七年级下学期数学期中考试试卷
山东省临沂市罗庄区2023-2024学年七年级下学期期中考试数学试题
山东省临沂市罗庄区2023-2024学年七年级下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1 )A .8B .8-C .4±D .42.已知方程组2421x y x y +=⎧⎨+=⎩,则x ﹣y 的值为( ) A .53 B .2 C .3 D .﹣23.如图是婴儿车的平面示意图AF CD ∥,1125∠=︒,340∠=︒,那么2∠的度数为( )A .75︒B .85︒C .95︒D .105︒ 4.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( )A .()4,5-B .()5,4-C .()4,5-D .()5,4- 5.如图,下列不能判定AB CD ∥的条件是( )A .180B BCD ∠+∠=︒B .12∠=∠C .34∠∠= D .5B ∠=∠6的值在哪两个整数之间( )A .75和77B .6和7C .7和8D .8和9 7.如图是利用平面直角坐标系画出的天安门附近的部分建筑分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示弘义阁的点的坐标为(﹣1,﹣1),表示本仁殿的点的坐标为(2,﹣2),则表示中福海商店的点的坐标是( )A .(﹣4,﹣3)B .(﹣2,﹣1)C .(﹣3,﹣4)D .(﹣1,﹣2) 8.若12x y =⎧⎨=-⎩,是关于x 和y 的二元一次方程3mx ny +=的解,则24-m n 的值等于( ) A .3 B .6 C .1- D .2-9.在平面直角坐标系xOy 中,点A (﹣2,0),点B (0,3),点C 在坐标轴上,若三角形ABC 的面积为6,则符合题意的点C 有( )A .1个B .2个C .3个D .4个10.把一根长7m 的钢管截成2m 长和1m 长两种规格的钢管,在不造成浪费的情况下,你有( )种截法.A .1B .2C .3D .411.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第2024次运动后,动点P 的坐标是( )A .()2024,2B .()2024,1C .()2024,0D .()2023,012.如图,直线EF 上有两点A 、C ,分别引两条射线AB 、CD .100BAF ∠=︒,CD 与AB 在直线EF 异侧.若60DCF ∠=︒,射线AB 、CD 分别绕A 点,C 点以1度/秒和6度/秒的速度同时顺时针转动,设时间为t 秒,在射线CD 转动一周的时间内,当时间t 的值为( )时,CD 与AB 平行.( )A .4秒B .10秒C .40秒D .4或40秒二、填空题13.已知点()1,5M a -,现在将点M 先向左平移3个单位长度,又向下平移4个单位长度得到点()2,1N b -,则a b -= .14.如图,OA =OB =OC =OD =10,点E 在OB 上且BE =3,∠AOB =∠BOC =∠COD =30°,若点B 的位置是(30°,10),点C 的位置是(60°,10),点D 的位置是(90°,10),则点E 的位置是 .15.如图,圆的直径为1个单位长度,该圆上的点A 在数轴上表示1-的点重合,将该圆沿数轴滚动1周,点A 到达点B 的位置,则点B 表示的数是 .16.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D ,若()3B m ,,(),5C n -,()40A ,,则AD BC ⋅= .三、解答题17.计算和求值:(1)|(2)2(2)9x -=18.解方程组:(1)335x y x y -=⎧⎨+=⎩(2)4153(3)84x y x y +=⎧⎪⎨---=⎪⎩ 19.已知39a b +-的立方根是4,21a -的平方根是7±,ca b c ++的平方根和立方根.20.如图,CD ⊥AB 于D ,FE ⊥AB 于E ,∠ACD +∠F =180°.(1)求证:AC ∥FG ;(2)若∠A =45°,∠BCD :∠ACD =2:3,求∠BCD 的度数.21.若关于x 、y 的方程组241mx ny x y +=⎧⎨+=⎩与3(1)3x y nx m y -=⎧⎨+-=⎩有相同的解. (1)求这个相同的解;(2)求m 、n 的值.22.已知(3||9,42)M a a --在y 轴负半轴上,直线MN x ∥轴,且线段MN 长度为4.(1)求点M 的坐标;(2)求2024(2)1a -+的值;(3)求N 点坐标.23.如图,直线a b ∥,点A ,点D 在直线b 上,射线AB 交直线a 于点B ,CD a ⊥于点C ,交射线AB 于点E ,12cm AB =,:1:2AE BE =,P 为射线AB 上一动点,P 从A 点开始沿射线AB 方向运动,速度为1cm/s ,设点P 运动时间为t 秒,M 为直线a 上一定点,连接PC ,PD .(1)若使PC PD +的值最小,求t 的值;(2)若点P 在CD 左侧运动时,探究PCM PDA ∠∠、与CPD ∠的关系,并说明理由;(3)若点P 在CD 右侧运动时,写出PCM PDA ∠∠、与CPD ∠的关系,并说明理由.。
