常微分方程第三版课后答案

合集下载

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案常微分方程 2.11.xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程第三版习题答案

常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。

在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。

本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。

1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。

将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

《常微分方程》(王高雄)第三版课后答案

《常微分方程》(王高雄)第三版课后答案

e 8 : dy = −
y2 +3x
dx
y
解:变量分离,得 y dy = − 1 3x + c
e e y2
3
9 : x(ln x − ln y)dy − ydx = 0
解:方程可变为:− ln y • dy − y dx = 0
x
x
令u = y ,则有:1 dx = − ln u d ln u
x
x
1 + ln u
两 边 积 分 得 arctg
x(t)=x’(0)t+c 所以 x(t)=tg[x’(0)t+c] 当 t=0 时 x(0)=0 故 c=0 所以
x(t)=tg[x’(0)t]
02411 黄罕鳞(41) 甘代祥(42)
关注公众号【大学资料宝典】,获取大学各科期末复习资料+海量网课资源
11. dy = (x+ y)2 dx 解:令x + y = t,则 dy = dt + 1
dx dx 原方程可变为:dt = 1 + 1
dx t2
变量分离得: 1 dt = dx, 两边积分arctgt = x + c
t2 +1
代回变量得:arctg(x + y) = x + c
12. dy = 1
所以 x(0)=0. x’(t)= lim x(t + Δt) − x(t) = lim x(Δt)(1 + x2 (t)) = x'(0)(1 + x2 (t) )
Δt
Δt[1 − x(t)x(Δt)
dx(t) = x'(0)(1 + x2 (t)) dt

常微分方程王高雄著课后习题答案

常微分方程王高雄著课后习题答案

常微分方程(第三版)王高雄著课后习题答案.d o c(总86页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。

解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dx dy =y y 21+31x x + yy 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: yy -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令xy =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx duu+ xdxdu =ulnu ln(lnu-1)=-ln|cx| 1+ln xy =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u+du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dx dy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y + 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1 )1)((1+u f u du=x 1dx 所以原方程可化为变量分离方程。

最新常微分方程(第三版)答案

最新常微分方程(第三版)答案

常微分方程(第三版)答案常微分方程习题答案2.11.«Skip Record If...»,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得«Skip Record If...»«Skip Record If...»并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得:«Skip Record If...»3 «Skip Record If...»解:原式可化为:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»12.«Skip Record If...»解«Skip Record If...»«Skip Record If...»«Skip Record If...»15.«Skip Record If...»«Skip Record If...»16.«Skip Record If...»解:«Skip Record If...»«Skip Record If...»,这是齐次方程,令«Skip Record If...»17. «Skip Record If...»解:原方程化为«Skip Record If...»令«Skip Record If...»方程组«Skip Record If...»«Skip Record If...»则有«Skip Record If...»令«Skip Record If...»当«Skip Record If...»当«Skip Record If...»另外«Skip Record If...»«Skip Record If...»19. 已知f(x)«Skip Record If...».解:设f(x)=y, 则原方程化为«Skip Record If...»两边求导得«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»20.求具有性质 x(t+s)=«Skip Record If...»的函数x(t),已知x’(0)存在。

常微分方程第三版答案.doc

常微分方程第三版答案.doc

1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c-另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

/5.(y+x )dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -》则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 3》2 ex3-3e2y -=c.(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令xy=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- ,e y=cex11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+carctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21u、u-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 :dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) (2)y(1+x 2y 2)dx=xdy3) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

《常微分方程》(王高雄)第三版课后答案

《常微分方程》(王高雄)第三版课后答案

(2).
x y
dy dx
=
2+ 2−
x2 y2 x2 y2
证明:因为xy = u,关于x求导导得y + x dy = dy ,所以x dy = du − y
dx dx
dx dx
得:1 du −1 = f(u),
du
= u (f(u) + 1) = 1 (uf(u) + u)
y dx
dx = y(f(u) + 1) x
17. dy = 2x3 + 3xy + x
dx 3x2 y + 2 y3 − y
解:原方程化为 dy = x(2x2 + 3y 2 + 1) ;;;;; dy 2 = 2x2 + 3y 2 + 1
dx y(3x 2 + 2 y 2 −1) dx 2 3x 2 + 2 y 2 −1
令 y 2 = u,;;;;; x2 = v;;;;;;;则 du = 2v + 3u + 1.......(1)
解:对原式进行变量分离得:
− 1 dx = 1 dy,当y ≠ 0时,两边同时积分得;ln x + 1 = 1 + c,即y = 1
x +1
y2
y
c + ln x + 1
当y = 0时显然也是原方程的解。当x = 0, y = 1时,代入式子得c = 1,故特解是
y= 1 。 1 + ln1 + x
2. dx +3x=e 2t dt
解:原方程可化为 : dx =-3x+e 2t dt
∫ 所以:x=e ∫ −3dt ( e 2t e − ∫ −3dt dt + c )

