控制面板的操作方式,具有良好的人机界面。
输出正弦波信号频率从2Hz~2MHz连续可调,输出正弦波信号幅度从0.5mV~5V连续可调,并设有TTL输出方波功能,频率从2Hz~2MHz连续可调,占空比从20%~80%连续可调。
面板显示清晰明了,操作简单方便,输出频率调节可采用频率段调节(轻触开关粗调)和数码开关调节(段内细调)二种,其中数码开关调节又分快调和慢调两种,五位数码管直接显示频率,输出幅度调节采用轻触粗调(20dB、40dB、60dB)和电位器细调(20dB)以内,三位数码管直接显示输出电压有效值或衰减电平。
中央处理器控制整机各部分,并采用了数/模、模/数转换电路,应用数码开关作为频率调节输入。
振荡电路采用压控振荡与稳幅放大相结合,具有良好的稳幅特性。
电路中还加入输出保护、TTL输出、方波占空比可调电路等。
二.技术特性1.频率范围:2Hz~2MHz,共分五个频段第一频段:2Hz~30Hz第二频段:30Hz~450Hz第三频段:450Hz~7kHz第四频段:7kHz~100kHz第五频段:100kHz~2MHz2.正弦波输出特性(1)输出电压幅度(有效值):0.5mV~5V(2)幅频率特性:≤±0.3dB(3)失真度:2Hz~200kHz≤0.1%,200kHz~2MHz,谐波分量≤-46dB3.方波输出特性⑴最大输出电压(空截,中心电平为0):14Vp-p⑵占空比(连续可调):20%~80%⑶逻辑电平输出:TTL电平,上升、下降沿≤25ns4.输出电抗:600Ω5.频率显示准确度:1×10-4±1个字6.正常工作条件⑴环境温度:0~40℃⑵相对湿度:<90%(40℃)⑶大气压:86~106kpa⑷电源电压:220±22V,50±2.5Hz7.消耗功率:<10W三.面板及操作说明1.整机电源开关(POWER)按下此键,接通电源,同时面板上指示灯亮。
低频信号发生器的使用说明

附录一低频信号发生器的使用说明一.概述AS1033型低频信号发生器采用了中央处理器控制面板的操作方式,具有良好的人机界面。
输出正弦波信号频率从2Hz~2MHz连续可调,输出正弦波信号幅度从0.5mV~5V连续可调,并设有TTL输出方波功能,频率从2Hz~2MHz连续可调,占空比从20%~80%连续可调。
面板显示清晰明了,操作简单方便,输出频率调节可采用频率段调节(轻触开关粗调)和数码开关调节(段内细调)二种,其中数码开关调节又分快调和慢调两种,五位数码管直接显示频率,输出幅度调节采用轻触粗调(20dB、40dB、60dB)和电位器细调(20dB)以内,三位数码管直接显示输出电压有效值或衰减电平。
中央处理器控制整机各部分,并采用了数/模、模/数转换电路,应用数码开关作为频率调节输入。
振荡电路采用压控振荡与稳幅放大相结合,具有良好的稳幅特性。
电路中还加入输出保护、TTL输出、方波占空比可调电路等。
二.技术特性1.频率范围:2Hz~2MHz,共分五个频段第一频段:2Hz~30Hz第二频段:30Hz~450Hz第三频段:450Hz~7kHz第四频段:7kHz~100kHz第五频段:100kHz~2MHz2.正弦波输出特性(1)输出电压幅度(有效值):0.5mV~5V(2)幅频率特性:≤±0.3dB(3)失真度:2Hz~200kHz≤0.1%,200kHz~2MHz,谐波分量≤-46dB3.方波输出特性⑴最大输出电压(空截,中心电平为0):14Vp-p⑵占空比(连续可调):20%~80%⑶逻辑电平输出:TTL电平,上升、下降沿≤25ns4.输出电抗:600Ω5.频率显示准确度:1×10-4±1个字6.正常工作条件⑴环境温度:0~40℃⑵相对湿度:<90%(40℃)⑶大气压:86~106kpa⑷电源电压:220±22V,50±2.5Hz7.消耗功率:<10W三.面板及操作说明1.整机电源开关(POWER)按下此键,接通电源,同时面板上指示灯亮。
