初中七年级数学上册第一单元达标检测卷

合集下载

【3套精选】七年级数学(上)第一章有理数单元达标测试卷(有答案)

【3套精选】七年级数学(上)第一章有理数单元达标测试卷(有答案)

人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若汽车向南行驶30米记作+30米,则-50米表示()A.向东行驶50米B.向西行驶50米C.向南行驶50米D.向北行驶50米2.-|-2|的值是()A.-2 B.2 C.±2 D.43.大于-1且小于3的整数共有()A.2个B.3个C.4个D.5个4.下列四个数中,与-2018的和为0的数是()1 A.-2018 B.2018 C.0 D.-20185. “中国天眼”即500米口径球面射电望远镜(FAST),是世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面.将数据4600表示成a×10n(其中1≤a<10,n为整数)的形式,则n的值为()A.-1 B.2 C.3 D.46.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下列最接近标准质量的是()A B C D7.图1所示的数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点B表示的数是()A.-4 B.-2 C.0 D.4图18.下列说法中不正确的是()A.在数轴上能找到表示任何有理数的点B.若a ,b 互为相反数,则ba=-1 C.若一个数的绝对值是它本身,则这个数是非负数D.近似数7.30所表示的准确数的范围是大于或等于7.295,小于7.3059. 如图2,数轴上点A 表示的有理数为a ,点B 表示的有理数为b ,则下列式子中成立的是( )A .a+b >0B .a+b <0C .a-b >0D .|a|=|b|图210.用十进制计数法表示正整数,如365=300+60+5=3×102+6×101+5,用二进制计数法来表示正整数,如:5=4+1=1×22+0×21+1×1,记作5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作14=(1110)2,则(10101)2表示数() A. 41B. 21C. 20D. 24二、填空题(本大题共6小题,每小题4分,共24分)11.在有理数-0.2,0,321,-5中,整数有____________. 12. 计算:(-1)6+(-1)7=____________.13. 两会期间,百度APP 以图文、图案、短视频、直播等多种形式展现两会内容.据统计,直播内容237场,峰值观看人数一度高达3 800 000人,将数据3 800 000用科学记数法表示为 .14.已知线段AB 在数轴上,且它的长度为4,若点A 在数轴上对应的数为-1,则点B 在数轴上对应的数为 .15.已知一张纸的厚度是0.1 mm ,若将它连续对折10次后,则它折后的厚度为 mm .16.观察下列数据,找出规律并在横线上填上适当的数:1,-43,95,-167, , , ,… 三、解答题(本大题共6小题,共52分)17.(每小题3分,共6分)比较下列各组数的大小:(1)|-4+5|与|-4|+|5|; (2)2×32与(2×3)2.18.(每小题4分,共8分)计算: (1)|-2|-(-3)×(-15)÷(-9); (2)-12018+(-21+32-41)×24.19.(7分)当温度每上升1℃时,某种金属丝伸长0.002 mm ;反之,当温度每下降1℃时,金属丝缩短0.00 2mm.把15℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,求最后的长度比原来伸长了多少.20.(9分)计算6÷(-21+31)时,李明同学的计算过程如下,原式=6÷(-21)+6÷31=-12+18=6.请你判断李明的计算过程是否正确,若不正确,请你写出正确的计算过程,并正确计算出(21-61+91)÷(-361).21.(10分)如图3,已知点A 在数轴上表示的数为-1,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各题. (1)请在数轴上标出点B 和点C ;(2)求点B 所表示的数与点C 所表示的数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和哪个数所对应的点重合?图322.(12分)一辆货车从仓库装满货物后在东西街道上运送水果,规定向东为正方向,某次到达的五个地点分别为A,B,C,D,E,最后回到仓库,货车行驶的记录(单位:千米)如下:+1,+3,-6,-l,-2,+5.(1)请以仓库为原点,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)求出该货车共行驶了多少千米;(3)如果货车运送的水果以l00千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量可记为:+50,-l5,+25,-l0,-15,则该货车运送的水果总质量是多少千克?附加题(共20分,不计入总分)1.(8分)如图,点P,Q在数轴上表示的数分别是-8,4,点P以每秒2个单位长度的速度向右运动,点Q以每秒1个单位长度的速度向左运动,当运动秒时,P,Q 两点相距3个单位长度.2.(12分)对于有理数a,b,定义运算“⊕”:a⊕b=ab-2a-2b+1.(1)计算5⊕4的结果;(2)计算[(-2)⊕6]⊕3的结果;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.(第一章 有理数测试题参考答案一、1.D 2.A 3.B 4. B 5.C 6.C 7.B 8.B 9. A 10.B二、11. 0,-5 12.013. 3.8×106 14.3或-5 15. 102.4 16.259,-3611,4913 提示:第n 个数,分母是n 2,分子是2n-1,第奇数个数是正数,第偶数个数是负数.三、17.(1)|-4+5|=|1|=1,|-4|+|5|=4+5=9,所以|-4+5|<|-4|+|5|. (2)2×32=2×9=18,(2×3)2=62=36,所以2×32<(2×3)2.18. 解:(1) 原式=2+3×15×91=2+5=7. (2)原式=−1−21×24+32×24−41×24=−1−12+16−6=−3. 19. 解:(60-15)×0.002-(60-5)×0.002 =45×0.002-55×0.002 =(45-55)×0.002 =(-10)×0.002 =-0.02(mm ).答:最后的长度比原来伸长了-0.02 mm.20.解:李明的计算过程不正确,正确计算过程为:6÷(-21+31)=6÷(-61)=-36.原式=(21-61+人教版七年级数学(上)第一章有理数单元达标测试卷(有答案) 一、选择题(每题3分,共30分)1.如果向东走7 km 记作+7 km ,那么-5 km 表示( )A .向北走5 kmB .向南走5 kmC .向西走5 kmD .向东走5 km 2.在0,4,-3,-4这四个数中,最小的数是( )A .0B .4C .-3D .-43.在有理数|-1|,0,-122,(-1)2 019中,负数的个数为( )A .1B .2C .3D .44.某市去年共引进世界500强外资企业19家,累计引进外资410 000 000美元.410 000 000用科学记数法表示为( )A .41×107B .4.1×108C .4.1×109D .0.41×109 5.下列计算错误的是( )A .(-2)×(-3)=2×3=6B .-3-5=-3+(+5)=2C .4÷⎝ ⎛⎭⎪⎫-12=4×(-2)=-8 D .-(-32)=-(-9)=96.下列每对数中,不相等...的一对是( ) A .(-2)2 019和-22 019 B .(-2)2 020和22 020 C .(-2)2 020和-22 020 D .|-2|2 019和|2|2 0197.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或0 8.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高约为161 cm”中的数是准确数9.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( )A.12 m B .1 m C .2 m D .4 m 二、填空题(每题3分,共24分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.-2 019的相反数是________,绝对值是________,倒数是________. 13.将数59 840精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-2,以点A 为圆心、1个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是____________.(第15题)16.如果|a +2|+(b -3)2=0,那么a b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.(第17题) (第18题)18.一个质点P从距原点1个单位长度的点A处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从点A1跳动到OA1的中点A2处,第三次从点A2跳动到OA2的中点A3处,…如此不断跳动下去,则第五次跳动后,该质点到原点O的距离为________;第n次跳动后,该质点到原点O的距离为________.三、解答题(19,24题每题12分,20题16分,21题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36;(4)-42÷(-2)3+(-1)2 020-49÷23.21.现规定一种新运算“*”:a *b =a b-2,例如:2*3=23-2=6.试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5 g,求该食品的抽样检测的合格率.23.某景区工作人员接到任务后,驾驶电瓶车从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该工作人员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P表示的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P表示的数;(3)如果点P,Q在点A,B人教版七年级数学上册第一章有理数单元测试(含答案)一、单选题1.在有理数-3,0,23,-85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个2.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.B.C.D.3.下列各式中结果为负数的是()A.﹣(﹣2) B.|﹣2| C.(﹣2)2D.﹣|﹣2|4.下列说法不正确的是:()① a一定是正数;②0的倒数是0 ;③最大的负整数-1;④只有负数的绝对值是它的相反数;⑤相反数等于本身的有理数只有0A.②③④B.①②④⑤C.②③④⑤D.①②④5.在数轴上与-3的距离等于4的点表示的数是()A.1 B.-7 C.1或-7 D.无数个6.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()A.p•q=1B.p1q=C.p-q=0 D.p+q=07.56-的相反数是()A.56B.56-C.65D.65-8.实数-2019的绝对值是()A. B.2019 C. D.9.下列计算正确的是( ) A .5+(﹣6)=﹣11 B .﹣1.3+(﹣1.7)=﹣3 C .(﹣11)﹣7=﹣4 D .(﹣7)﹣(﹣8)=﹣110.|-6|的倒数是( ) A .6B .-6C .16 D .-1611.﹣|﹣3|的倒数是( ) A .﹣3B .﹣13C .13D .312.一个数和它的倒数相等,则这个数是 ( ) A .1 B .-1 C .±1 D .±1和0二、填空题13.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____. 14.0.7808用四舍五入法精确到十分位是_____. 15.计算:1001-1-6-)6÷⨯()(=_________16.用“>”或“<”填空: 3--______ ( 3.1)--; 78-____67-; 17.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是__.三、解答题 18.计算: (1)1+(-2)+|-2-3|-5 (2) 51557-÷ (3) (-16+34-512)⨯(12)- (4)(-1)2012-(-512)×411+(-8)÷[(-3)+5] (5)()2014322321-+--⨯-19.用☉定义一种新运算:对于任意有理数a 、b ,都有21ab b =+。

新人教版七年级上数学第一单元试卷及答案-完整版

新人教版七年级上数学第一单元试卷及答案-完整版

七年级数学第一单元测试卷班级 姓名 分数一、选择题:(10*3=30 )1. 下列各组量中,互为相反意义的量是( )A 、收入200元与赢利200元B 、上升10米与下降7米C 、“黑色”与“白色”D 、“你比我高3cm ”与“我比你重3kg ”2.为迎接即将开幕的广州亚运会,亚组委共投入了2 198 000 000元人民币建造各项体育设施,用科学记数法表示该数据是( )A 10100.2198⨯元B 6102198⨯元C 910198.2⨯元D 1010198.2⨯元3. 下列计算中,错误的是( )。

A 、3662-=-B 、161)41(2=± C 、64)4(3-=- D 、0)1()1(1000100=-+- 4. 对于近似数0.1830,下列说法正确的是( )A 、有两个有效数字,精确到千位B 、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分位D 、有五个有效数字,精确到万分5.下列说法中正确的是 ( )A .a -一定是负数B a 一定是负数C a -一定不是负数D 2a -一定是负数二、填空题:(6*3=18)6. 若0<a <1,则a ,2a ,1a的大小关系是 7.若a a =-那么2a 08. 如图,点A B ,在数轴上对应的实数分别为m n ,,则A B ,间的距离是 .(用含m n ,的式子表示)9. 如果0 xy 且x 2=4,y 2 =9,那么x +y =三、解答题:每题6分,共24分11.① (-5)×6+(-125) ÷(-5) ② 312 +(-12 )-(-13 )+223③(23 -14 -38 +524 )×48 ④-18÷ (-3)2+5×(-12)3-(-15) ÷5四、解答题:12. (本小题6分) 把下列各数分别填入相应的集合里.()88.1,5,2006,14.3,722,0,34,4++----- (1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}13. (本小题6分)某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?14. (本小题6分) 已知在纸面上有一数轴(如图),折叠纸面. (1)若1表示的点与-1表示的点重合,则- 2表示的点与数 表示的点重合;(2)若-1表示的点与3表示的点重合,则5表示的点与数 表示的点重合;15.(本小题8分) 某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?七年级数学第一单元测试卷参考答案1.B 2.C 3.D 4.C 5.C 6.aa a 12 7.≤ 8.n-m 9.±1 10.32 11①-5 ②6 ③12 ④83 12①88.1,2006,722+ ②)5(,14.3,34,4+----- ③)5(,2006,0,4+-- ④88.1,14.3,722,34+--- 13.10千米14. ①2 ②-315.①最高分:92分;最低分70分.②低于80分的学生有5人。

七年级上册《数学》第一章测试卷(含答案)

七年级上册《数学》第一章测试卷(含答案)

七年级上册《数学》第一章测试卷(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分.下列各题给出的四个选项中,只有一项符合题意)1.(2020·辽宁大连中考)下列四个数中,比-1小的数是()C.0D.1A.-2B.-122.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克3.下列说法正确的有()①一个数不是正数就是负数;②海拔-155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个B.2个C.3个D.4个4.小灵做了以下4道计算题:①-6-6=0;②-3-|-3|=-6;③3÷1×2=12;④0-(-1)2021=-1.2则她做对的道数是()A.1B.2C.3D.45.(2020·辽宁沈阳中考)2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为( )A.1.09×103B.1.09×104C.10.9×103D.0.109×1056.有理数a,b,c 在数轴上对应的点如图所示,则下列式子正确的是( )A.ac>bcB.|a-b|=a-bC.-a<-b<cD.-a-c>-b-c7.已知①1-22;②|1-2|;③(1-2)2;④1-(-2),其中相等的是( )A.②和③B.③和④C.②和④D.①和②8.若(-ab)2021>0,则下列各式正确的是( )A.b a <0B.b a >0C.a>0,b<0D.a<0,b>0 二、填空题(本大题共4小题,每小题4分,共16分) 9.-213的相反数是 ,倒数是 ,绝对值是 .10.在数轴上,与-3对应的点距离4个单位长度的点有 个,它们表示的数是 .11.近似数20.995精确到百分位是 .12.某品种兔子,一对兔子每个月能繁殖3对小兔子,而每对小兔子一个月后也能繁殖3对新小兔子,总之,所有的每对兔子都是每月繁殖3对小兔子.如果开始只有一对兔子,那么半年后有 对兔子(不考虑意外死亡).三、解答题(本大题共5小题,共52分)13.(12分)计算: (1)(-49)-(+91)-(-5)+(-9);(2)-17+17÷(-1)11-52×(-0.2)3;(3)-5-[-15-(1-0.2×35)÷(-2)2].14.(10分)某人用400元购买了8套儿童服装,准备以一定价格出售.如果每套儿童服装以55元的价格为标准,实际出售时超出的记作正数,不足的记作负数,记录如下:+2,-4,+2,+1,-2,-1,0,-2.(单位:元)(1)通过计算说明当他卖完这8套儿童服装后是盈利还是亏损.(2)每套儿童服装的平均售价是多少元?15.(10分)观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……(1)说出等式左边各个幂的底数与右边幂的底数之间有什么关系;(2)利用上述规律,计算13+23+33+43+…+1003的值.16.(10分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×11845+999×(-15)-999×1835.17.(10分)如图,小玉有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:(1)从中抽出2张卡片,使这2张卡片上的数字的乘积最大,则应如何抽取?最大的乘积是多少?(2)从中抽出2张卡片,使这2张卡片上的数字相除的商最小,则应如何抽取?最小的商是多少?(3)从中抽出2张卡片,使这2张卡片上的数字经过加、减、乘、除、乘方中的一种运算后,得到一个最大的数,则应如何抽取?最大的数是多少? (4)从中抽出4张卡片,用学过的运算方法,要使结果为24,则应如何抽取?写出运算式子(一种即可).七年级上册《数学》第一章测试卷答案一、选择题1.A2.C3.A4.B5.B6.D7.A 因为①1-22=1-4=-3;②|1-2|=|-1|=1;③(1-2)2=(-1)2=1;④1-(-2)=1+2=3,所以相等的是②和③.8.A 因为(-ab)的奇次幂大于0,所以-ab>0,则ab<0,即a,b 异号,商为负数,但不能确定a,b 谁正谁负.二、填空题9.213 -37 213 10.2 -7和1 满足要求的点有2个,分别位于-3的两侧且到-3对应的点的距离都是4,右边的数为-3+4=1,左边的数为-3-4=-7.11.21.00 精确到百分位即保留两位小数,根据四舍五入法可得20.995≈21.00.12.4096 结合乘方的定义可知:开始有兔子的对数是1,1个月后有4对兔子,以后每一个月后每一对兔子都变成4对兔子,依次类推,可得6个月后有46对小兔子.三、解答题13.解:(1)原式=-49-91+5-9=-49-91-9+5=-149+5=-144.(2)原式=-17+17÷(-1)-25×(-1125)=-17+(-17)-(-15) =-34+15=-3345. (3)原式=-5-[-15-(1-325)÷4] =-5-(-15-2225×14)=-5-(-2150)=-5+2150=-42950.14.解:(1)售价总额为55×8+2-4+2+1-2-1+0-2=440-4=436(元). 436-400=36(元),即当他卖完这8套儿童服装后盈利了36元. 答:他卖完这8套儿童服装后是盈利.(2)436÷8=54.5(元).答:每套儿童服装的平均售价是54.5元.15.解:(1)左边各个幂的底数之和等于右边幂的底数.(2)原式=(1+2+3+4+…+100)2=50502=25502500.16.解:(1)原式=(1000-1)×(-15)=-15000+15=-14985.(2)原式=999×[11845+(-15)−1835]=999×100=99900.17.解:(1)抽取-3,-5,最大的乘积是15.(2)抽取-5,+3,最小的商是-53.(3)抽取-5,+4,最大的数为(-5)4=625.(4)答案不唯一,如抽取-3,-5,0,+3,运算式子为{0-[(-3)+(-5)]}×(+3)=24.。