浙江省温州市2023-2024学年七年级下学期期中学业质量检测数学试卷(含答案)
七年级期中学业质量检测(数学)考生须知:1.本卷评价内容范围是《数学》七年级下册第一章至第三章3.5节,全卷满分100分; 2.考试时间90分钟,不可以使用计算器. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个正确选项) 1.下列方程是二元一次方程的是( ▲ )A .320x B .232x x C .11y xD .31x y2.将如图所示的图案通过平移后可以得到的图案是( ▲ )A.B .C .D .3.如图,∠B 的同旁内角是( ▲ )A .∠4B .∠3C .∠2D .∠14.计算34[-10]()的结果是( ▲ )A .710B .710C .1210D .1210 5.下列运算中,计算结果正确的是( ▲ )A .235a a a B .236a a a C .236(2)6a a D .459236a a a6.下列各式中,不能..用平方差公式计算的是( ▲ ) A .()()a b a b B .()()a b b a C .()()a b a b D .()()a b b a 7.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ▲ )A .34 B .12 C .ECD D D .0180ABD A 8.若关于x ,y 的二元一次方程组2425x y x y ,的解也是方程3x y k 的解,则k 的值为( ▲ )A .2B .1C .1D .2(第2题)(第3题)(第7题)9. 某兴趣小组组织野外活动,男生戴蓝色帽子,女生戴红色帽子,如果每位男生看到蓝色帽子比红色帽子多2个,每位女生看到蓝色帽子是红色帽子的2倍,则该兴趣小组男女生分别有多少人?设男生有x 人,女生有y 人,则下列方程正确的是( ▲ ) A .122-1x y x y ()B .122x y x yC .122-1x y xy D .22x y xy10.如图,正方形AEIJ ,正方形EFGH ,正方形LMCK依次放在长为6,宽为4的长方形ABCD 中,要求出 图中阴影两部分的周长之差,只需要知道下列哪条线 段的长( ▲ )A .AEB .EFC .CMD .NL二、填空题(本题有8小题,每小题3分,共24分) 11.已知方程2x y ,用含x 的代数式表示y ,则y ▲ .12.计算:2(1)a ▲ .13.已知1x a y ,是方程53=+y x 的一组解,则a 的值为 ▲ .14.计算:4413=3(-) ▲ .15. 如图,将两块含30角的三角板ABC 和含45角的三角板BDE 按如图所示的位置放置,若BE AC ∥,则DBA 的度数为 ▲ °.16.已知2(231)x y 与431x y 的值互为相反数,则x y 的值为 ▲ .17.已知240m n ,则42m n ▲ .18.如图1,将一张长方形纸片ABCD 右端沿着EF 折叠成如图2,再将纸片左端沿着GH折叠成如图3,GD 恰好经过点F ,且GF 平分∠HFB .在图3中,若2∠GHF +∠BFE =135°,则∠BFE 的度数为 ▲ ° .三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或证明过程) 19.(本题6分)化简(1)23(21)x xy y (2)(2)(2)(1)x x x x图1图2 图 3(第18题)(第15题)45°30°EDACB(第10题)20.(本题8分)解方程组 (1)3210y x x y (2)327465x y x y21.(本题6分)如图是由边长为1的小正方形构成的8×8网格,线段AB 端点和点P 均在格点上.(1)将线段AB 向上平移1格,再向右平移2格,请在图甲中作出经上述两次平移后所得的线段CD .(2)请在图乙中找一格点E ,连结PB ,PE ,使得∠PBA=∠EPB .22.