低频信号发生器电路图

低频信号发生器电路图
低频信号发生器电路图
低频信号发生器于测量放大电路的灵敏度、频率响应、频率补偿、音调控制,也于低频放大器的修理,是十分有用的测量仪器。
它还作数字钟的信号源。
根据
使用
,信号发生器输出八个固定的频率,开关任意选择,电压输出幅度分0~0.1V,0~1V两挡连续可调。
本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。
电路原理如图。
集成电路CD4060是带有振荡器的十四级分频器。
晶体SJT产生30720Hz的微弱信号频率,与Cl及CD4060内部反相器构成晶体振荡。
Rl用以提供反馈回路,仅在晶体的基频上产生振荡,振荡中心频率为30720Hz。
微调电容Cl可使频率精确调谐在中心频率上。
SA置于CD4060的13脚。
30720Hz经CD4060九级(512次)分频后,由13脚输出高精度60Hz信号频率,经电容C3耦合到运放器741的2脚进行信号放大,然后从741的6脚输出。
调节电位器RP 时,XSl插口输出0~1V,XS2插口输出0~0.1V的低频信号。
其中,C2、C5为电源滤波电容。
C3、C6为741的输入、输出耦合电容。
R5、C4为高频补偿电路。
R2、R4构成分压衰减电路。
R6为反馈电阻用以提高电路的稳定度。
CD4060各脚的输出频率:3脚为2Hz,2脚为4Hz,13脚为60Hz,14脚为l20Hz,6脚为240Hz,4脚为480Hz,5脚为960Hz,7脚为l920Hz。
本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。
低频函数信号发生器

一、设计内容:设计一个低频函数信号发生 器 二、性能与技术指标 1. 同时输出三种波形:方波、三角波、正弦 波 2. 频率范围:10Hz ~10kHz 3 3. 频率稳定度: f f0 10 日
这种电路在一定的频率范围内,具有良好的三 角波和方波信号。而正弦波信号的波形质量,与 函数转换电路的形式有关,这将在后面的单元电 路分析中详细介绍。
滞回比较器又称施密特触发器迟滞比较器。 这种比较器的特点是当输入信号ui逐渐增大或 逐渐减小时,它有两个阈值,且不相等,其 传输特性具有“滞回”曲线的形状。滞回比 较器也有反相输入和同相输入两种方式作三角波使用。使iC 恒定的办法有多种,其实质都是利用恒流源电 路取代图中的R,便可获得较为理想的三角波波 形。
总结
这一次的实验,应该说任务,的确是很难,因为函数信号 发生器这东西真的不是仅仅靠学生一个月左右就能完成的作品,
虽然任务艰巨,但是我们也学到了很多。对于电路,放大器还
有一些其他元件的工作原理都有了很深的理解。我们也自学了 很多软件,ad软件都是自己自学,大家都很努力也都很充实。
虽然最后没有什么实际的成果也没有做出实物,但是毕竟尽了
运算法的转换原理是,把展开成幂级数形
式:
x x x sin x x 3! 5! 7!