人教版七年级上册数学第一章达标测试题(附答案)

人教版七年级上册数学第一章达标测试题(附答案)

人教版七年级上册数学第一章达标测试题(附答案)一、单选题1.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61 700 000,这个数用科学记数法表示为()A. B. C. D.2.-的倒数为()A. B. - C. 1988 D. -19883.点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A. |b|<2<|a|B. 1﹣2a>1﹣2bC. ﹣a<b<2D. a<﹣2<﹣b4.若,则的值为()A. 6B. -6C. 8D. -85.下列式子计算不正确的是()A. +(-3)=-3B. -(-3)=3C. |-3|=-3D. -|-3|=-36.实数a、b、c在数轴上的位置如图所示,化简:的结果是A. a–2cB. –aC. aD. 2b–a7.若非零且互为相反数,互为倒数,m的绝对值为2,则值为()A. -4B. 0C. 2D. 48.A为数轴上表示3的点,将点A沿数轴向左平移7个单位到点B,再由B向右平移6个单位到点C,则点C表示的数是()A. 0B. 1C. 2D. 39.适合|2a+5|+|2a-3|=8的整数a的值有()A. 4个B. 5个C. 7个D. 9个10.已知整数a、b,c,d在数轴上对应的点如图所示,其中|b|<|a|=|c|<|d|,则下列各式:①a+b+c+d >0,②b﹣a=b+c,③a c<d c,④ +﹣=0,⑤ >﹣,其中一定成立的有()A. 2个B. 3个C. 4个D. 5个二、填空题11.长春市奥林匹克公园于2018年年底建成,它的总占地面积约为528000平方米,528000这个数字用科学记数法表示为________.12.如果水位升高3m时水位变化记作+3m,那么水位下降8m时水位变化记作________.13.的相反数是________.14.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 ________15.一辆公交车上原有16人,经过3个站点时乘客上、下车情况如下(上车人数记为正,下车人数记为负,单位:人):-3,+4;-5,+7;+5,-11.此时公交车上有________人.16.定义一种新运算:新定义运算a*b=a×(a-b)3,则3*4的结果是________。

人教版七年级数学上册第一单元测试题及答案

人教版七年级数学上册第一单元测试题及答案

人教版七年级数学上册第一单元测试题及答案一、选择题(每题3分,共30分)1. 下列数中,既是有理数又是无理数的是()A. 3.14B. √2C. -5D. 0.333…2. 下列说法中正确的是()A. 有理数的平方根一定是有理数B. 无理数的平方根一定是无理数C. 有理数的立方根一定是无理数D. 无理数的立方根一定是有理数3. 若a是有理数,b是无理数,则下列选项中正确的是()A. a+b是有理数B. a-b是无理数C. ab是有理数D. a/b是无理数4. 已知a=√3,b=√2,则下列选项中正确的是()A. a+b=√5B. a-b=√1C. ab=√6D. a²+b²=55. 下列各数中,是3的倍数的有()A. 21B. 12C. 18D. 96. 如果一个数的平方等于1,那么这个数是()A. 1B. -1C. 0D. ±17. 下列各数中,是偶数的有()A. 13B. 24C. 35D. 468. 下列各数中,能被4整除的有()A. 36B. 48C. 60D. 729. 一个正整数既是3的倍数,又是4的倍数,那么这个数最小是()A. 12B. 24C. 36D. 4810. 若a、b互质,且a、b都是正整数,那么下列选项中正确的是()A. a+b是偶数B. a+b是奇数C. ab是偶数D. ab是奇数二、填空题(每题3分,共30分)11. 有理数a的相反数是______,它的绝对值是______。

12. 若a=√5,则a²=______,若b=√3+1,则b²=______。

13. 已知a=√2,b=√3,则a+b=______,a²+b²=______。

14. 0.333…的立方根是______,-0.125的立方根是______。

15. 2的平方根是______,3的立方根是______。

16. 下列各数中,是无理数的有:______、______、______。

七年级数学上册第一单元测试卷

七年级数学上册第一单元测试卷

七年级数学上册第一单元测试卷一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 绝对值最小的数是:A. 0B. 1C. -1D. 23. 如果a > 0,b < 0,那么a + b的符号是:A. 正B. 负C. 零D. 不确定4. 以下哪个不是有理数?A. πB. -3C. 0.5D. 25. 已知a = -3,b = 2,那么a + b =:A. -1C. -5D. 56. 下列哪个是偶数?A. 1B. 2C. 3D. 47. 两个数的乘积为负数,那么这两个数:A. 都是正数B. 都是负数C. 一个是正数,一个是负数D. 一个为零8. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 29. 下列哪个数是质数?A. 1B. 2C. 3D. 410. 一个数的平方是它自己,这个数是:A. 0B. 1D. 2二、填空题(每题2分,共20分)11. 一个数的绝对值是它自己,这个数是非负数,即______。

12. 如果一个数的相反数是它自己,那么这个数是______。

13. 两个数相加,和为零,那么这两个数是______。

14. 一个数的平方根是它自己,这个数是______。

15. 一个数的立方是它自己,这个数是______。

16. 一个数的倒数是它自己,这个数是______。

17. 一个数的绝对值是它自己,这个数是______。

18. 如果a + b = 0,那么a和b是______。

19. 一个数的平方是它自己,这个数是______。

20. 一个数的立方是它自己,这个数是______。

三、计算题(每题5分,共30分)21. 计算 |-5| + |-3| - |1|。

22. 计算 (-3) × (-2)。

23. 计算5 × 2 - 3 × 4。

24. 计算 (-2)^2。

25. 计算√(-4)^2。

七年级上册数学2024第一单元测试卷

七年级上册数学2024第一单元测试卷

七年级上册数学2024第一单元测试卷一、选择题(每小题3分,共30分)1.下列说法正确的是()A. 所有的整数都是正数B. 正数和负数统称为有理数C. 0是最小的有理数D. 整数和分数统称为有理数2.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A. +3mB. -3mC. +D. -3.室内温度是15℃,室外温度是-3℃,则室外温度比室内温度低()A. 12℃B. 18℃C. -12℃D. -18℃4.一个数和它的倒数相等,则这个数是()A. 1B. -1C. ±1D. ±1和05.下列各数中,最大的数是()A. -4B. 3C. 0D. -26.若三个有理数的和为0,则下列结论正确的是()A. 这三个数都是0B. 最少有两个数是负数C. 最多有两个正数D. 这三个数是互为相反数7.下列说法中错误的是()A. 0的绝对值是0B. 负数的绝对值等于它的相反数C. 任何数的绝对值都是正数D. 正数的绝对值等于它本身8.若|a|=5,b=-3,则a-b的值是()A. 2或8B. -2或8C. 2或-8D. -2或-89.点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是()A. 3B. -1C. 5D. -1或310.下列各式中计算正确的是()A. -(-3)=3B. -|+2|=-2C. |-(+2)|=-2D. +(-3)=3二、填空题(每小题3分,共18分)11.甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________米。

12.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。

13.在数轴上,与表示数-1的点的距离是5的点表示的数是__________。

14.绝对值小于4的所有整数的和是__________。

15.某出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元。

最新人教版初中数学七年级上册单元达标检测试题及答案(全册)

最新人教版初中数学七年级上册单元达标检测试题及答案(全册)