(本题8分)如图,在△ABC 中,点D 在BC 上,DE ∥AB 交AC 于点E ,点F 在AB 上,∠BFD =∠DEC .(1)说明DF 与AC 平行的理由.理由如下://DE AB ( ▲ ), BFD FDE ( ▲ ). BFD DEC ,FDE▲ .//DF AC ( ▲ ).(2)若∠B +∠C =120°,求∠FDE 的度数.(第22题)图甲图乙(第21题)23.(本题8分) 某校为了喜迎新春,开展了“巧制花灯,福满校园”的活动,如图1为学生制作的其中一种花灯样式,它的四面是由四个完全相同的平面模板(如图2)折叠拼接而成的.模板是由2个长方形A 、2个长方形C 、1个长方形D 和4个等腰梯形B 构成的,其中尺寸如图2所示:长方形A 的宽为,长为,等腰梯形的高与长方形A 的宽大小一样,长方形C 的长为(4)n ,宽为( 1.5)m ,模板总高为32cm . (1)请用含的代数式表示模板的面积(结果需化简). (2)当221n m 时,请求出花灯模板的面积.24.(本题10分)探究学校校服订购的方案.素材1:天气转热,不少学生的夏季校服有损坏或丢失,故学校联系了厂商订制一批校素材2:本届七年级使用的是改版后的校服,每件新版衣服和裤子的价格均比旧版多10元.为保证各年级段校服统一,学校要求七年级学生购买新版,八、九年级学生购买旧版.【任务1】分别求出旧版衣服和旧版裤子的单价.【任务2】依据往年八、九年级的数据统计,衣服数量不超过80件,裤子数量不超过50件.若学校恰好用了4900元为八、九年级购买旧版校服,则衣服和裤子各买了多少件?【任务3】学校统计各班的订购意向后,最终花费9200元订购这批校服.已知七年级订购的衣服数量占所有衣服和裤子总数量的14,且少于50件,则八、九年级订购的裤子共有 ▲ 件.(请直接写出答案)m n m n ,单位:cm图2图1(第23题)七年级期中学业质量检测数学参考答案及评分标准一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有8小题,每小题3分,共24分)11.2x −+. 12.221a a −+. 13.2. 14.1. 15. 15. 16.0. 17.16. 18.22.5.三、解答题(本题有6小题,共46分) 19. (本题6分)(1)23(21)x xy y −+22=363x y xy x −+解:原式 ..................(3分)(2)(2)(2)(1)x x x x +−−−22=4x x x −−+解:原式4x =− ..................(3分)20.(本题8分) (1)3210y x x y =⎧⎨+=⎩①②解:将①代入②得:2310x x += 解得:2x = 将2x =代入①得:6y =所以原方程组的解是=2...........(4)6x y ⎧⎨=⎩分(2)327465x y x y −=⎧⎨+=⎩①②解: 3⨯①+②得:1326x =解得:2x =将2x =代入①得: 12y =−所以原方程组的解是=2............(4)12x y ⎧⎪⎨=−⎪⎩分(1)(2)22.(本题8分) (1)理由如下://DE AB ( 已知 ), BFDFDE ( 两直线平行,内错角相等 ).BFD DEC ,FDE∠DEC .//DF AC ( 内错角相等,两直线平行 ).………….(4分)(2)解:∵//DF AC∴FDB C ∠=∠ ∵//DE AB ∴EDC B ∠=∠ ∵120B C ∠+∠=° ∴120FDB EDC ∠+∠=°∴FDE ∠=180°()60FDB EDC −∠+∠=° ..................(4分) (其它正确答案酌情给分)(1)[]124(4)2( 1.5)(4)3262( 1.5)2mn m n n m n n m m +⨯−++−−+−−− =163212m n −++ ...........................(5分)(其它正确答案酌情给分)(2)当221n m −=时原式=163212m n −++=162)12m n −++( =162112⨯+=348 .................................(3分)24.(本题10分):任务1 设一件旧版衣服x 元,一件旧版裤子y 元.由题意,得100807300120607500x y x y解得4535x y答:一件旧版衣服45元,一件旧版裤子35元. .................(4分)任务2 设购买衣服m 件,裤子n 件.由题意,得45m +35n =4900, 化简,得91407n m .∵m ≤80,n ≤50且m ,n 均为正整数, ∴7050m n 或7741m n答:衣服70件、裤子50件或衣服77件、裤子41件.............(4分)任务3 11. .................(2分)设新版衣服a 件,旧版裤子b 件.则所有衣服和裤子共4a 件,旧版衣服和新版裤子共(3a -b )件.由题意,得55a +45(3a -b )+35b =9200, 化简,得b =19a - 920. ∵a <50,且a ,b 均为正整数, ∴a =49,b =11.。