由上述关系容易看出,取幂级数的前几项 (根据转换精度的要求),可以通过对线性 (三角波)变化量x的运算来近似表示成 sinx, 但要求三角波的幅度<π/2。
3
5
7
因为我们并没有很准确的能够把所有元器件 都搞齐,所以我们只能把搞出一个大致的电 路板,并不能显示实物。这也是局限所 在。。。
通过之前的原理说明,我们大概知道
低频信号发生器

第2章 测量与常用仪表2.4低频信号发生器XD-1型低频信号发生器能输出频率为1Hz~1MHz 的正弦信号。
它有电压输出和功率输出两种,最大输出功率为4W 左右。
功率输出可配接50Ω、75Ω、150Ω、600Ω、5k Ω五种负载,最大衰减量为90dB 。
1.面板上各主要旋钮的作用(1)电压表输入 外加待测电压输入端。
(2)电压测量开关 当开关置于“内”时,电压表直接接到电压输出端,用来测量输出电压;当开关置于“外”时,供测量外电路的输入电压。
(3)阻尼开关 通常置于“快”,当表针摆动较快时,再放到慢的位置,以减少指针的摆动。
(4)电压量程旋钮 根据待测电压的大小,选择合适的量程。
量程分为5V 、15V 、50V 、150V 四档。
(5)频段按键开关与频率细调旋钮 频段开关用于选择所需频段,频段细调旋钮按十进制排列,用于调准所需频率值。
XD-1型低频信号发生器的频率范围在1Hz~1MHz 之间分为6个频段:1~10Hz 、10~100Hz 、100Hz~1kHz 、1~10kHz 、10~100kHz 、100kHz~1MHz 。
(6)负载匹配旋钮 可选择不同阻值的输出阻抗,与负载匹配。
(7)输出衰减旋钮 用于电压输出的衰减,每档衰减10dB 。
注意:在同一1.了解低频信号发生器的面板构成。
2.熟练掌握低频信号发生器的使用方法。
3.在实际应用中理解其使用注意事项。
1. 低频信号发生器的输出频率调节方法。
2. 低频信号发生器的输出电压调节方法。
衰减位置上,电压与功率的衰减分贝数不同,面板上用不同颜色加以区别。
(8)输出细调旋钮用来控制电压输出与功率输出端的大小,与输出衰减钮配合使用,可得到所需的输出值。
(9)功率开关按下此钮时,可获得功率输出。
(10)过载指示与内负载按键过载保护指示灯点亮时,表示功率输出过载。
按下内负载按钮时,表示功率级的内部电阻已接通,以获得较高的输出幅度。
2.使用方法(1)频率选择根据所需的频率,选择相应频段,按下相应的频段按键,然后再利用频率细调的三个旋钮,按照十进制的原则细调到所需的频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (2)高频信号的频率范围选择按键
• 用来选择高频信号的频率范围。有6个互锁 开关,可以选择的频段范围为A: 100KHz~300KHz;B:300KHz~1MHz; C:1MHZ~3.2MHz;D: 3MHz ~10MHz; E:10MHz~35MHz;F:32MHz~ 150MHz。按下某个按键,输出信号的频率 在该键规定的范围内。
• (2)选择波形
– 通过波形选择按钮选择合适的波形,此键按下 输出方波,弹起输出正弦波。
• (3)调节信号幅度的基数
– 将频率基数调节旋钮旋转到50Hz,频率倍率按 钮选择×1,幅度衰减旋钮旋转到0dB。万用表 拨到交流电压档,两个表笔分别接触信号发生 器输出线的两端,万用表将显示输出信号的幅 度。旋转幅度调节旋钮,使输出电压为输出电 压的有效值。
– 频率基数调节旋钮右边有5个琴键按钮,如图26所示,它表示输出信号频率扩大的倍率,分 别输出信号的实际频率为:
– f=频率基数值×频率倍率。
• (7) 外同步信号接口
– 此端口为同步触发脉冲输入端,接口类型为 BNC接口。
– 在进行一些逻辑电路的测试时,需要多个信号 发生器产生的多路信号,这些信号的初始相位 不一定完全相同,将影响电路的测试效果。
• (4)调节幅度衰减
– 根据需要选择相应的的衰减幅度。
• (5) 调节信号频率
– 先调节频率基数调节旋钮,设定频率的基数, 再选择相应的倍率按键。
• (6)连接负载
任务2:低频信号发生器综合实训
• 1. 组装电路 • 2. 调试电路 • 3. 设置信号发生器的输出信号