人教版数学七年级上册第一章达标测试卷一、选择题(每题3分,共30分)1.若将运动员某次跳水的最高点离跳台2 m ,记作+2 m ,则水面离跳台10 m 可记作( )A .-10 mB .-12 mC .+10 mD .+12 m2.-12 019的相反数是( )A.12 019 B .-12 019C .2 019D .-2 0193.在有理数-3,2,0,-4中,最大的数是( )A .-3B .2C .0D .-44.如图,数轴的单位长度为1,如果A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A .-4B .-2C .0D .2(第4题) (第7题)5.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3 C .(-3)2÷(-2)2=32D .0-7-2×5=-176.2017年中国高端装备制造业销售收入超过6万亿元.其中6万亿元用科学记数法表示为( )A .0.6×1013元B .60×1011元C .6×1012元D .6×1013元7.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c (对应顺序暂不确定).如果ab <0,a +b >0,ac >bc ,那么表示数b 的点为( )A .点MB .点NC .点PD .点O8.下列说法中,正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a +3|=5,b =-3,则a +b 的值为( )A .1或11B .-1或-11C .-1或11D .1或-1110.若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则100!98!的值为( ) A.5049 B .99! C .9 900 D .2!二、填空题(每题3分,共30分)11.|-3|的相反数是________;-2 019的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有____________________,分数有____________________.13.若A 、B 、C 三地的海拔高度分别是-102米、-80米、-25米,则最高点比最低点高________米.14.近似数2.30精确到__________位.15.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.16.在数轴上与表示-1的点相距2个单位长度的点表示的数是________.17.有5袋苹果,以每袋50千克为准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下:+4,-5,+3,-2,-6,则这5袋苹果的总质量是________.18.若x ,y 为有理数,且(3-x )4+|y +3|=0,则⎝ ⎛⎭⎪⎫x y 2 019的值为________. 19.按照下图所示的步骤操作,若输入x 的值为-2,则输出的值为________. 输入x ―→加上3―→平方―→乘3―→减去5―→输出20.如图,填在各正方形中的四个数之间都有一定的规律,据此规律得出n =________.三、解答题(23题6分,21,24,25题每题8分,其余每题10分,共60分)21.将下列各数在数轴上表示出来,并按从小到大的顺序用“<”号把这些数连接起来:-22,-(-1),0,-|-2|,-2.5,|-3|22.计算:(1)-78+(+4)+200-(-96)+(-22);(2)-22-|-7|+3-2×⎝ ⎛⎭⎪⎫-12;(3)⎝ ⎛⎭⎪⎫-162÷⎝ ⎛⎭⎪⎫12-132÷|-6|2÷⎝ ⎛⎭⎪⎫-122.(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).23.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.求a +b a +b +c+m 2-cd 的值.24.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b-1)2=0.现将点A ,B 之间的距离记作|AB |,定义|AB |=|a -b |.(1)|AB |=________;(2)设点P 在数轴上对应的数是x ,当|P A |-|PB |=2时,求x 的值.25.在数轴上表示a ,0,1,b 四个数的点如图所示,已知OA =OB ,求|a +b |+⎪⎪⎪⎪⎪⎪a b +|a +1|的值.26.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m ):+10,-2,+5,-6,+12,-9,+4,-14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离是多少米?(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员极可能挑射破门.请问在这一段时间内,对方球员有几次挑射破门的机会?27.观察下列等式:第1个等式:a 1=11×3=12×⎝ ⎛⎭⎪⎫1-13;第2个等式:a 2=13×5=12×⎝ ⎛⎭⎪⎫13-15;第3个等式:a 3=15×7=12×⎝ ⎛⎭⎪⎫15-17;第4个等式:a 4=17×9=12×⎝ ⎛⎭⎪⎫17-19;….请解答下列问题: (1)按发现的规律分别写出第5个等式和第6个等式;(2)求a 1+a 2+a 3+a 4+…+a 100的值.答案一、1.A2.A3.B4.B5.D6.C 7.A8.C9.B10.C二、11.-3;-1 2 01912.-4,-0.8,-15,-343,-|-24|;+8.3,-0.8,-15,-34313.7714.百分15.0;-416.-3或117.244千克18.-119.-220.96点拨:依规律得6下面的数是10,6右边的数是9.所以n=9×10+6=96.三、21.解:如图所示.-22<-2.5<-|-2|<0<-(-1)<|-3|.22.解:(1)原式=-78+4+200+96-22=200.(2)原式=-4-7+3+1=-7.(3)原式=136÷⎝⎛⎭⎪⎫162÷36÷14=136×36×136×4=1 9.(4)原式=1-1+(-2.45-2.55)×8=-40.23.解:由题意,得a+b=0,cd=1,m=±2,所以m2=4.所以a+ba+b+c+m2-cd=0+c+4-1=0+4-1=3.24.解:(1)5(2)当点P在点A左侧时,|P A|-|PB|=-(|PB|-|P A|)=-|AB|=-5≠2;当点P 在点B 右侧时,|P A |-|PB |=|AB |=5≠2;当点P 在A ,B 之间时,|P A |=|x -(-4)|=x +4,|PB |=|x -1|=1-x ,因为|P A |-|PB |=2,所以x +4-(1-x )=2,解得x =-12,即x 的值为-12.25.解:因为OA =OB ,所以a +b =0,a =-b ,由数轴知b >1,所以a <-1,所以a +1<0,所以原式=0+1-a -1=-a .26.解:(1)+10-2+5-6+12-9+4-14=0(m ).所以守门员最后正好回到球门线上.(2)第一次:10 m ,第二次:10-2=8(m ),第三次:8+5=13(m ),第四次:13-6=7(m ),第五次:7+12=19(m ),第六次:19-9=10(m ),第七次:10+4=14(m ),第八次:14-14=0(m ).因为19>14>13>10>8>7>0,所以守门员离开球门线的最远距离为19 m .(3)结合(2)中所求守门员离开球门线的距离,知第一次:10=10,第二次:8<10,第三次:13>10,第四次:7<10,第五次:19>10,第六次:10=10,第七次:14>10,第八次:0<10,所以对方球员有3次挑射破门的机会.27.解:(1)第5个等式:a 5=19×11=12×⎝ ⎛⎭⎪⎫19-111;第6个等式:a 6=111×13=12×⎝ ⎛⎭⎪⎫111-113. (2)a 1+a 2+a 3+a 4+…+a 100=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+12×⎝ ⎛⎭⎪⎫17-19+…+12×⎝ ⎛⎭⎪⎫1199-1201=12×(1-13+13-15+15-17+17-19+…+1199-1201)=12×200201=100201.第二章达标测试卷一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是()A.x2-1 B.a2b C.πa+bD.x-y32.若-x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.53.将如图所示的两个椭圆中的同类项用线对应连接,其中对应正确的连线有()A.1条B.2条C.3条D.4条(第3题)(第8题)4.下列去括号错误的是()A.a2-(a-b+c)=a2-a+b-c B.5+a-2(3a-5)=5+a-6a+5C.3a-13(3a2-2a)=3a-a2+23a D.a3-[a2-(-b)]=a3-a2-b5.已知m-n=100,x+y=-1,则式子(n+x)-(m-y)的值是() A.99 B.101 C.-99 D.-1016.若x2+ax-2y+7-(bx2-2x+9y-1)的值与x的取值无关,则a+b的值为() A.-1 B.1 C.-2 D.27.某商品的原价为每件x元,后来店主将每件加价10元,再降价25%销售,则现在的单价是()A.(25%x+10)元B.[(1-25%)x+10]元C.25%(x+10)元D.(1-25%)(x+10)元8.如图,阴影部分的面积是()A.112xy B.132xy C.6xy D.3xy9.当1<a <2时,式子|a -2|+|1-a |的值是( )A .-1B .1C .3D .-310.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,盒底未被卡片覆盖的部分用阴影表示.若按图①、图②所示方式摆放,阴影部分的面积分别为S 1和S 2,则S 1和S 2的大小关系是( )A .S 1=S 2B .S 1<S 2C .S 1>S 2D .无法确定二、填空题(每题3分,共30分)11.用式子表示“比a 的平方的一半小1的数”是________.12.单项式-xy 23的系数是________,次数是________.13.按照如图所示的步骤操作,若输入x 的值为-4,则输出的值为________.14.如果单项式-x 3y 与x a y b -1是同类项,那么(a -b )2 019=________.15.已知a ,b 在数轴上的位置如图所示,化简|a |+|b -a |-2|a +b |的结果是________.16.若a +b =2 019,则当x =1时,多项式ax 3+bx +1的值是________.17.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下________.18.小明在求一个多项式减去x 2-3x +5的结果时,误算成加上x 2-3x +5,得到的结果是5x 2-2x +4,则正确的结果是__________.19.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的话费优惠措施是:每分钟降低a 元,再下调25%;乙公司推出的话费优惠措施是:每分钟下调25%,再降低a 元.若甲、乙两公司原来每分钟收费标准相同,则推出优惠措施后收费较便宜的是________公司.20.如图是一组有规律的图案:第1个图案由4个组成,第2个图案由7个组成,第3个图案由10个组成,第4个图案由13个组成,…,则第n (n 为正整数)个图案由________个组成.三、解答题(23题8分,26题12分,其余每题10分,共60分) 21.先去括号,再合并同类项:(1)(5a -3a 2+1)-(4a 3-3a 2); (2)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab ].22.先化简,再求值:(1)3m +4n -[2m +(5m -2n )-3n ],其中m =1n =2;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.23.已知多项式(2x 2+ax -y +6)-(2bx 2-3x +5y -1). (1)若多项式的值与字母x 的取值无关,求a ,b 的值;(2)在(1)的条件下,先化简多项式3(a 2-ab +b 2)-(3a 2+ab +b 2),再求它的值.24.李叔叔买了一套新房,他准备将地面全铺上地板砖,这套新房的平面图如图所示,请解答下列问题:(1)用含x的式子表示这套新房的面积;(2)若每铺1 m2地板砖的费用为120元,当x=6时,求这套新房铺地板砖所需的总费用.25.某商场销售某款西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场计划开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现一位客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款________元(用含x的式子表示),若该客户按方案二购买,需付款________元(用含x的式子表示);(2)当x=30时,通过计算说明此时按哪种方案购买较为合算;(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.26.如图所示的图形是由边长为1的正方形按照某种规律排列而成的.(1)观察图形,填写下表:图形序号 1 2 3正方形的个数8图形的周长18(2)推测图(n为正整数)中正方形的个数为________,周长为________(都用含n的式子表示);(3)请直接写出图中图形的周长.答案一、1.B 2.C 3.B 4.B 5.D 6.A 7.D 8.A 9.B10.A 点拨:设正方形盒底的边长为a ,正方形卡片A ,B ,C 的边长均为b .由题图①得,阴影部分可拼成边长为a -b 的正方形;由题图②得,阴影部分也可拼成边长为a -b 的正方形,所以S 1=S 2,故选A . 二、11.12a 2-1 12.-13;三 13.-6 14.115.3b 点拨:由题图可知,a <0,b >0,且|a |>|b |,所以b -a >0,a +b <0,所以原式=-a +(b -a )+2(a +b )=-a +b -a +2a +2b =3b . 16.2 020 17.3a +2b 18.3x 2+4x -619.乙 点拨:设甲、乙两公司原来的收费为每分钟b 元(0.75b >a ),则推出优惠措施后,甲公司每分钟的收费为(b -a )×75%=0.75b -0.75a (元),乙公司每分钟的收费为(0.75b -a )元,0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜. 20.(3n +1)三、21.解:(1)原式=5a -3a 2+1-4a 3+3a 2=-4a 3+5a +1.(2)原式=-2ab +6a 2-2b 2+5ab +a 2-2ab =7a 2+ab -2b 2.22.解:(1)原式=-4m +9n .当m =1n =2,即m =2,n =12时,原式=-72.(2)(32x 2-5xy +y 2)-[-3xy +2⎝ ⎛⎦⎥⎤14x 2-xy )+23y 2=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2.因为|x -1|+(y +2)2=0,所以x -1=0且y +2=0, 所以x =1,y =-2.所以原式=12+13×(-2)2=73.23.解:(1)原式=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7,由结果与x的取值无关,得a+3=0,2-2b=0,解得a=-3,b=1.(2)原式=3a2-3ab+3b2-3a2-ab-b2=-4ab+2b2,当a=-3,b=1时,原式=-4×(-3)×1+2×12=14.24.解:(1)这套新房的面积为2x+x2+4×3+2×3=x2+2x+12+6=x2+2x+18(m2).(2)当x=6时,这套新房的面积是x2+2x+18=62+2×6+18=36+12+18=66(m2).66×120=7 920(元).故这套新房铺地板砖所需的总费用为7 920元.25.解:(1)(200x+16 000);(180x+18 000)(2)当x=30时,方案一花的钱数为200×30+16 000=22 000(元);方案二花的钱数为180×30+18 000=23 400(元),22 000<23 400,所以按方案一购买较为合算.(3)先按方案一购买20套西装获赠20条领带,再按方案二购买10条领带,则花的钱数为1 000×20+200×10×90%=21 800(元).26.解:(1)填表如下:图形序号 1 2 3正方形的个数8 13 18图形的周长18 28 38(2)5n+3;10n+8点拨:因为8=5×1+3,13=5×2+3,18=5×3+3,…,所以图中正方形的个数为5n+3.因为18=10×1+8,28=10×2+8,38=10×3+8,…,所以图中图形的周长为10n+8.(3)20 198.点拨:图中图形的周长为10×2 019+8=20 198.方法归纳:求解图形规律探究题,一般先从前几个简单的图形入手,通过观察图形特点,寻找图形中的基本元素随图形个数变化的规律,从而将图形问题转化为数字问题,有时也通过观察图形的结构特点,归纳相对某个基础图形的递变规律,从而将图形规律用式子表示出来.第三章达标测试卷一、选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是( )A .1+2+3+4=10B .2x -3 C. x -13=x2+1 D .x +3=y 2.下列等式变形中,正确的是( )A .若a =b ,则a -3=3-bB .若x a =ya ,则x =y C .若ac =bc ,则a =b D .若b a =dc ,则b =d 3.方程-2x +3=7的解是( )A .x =5B .x =4C .x =3.5D .x =-2 4.解方程2x +13-x +16=2,有以下四步:解:2(2x +1)-(x +1)=12 ① 4x +2-x +1=12 ② 3x =9 ③ x =3 ④其中最开始发生错误的是( )A .①B .②C .③D .④ 5.已知M =-23x +1,N =16x -5,若M +N =20,则x 的值为( )A .-30B .-48C .48D .30 6.若关于x 的方程2x -m3=1的解为x =2,则m 的值是( )A .2.5B .1C .-1D .37.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-26 8.某项工程甲单独做5天完成,乙单独做10天完成.现在由甲先做两天,然后甲、乙合作完成此项工程,若设甲一共做了y 天,则所列方程正确的是( ) A.y +25+y 10=1 B.y 5+y +210=1 C.y 5+y -210=1 D.y 5+25+y -210=19.方程2x -■3-x -32=1中有一个数被墨水盖住了,看后面的答案,知道这个方程的解是x =-1,那么墨水盖住的数是( )A.27 B .1 C .-1311 D .010.现有m 辆客车n 个人.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10= 43m -1;②n +1040=n +143;③n -1040=n -143;④40m +10=43m +1.其中正确的是( ) A .①② B .②④ C .②③ D .③④二、填空题(每题3分,共30分)11.已知(m -4)x |m |-3+2=0是关于x 的一元一次方程,则m 的值为________. 12.已知x -2y +3=0,则-2x +4y +2 019的值为________. 13.若-0.2a 3x +4b 3与12ab y 是同类项,则xy =________.14.已知y =3是方程ay =-6的解,那么关于x 的方程4(x -a )=a -(x -6)的解是________.15.在美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.16.对于两个非零的有理数a,b,规定a☆b=12b-13a,若x☆3=1,则x的值为________.17.甲、乙两个足球队进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共比赛10场,甲队保持不败,得22分,甲队胜________场.18.某汽车以20米/秒的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,5秒后听到回声,这时汽车离山谷多远?已知在空气中声音的传播速度约为340米/秒.设按喇叭时,汽车离山谷y米,根据题意,可列方程为______________.19.在如图所示的运算流程中,若输出的数y=7,则输入的整数x=____________.(第19题) (第20题)20.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55 cm,此时木桶中水的深度是________.三、解答题(21题12分,22题8分,其余每题10分,共60分)21.解下列方程:(1)5y-3=2y+6;(2)2(x-2)-3(4x-1)=5(1-x);(3)7x-13-5x+12=2-3x+24;(4)2x0.3-1.6-3x0.6=31x+83.22.已知x =3是关于x 的方程3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 3+1+m (x -1)4=2的解,n 满足关系式 |2n +m |=0,求m +n 的值.23.下面是小红解方程2x +13-5x -16=1的过程:解:去分母,得2(2x +1)-5x -1=1.① 去括号,得4x +2-5x -1=1.② 移项,得4x -5x =1-2+1.③ 合并同类项,得-x =0.④ 系数化为1,得x =0.⑤上述解方程的过程中,是否有错误?答:________(填“有”或者“没有”);如果有错误,则开始出错的一步是________(填序号).如果上述解方程有错误,请你给出正确的过程.24.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形.问大正方形的面积是多少?25.某校召开运动会,七(1)班学生到超市分两次(第二次少于第一次)购买某种饮料共90瓶,用去205元,已知该种饮料价格如下:求两次分别购买这种饮料多少瓶?26.某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案)答案一、1.C2.B3.D4.B5.B6.B 7.C8.C9.B10.D二、11.-412.2 02513.-314.-4515.6916. 3 217.618.2y-100=1 700点拨:由题意可知,5秒后,汽车前进的距离为5×20=100(米),声音传播的距离为5×340=1 700(米),根据等量关系可列方程为2y-100=1 700.19.27或2820.20 cm三、21.解:(1)移项,得5y-2y=6+3.合并同类项,得3y=9.系数化为1,得y=3.(2)去括号,得2x-4-12x+3=5-5x,移项,得2x-12x+5x=5+4-3,合并同类项,得-5x=6,系数化为1,得x=-6 5.(3)去分母,得4(7x-1)-6(5x+1)=2×12-3(3x+2),去括号,得28x-4-30x-6=24-9x-6,移项,得28x-30x+9x=24+6+4-6,合并同类项,得7x=28,系数化为1,得x=4.(4)原方程可化为20x3-16-30x6=31x+83.去分母,得40x-(16-30x)=2(31x+8).去括号,得40x-16+30x=62x+16.移项,得40x+30x-62x=16+16.合并同类项,得8x=32. 系数化为1,得x=4.22.解:将x =3代入方程3[⎝ ⎛⎭⎪⎫x 3+1+m (x -1)4]=2中,得 3[33+1+m (3-1)4]=2. 解得m =-83.将m =-83代入关系式|2n +m |=0中,得⎪⎪⎪⎪⎪⎪2n -83=0. 于是有2n -83=0.解得n =43.所以m +n 的值为-43.23.解:有;①去分母,得2(2x +1)-(5x -1)=6.去括号,得4x +2-5x +1=6.移项,得4x -5x =6-2-1.合并同类项,得-x =3.系数化为1,得x =-3.24.解:设大正方形的边长为x 厘米,由题图可得x -2-1=4+5-x ,解得x =6,则6×6=36(平方厘米).所以大正方形的面积为36平方厘米.25.解:设第一次购买这种饮料x 瓶,则第二次购买(90-x )瓶,①若第一次购买饮料50瓶以上,第二次购买饮料30瓶以下,则2x +3(90-x )=205,解得x =65,得90-65=25(瓶).因为65>50,25<30,所以此情况成立.②若第一次购买饮料50瓶以上,第二次购买饮料30瓶以上不超过50瓶, 则2x +2.5(90-x )=205,解得x =40.因为40<50,所以此情况不成立.③若第一次和第二次均购买饮料30瓶以上,但不超过50瓶,则2.5×90=225(元).因为两次购买饮料共用去205元,所以此情况也不成立.故第一次购买饮料65瓶,第二次购买饮料25瓶.26.解:(1)120×0.95=114(元).故实际应支付114元.(2)设小红所购买商品的总价格为x元,依据题意,得0.8x+168=0.95x,解得x=1 120.故当购买商品的总价格是1 120元时,两种方案的优惠情况相同.(3)当购买商品的总价格低于1 120元时,方案2更合算;当购买商品的总价格等于1 120元时,两种方案的花费相同;当购买商品的总价格大于1 120元时,方案1更合算.点拨:解决商品经济中的打折销售问题时,若打x折,则打折后的价格=标价×x10,商品的利润=售价-进价.第四章达标测试卷一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆D.扇形、长方形、三棱柱、圆锥2.如图所示的几何体,从正面看所得的平面图形是()3.下列说法正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点4.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是()A.144°B.164°C.154°D.150°5.如图,下列说法中,错误的是()A.图①的方位角是南偏西20°B.图②的方位角是西偏北60°C.图③的方位角是北偏东45°D.图④的方位角是南偏西45°6.已知线段AB=15 cm,点C是直线AB上一点,BC=5 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10 cm B.5 cm C.10 cm或5 cm D.7.5 cm7.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,下列说法正确的是() A.∠1=∠2<∠3 B.∠1=∠3>∠2C.∠1<∠2=∠3 D.∠1=∠2>∠38.钟表在8:25时,时针与分针的夹角是()度.A.101.5 B.102.5 C.120 D.1259.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是()A.大B.伟C.国D.的(第9题) (第10题)10.如图,C,D在线段BE上,下列说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC =40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是__________________.12.一个角的余角比这个角的补角的一半小40°,则这个角为________°. 13.三条直线两两相交,最少有________个交点,最多有________个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了______________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了______________(从点、线、面的角度作答).15.两根木条,一根长60 cm,另一根长100 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是________cm.16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12′的方向上,则∠AOB的补角等于________.(第17题) (第19题) (第20题)18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有________种不同的票价,需准备________种车票.19.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是________度.20.用棱长是1 cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色的面积之和是________cm2.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.计算:(1)32°45′48″+21°25′14″;(2)11°23′36″×3.22.如图,有A,B,C,D四点,请根据下列语句作图并填空:(1)作直线AD,并过点B作一条直线与直线AD相交于点O,且使点C在直线BO外;(2)作线段AB,并延长线段AB到E,使B为AE的中点;(3)作射线CA和射线CD,量出∠ACD的度数为________,并作∠ACD的平分线CG;(4)C,D两点间的距离为________厘米,作线段CD的中点M,并作射线AM.23.如图,线段AC=8,BC=20,点C是线段AB上一点,点N为AC的中点,点M是线段CB上一点,且CM:BM=1:4,求线段MN的长.24.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是____________;(2)若射线OE平分∠COD,求∠AOE的度数.25.用正方形硬纸板做三棱柱盒子(如图①),每个盒子由3个长方形侧面和2个正三角形底面组成,硬纸板以如图②两种方法裁剪(裁剪后边角料不再利用).方法A:剪6个侧面;方法B:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用方法A,其余用方法B.(1)用含x的式子分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?26.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.C 2.A 3.A 4.C 5.B 6.D7.B 8.B 9.D10.B 点拨:以B ,C ,D ,E 为端点的线段有BC ,BD ,BE ,CE ,CD ,ED共6条,故①正确;图中互补的角就是分别以C ,D 为顶点的两对角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故②正确;根据图形,由∠BAE =100°,∠CAD =40°,可以求出∠BAC +∠CAE +∠BAE +∠BAD +∠DAE +∠DAC =100°+100°+100°+40°=340°,故③错误;当点F 在线段CD 上时,点F 到点B ,C ,D ,E 的距离之和最小,为FB +FE +FD +FC =2+3+3+3=11,当点F 和E 重合时,点F 到点B ,C ,D ,E 的距离之和最大,为FB +FE +FD +FC =8+0+3+6=17,故④错误.故选B. 二、11.两点确定一条直线12.80 13.1;314.点动成线;线动成面15.80或2016.155°17.100°12′18.21;4219.13520.30三、21.解:(1)32°45′48″+21°25′14″=53°70′62″=54°11′2″.(2)11°23′36″×3=33°69′108″=34°10′48″.22.略23.解:因为点N 是AC 的中点,所以NC =12AC =12×8=4.因为点M 是线段CB 上一点,且CM :BM =1:4,所以CM =15BC =15×20=4.所以MN =MC +CN =4+4=8.即线段MN 的长为8.24.解:(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.又因为OE平分∠COD,所以∠COE=35°.又因为∠AOC=55°,所以∠AOE=55°+35°=90°.25.解:(1)因为裁剪时x张用方法A,所以(19-x)张用方法B,所以侧面的个数为6x+4(19-x)=2x+76(个),底面的个数为5(19-x)=95-5x(个).(2)由题意,得2(2x+76)=3(95-5x),解得x=7.所以盒子的个数为2×7+763=30(个).故若裁剪出的侧面和底面恰好全部用完,能做30个盒子.26.解:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=12(α+β)-12β=12α.期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=x C.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列运算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.如图是一个正方体的平面展开图,则原正方体中与“你”字所在面相对的字是()A.遇B.见C.未D.来(第6题) (第9题)7.某商品每件标价为150元,若按标价打8折,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90° D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上. 其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC =∠AOB ,则OB 的方向是__________.(第15题) (第16题) (第18题) 16.有理数b 在数轴上对应点的位置如图所示,化简:|3+b |+2|2+b |-|b -3|=________.17.已知点O 在直线AB 上,且线段OA =4 cm ,线段OB =6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为____________.18.观察如图摆放的三角形,则第四个图中的三角形有________个,第n个图中的三角形有________个.三、解答题(19,22题每题8分,20,23,24题每题10分,21题6分,25题14分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 020.20.解下列方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.(第22题)23.如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°.求∠BOD的度数.(第23题)24.甲、乙两人同时从相距25 km的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40 min,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好为3 h.求两人的速度各是多少.25.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第25题)答案一、1.D 2.A 3.D 4.D 5.D 6.D 7.A8.D9.C10.C二、11.23;512.-813.-514.19°31′13″15.北偏东70°16.-417.1 cm或5 cm18.14;(3n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:如图所示.(第22题)23.解:因为∠COE 是直角,∠COF =34°,所以∠EOF =∠COE -∠COF =56°.又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°.因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°.所以∠BOD =∠AOC =22°.24.解:设乙的速度为x km/h ,则甲的速度为3x km/h.依题意,得⎝ ⎛⎭⎪⎫3-4060×3x +3x =25×2,解得x =5. 所以3x =15.答:甲、乙两人的速度分别为15 km/h 和5 km/h.25.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s ,则PO =100+8m ,AQ =4m .由题意知N 为PO 的中点,得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m ,ON -AQ =50+4m -4m =50.故ON -AQ 的值不变,这个值为50.。