常微分方程第三版课后习题答案

常微分方程第三版课后习题答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

(完整版)常微分方程第三版课后习题答案

(完整版)常微分方程第三版课后习题答案

习题 1.21. dy=2xy, 并满足初始条件: x=0,y=1 的特解。

dx2特解为 y= e x.22. y 2dx+(x+1)dy=0 并求满足初始条件: x=0,y=1 的特解。

2dy 1 解: y dx=-(x+1)dy 2 dy=- dx y x 11两边积分 : -=-ln|x+1|+ln|c|y特解: y=ln |c(x 1)|2 3.dy 1 y 2 3dx1 y 2dy=dy=4. (1+x)ydx+(1-y)xdy=01 y x 1 解:原方程为: dy=- dxyx两边积分: ln|xy|+x-y=c 另外 x=0,y=0 也是原方程的解。

5.( y+x ) dy+(x-y)dx=0y x解: 原方程为:dy =1 y2 dxy两边积分: x(1+x 2)(1+y 2)= 2cx解: dy =2xdxy2 两边积分有: ln|y|=x 2+cx 2cy=e +e =cex另外 y=0 也是原方程的解, c=0 时, y=0原方程的通解为 y= cex 2 ,x=0 y=1 时 c=1y=ln |c(x 1)|另外 y=0,x=-1 也是原方程的解 x=0,y=1 时 c=e3xy x y 13 dxx解:原方程为:dx x yu 1 1- 2du= dxu2 1 x22ln(u +1)x =c-2arctgu即ln(y 2+x 2)=c-2arctg y2.x2dy du=u+ xdx dx1du=sgnx dxxyarcsin =sgnx ln|x|+cx7. tgydx-ctgxdy=0两边积分:1siny=ccosx cosx所以原方程的通解为sinycosx=c.y2 3xdy e8 + =0dx y解:原方程为:dy=dx e y y3x e3x y22 e -3e=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dy=y ln y令y =u 则dy=u+x dudx dx 代入有:6. x dydx-y+ x2y2=0解:原方程为:dy=y+|x|dx x x 1 ( y)x则令y=u x11 u2解: 原方程为:dy dxtgy ctgxln|siny|=-ln|cosx|-ln|c|c另外y=0 也是原方程的解,而c=0 时,y=0.dx x xduu+ x =ulnudxln(lnu-1)=-ln|cx|y1+ln =cy.x10. dy=e x y dx解:原方程为:e y=cexdu 2-1=udx12du=dx1 u2arctgu=x+c arctg(x+y)=x+c解:令x+y=u, 则dy=du-1 dx dx du 1-1=dx -1=u2u-arctgu=x+c y-arctg(x+y)=c.13.dy=2x y 1 dx x 2y 1解: 原方程为: ( x-2y+1 ) dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 22 dxy-d(y -y)-dx +x=c22xy-y +y-x -x=cdy x y 5dx x y 2解:原方程为: (x-y-2 ) dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0令y=u ,则dyx dxdu=u+ xdx12.dy=1dx =(x y) 2dy x y=e edx11 dy 2ddyx=(x+y)解:令x+y=u, 则dy du= -1dx dx14:1 2 1 2 dxy-d( y +2y)-d( x +5x)=02222y +4y+x +10x-2xy=c.15: dy=(x+1) 2+(4y+1) 2+8xy 1 dx解:dy 2原方程为:=( x+4y ) +3dx令x+4y=u 则dy= 1 du- 1dx 4 dx 4 1 du 1 2- =u +34 dx 4du 2=4 u 2+133u= 2tg(6x+c)-12tg(6x+c)= (x+4y+1).316: 证明方程x dy=f(xy), 经变换xy=u 可化为变量分离方程,并由此求下列方程:y dx221) y(1+x y )dx=xdyx dy 2 x 2y2 y dx 2-x 2 y2证明:令 xy=u, 则 x dy+y=du dx dx 则dy=1 du- u2,有:dx x dx x2 x du =f(u)+1 u dx11 du= dx u( f(u) 1) x所以原方程可化为变量分离方程。