2024年下学期期中考试七年级数学试卷(问卷)
2024年下学期期中考试七年级数学试卷(问卷)(考试时间120分钟满分120分)一、选择题(每小题3分,共30分)1.-2相反数和绝对值分别是( )A . -2,-2B .2,-2C .-2,2D . 2,22.2024年10月30日凌晨,神州十九号载人飞船在酒泉卫星发射中心点火发射.若火箭发射点前5秒记为秒,那么火箭发射点火后10秒应记为( )A .秒B .秒C .秒D .秒3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为( )A . B .C .D .4.式子,,,,中,单项式有( )A .1个B .2个C .3个D . 4个5.下列变形正确的是( )A .B .C .D .6.将 按从小到大的顺序排列,正确的是( )A .B .C .D .7.如图,若数轴上的两点,表示的数分别为a ,b ,则下列结论正确的是( )A .B .C .D .8.下列说法中正确的有( )①一个数前面加上“﹣”号就是负数;②非负数就是正数;③0既不是正数,也不是负数;④正数和负数统称为有理数;⑤正整数与负整数统称为整数;⑥正分数与负分数统称为分数;⑦0是最小的整数;⑧最大的负数是.A .5个B .4个C .3个D .2个5-10+5-5+10-21000000021000000092.110⨯90.2110⨯82.110⨯72.110⨯2a +25b 2x 13x +8m 5(3)35+-=+8(5)9(5)89+-+=-++[6(3)]5[6(5)]3+-+=+-+1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭()22313333----,,,()22313333-<-<-<-()23213333-<-<-<-()22313333-<-<-<-()22313333-<-<-<-A B 0a b ->0ab-<21a b +>-0ab >1-9. 当a <0时,下列等式①a 2023<0;②a 2023=-(-a )2023;③a 2024=(-a )2024;④a 2023=-a 2023中成立的有( )A .4个B .3个C .2个D .1个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 023个图中共有正方形的个数为 ( )A .6067B .6061C .2024D .2023二、填空题(每小题3分,共24分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款元.12.的次数是.13.把多项式按字母的降幂排列: .14.若,则.15.若单项式与单项式是同类项,则它们的和为.16.已知a 、b 互为相反数,c 、d 互为倒数,的绝对值是2024,则的值为.17.若多项式8x 2-3x +5与多项式x 3+mx 2-5x +7相减后,结果中不含x 2项,则常数m 的值是 .18.下列说法中,正确的是 .(请写出正确的序号)①若,则;②2-|x -2024|的最大值为2;③若,则是负数;④三点在数轴上对应的数分别是-2、x 、6,若相邻两点的距离相等,则;⑤若代数式的值与无关,则该代数式值为2024;⑥若,则的值为1.三、解答题(共66分)2235bc π-235632x x y x --+x |4||1|0a b -++=a b =32m x y 15n xy +-m 2321a bm cd m ++-+11a a=-0a <a b >()()a b a b +-A B C 、、2x =29312016x x x +-+-+x 0,0a b c abc ++=>b c a c a ba b c+++++19.(4分)把下列各数填在相应的集合里:,正数集合:{ }负数集合:{ }整数集合:{ }分数集合:{}20.(每小题4分,共8分)计算:(1)(2) 21.(8分)已知多项式.(1) 求;(2) 如果A + 2B + C = 0,求多项式C .22.