新人教版七年级数学上册第一单元测试卷 (含答案)

新人教版七年级数学上册第一单元测试卷 (含答案)

新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(共10 小题,每小题3 分,共30 分)1.如果水库的水位高于正常水位2m 时,记作+2m,那么低于正常水位3m 时,应记作()A 。

+3mB 。

-3mC 。

+D 。

-2.室内温度是15℃,室外温度是-30℃,则室外温度比室内温度低()A 。

12℃B 。

18℃C 。

-120℃D 。

-180℃3.一个数和它的倒数相等,则这个数是()A 。

1B 。

-1C 。

±1D 。

±1 和4.若|a|=5 ,b=-3,则a-b 的值是()A 。

2 或8B 。

-2 或8C 。

2 或-8D 。

-2 或-85.下列四组有理数的大小比较正确的是()A 。

-2.-3B 。

-|-1| 。

-|+1|C 。

2.|-3|6.若三个有理数的和为0,则下列结论正确的是()A。

这三个数都是0 B。

最少有两个数是负数C。

最多有两个正数D。

这三个数是互为相反数7.下列各式中正确的是()A 。

^2=(-)^2B 。

^3=(-)^3C 。

- ^2=|−^2| D。

^3=||^38.若x 的相反数是3 ,│y│=5,则x+y 的值为()A 。

-8B 。

2C 。

-8 或2D 。

8 或-29.两个数的差是负数,则这两个数一定是()A。

被减数是正数,减数是负数B。

被减数是负数,减数是正数C。

被减数是负数,减数也是负数D。

被减数比减数小10.点A 在数轴上表示+2,从点A 沿数轴向左平移3 个单位到点B,点B 表示的数是()A 。

3B 。

-1C 。

5D 。

-1 或3二、填空题(共6 小题,每小题3 分,共18 分)11.甲潜水员所在高度为-45 米,乙潜水员在甲的上方15米处,则乙潜水员的所在高度是-30 米。

12.大肠杆菌每过20 分钟便由1 个分裂成2 个,经过3 小时后这种大肠杆菌由1 个分裂成48 个。

13.在数轴上,与表示数-1 的点的距离是5 的点表示的数是-6 或4.14.XXX 不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是-4.15.观察下列的一列数:2 ,-6 ,12 ,-20……请你找出其中的排列规律,并按此规律填空,第九个数是-54,第14 个数是-110.16.在第十四届亚运会体操比赛中,某运动员得到了十名裁判的打分,分别为10 、9.7 、9.85 、9.93 、9.6 、9.8 、9.9、9.95 、9.87 、9.6.去掉一个最高分和一个最低分,剩下8 个分数的平均分即为该运动员的得分。

人教版七年级数学上册 第一章 达标测试卷(word打印版+详细答案)

人教版七年级数学上册 第一章 达标测试卷(word打印版+详细答案)

人教版七年级数学上册第一章达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.如果零上15 ℃记作+15 ℃,那么零下9 ℃可记作()A.-9 ℃B.+9 ℃C.+24 ℃D.-6 ℃2.下列各式正确的是()A.|5|=|-5| B.-|5|=|-5|C.-5=|-5| D.-(-5)=-|5|3.一种巧克力的质量标识为“100±0.25 g”,则下列合格的是() A.99.80 g B.100.30 gC.100.51 g D.100.70 g4.若有理数a,b在数轴上所对应的点如图所示,则下列大小关系正确的是()(第4题)A.-a<0<b B.-b<a<0C.a<0<-b D.0<b<-a5.A,B,C三个地方的海拔分别是124 m、38 m、-72 m,那么最低点比最高点低()A.196 m B.-196 mC.110 m D.-110 m6.-134的倒数是()A.-73 B.45C.-47 D.437.在(-2)5,(-3)4,-22,(-3)2这四个数中,负数有() A.0个B.1个C.2个D.3个8.下列运算正确的是()A.(-6)+(-2)=+(6+2)=+8B.(-5)-(+6)=+(6+5)=+11C.(-3)-(-2)=-(3-2)=-1D.(+8)-(-10)=-(10-8)=-29.下列说法错误的有()①-a一定是负数;②若|a|=|b|,则a=b;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A.1个B.2个C.3个D.4个10.若(x-1)2+|2y+1|=0,则y-x的值是()A.12B.-12C.32D.-3211.数轴上一点a表示的有理数为-5,若将a点向右平移4个单位长度,则此时a点表示的有理数为()A.-5 B.4 C.1 D.-1 12.数轴上到点-2的距离为5的点表示的数为()A.-3 B.-7C.3或-7 D.5或-313.如图是小明同学完成的作业,他做对的题数是()(第13题)A.1 B.2 C.3 D.4 14.如图,半径为1的圆沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()(第14题)A.-2π B.3-2π C.-3-2π D.-3+2π15.已知|a|=5,|b|=2,且b<a,则a+b的值为()A.3或7 B.-3或-7C.-3 或7 D.3或-716.观察下列算式,用你发现的规律得出22 021的个位数字是() 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…A.2 B.4 C.6 D.8二、填空题(17题3分,其余每空2分,共11分)17.比较大小:-0.6________-23.18.-⎝ ⎛⎭⎪⎫-512的倒数是________,-42的相反数是________.19.一个点A 从数轴上表示2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;第二次先向左移动3个单位长度,再向右移动4个单位长度;第三次先向左移动5个单位长度,再向右移动6个单位长度;…… (1)第五次移动后这个点在数轴上表示的数是________; (2)第n 次移动后这个点在数轴上表示的数是________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.把下列各数填在相应的大括号中.-312,0.3,0,-3.4,12,-9,412,-2. 正数:{ …}; 负分数:{ …}; 负数:{ …}; 整数:{ …}.21.把下列各数在如图所示的数轴上表示出来,并按从小到大的顺序排列,用“<”号连接起来:-52,2,-4,3.5.(第21题)22.计算:(1)213-⎝ ⎛⎭⎪⎫+325-⎝ ⎛⎭⎪⎫+813+⎝ ⎛⎭⎪⎫-835;(2)(-24)×⎝ ⎛⎭⎪⎫13+14-18;(3)(-4)÷⎝ ⎛⎭⎪⎫-43×2+(-1)2 021×(-6).23.有10筐白菜,以每筐25 kg为标准,超过的千克数用正数来表示,不足的千克数用负数来表示,记录如下:(1)10筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准质量比较,10筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这10筐白菜可以卖多少元?24.(1)若|a|=3,则a=________,若|a|=0,则a=________;(2)若|a|=|3|,则a=________,若|a|=|-3|,则a=________;(3)若|-a|=4,求a的值;(4)若|-a|=|-5|,求a的值.25.为庆祝中华人民共和国成立70周年,2019年10月1日凌晨2点,参加我国建国70周年阅兵活动的各个部队方阵已经在东长安街集结完毕.阅兵副总指挥为了协调各项准备工作,他的指挥车在东西走向的东长安大街来回奔波于各个方阵之间,若他从A出发,如果规定向东为正,向西为负,到早上7点整他的行车里程(单位:km)如下:+15,-4,+5,-1,+10,-3,-2,+12,+4,-10,+6.(1)到早上7点整时,他的指挥车在出发点A的什么位置?距出发点A多远?(2)若指挥车耗油量为a L/km,从凌晨2点到早上7点整时他的指挥车共耗油多少升?26.(1)如图,在数轴上标出数-4.5,-2,1,3.5所对应的点A,B,C,D;(第26题)(2)C,D两点间的距离为______,B,C两点间的距离为__________;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点间的距离为________;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动,已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,设运动时间为t秒.①当t为何值时,P,Q两点重合?②当t为何值时,P,Q两点间的距离为1?答案一、 1.A 2.A 3.A 4.B 5.A 6.C 7.C 8.C 9.C 10.D 11.D 12.C 13.C14.B 点拨:由题意得AB =2πr =2π,点A 到原点的距离为3,则点B 到原点的距离为2π-3,因为点B 在原点的左侧,所以点B 所表示的数为-(2π-3)=3-2π,故选B. 15.A 16.A二、17.> 18.211;16 19. (1)7 (2)n +2三、20.解:正数:{0.3,12,412,…};负分数:{-312,-3.4,…};负数:{-312,-3.4,-9,-2,…};整数:{0,12,-9,-2,…}.21.解:如图.(第21题)-4<-52<2<3.5.22.解:(1)原式=⎝ ⎛⎭⎪⎫213-813+⎝ ⎛⎭⎪⎫-325-835=-6-12 =-18.(2)原式=(-24)×13+(-24)×14-(-24)×18 =(-8)+(-6)-(-3) =-11.(3)原式=(-4)×⎝ ⎛⎭⎪⎫-34×2+(-1)×(-6) =6+6 =12.23.解:(1)从表格可知,最重的一筐比最轻的一筐重2.5-(-3)=5.5(kg).所以10筐白菜中,最重的一筐比最轻的一筐重5.5 kg. (2)1×(-3)+3×(-2)+2×0+2×1+2×2.5=-2(kg), 所以与标准质量比较,10筐白菜总计不足2 kg. (3)(25×10-2)×2.6=644.8(元), 所以出售这10筐白菜可以卖644.8元. 24.解:(1)±3;0(2)±3;±3(3)因为|-a |=4,所以|-a |=|a |=4,所以a =±4. (4)因为|-a |=|-5|, 所以|a |=5,所以a =±5.25.解:(1)(+15)+(-4)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-10)+(+6)=32(km),所以到早上7点整时,他的指挥车在出发点A 的东边,距出发点A 32 km. (2)|+15|+|-4|+|+5|+|-1|+|+10|+|-3|+|-2|+|+12|+|+4|+|-10|+|+6|=72(km), a ×72=72a (L).所以从凌晨2点到早上7点整时他的指挥车共耗油72a L. 26.解:(1)如图所示.(第26题)(2)2.5; 3(3)|a-b|(4)①依题意有2t-t=3,解得t=3.故当t为3时,P,Q两点重合.②依题意有2t-t=3-1,解得t=2;或2t-t=3+1,解得t=4.故当t为2或4时,P,Q两点间的距离为1.。