常微分方程第三版课后习题答案

常微分方程第三版课后习题答案

1.Dy/dx=2xy,并满足初始条件:x=0,y=1的特解。

解:dy/y=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex2,x=0 y=1时 c=1 特解为y= e2x .2. y2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c|siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln x y 令x y =u ,则dx dy =u+ x dx du u+ x dx du =ulnuln(lnu-1)=-ln|cx|,1+ln x y =cy.10. dx dy =e y x - 解:原方程为:dx dy =e x e y -,e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dxdy =dxdu -1,dxdu -1=u2,211u +du=dx ,arctgu=x+c ,arctg(x+y)=x+c12. dx dy =2)(1y x +,解:令x+y=u,则dx dy =dx du -1,dx du -1=21u u-arctgu=x+c ,y-arctg(x+y)=c.13. dx dy =1212+-+-y x y x (x-2y+1)dy=(2x-y+1)dx ,xdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=, xy-y 2+y-x 2-x=c15: dx dy =(x+1) 2+(4y+1)2+8xy1+解dxdy =(x+4y )2+3令x+4y=u 则dxdy =41dx du -41,dx du =4 u 2+13,u=23tg(6x+c)-1=tg(6x+c)=32(x+4y+1).,这也就是方程的解。

常微分方程(第三版)课后答案

常微分方程(第三版)课后答案

常微分方程 2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123 yxy dx dyx y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程第三版课后答案解析

常微分方程第三版课后答案解析

常微分方程 2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123 yxy dx dyx y 321++=解:原式可化为:x x y xx y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程第三版答案.doc

常微分方程第三版答案.doc

习题1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。

解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x +y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为:y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dxdy =-y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2xy . 6. x dx dy -y+22y x -=0解:原方程为: dx dy =x y +x x ||-2)(1x y- 则令x y =u dx dy =u+ x dx du211u - du=sgnx x 1dx arcsin x y=sgnx ln|x|+c7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgx dx两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x ccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8 dx dy +y e xy 32+=0解:原方程为:dx dy =y e y 2e x32 e x 3-3e 2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln x y令x y =u ,则dx dy =u+ x dxdu u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+ln x y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dxdu -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15: dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dx dy =(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dx dy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2y x 2y +证明: 令xy=u,则x dx dy +y=dx du则dx dy =x 1dx du -2x u,有: u x dx du=f(u)+1 )1)((1+u f u du=x 1dx所以原方程可化为变量分离方程。

常微分方程第三版课后答案

常微分方程第三版课后答案

常微分方程2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程(第三版)课后答案共84页word资料

常微分方程(第三版)课后答案共84页word资料

常微分方程2.1 1.xy dx dy2=,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:3 y xy dx dy x y321++=解:原式可化为:12.2)(1y x dx dy+=解15.18)14()1(22+++++=xy y x dx dy16.2252622y x xy x y dx dy +-= 解:,则原方程化为,,令u y x xy x y dx dy x xy y x y dx dy =+-==+-=32322332322232]2)[(32(2)(126326322222+-=+-=x ux u x xu x u dx du ,这是齐次方程,令cx x y x y c x y x y c x x y x y c x z z dx x dz dz z z z z x y x y z z z z z z z dx dz x dx dz x z z z dx dz x z dx du z x u 15337333533735372233222)2()3(023)2()3,)2()3112062312306)1.( (1)261263=+-=-===+-=+-=--+≠---==-===--+--=+=+-+==的解为时。

故原方程包含在通解中当或,又因为即(,两边积分的(时,变量分离当是方程的解。

或)方程的解。

即是(或,得当,,,,所以,则 17. yy y x x xy x dx dy -+++=3232332 解:原方程化为123132;;;;;)123()132(2222222222-+++=-+++=y x y x dx dy y x y y x x dx dy 令)1.......(123132;;;;;;;;;;;;,22-+++===u v u v dv du v x u y 则 方程组,,,);令,的解为(111101230132+=-=-⎩⎨⎧=-+=++u Y v Z u v u v 则有⎪⎪⎩⎪⎪⎨⎧++==+=+z y z y dz dy y z y z 23321023032)化为,,,,从而方程( 令)2.( (232223322),,,,,所以,,则有tt dz dt z t t dz dt z t dz dt z t dz dy z y t +-=++=++== 当是原方程的解或的解。

常微分方程第三版课后答案

常微分方程第三版课后答案

3t15t=e ( e +c)5=c e 3t +15e 2t 是原方程的解ds 13. =-s cost + sin2tdt 2cos tdt 13dt解:s=e ( sin2t e dt c )=esint( sin t coste sin t dt c) sin tsint sint= e( sin tee c )常微分方程 习题 2.2求下列方程的解1. dy = y sin x dx解: y=e ( sinxe dx c)x1 x=e x [- e x (sinx cos x )+c]= ce sint sint 1 是原方程的解。