– (1) 打开信号发生器 – (2)调节输出信号的幅度 – (3)连接放大电路 – (4)计算放大电路的电压放大倍数Av – (5) 改变信号发生器输出信号的幅度和频率,测量
• (4) 幅度衰减旋钮(ATTENUATOR)
– 衰减度旋钮共有6档,为别为0dB、-10dB、 -20dB、-30dB、-40dB、-50dB。用来衰 减信号幅度。
– dB是分贝的意思,表示增益和衰减的单位。其 定义为:
– 1dB=20lg(倍数)
– 如果倍数为10,转换为分贝为: 20lg(10)=20dB。如果倍数为0.01,转换为分 贝为:20lg(0.01)=-40dB。
低频信号发生器
• 1. 信号发生器的应用 • 信号发生器主要用于测试电路的参数,调
试设备的性能,它产生被测电路所需的测 试信号,输出到被测电路或设备输入端, 用其他测量仪器观察、测量被测对象的输 出,分析并确定被测对象的性能参数。
• 低频信号发生器产生的信号的频率一般在 1Hz~1MHZ。
2. TAG-101面板介绍
• (5) 频率基数调节旋钮(FREQUENCY)
– 频率基数调节旋钮的刻度盘上的数值从10~100, 该旋钮顺时针旋转,输出信号的频率增加,逆时 针旋转,信号频率减小。在面板上方有一个黑色 的频率基数定位标志,刻度盘上对准该标志的数 值就是输出信号的基数值,频率基数值为50Hz。
• (6) 频率倍率选择(RANGE)
• 声音、图形等信息的频率比较低,属于低 频信号。低频信号由于频率、带宽以及易 受干扰等原因不能直接用于天线发射。所 以就使用高频信号作为载波,把需要传输 的信号叠加到高频载波上,称为调制。调 制后的信号通过天线发射出去,在接收端 筛选出所需频率信号,从高频载波上取出 传输的信号,还原发射的低频信号,称为 解调。
• 高频信号发生器常见的调制类型为调幅和 调频两种。调幅是用低频调制信号去控制 高频载波的幅度,使高频载波信号的幅度 随低频调制信号的幅度的变化而变化。
• 调频是用低频调制信号去控制高频载波的 频率,使高频载波信号的频率随低频调制 信号的幅度的变化而变化。
2.TSG-17面板介绍
• TSG-17高频信号发生器可以输出低频波、 高频波和调幅波,低频波也称为调制波。
• (1)电源按钮和电源指示灯
– 按下电源按钮,低频信号发生器开机,电源指 示灯点亮。
• (2)波形选择按钮(WAVE FORM)
– 控制输出的波形。此按钮按下输出矩形波,弹 起输出正弦波
• (3) 幅度调节旋钮(AMPLITUDE)
– 此旋钮调节信号的幅度。顺时针旋转输出信号 幅度增加,逆顺针旋转输出信号幅度减小,
放大电路输出信号的电压,计算放大电路的电压放 大倍数。
任务3. 高频信号发生器
• 1. 概述 • 高频信号发生器的功能是向各种电子设备
或电路供给高频信号,测试电子设备或电 路的高频电气特性。能提供等幅波或调制 波(调幅或调频),广泛应用于调制和检修各 种无线电收音机、通讯机、电视接收机以 及测量电场强度等场合。
• (3)高频信号的频率调节旋钮
• 该旋钮呈圆盘状,圆盘上方的面板上有一 条红色刻度线,该刻度线对应的数值即为 输出信号的频率。圆盘上有6条刻度线,刻 度线上标有字母A~F,对应6个频率范围按 键。即当在频率范围按键中按下A键时,在 频率调节旋钮上读A刻度线上的数值。其余 刻度线依次类推。
• (4)高频信号幅度调节旋钮
• 该旋钮嵌入在面板里,需要用小改锥进行 调节。它可以调节输出的高频信号的幅度, 顺时针转动旋钮,高频信号幅度增加;逆 时针转动旋钮,信号幅度减小,输出信号 电平范围: 0~100 mV。
• (5)调制信号幅度调节旋钮
• 内嵌式旋钮。功能为调节调制频信号的幅 度,顺时针转动该旋钮,调制信号幅度增 加;逆时针转动旋钮,信号幅度减小,调 制深度范围:0~30%。
– 为了使信号之间同步,给各个信号发生器提供 相同的同步触发脉冲,信号发生器在接收到触
发脉冲后,均从相同的相位开始输出波形,满 足测试电路的需求。
• (8) 信号输出接口 • BNC接口。设定好的信号从此接口输出。
3. TAG-101的使用方法
• (1) 连接电源线和信号线
– 连接电源线。 – 将信号输出线插入信号输出(OUTPUT)接口, – 按下电源按钮开机,电源指示灯点亮。