初中七年级上数学试卷与解析-北师大版数学七年级上册第一章达标测试卷1

初中七年级上数学试卷与解析-北师大版数学七年级上册第一章达标测试卷1

北师大版数学七年级上册第一章达标测试卷一、选择题(每题3分,共30分)1.下列几何体中,没有..曲面的是()2.下列四个几何体中,是三棱柱的为()3.将半圆形绕它的直径所在的直线旋转一周,形成的几何体是() A.圆柱B.圆锥C.球D.正方体4.下列说法错误..的是()A.柱体的上、下两个底面一样大B.棱柱至少由5个面围成C.圆锥由两个面围成,且这两个面都是曲面D.长方体属于棱柱5.如图所示的从正面看到的图形对应的几何体是()6.下列几何体中,其侧面展开图为扇形的是()7.用一个平面去截一个几何体,不能..截得三角形截面的几何体是() A.圆柱B.圆锥C.三棱柱D.正方体8.下面四个图形中,经过折叠能围成下图所示的几何图形的是()9.下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看相同的是()10.如图②是从三个不同方向看图①得到的形状图,若用S表示面积,S正=a2,S左=a2+a,则S上=()A.a2+aB.2a2C.a2+2a+1D.2a2+a二、填空题(每题3分,共30分)11.夜晚的流星划过天空时留下一道明亮的光线,由此说明了__________________的数学事实.12.如果某六棱柱的一条侧棱长为5 cm,那么所有侧棱长之和为__________.13.下列图形中,属于棱柱的有________个.14.写出一个从三个不同方向看得到的图形都一样的几何体:________________.15.如图所示的几何体有________个面、________条棱、________个顶点.16.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是________________________________________.17.用平面去截正方体,在所得的截面中,边数最少的截面形状是__________.18.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).19.如图是由一些小正方体木块搭成的几何体分别从正面和上面看到的图形,则搭建该几何体最多需要________块小正方体木块,至少需要________块小正方体木块.20.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②中几何体的体积为__________(结果保留π).三、解答题(21,23题每题10分,22,24题每题8分,其余每题12分,共60分)21.如图是一个几何体的平面展开图.(1)这个几何体是__________;(2)求这个几何体的体积(π取3.14).22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x+y+z的值.23.一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:__________;(2)若从上面看该几何体为正方形,根据图中数据计算这个几何体的体积.24.如图,在直角三角形ABC中,边AC长4 cm,边BC长3 cm,边AB长5 cm.三角形绕着边AC所在直线旋转一周所得几何体的体积和绕着边BC所在直线旋转一周所得几何体的体积是否一样?通过计算说明.(锥体体积=13×底面积×高)25.把如图①所示的正方体切去一块,可得到如图②~⑤所示的几何体.(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若把几何体的面数记为f,棱数记为e,顶点数记为v,则f,e,v满足什么关系式?26.从上面看由几个边长为1的相同的小立方块搭成的几何体得到的图形如图所示,方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出从正面和左面看这个几何体所得到的图形;(2)这个几何体的表面积为________平方单位;(3)若从上面看上述小立方块搭成的几何体得到的图形不变,各位置的小立方块个数可以改变(总数目不变),则所搭成的几何体中表面积最大为________平方单位.答案一、1.B 2.C 3.C 4.C 5.B 6.C7.A8.B9.B10.A二、11.点动成线12.30 cm13.314.球(答案不唯一)15.9;16;916.6或717.三角形18.6π19.16;1020.63π三、21.解:(1)圆柱(2)π×(10÷2)2×20=500π≈500×3.14=1 570(cm3).答:这个几何体的体积约是1 570 cm3.22.解:由题意知x+5=10,y+2=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)长方体(2)易知长方体的底面是边长为3 cm的正方形,高为4 cm,则这个几何体的体积是3×3×4=36(cm3).24.解:三角形绕着边AC所在直线旋转一周,所得几何体的体积是13×π×32×4=12π(cm3);三角形绕着边BC所在直线旋转一周所得几何体的体积是13×π×42×3=16π(cm3).因为12π≠16π,所以三角形绕着边AC所在直线旋转一周,所得几何体的体积和绕着边BC 所在直线旋转一周所得几何体的体积不一样.25.解:(1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2)答案不唯一,例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(3)f,e,v满足的关系式为f+v-e=2.26.解:(1)如图所示.(2)24(3)26点拨:要使表面积最大,则需满足小立方块间重合的面最少,此时从上面看改变后的几何体得到的图形如图所示(方式不唯一,只需满足三个方格中的数字分别为1,1,4即可).这样从上面看是3个小正方形,从左面看是5个小正方形,从正面看是5个小正方形,则表面积为12×(3×2+5×2+5×2)=26(平方单位).。

最新人教版数学七年级上册单元达标测试题及答案(全册)

最新人教版数学七年级上册单元达标测试题及答案(全册)