4.dy xy e x x n,n 为常数. dx n解:原方程可化为:dy xy e x x n dx n方程的解。

=c e(sinx cos x )是原yendxx x ( e x x e n n dx n xdx c)2.dx+3x=e 2tnxx (ec)dt 解:原方程可化为:dx=-3x+edt是原方程的解 .所以:3dtx=ee2te 3dt5.dy +1 22x y 1=0 dx x 2dt c)ds23P(x) ,Q(x) (x 1)3 x1P(x)dxee=(x+1) 2((x 21) c)即: 2y=c(x+21+)(x+14) 为方程的通解。

8.d dy x =x y y 33dx x+y 1 2 解: xy 2dy y yP(y)dy P(y)dy( e Q(y)dy c) =y( 1*y 2dy c)y3= y cy23即 x=y +cy 是方程的通解 ,且 y=0也是方程的解。

2解:原方程可化为:dy dx1x 22xy 1x7.dy 2y (x 1)3dx x 1 解:dy 2y(x 1)3 dx x 1 (x 1)2(ln x 2e方程的通解为:ln x 2 1( e x dx c)1= x 2(1 ce x )P(x)dx P(x)dxy=e ( e Q(x)dx c) =(x+1)(=(x+1)((x 11)2 *(x+1)3dx+c) (x+1)dx+c) 是原方程的解.x=edx c )2则P(y)=y 1,Q(y) y 2方程的通解9. dy ay x 1,a 为常数 dx x x解:(P x) a ,Q(x) x 1xP(x )dxeedx方程的通解为:y=(x)dx P (x)dx(e Q(x)dx=xa(1 x+1dx+c)x a时,x 方程的通解为11.dy xy x 3y 3 dx 解:dy xyx 3y 3dx 两边除以3y c)d 3y xy 2 x 3 ydxdy2( xy 2 x 3)y=x+ln/x/+c当 y=cx+xln/x/-1当 a 1时, 方程 的通解为a 0,1时,方程的通解为y=cxa x 1 +-1- a adx 令y 2 z dz 2( xz x 3) dx P(x) 2x,Q(x) 2x 3 epx dx e2xdxe x 2 方程的通解为:z= e dx( e dxQ(x)dx c)10.x d d x y y x 3解:d dy x 1x y x 3P(x) 1,Q(x) x =e =xx(e x (2x 3)dx c) 22ce x1故方程的通解为y :2(x 2 ce x 1) 1,且y 0也是方程的解。

常微分方程第三版答案.doc

常微分方程第三版答案.doc

1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c'另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

!5.(y+x )dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -?则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 3^2 ex3-3e2y -=c.(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- )e y =ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21u>u-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 , dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) ~2)y(1+x 2y 2)dx=xdy3) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程 2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

代回原变量得:则有:令解:方程可变为:解:变量分离,得两边积分得:解:变量分离,得::也是方程的解。

另外,代回原来变量,得两边积分得:分离变量得:则原方程化为:解:令:。

两边积分得:变量分离,得:则令解:cx y x arctg cx arctgt dx dt dx dt dx dt dx dy t y x dxdy cdx dy dxdy tt y x e e e e e x yxyyx +=++==++=+==+=+===+-)(,11111,.11222)(代回变量得:两边积分变量分离得:原方程可变为:则解:令两边积分得:解:变量分离,12.2)(1y x dx dy += 解c x y x arctg y x c x arctgt t dx dt t t tdx dt dx dt dx dy t y x +=+-++=-=++=-==+)(1111222,代回变量,两边积分变量分离,原方程可变为,则令变量分离,则方程可化为:令则有令的解为解:方程组U U dX dU X U X Y Y X YX dX dY Y y X x y x y x y x y x y x dx dy U 21222'22,31,3131,31;012,0121212.132-+-==--=+=-==-==+-=--+---=.7)5(72177217)7(,71,1,525,14)5(22c x y x cx t dx dt t t tdx dt dx dt dx dy t y x y x y x dx dy y x t +-=+--+-=----=--===---+-=+-代回变量两边积分变量分离原方程化为:则解:令15.18)14()1(22+++++=xy y x dx dy原方程的解。