人教版数学七年级上册第一章达标测试卷一、选择题(每题3分,共30分) 1.12的相反数是( )A.12B .-12C .2D .-22.化简:|-15|等于( )A .15B .-15C .±15D.1153.在0,2,-1,-2这四个数中,最小的数是( )A .0B .2C .-1D .-24.计算(-3)+5的结果等于( )A .2B .-2C .8D .-85.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4 000 000 000美元,将4 000 000 000用科学记数法表示为( ) A .0.4×109B .0.4×1010C .4×109D .4×10106.下列每对数中,不相等的一对是( )A .(-2)3和-23B .(-2)2和22C .(-2)2 018和-22 018D .|-2|3和|2|37.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或08.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高为161 cm”中的数是准确数9.已知|m|=4,|n|=6,且|m +n|=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和为(1+3)+(2+6)=(1+2)×(1+3)=12; 12=22×3,则12的所有正约数之和为(1+3)+(2+6)+(4+12)=(1+2+22) ×(1+3)=28;36=22×32,则36的所有正约数之和为(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为( ) A .420B .434C .450D .465二、填空题(每题3分,共24分)11.某蓄水池的标准水位记为0 m ,如果用正数表示水面高于标准水位的高度,那么-0.2 m 表示____________________________.12.有理数-15的倒数为________,相反数为________,绝对值为________. 13.将数60 340精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-1,以点A 为圆心、12个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是______________.(第15题)(第17题)16.如果|a -1|+(b +2)2=0,那么3a -b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.18.按一定规律排列的一列数依次为:12,-16,112,-120,130,…按此规律排列下去,这列数中的第7个数为________,第n 个数为____________(n 为正整数).三、解答题(19,23题每题8分,20题18分,21,22题每题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12. 整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|; (2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36; (4)-42÷(-2)3+(-1)2 018-49÷23.21.现规定一种新运算“*”:a*b =a b -2,例如:2*3=23-2=6,试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.每年的春节晚会都是由中央电视台直播的,现有两地的观众,一是与舞台相距25 m远的演播大厅里的观众,二是距北京2 900 km正围在电视机前观看晚会的边防战士,这两地的观众谁先听到晚会节目的声音(声速是340 m/s,电波的速度是3×108m/s)?23.某景区一电瓶车接到任务从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P对应的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P对应的数;(3)如果点P,Q在点A,B之间相向运动,当PQ=8时,求点P对应的数.(第24题)25.观察下面三行数:2,-4,8,-16,32,-64,…;4,-2,10,-14,34,-62,…;1,-2,4,-8,16,-32,….(1)第1行的第8个数为________,第2行的第8个数为________,第3行的第8个数为________.(2)第3行中是否存在连续的三个数,使得这三个数的和为768?若存在,求出这三个数;若不存在,说明理由.(3)是否存在这样的一列,使得其中的三个数的和为1 282?若存在,求出这三个数;若不存在,说明理由.答案一、1.B 2.A 3.D 4.A 5.C 6.C7.B 8.C 9.C 10.D 二、11.水面低于标准水位0.2 m12.-5;15;15 13.6.0×104 14.< 15.-32,-12 16.5 17.1 18.156;(-1)n +11n (n +1)三、19.解:(1)整数:{(-1)2,-|-2|,-22,0,…};分数:{-(-2.5),-12,…}; 正有理数:{-(-2.5),(-1)2,…}; 负有理数:{-|-2|,-22,-12,…}.(2)图略.-22<-|-2|<-12<0<(-1)2<-(-2.5).20.解:(1)原式=-6+10-3+9=(-6-3+9)+10=10;(2)原式=-49+118-18-59=⎝ ⎛⎭⎪⎫-49-59+⎝ ⎛⎭⎪⎫118-18=-1+1=0;(3)原式=79×36-1112×36+16×36=28-33+6=1;(4)原式=-16÷(-8)+1-49×32=2+1-23=73.21.解:⎝ ⎛⎭⎪⎫-32*2*2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-322-2*2=14*2=⎝ ⎛⎭⎪⎫142-2=-3116.22.解:25÷340≈0.074(s );2 900 km =2 900 000 m , 2 900 000÷(3×108)≈0.0097(s ).因为0.074>0.0097,所以是边防战士先听到晚会节目的声音.23.解:(1)如图所示.(第23题)(2)电瓶车一共走的路程为|+2|+|+2.5|+|-8.5|+|+4|=17(km).因为17>15,所以该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务.24.解:(1)-8 3(2)易得t=16-(-12)4-2=282=14.此时-12-2×14=-40,即点P对应的数是-40.(3)当PQ=8时,有以下两种情况:①P,Q相遇前,t=28-82+4=103,此时点P对应的数是-12+2t=-16 3;②P,Q相遇后,t=28+82+4=6,此时点P对应的数是-12+2t=0.综上所述,点P对应的数是-163或0.25.解:(1)-256;-254;-128(2)存在.设中间数为m,根据题意,有m÷(-2)+m+m×(-2)=768.解得m=-512,符合第3行数的规律.此时m÷(-2)=256,m×(-2)=1 024.所以这三个数分别为256,-512,1 024.(3)存在.因为同一列的数符号相同,所以这三个数都是正数.设这一列的第一个数为2n(n为正整数).根据题意,有2n+(2n+2)+12×2n=1 282,即2n =512=29. 所以n =9.此时2n +2=514,12×2n=256. 所以这三个数分别为512,514,256.第二章达标测试卷一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +bD.x -y 32.多项式-5-2x 23-y 中,二次项的系数是( )A .2B .-2C .-23 D.233.下列各组单项式中,是同类项的是( )A.a 2b3与a 2b B .3x 2y 与3xy 2 C .a 与1D .2bc 与2abc4.计算:5x -3x =( )A .2xB .2x 2C .-2xD .-2 5.关于多项式3a 2b -4ab 4+2ab 2-1,下面说法正确的是( )A .项分别是:3a 2b ,4ab 4,2ab 2,1B .多项式的次数是4C .它是一个五次四项式D .它是一个四次四项式6.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元7.下列各式去括号正确的是()A.x2-(x-y+2z)=x2-x+y+2zB.x-(-2x+3y-1)=x+2x-3y+1C.3x-[5x-(x-1)]=3x-5x-x+1D.(x-1)-(x2-2)=x-1-x2-28.已知a-b=1,则式子-3a+3b-11的值是()A.-14 B.1C.-8 D.59.某同学计算一个多项式加上xy-3yz-2xz时,误认为减去此式,计算出的结果为xy-2yz+3xz,则正确结果是()A.2xy-5yz+xz B.3xy-8yz-xzC.yz+5xz D.3xy-8yz+xz10.定义运算:a※b=b-2a,下面给出了关于这种运算的四个结论:①(-2)※(-5)=-1;②a※b=b※a;③若a+b=0,则a※a+b※b=0;④若3※x=0,则x=6.其中,正确结论的序号是()A.①②④B.②③④C.①②③D.①③④二、填空题(每题3分,共24分)11.-π3a3b2的系数是________,次数是________.12.一个三位数,百位数字是3,十位数字和个位数字组成的两位数是b,用式子表示这个三位数是____________.13.请你写出一个三次单项式:____________,一个二次三项式:______________.14.若2x 3y 2n 与-5x m y 4是同类项,则m -n =________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m等于________.16.如图,阴影部分的面积是__________.(第18题)17.当x =-12时,2x 2-3x +x 2+4x -2=________.18.用棋子摆出如图的一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子__________枚.三、解答题(19题16分,21,22题每题6分,23题8分,其余每题10分,共66分) 19.计算:(1)x 2y -3xy 2+2yx 2-y 2x; (2)14a 2b -0.4ab 2-12a 2b +25ab 2;(3)2(x 2-2x +5)-3(2x 2-5); (4)5(a 2b -3ab 2)-2(a 2b -7ab 2).20.先化简,再求值:(1)(4a+3a2-3+3a3)-(-a+4a3),其中a=-2;(-3x2y2+3x2y)+(3x2y2-3xy2),其中x=-1,y=2.(2)(2x2y-2xy2)-[]21.已知M=a2-3ab+2b2,N=a2+2ab-3b2,化简:M-[N-2M-(M-N)].22.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“5”的图案(如图②),再将剪下的两个小长方形拼成一个新的长方形(如图③),求新长方形的周长.(第22题)23.按下列程序计算.(第23题)(1)填写表内空格:(2)你发现的规律是__________________________;(3)用简要过程说明你发现的规律的正确性.24.先阅读下面的文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太烦琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算、提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×________=________.(1)补全例题的解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).25.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.该市自来水收费价格见如图所示的价目表.(1)若某户居民2月份用水4 m3,则应交水费________元;(2)若某户居民3月份用水a m3(其中6<a<10),则应交水费多少元(用含a的整式表示并化简)?(3)若某户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3,求该户居民4,5月份共交水费多少元(用含x的整式表示并化简).答案一、1.B 2.C 3.A 4.A 5.C 6.B7.B8.A9.B10.D二、11.-π3;512. 300+b13.x2y;x2-x+1(答案不唯一)14.115.416.112xy17.-7418.4n三、19.解:(1)原式=3x2y-4xy2;(2)原式=-14a2b;(3)原式=2x2-4x+10-6x2+15=-4x2-4x+25;(4)原式=5a2b-15ab2-2a2b+14ab2=3a2b-ab2.20.解:(1)原式=4a+3a2-3+3a3+a-4a3=-a3+3a2+5a-3.当a=-2时,原式=-(-2)3+3×(-2)2+5×(-2)-3=-(-8)+3×4+5×(-2)-3=8+12-10-3=7.(2)原式=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=-x2y+xy2.当x=-1,y=2时,原式=-(-1)2×2+(-1)×22=-1×2+(-1)×4=-2-4=-6.21.解:原式=M-N+2M+M-N=4M-2N=4(a2-3ab+2b2)-2(a2+2ab-3b2)=4a2-12ab+8b2-2a2-4ab+6b2=2a2-16ab+14b2.22.解:由题图可知,新长方形的长为a-b,宽为a-3b.故周长=2[(a-b)+(a-3b)]=2(a-b+a-3b)=2(2a-4b)=4a-8b. 23.解:(1)-1;-1;-1;-1(2)输出的答案均为-1(3)2(n2-n)-2n2+2n-1=-1,即输出的答案与n的值无关,均为-1. 24.解:(1)50;5 050(2)原式=+[(b+99b)+(2b+98b)+…+(49b+51b)+50b]=100a+(49×100b+50b)=100a+4 950b.25.解:(1)8(2)4(a-6)+6×2=4a-12(元),即应交水费(4a-12)元.(3)因为5月份用水量超过了4月份,所以4月份用水量少于7.5 m3.当4月份用水量少于5 m3时,5月份用水量超出10 m3,故4,5月份共交水费2x+8(15-x-10)+4×4+6×2=-6x+68(元);当4月份用水量不低于5 m3但不超出6 m3时,5月份用水量不少于9 m3但不超出10 m3,故4,5月份共交水费2x+4(15-x-6)+6×2=-2x+48(元);当4月份用水量超出6 m3但少于7.5 m3时,5月份用水量超出7.5 m3但少于9 m3,故4,5月份共交水费4(x-6)+6×2+4(15-x-6) +6×2=36(元).第一学期期中测试卷一、选择题(每题3分,共30分)1.a的相反数是()A.|a| B.1a C.-a D.以上都不对2.计算-3+(-1)的结果是()A.2 B.-2 C.4 D.-43.在1,-2,0,53这四个数中,最大的数是()A.-2 B.0 C.53D.14.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30 000 000个核苷酸.30 000 000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108 5.计算2a2+a2,结果正确的是()A.2a4B.2a2C.3a4D.3a26.下列判断中,错误的是()A.1-a-ab是二次三项式B.-a2b2c是单项式C.a+b2是多项式D.34πR2中,系数是347.对于四舍五入得到的近似数5.60×105,下列说法正确的是() A.精确到百分位B.精确到个位C .精确到万位D .精确到千位8.已知a =2 019x +20,b =2 019x +19,c =2 019x +21,那么式子a +b -2c 的值是( ) A .-4B .-3C .-2D .-19.已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,且a +b <0,有以下结论:①b <0;②b -a >0;③|-a |>-b ;④ba <-1.则正确的结论是( ) A .①④B .①③C .②③D .②④(第9题)(第10题)10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中的一个正方形剪开得到图③,图③中共有7个正方形;将图③中的一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 018个图中共有正方形的个数为( ) A .6 046B .6 049C .6 052D .6 055二、填空题(每题3分,共24分)11.-32的绝对值是________,2 018的倒数是________.12.已知多项式x |m |+(m -2)x -10是二次三项式,m 为常数,则m 的值为________. 13.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______________.14.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m=________.15.某音像社出租光盘的收费方法如下:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____________元,第10天应收租金__________元.16.若mn =m +3,则2mn +3m -5mn +10=________.17.数轴上与原点的距离小于2的整数点的个数为x ,不大于2的整数点的个数为y ,等于2的整数点的个数为z ,则x +y +z =________.18.有一数值转换器,原理如图,若开始输入的x 的值是5,可发现第一次输出的结果是8,第二次输出的结果是4……请你探索第99次输出的结果是________.(第18题)三、解答题(19题12分,20题6分,22题7分,26题9分,其余每题8分,共66分) 19.计算:(1) 35-3.7-⎝ ⎛⎭⎪⎫-25-1.3;(2)(-3)÷⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-25÷⎝ ⎛⎭⎪⎫-14+34;(3) ⎝ ⎛⎭⎪⎫-34+712-58÷⎝ ⎛⎭⎪⎫-124; (4) ⎣⎢⎡⎦⎥⎤(-1)2 018+⎝ ⎛⎭⎪⎫1-12×13÷(-32+2).20.在如图所示的数轴上表示3.5和它的相反数、-14和它的倒数、绝对值等于1的数、-2和它的立方,并用“<”把它们连接起来.(第20题)21.先化简,再求值:(1)3x 2-⎣⎢⎡⎦⎥⎤5x -⎝ ⎛⎭⎪⎫12x -3+2x 2,其中x =2;(2)(-3xy -7y )+[4x -3(xy +y -2x )],其中xy =-2,x -y =3.22.某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10.(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置的最远距离是多少米?(3)守门员离开初始位置达到10 m 以上(包括10 m)的次数是多少?23.有理数a ,b ,c 在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“<”或“=”填空:b ______0,a +b ______0,a -c ______0,b -c ______0;(2)|b-1|+|a-1|=________;(3)化简:|a+b|+|a-c|-|b|+|b-c|.(第23题)24.如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C区是边长为c m的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=40,c=10,求整个长方形运动场的面积.(第24题)25.如今,网上购物已成为一种新的消费时尚,新星饰品店想购买一种贺年卡在元旦时销售,在互联网上搜索了甲、乙两家网店(如图所示),已知两家网店的这种贺年卡的质量相同,请看图回答下列问题:(第25题)(1)假若新星饰品店想购买x张贺年卡,那么在甲、乙两家网店分别需要花多少钱(用含有x的式子表示)?(提示:如需付运费时,运费只需付一次,即8元) (2)新星饰品店打算购买300张贺年卡,选择哪家网店更省钱?26.有一列数,第一个数为x1=1,第二个数为x2=3,从第三个数开始依次为x3,x4,…,x n,….从第二个数开始,每个数是左右相邻两个数和的一半,如x2=x1+x32,x3=x2+x42.(1)求x3,x4,x5的值,并写出计算过程;(2)根据(1)的结果,推测x9等于多少;(3)探索这一列数的规律,猜想第k(k为正整数)个数x k等于多少.答案一、1.C 2.D 3.C 4.A 5.D 6.D7.D 8.B 9.A 10.C二、11.32;12 018 12.-2 13.-8,8 14.-6 15.(0.6+0.5n );5.616.1 17.10 18.2三、19.解:(1)原式=(35+25)-(3.7+1.3)=1-5=-4;(2)原式=(-3)÷85+34=-158+34=-98;(3)原式=⎝ ⎛⎭⎪⎫-34+712-58×(-24)=⎝ ⎛⎭⎪⎫-34×(-24)+712×(-24)-58×(-24)=18-14+15=19;(4)原式=⎝ ⎛⎭⎪⎫1+16÷(-7)=76×⎝ ⎛⎭⎪⎫-17=-16. 20.解:图略.-8<-4<-3.5<-2<-1<-14<1<3.5.21.解:(1)原式=3x 2-5x +12x -3-2x 2=x 2-92x -3.当x =2时,原式=22-92×2-3=-8.(2)原式=-3xy -7y +(4x -3xy -3y +6x )=-3xy -7y +4x -3xy -3y +6x =-6xy +10x -10y .当xy =-2,x -y =3时,原式=-6xy +10(x -y )= -6×(-2)+10×3=12+30=42.22.解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).即守门员没有回到初始位置.(2)守门员离开初始位置的距离分别为5 m ,2 m ,12 m ,4 m ,2 m ,11 m ,1 m.所以守门员离开初始位置的最远距离是12 m.(3)守门员离开初始位置达到10 m 以上(包括10 m)的次数是2次.23.解:(1)<;=;>;<(2)a -b(3)原式=|0|+(a-c)+b-(b-c)=0+a-c+b-b+c=a. 24.解:(1)2[(a+c)+(a-c)]=2(a+c+a-c)=4a(m).(2)2[(a+a+c)+(a+a-c)]=2(a+a+c+a+a-c)=8a(m).(3)当a=40,c=10时,长=2a+c=2×40+10=90(m),宽=2a-c=2×40-10=70(m),所以面积=90×70=6 300(m2).25.解:(1)当x≤30时,在甲网店需要花(x+8)元,在乙网店需要花(0.8x+8)元;当x>30时,在甲网店需要花(0.6x+8)元,在乙网店需要花0.8x元.(2)当x=300时,甲网店:0.6×300+8=188(元);乙网店:0.8×300=240(元).因为188<240,所以选择甲网店更省钱.26.解:(1)x3=2x2-x1=2×3-1=5,x4=2x3-x2=2×5-3=7,x5=2x4-x3=2×7-5=9.(2)由(1)可知x9=9+2+2+2+2=17.(3)x k=2k-1.第三章达标测试卷一、选择题(每题3分,共30分)1.下列方程中,不是一元一次方程的是() A.5x+3=3x+7 B.1+2x=3C.2x3+5x=3 D.x=-72.如果4x2-2m=7是关于x的一元一次方程,那么m的值是()A.-12 B.12C.0 D.13.下列方程中,解是x=2的是()A.3x=x+3 B.-x+3=0 C.2x=6 D.5x-2=84.方程x9+1=0的解是()A.x=-10 B.x=-9C.x=9 D.x=1 95.下列说法中,正确的是()A.若ac=bc,则a=b B.若ac=bc,则a=bC.若a2=b2,则a=b D.若|a|=|b|,则a=b6.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是() A.x=-4 B.x=-3C.x=-2 D.x=-17.若关于x的一元一次方程ax+b=0(a≠0)的解是正数,则() A.a,b异号B.b>0C.a,b同号D.a<08.已知方程7x+2=3x-6与x-1=k的解相同,则3k2-1的值为() A.18 B.20C.26 D.-269.轮船在静水中的速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.设甲、乙两码头间的距离为x km,则列出的方程正确的是()A.(20+4)x+(20-4)x=5 B.20x+4x=5C.x20+x4=5 D.x20+4+x20-4=510.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为()A.180元B.202.5元C.180元或202.5元D.180元或200元二、填空题(每题3分,共24分)11.写出一个解是-2的一元一次方程:____________________.12.比a的3倍大5的数等于a的4倍,列方程是.13.已知关于x的方程x+k=1的解为x=5,则-|k+2|=________.14.当y=________时,1-2y-56与3-y6的值相等.15.对于两个非零有理数a,b,规定:a⊗b=ab-(a+b).若2⊗(x+1)=1,则x 的值为________.16.一个两位数,十位上的数字比个位上的数字小1,十位与个位上的数字之和是这个两位数的15,则这个两位数是________.17.一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,然后甲、乙一起做,余下的部分还要做________天才能完成.18.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4 000元的应缴纳超过800元的那一部分稿费的14%的税;(3)稿费高于4 000元的应缴纳全部稿费的11%的税.今知丁老师获得一笔稿费,并缴纳个人所得税420元,则丁老师的这笔稿费有________元.三、解答题(19题16分,20,21题每题6分,22题8分,其余每题10分,共66分)19.解方程:(1)2x+3=x+5; (2)2(3y-1)-3(2-4y)=9y+10;(3)12x+2⎝⎛⎭⎪⎫54x+1=8+x; (4)3y-14-1=5y-76.20.已知y1=-23x+1,y2=16x-5,且y1+y2=20,求x的值.21.如果方程x-43-8=-x+22的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求式子a-1a的值.22.如图,一块长5 cm、宽2 cm的长方形纸板,一块长4 cm、宽1 cm的长方形纸板,与一块正方形以及另两块长方形的纸板,恰好拼成一个大正方形.问:大正方形的面积是多少?23.某人原计划在一定时间内由甲地步行到乙地,他先以4 km/h的速度步行了全程的一半,又搭上了每小时行驶20 km的顺路汽车,所以比原计划需要的时间早到了2 h.甲、乙两地之间的距离是多少千米?24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见下表:若某户居民某月份用水8 t,则应收水费:2×6+4×(8-6)=20(元).注:水费按月结算.(1)若该户居民2月份用水12.5 t,则应收水费________元;(2)若该户居民3,4月份共用水15 t(3月份的用水量少于5 t),共交水费44元,则该户居民3,4月份各用水多少吨?25.某校计划购买20张书柜和一批书架,现从A,B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每个70元.A超市的优惠政策为每买一张书柜赠送一个书架,B超市的优惠政策为所有商品打8折出售.设该校购买x(x>20)个书架.(1)若该校到同一家超市选购所有书柜和书架,则到A超市和B超市需分别准备多少元货款?(用含x的式子表示)(2)若规定只能到其中一家超市购买所有书柜和书架,当购买多少个书架时,无论到哪家超市购买所付货款都一样?(3)若该校想购买20张书柜和100个书架,且可到两家超市自由选购,你认为至少需准备多少元货款?并说明理由.答案一、1.C 2.B 3.D 4.B 5.B 6.B7.A 8.C 9.D 10.C 二、11.2x -1=-5(答案不唯一)12.3a +5=4a 13.-2 14.8 15.2 16.45 17.10 18.3 800 三、19.解:(1)移项,得2x -x =5-3.合并同类项,得x =2.(2)去括号,得6y -2-6+12y =9y +10. 移项,得6y +12y -9y =10+2+6. 合并同类项,得9y =18. 系数化为1,得y =2.(3)去括号,得12x +52x +2=8+x. 去分母,得x +5x +4=16+2x. 移项,得x +5x -2x =16-4. 合并同类项,得4x =12. 系数化为1,得x =3.(4)去分母,得3(3y -1)-12=2(5y -7). 去括号,得9y -3-12=10y -14. 移项,得9y -10y =3+12-14. 合并同类项,得-y =1. 系数化为1,得y =-1.20.解:由题意,得⎝ ⎛⎭⎪⎫-23x +1+(16x -5)=20,解得x =-48.21.解:解x -43-8=-x +22,得x =10.因为方程x -43-8=-x +22的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,所以把x =10代入方程4x -(3a +1)=6x +2a -1,得4×10-(3a +1)=6×10+2a -1,解得a =-4.所以a-1a=-4+14=-334.22.解:设大正方形的边长为x cm.根据题意,得x-2-1=4+5-x,解得x=6.6×6=36(cm2).答:大正方形的面积是36 cm2.23.解:设甲、乙两地之间距离的一半为s km,则全程为2s km.根据题意,得2s4-⎝⎛⎭⎪⎫s4+s20=2.解得s=10.所以2s=20.答:甲、乙两地之间的距离是20 km.24.解:(1)48(2)设该户居民3月份用水x t,则4月份用水(15-x)t,其中x<5,15-x>10.根据题意,得2x+2×6+4×4+(15-x-10)×8=44.解得x=4,则15-x=11.答:该户居民3月份用水4 t,4月份用水11 t.25.解:(1)根据题意,到A超市购买需准备货款20×210+70(x-20)=70x +2 800(元),到B超市购买需准备货款0.8(20×210+70x)=56x+3 360(元).(2)由题意,得70x+2 800=56x+3 360,解得x=40.答:当购买40个书架时,无论到哪家超市购买所付货款都一样.(3)因为A超市的优惠政策为买一张书柜赠送一个书架,相当于打7.5折;B超市的优惠政策为所有商品打8折,所以应该到A超市购买20张书柜,赠20个书架,再到B超市购买80个书架.所需货款为20×210+70×80×0.8=8 680(元).答:至少需准备8 680元货款.第四章达标测试卷一、选择题(每题3分,共30分)1.下列各图中,∠1与∠2互为补角的是()2.下列语句错误的是()A.延长线段AB B.延长射线ABC.直线m和直线n相交于点PD.在射线AB上截取线段AC,使AC=3 cm3.下列立体图形中,都是柱体的为()4.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠C C.∠BCA D.∠ACD 5.如图所示的表面展开图所对应的几何体是()A.长方体B.球C.圆柱D.圆锥6.如图所示的物体从上面看到的形状是()7.下列各图中,经过折叠能围成一个正方体的是()8.在直线上顺次取A,B,C三点,使得AB=5 cm,BC=3 cm,如果O是线段BC的中点,那么线段AO的长度是()A.8 cm B.7.5 cm C.6.5 cm D.2.5 cm 9.如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是() A.90°B.115°C.120°D.135°10.用折纸的方法,可以直接剪出一个正五边形(如图).方法是:拿一张长方形纸对折,折痕为AB,以AB的中点O为顶点将平角五等分,并沿五等分的线折叠,再沿CD剪开,使展开后的图形为正五边形,则∠OCD等于() A.108°B.90°C.72°D.60°二、填空题(每题3分,共24分)11.如图,射线OA表示____________方向,射线OB表示____________方向.12.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC =__________.13.如图,图中线段有________条,射线有________条.14.计算:(1)90.5°-25°45′=__________;(2)5°17′23″×6=__________.15.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOC的度数是________.16.将线段AB延长至点C,使BC=13AB,延长BC至点D,使CD=13BC,延长CD至点E,使DE=13CD,若CE=8 cm,则AB=________ cm.17.如图,将一副三角尺叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=________.18.如图是由一些小立方块所搭立体图形分别从正面、左面、上面看到的图形,若在所搭立体图形的基础上(不改变原立体图形中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(19,21题每题6分,20,22,24题每题10分,其余每题12分,共66分)19.如图,A,B两个村庄在河m的两侧,连接AB,与m交于点C,点D在m 上,连接AD,BD,且AD=BD.若要在河上建一座桥,使A,B两村来往最便捷,则应该把桥建在点C还是点D?请说明理由.20.如图,已知线段a,b,画一条线段,使它等于3a-b(不要求写画法).21.如图所示的立体图形是由七块积木搭成的,这几块积木是大小相同的正方体,请画出这个立体图形分别从正面、左面、上面看到的图形.22.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB ,若AB =24 cm ,求线段CE 的长.23.如图,OD 平分∠BOC ,OE 平分∠AOC ,∠BOC =60°,∠AOC =58°.(1)求出∠AOB 及其补角的度数;(2)①请求出∠DOC 和∠AOE 的度数;②判断∠DOE 与∠AOB 是否互补,并说明理由.24.如图,把一根绳子对折成线段AB ,从点P 处把绳子剪断,已知APBP =,若剪断后的各段绳子中最长的一段为60 cm ,求绳子的原长.25.已知O为直线AB上一点,∠COE是直角,OF平分∠AOE.(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=n°,则∠BOE=________;∠BOE与∠COF的数量关系为________________.(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.(3)在图③中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.答案一、1.D 2.B 3.C 4.B 5.D 6.D7.A 8.C 9.B 10.B二、11.北偏西45°(西北);南偏东75°12.11 cm 或5 cm 13.6;614.(1)64°45′ (2)31°44′18″15.84° 16.54 17.180° 18.54三、19.解:应该把桥建在点C .理由:两点之间,线段最短.20.解:如图,AE =3a -b .21.解:如图所示.22.解:因为点C 是AB 的中点,所以AC =BC =12AB =12×24=12(cm).所以AD =23AC =23×12=8(cm).所以CD =AC -AD =12-8=4(cm).因为DE =35AB =35×24=14.4(cm),所以CE =DE -CD =14.4-4=10.4(cm).23.解:(1)∠AOB =∠BOC +∠AOC =60°+58°=118°,其补角为180°-∠AOB =180°-118°=62°.(2)①因为OD 平分∠BOC ,OE 平分∠AOC ,所以∠DOC =∠BOD=12∠BOC =12×60°=30°,∠AOE =∠COE =12∠AOC =12×58°=29°.②∠DOE 与∠AOB 不互补.理由:因为∠DOC=30°,∠COE=29°,所以∠DOE=∠DOC+∠COE=59°.所以∠DOE+∠AOB=59°+118°=177°,故∠DOE与∠AOB不互补.24.解:(1)当点A是绳子的对折点时,将绳子展开,如图①所示.因为AP BP=,剪断后的各段绳子中最长的一段为60 cm,所以2AP=60 cm,所以AP=30 cm.所以BP=45 cm.所以绳子的原长为2AB=2(AP+BP)=2×(30+45)=150(cm).(2)当点B是绳子的对折点时,将绳子展开,如图②所示.因为AP BP=,剪断后的各段绳子中最长的一段为60 cm,所以2BP=60 cm,所以BP=30 cm.所以AP=20 cm.所以绳子的原长为2AB=2(AP+BP)=2×(20+30)=100(cm).综上,绳子的原长为150 cm或100 cm.25.解:(1)68°;2n°;∠BOE=2∠COF(2)仍然成立.理由如下:设∠COF=n°,则∠EOF=90°-n°.所以∠AOE=2∠EOF=180°-2n°.所以∠BOE=180°-(180°-2n°)=2n°,即∠BOE=2∠COF.(3)存在.由(2)可知,∠BOE=2∠COF=2×65°=130°.因为OF平分∠AOE,所以∠AOF=∠EOF=90°-65°=25°.当2∠BOD+∠AOF=12(∠BOE-∠BOD)时,有2∠BOD+25°=12(130°-∠BOD).所以∠BOD=16°.第一学期期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b >0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.。

初一上册数学第一单元测试卷

初一上册数学第一单元测试卷

初一上册数学第一单元测试卷一、选择题(每小题 3 分,共 30 分)1、下列各数中,是正数的是()A 0B -1C -2D 32、在数轴上,与表示-2 的点距离为 3 个单位长度的点所表示的数是()A 1B -5C 1 或-5D -1 或 53、下列说法中,错误的是()A 0 既不是正数,也不是负数B 0 是最小的整数C 0 的绝对值是 0D 0 的相反数是 04、计算:-2 + 5 =()A 3B -3C 7D -75、绝对值小于 4 的整数有()A 3 个B 5 个C 6 个D 7 个6、比较-2,0,(-2),-3 的大小,正确的是()A -3 <-2 < 0 <(-2)B (-2)< 0 <-2 <-3C -3 <-2 <(-2)< 0D -2 <-3 < 0 <(-2)7、若 a =-3,b = 2,则 a + b 的值为()A -1B 1C -5D 58、计算:(-1)×(-2)×(-3) =()A -6B 6C -5D 59、若 a < 0,b > 0,且|a| >|b|,则 a + b 的值()A 是正数B 是负数C 是 0D 无法确定10、下列运算中,正确的是()A -2 2 = 0B (-2)×(-2) =-4C (-2)÷(-2) = 1D (-2)³=-6二、填空题(每小题 3 分,共 30 分)11、支出 50 元记作-50 元,那么收入 100 元记作_____元。

12、数轴上表示-5 的点与表示 3 的点的距离是_____。

13、-8 的相反数是_____。

14、比较大小:-1/2_____-1/3 (填“>”“<”或“=”)15、计算:(-3)²=_____。

16、绝对值等于 5 的数是_____。

17、若|x 2| = 0,则 x =_____。

18、最大的负整数是_____。

19、计算:-2³+(-2)³=_____。

七年级上册《数学》第1章测试卷与参考答案-人教版

七年级上册《数学》第1章测试卷与参考答案-人教版

七年级上册《数学》第1章测试卷与参考答案(人教版)一、选择题本大题共10道小题,每题3分,共30分。

1. 冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作()A. 7 ℃B. -7 ℃C. 2 ℃D. -12 ℃答案:B 答案解析:零上记为正数,则零下记为负数,零上5℃记为+5℃,则零下7℃记为-7℃.2. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是()A. -2B. -3C. 3D. 5答案:A 答案解析:最接近标准的工件是绝对值最小的数,-2的绝对值是2,-3和3的绝对值是3,5的绝对值是5,所以最接近的是-2.3. 下列各数中,-3的倒数是()A. -13B.13C. -3D. 3答案:A 答案解析:因为-3×(-13)=1,所以-3的倒数为-13.4. 下列各式中,计算结果为正的是( )A .(-50)+(+4)B .2.7+(-4.5)C .(-13)+25D .0+(-13)答案:C答案解析:A 选项(-50)+(+4)=-46;B 选项2.7+(-4.5)=-1.8;C 选项(-13)+25=,D选项0+(-13)=。

故本题正确选项为C.5. 2020年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A. 2.89×107B. 2.89×106C. 28.9×105D. 2.89×104答案:B答案解析:科学记数法的一般形式为a×10n ,1≤a <10,其中n 为原数的整数位数减1,则289万=2890000=2.89×106.6. 数a ,b 在数轴上的对应点的位置如图所示.把-a ,-b ,0按照从小到大的顺序排列,正确的是()A.-a<0<-bB.0<-a<-bC.-b<0<-aD.0<-b<-a答案:C 答案解析:由数轴可知:a<0<b, 所以-a>0>-b,即-b<0<-a.7. 如图,在数轴上点A,B对应的有理数分别为a,b,有下列结论:①ba>0;②ab>0;③-ba>0;④-ab>0.其中正确的有()图K-14-1A.1个B.2个C.3个D.4个答案:B 答案解析:观察数轴,可知a与b的符号相反,所以-a与b或a与-b的符号相同,根据除法中确定商的符号的方法,可知①②错误,③④正确.故选B.8. 35 cm比较接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度答案:C 答案解析:35 cm=243 cm=2.43 m,接近于姚明的身高.9. 储蓄所办理了几笔储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这时储蓄所的存款增加了( )A .12.25万元B .-12.25万元C .12万元D .-12万元答案:A答案解析:记取出为负,存入为正,则(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(+5)+(+12)+(+25)]+[(-9.5)+(-8)+(-10.25)+(-2)]=(+42)+(-29.75)=12.25.10. 若a 、b 、c 三个数互不相等,则在中,正数一定有( )A .0个B .1个C .2个D .3个答案:B答案解析:不妨设,则,显然有两个负数,一个正数.二、填空题本大题共8道小题,每题4分,共32分。

人教版七年级上册数学 第一章 有理数 单元达标测试卷(含答案)

人教版七年级上册数学 第一章 有理数 单元达标测试卷(含答案)

人教版七年级上册数学第一章有理数单元达标测试卷时间:100分钟满分:100分一.选择题(每小题4分,共40分)1.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.32.当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米3.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2 B.3 C.4 D.54.已知数a、b在数轴上对应的点在原点两侧,并且到原点的距离相等;数x、y是互为倒数,那么2|a+b|﹣2xy的值等于()A.2 B.﹣2 C.1 D.﹣15.若|a﹣3|=3﹣a,则a的取值范围是()A.a>3 B.a<3 C.a≥3 D.a≤36.华为Mate30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1010D.1.03×10117.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a ﹣b|=44,且AO=3BO,则a+b的值为()A.﹣44 B.﹣22 C.﹣55 D.﹣118.在数轴上表示有理数a,﹣a,﹣b﹣1的点如图所示,则()A.﹣b<﹣a B.|b+1|<|a| C.|a|>|b| D.b﹣1<a9.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1 B.0 C.1 D.310.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个二.填空题(每小题4分,共24分)11.若x,y互为相反数,且3x﹣y=4,则xy的值为.12.如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作m.13.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为.14.一根长12.56米的绳子刚好可以绕一个圆10圈,那么这个圆的直径大约是米.15.某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成个,这些细菌再继续分裂t分后共分裂成个.16.已知a,b,c为互不相等的整数,且abc=﹣4,则a+b+c=.三.解答题(每题9分,共36分)17.计算①.。

七年级数学上册第一单元测试卷

七年级数学上册第一单元测试卷

七年级数学上册第一单元测试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 3+2=5B. 2×3=5C. 2+3=6D. 3×2=62. 计算下列哪个选项是错误的?A. 3+2=5B. 2×3=6C. 2+3=5D. 3×2=63. 下列哪个选项是正确的?A. 3+2=5B. 2×3=5C. 2+3=6D. 3×2=64. 计算下列哪个选项是错误的?A. 3+2=5B. 2×3=6C. 2+3=5D. 3×2=65. 下列哪个选项是正确的?A. 3+2=5B. 2×3=5C. 2+3=6D. 3×2=66. 计算下列哪个选项是错误的?A. 3+2=5B. 2×3=6C. 2+3=5D. 3×2=67. 下列哪个选项是正确的?A. 3+2=5B. 2×3=5C. 2+3=6D. 3×2=68. 计算下列哪个选项是错误的?A. 3+2=5B. 2×3=6C. 2+3=5D. 3×2=69. 下列哪个选项是正确的?A. 3+2=5B. 2×3=5C. 2+3=6D. 3×2=610. 计算下列哪个选项是错误的?A. 3+2=5B. 2×3=6C. 2+3=5D. 3×2=6二、填空题(每题4分,共20分)1. 一个数加上4等于8,这个数是______。

2. 一个数乘以3等于9,这个数是______。

3. 一个数减去2等于3,这个数是______。

4. 一个数除以2等于4,这个数是______。

5. 一个数的两倍是6,这个数是______。

三、解答题(每题10分,共50分)1. 计算下列表达式:(1) 5+3-2(2) 7×2÷4(3) 9-(2+3)2. 解下列方程:(1) 2x+3=7(2) 3x-5=8(3) 4x=203. 计算下列面积:(1) 一个长方形的长是6厘米,宽是3厘米,求它的面积。