,是,两边积分得分离变量,,所以求导得,则关于令解:方程化为c x y x arctg dx du u u dx du dx du dx dy x u y x y x xy y y x x dxdy+=++=++==+=+++++=+++++++=6)383232(941494141412)14(1818161222222 16.2252622yx xy x y dx dy +-= 解:,则原方程化为,,令u y xxy x y dx dy x xy y x y dx dy =+-==+-=32322332322232]2)[(32(2)( 126326322222+-=+-=xu x u xxu x u dx du ,这是齐次方程,令cx x y x y c x y x y c x x y x y c x z z dx x dz dz z z z z x y x y z z z z z z z dx dz x dx dz x z z z dx dz x z dx du z x u 15337333533735372233222)2()3(023)2()3,)2()3112062312306)1.(..........1261263=+-=-===+-=+-=--+≠---==-===--+--=+=+-+==的解为时。

故原方程包含在通解中当或,又因为即(,两边积分的(时,变量分离当是方程的解。

或)方程的解。

即是(或,得当,,,,所以,则17. yy y x x xy x dx dy -+++=3232332 解:原方程化为123132;;;;;)123()132(2222222222-+++=-+++=y x y x dx dy y x y y x x dx dy 令)1.......(123132;;;;;;;;;;;;,22-+++===u v u v dv du v x u y 则方程组,,,);令,的解为(111101230132+=-=-⎩⎨⎧=-+=++u Y v Z u v u v 则有⎪⎪⎩⎪⎪⎨⎧++==+=+z y z y dz dy y z y z 23321023032)化为,,,,从而方程( 令)2.( (232223322),,,,,所以,,则有tt dz dt z t t dz dt z t dz dt z t dz dy z y t +-=++=++== 当是原方程的解或的解。

得,是方程时,,即222222)2(1022x y x y t t -=-=±==-当c x y x y dz z dt tt t 5222222)2(12223022+-=+=-+≠-两边积分的时,,分离变量得 另外c x y x y x y x y 522222222)2(2+-=+-=-=原方程的解为,包含在其通解中,故,或,这也就是方程的解。

,两边积分得分离变量得,则原方程化为令解)(并由此求解下列方程可化为变量分离方程,经变换证明方程c y x x y dx x du uu u u x u u u ux y x y x dx dy y x xdy dx y x y u xy xy f dxdyy x +==--=+-+====+==+=+=++==+=≠==+=+=+==--==+=-+==+===4ln 142241)22(1dx du u xy (2) 0.x ,c2故原方程的解为原也包含在此通解中。

0y ,c 2即,c 2两边同时积分得:dx x 12u du 变量分离得:),(2u x 1dx du 则方程化为u,xy 令1dx dy y x 时,方程化为0s xy 是原方程的解,当0y 或0x 当:(1)解程。

故此方程为此方程为变u)(uf(u)x 11)(f(u)x u 1)y(f(u)dx du f(u),1dx duy 1得:y dx du dx dy x 所以,dx dydx dy x y 求导导得x 关于u,xy 证明:因为22).2()1(.1)(18.222222222222224223322222222x yx y x y x yx u u uu y x19. 已知f(x)⎰≠=xx f x dt x f 0)(,0,1)(的一般表达式试求函数.解:设f(x)=y, 则原方程化为⎰=xydt x f 01)( 两边求导得'12y yy -= cx y y c x dy y dx dx dy y +±==+-==-21;;;;;121;;;;;;;;;;;;1;;;;;;;;;;233所以两边积分得代入把cx y +±=21⎰=xydt x f 01)(xy c c x c c x c x dt ct x21,02)2(;;;;;;;;;;2210±==+±=-+±+±=+±⎰所以得20.求具有性质 x(t+s)=)()(1)()(s x t x s x t x -+的函数x(t),已知x’(0)存在。

解:令t=s=0 x(0)=)0(1)0()0(x x x -+=)0()0(1)0(2x x x - 若x(0)≠0 得x 2=-1矛盾。

所以x(0)=0. x’(t)=)(1)(0(')()(1[))(1)((lim )()(lim22t x x t x t x t t x t x t t x t t x +=∆-∆+∆=∆-∆+) ))(1)(0(')(2t x x dtt dx +=dt x t x t dx )0(')(1)(2=+ 两边积分得arctgx(t)=x’(0)t+c 所以x(t)=tg[x’(0)t+c] 当t=0时 x(0)=0 故c=0 所以 x(t)=tg[x’(0)t]习题2.2求下列方程的解 1.dxdy=x y sin + 解: y=e ⎰dx (⎰x sin e ⎰-dxc dx +)=e x [-21e x-(x x cos sin +)+c] =c e x -21(x x cos sin +)是原方程的解。

相关文档
最新文档