人教版七年级数学上册《第一章单元综合测试卷》测试题及参考答案

人教版七年级数学上册《第一章单元综合测试卷》测试题及参考答案

人教版七年级数学上册《第一章单元综合测试卷》测试题及参考答案一、选择题(每题3分,共30分)1. 下列数中,哪一个数是有理数?A. √2B. πC. 0.333...D. √-12. 下列说法中,正确的是:A. 有理数是整数和分数的统称B. 无理数是分数C. 有理数和无理数统称为实数D. 实数包括有理数和分数3. 下列数中,哪一个数是分数?A. 3B. -5C. 2/3D. √54. 下列各数中,哪一个数是正数?A. -2B. 0C. 1/2D. -1/25. 如果 a 是正数,那么下列哪一个选项是正确的?A. -a 是正数B. -a 是负数C. -a 是0D. 无法确定6. 绝对值等于3的数是:A. 3B. -3C. 3 和 -3D. 07. 下列各数中,哪一个数的绝对值最小?A. -5B. 3C. -2D. 08. 下列哪一个数的相反数是它本身?A. 0B. 1C. -1D. 29. 下列哪一个数是-2的相反数?A. 2B. -2C. 0D. -410. 下列哪一个数是2的倒数?A. 1/2B. 2C. -2D. -1/2二、填空题(每题3分,共30分)11. 有理数包括________和________。

12. 相反数的定义是:如果两个数只有符号不同,那么这两个数互为________。

13. 绝对值是一个数的________,它表示这个数到原点的________。

14. 如果一个数的绝对值是4,那么这个数可以是________或________。

15. 0的相反数是________,0的倒数是________。

16. 如果a > b,那么-a________-b。

17. 下列数中,哪个数是1/3的平方:________(填写选项前的字母)。

A. 1/9B. 3C. 9D. 1/2718. 如果一个数的平方是1,那么这个数可以是________或________。

19. 下列各数中,哪个数的平方是正数:________(填写选项前的字母)。

人教版七年级数学(上册)第一章测试卷(含答案)

人教版七年级数学(上册)第一章测试卷(含答案)

a 七年级数学第一章测试卷(时间:90分钟 总分:120分)一、选择题:(每题2分,共30分)1.下列说法正确的是( ) A.所有的整数都是正数 B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是( ) A.-12 B.2 C.-2 D.12 3.有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( )A.a>bB.a<bC.ab>0D.0a b> 4.在数轴上,原点及原点右边的点表示的数是( ) A.正数 B.负数 C.非正数 D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是( )A.是正数B.不是0C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是( )A.收入200元与支出20元B.上升10米和下降7米C.超过0.05mm 与不足0.03mD.增大2岁与减少2升7.下列说法正确的是( )A.-a 一定是负数;B.│a │一定是正数;C.│a │一定不是负数;D.-│a │一定是负数8.如果一个数的平方等于它的倒数,那么这个数一定是( )A.0B.1C.-1D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( )A.互为相反数但不等于零;B.互为倒数;C.有一个等于零;D.都等于零10.若0<m<1,m 、m 2、1m的大小关系是( ) A.m<m 2<1m ; B.m 2<m<1m ; C.1m <m<m 2; D.1m <m 2<m 11.4604608取近似值,保留三个有效数字,结果是( )A.4.60×106B.4600000;C.4.61×106D.4.605×10612.下列各项判断正确的是( )A.a+b 一定大于a-b;B.若-ab<0,则a 、b 异号;C.若a 3=b 3,则a=b;D.若a 2=b 2,则a=b13.下列运算正确的是( )A.-22÷(-2)2=1;B. 31128327⎛⎫-=- ⎪⎝⎭ C.1352535-÷⨯=- D. 133( 3.25)6 3.2532.544⨯--⨯=-14.若a=-2×32,b=(-2×3)2,c=-(2×)2,则下列大小关系中正确的是( )A.a>b>0B.b>c>a;C.b>a>cD.c>a>b15.若│x │=2,│y │=3,则│x+y │的值为( )A.5B.-5C.5或1D.以上都不对二、填空题:(每空2分,共30分)16.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是__.17.一个数的相反数的倒数是113-,这个数是________.18.数轴上到原点的距离是3个单位长度的点表示的数是______.19.-2的4次幂是______,144是____________的平方数.20.若│-a │=5,则a=________. 21.若ab>0,bc<0,则ac________0.22.绝对值小于5的所有的整数的和_______.23.用科学记数法表示13040000应记作_______________________,若保留3个有效数字, 则近似值为__________. 24.若│x-1│+(y+2)2=0,则x-y=___________; 25.(-5)×145⎛⎫- ⎪⎝⎭=_________. 26. 31277⎛⎫÷- ⎪⎝⎭=___________; 27. 1564358-÷⨯=___________. 28. 22128(2)2⎛⎫-⨯-+÷- ⎪⎝⎭=_______. 三、解答题:(共60分)29.列式计算(每题5分,共10分)(1)-4、-5、+7三个数的和比这三个数绝对值的和小多少?(2)从-1中减去573,,1284---的和,所得的差是多少?30.计算题(每题5分,共30分)(1)(-12)÷4×(-6)÷2; (2) 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭;(3) 111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (4) 222121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭;(5) 2242(12)6(3)24(3)(5)53+⨯-÷--++-⨯-; (6)1+3+5+…+99-(2+4+6+…+98).31.若│a │=2,b=-3,c 是最大的负整数,求a+b-c 的值.(10分)32.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发, 到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5回答下列问题:(每题5分,共10分)(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?答案:一、1.C 2.D 3.A 4.D 5.B 6.D 7.C 8.B 9.A 10.B 11.A 12. C 13.D 14.C15.C二、16.评析:负数的意义,升高和降低是一对意义相反的量,借助数轴可以准确无误地得出正确结果-1℃,数无数不形象,形无数难入微, 数形结合是数学的基本思想,在新课标中有重要体现,是中考命题的重要指导思想,多以综合高档题出现,占分比例较大.17.评析:利用逆向思维可知本题应填3 4 .18.评析:绝对值的几何意义.在数轴上绝对值的代名词就是距离,绝对值是一个“一学就会一做就错”的难点概念,其原因是没有把握好绝对值的几何意义.19.1620.评析:可以设计两个问题理解本题.①什么数的绝对值等于5, 学生可顺利得出正确结论±5.②什么数的相反数等于±5,学生也可顺利得出正确结论-5和5,在解题的过程中学生自然会概括出│-a│=│a│,把一个问题转化成两个简单的问题,这种方法和思想是数学学习的核心思想,这一思想在历届中考中都有体现.21.<22.023.用科学记数法表示一个数,要把它写成科学记数的标准形式a×10n, 这里的a必须满足1≤a<10条件,n是整数,n的确定是正确解决问题的关键,在这里n是一个比位数小1的数,因为原数是一个8位数,所以可以确定n=7,所以13040000=1.304×107,对这个数按要求取近似值,显然不能改变其位数,只能对其中的a 取近似值,保留3个有效数字为1.30×107,而不能误认为 1.30,通过这类问题,学生可概括出较大的数取近似值的基本模式应是:先用科学记数法将其表示为a ×10n (1≤a<10,n 是整数), 然后按要求对a 取近似值,而n 的值不变. 24.3 25.21 26.15- 27.252- 28.4 三、29.本题根据题意可列式子:(1)(│-4│+│-5│+│7│)-(-4-5+7)=18.(2) 573251128424⎛⎫-----= ⎪⎝⎭. 30.(1)属同一级运算,计算这个题按题的自然顺序进行(-12)÷4×(-6)÷2=(-12)×14×(-6)×12=9. (2)是一个含有乘方的混合运算 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭=25160.25(4)(5)(4)1080908-⨯-⨯-⨯-⨯-=--=-.这里把-4同0.25结合在一起,利用了凑整法可以简化计算.(3)这一题只含同一级运算,计算中要统一成加法的计算, 然后把可以凑整的结合在一起进行简便计算,具体做法是: 111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=111311123124244---++ =1111331111230434422444⎛⎫⎛⎫-++--+=-+=- ⎪ ⎪⎝⎭⎝⎭ (4)本题是一个混合运算题,具体解法如下: 232121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭ =4412744993⎛⎫-⨯⨯+-⨯- ⎪⎝⎭=1644033-++= (5) 2242(12)6(3)24(3)(5)53+⨯-÷--++-⨯-=421(12)9249(5) 536+⨯-⨯-++⨯-=4487 933(5)9165155 531515 --+⨯-=--=-(6)1+3+5+...99-(2+4+6+ (98)=1+(3-2)+(5-4)+…(99-98)=1+1+1+…1=50.此题有多种简便方法,请你探索.31.∵│a│=2,∴a=±2,c是最大的负整数,∴c=-1,当a=2时,a+b-c=2-3-(-1)= 0;当a=-2时a+b-c=-2-3-(-1)=-4.32.(1)∵8-9+4+7-2+10+18-3+7+5=8+4+7+18+7+5-9-10-2-3=25,∴在A处的东边25米处.(2)∵│8│+│-9│+│4│+│7│+│-2│+│-10│+│18│+│-3│+│7│+│5│=73千米,73×0.3=21.9升,∴从出发到收工共耗油21.9升.。

七年级数学上册第一单元达标检测卷(附答案)

七年级数学上册第一单元达标检测卷(附答案)

这篇关于七年级数学上册第⼀单元达标检测卷(附答案),是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助!⼀、仔细选⼀选(30分)1. 0是()A.正有理数 B.负有理数 C.整数 D.负整数2. 中国第⼀座跨海⼤桥——杭州湾跨海⼤桥全长36千⽶,其中36属于()A.计数 B.测量 C.标号或排序 D.以上都不是3. 下列说法不正确的是( )A.0既不是正数,也不是负数 B.0的绝对值是0C.⼀个有理数不是整数就是分数 D.1是绝对值最⼩的数4. 在数- , 0 , 4.5, |-9|, -6.79中,属于正数的有( )个 A.2 B.3 C.4 D.55. ⼀个数的相反数是3,那么这个数是()A.3 B.-3 C. D.6. 下列式⼦正确的是()A.2>0>-4>-1 B.-4>-1>2>0 C.-4-17. ⼀个数的相反数是的负整数,则这个数是()A.1 B.±1 C.0 D.-18. 把数轴上表⽰数2的点移动3个单位后,表⽰的数为()A.5 B.1 C.5或1 D.5或-19. ⼤于-2.2的最⼩整数是()A.-2 B.-3 C.-1 D.010. 学校、家、书店依次座落在⼀条东西⾛向的⼤街上,学校在家的西边20⽶,书店在家东边100⽶,张明同学从家⾥出发,向东⾛了50⽶,接着⼜向西⾛了70⽶,此时张明的位置在 ( )A. 在家B. 在学校C. 在书店D. 不在上述地⽅⼆、认真填⼀填(本题共30分)11.若上升15⽶记作+15⽶,则-8⽶表⽰。

12.举出⼀个既是负数⼜是整数的数。

13.计算: __________。

14.计算5.24÷6.55,结果⽤分数表⽰是______;⽤⼩数表⽰是________。

15.绝对值⼤于1⽽不⼤于3的整数是。

16.最⼩的正整数是_____;的负整数是_____。

17.⽐较下⾯两个数的⼤⼩(⽤“<”,“>”,“= ”)(1) 1 -2; (2) -0.3;18.如果点A表⽰+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表⽰的数是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册第一单元达标检测卷(附答案)
班级_______学号______姓名____________成绩____________
一、仔细选一选(30分)
1. 0是()
A.正有理数B.负有理数C.整数D.负整数
2. 中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于()
A.计数B.测量C.标号或排序D.以上都不是3. 下列说法不正确的是( )
A.0既不是正数,也不是负数B.0的绝对值是0
C.一个有理数不是整数就是分数D.1是绝对值最小的数
4. 在数-, 0 , 4.5, |-9|, -6.79中,属于正数的有( )个
A.2B.3C.4D.5 5. 一个数的相反数是3,那么这个数是()
A.3 B.-3 C.D.
6. 下列式子正确的是()
A.2>0>-4>-1 B.-4>-1>2>0 C.-4<-1<0<2 D.0<2>-1<-4
7. 一个数的相反数是最大的负整数,则这个数是()A.1 B.±1 C.0 D.-1
8. 把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或-1
9. 大于-2.2的最小整数是()
A.-2 B.-3 C.-1 D.0
10. 学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在( )
A. 在家
B. 在学校
C. 在书店
D. 不在上述地方
二、认真填一填(本题共30分)
11.若上升15米记作+15米,则-8米表示。

12.举出一个既是负数又是整数的数。

13.计算:__________。

14.计算5.24÷6.55,结果用分数表示是______;用小数表示是________。

15.绝对值大于1而不大于3的整数是。

16.最小的正整数是_____;最大的负整数是_____。

17.比较下面两个数的大小(用“<”,“>”,“= ”)
(1) 1 -2; (2) -0.3;
18.如果点A表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是。

19.相反数等于本身的数是______,绝对值等于本身的数是
_______________。

20.观察下面一列数,根据规律写出横线上的数,
-;;-;;;;……;第2013个数是。

三、全面答一答(本题有5个小题,共40分)
21、(8分)把下列各数的序号填在相应的数集内:
①1 ②-③+3.2 ④0 ⑤•⑥-6.5 ⑦+108 ⑧-4 ⑨-6错误!嵌入对象无效。

.
(1)正整数集合{ …}
(2)正分数集合{ …}
(3)负分数集合{ …} (4)负数集合{ …}
22、(8分)求0,–2.5,的相反数并把这些数及其相反数表示在数轴上;并按从大到小的顺序排列。

23计算:(6分)
(1)(2)
24、(8分)云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向。

他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?
25、(10分)为参加2012年奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g
①②③④⑤⑥
+3 -2 +4 -6 +1 -3
(1)有几个篮球符合质量要求?
(2)其中质量最接近标准的是几号球?
第一学期七年级数学第一单元检测
参考答案
一、仔细选一选:
1 C
2 B
3 D
4 A
5 B
6 C
7 A
8 D
9 A 10 B
二、仔细填一填:
11.下降8米
12.答案不唯一;
13. 10;
14. ,0.8;
15.±2,±3
16. 1 ﹣1
17. < <
18. ﹣1 19.0,零或正数,(非负数)
20.
三、全面答一答
21.(1)(①,⑦)
(2)(③,⑤)
(3)(②,⑥,⑨)
(4)(②,⑥,⑧,⑨)
22.解:0的相反数是0;﹣2.5的相反数是2.5;的相反数是﹣;(3分)
画数轴略(2分)
从大到小排列:,2.5, 0,﹣2.5,﹣(3分)
23.(1)20,(2)3
24.①+15-25+20-40=-30(千米)答:在A地西30千米处
②15+25+20+40=100(千米)
因为这种汽车行驶100千米消耗的油量为8.9升,所以本次耗油为8.9升。

25.(1)①②③⑤⑥
(2)⑤。

相关文档
最新文档