(8分)在某次抗洪抢险中,人民解放军驾驶加满油的冲锋舟,沿着东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(向东记作正数,向西记作负数,单位:):+14,-9,+8,-7,13,-6,+12,-5.(1) 请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2) 若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23. (8分)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳. 经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的付款.已知要购买篮球50个,跳绳x 条().(1) 若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款元;(用含x 的代数式表示)(2) 当时,请通过计算说明此时用哪种方案购买较为合算?(3) 当时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?6133,2,5.6,, 3.14,9,0,,475-------()12342637⎛⎫-+⨯- ⎪⎝⎭()24110.5124⎡⎤--÷⨯+-⎣⎦22324,23=-+-=--+A x x y xy B x x y xy 23A B -km 90%50x >150x =150x =24.(10分)已知有理数满足互为相反数,,.(1) 若,请在数轴上表示出有理数.(2) 若,用“”或“”填空:______0;______0;______0.(3) 若,化简式子:.25.(10分)观察下列各式:,,.(1) 猜想:______;(2) 用你发现的规律计算:;(3) 拓展:计算: .26.(10分)阅读材料∶我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1) 把 看成一个整体,化简 .(2) 已知 求的值.(3) 若,求代数式 的值。
人教版七年级下册数学期中考试试题含答案
人教版七年级下册数学期中考试试卷一、单选题1.下列各组图形可以通过平移互相得到的是()A .B .C .D .2.实数4的算术平方根是()A B .2C .2±D .163.下列数据能确定物体具体位置的是()A .息州大道北侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒4.如图,90ACB ∠=︒,CD AB ⊥,垂足为D ,则点B 到直线CD 的距离是指()A .线段BC 的长度B .线段CD 的长度C .线段BE 的长度D .线段BD 的长度5.如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为()A .100︒B .110︒C .120︒D .130︒6.点()3,5A -在平面直角坐标系中所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,在下列给出的条件中,能判定//DF AB 的是()A .∠4=∠3B .∠1=∠AC .∠1=∠4D .∠4+∠2=180°8.在平面直角坐标系中,点M 在第四象限,且点M 到x 轴、y 轴的距离分别为6,4,则点M 的坐标为()A .()4,6-B .()4,6-C .()6,4-D .()6,4-9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A . 4.5112y x y x =+⎧⎪⎨=+⎪⎩B . 4.5112y x y x =+⎧⎪⎨=-⎪⎩C . 4.5112y xy x =-⎧⎪⎨=+⎪⎩D . 4.5112y x y x =-⎧⎪⎨=-⎪⎩10.如图,在平面直角坐标系上有点()1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A …依照此规律跳动下去,点A 第124次跳动至124A 的坐标为()A .()63,62B .()62,63C .()62,62-D .()124,123二、填空题11.请写出一个大于1且小于2的无理数:___.12.请把“36的平方根是正负6”翻译成数学式子表示出来:____________________________.13.已知方程2x ﹣3y =6,用含x 的式子表示x ,则y =_____.14.如图,已知//AB DE ,75ABC ∠=︒,160CDE ∠=︒,则BCD ∠的度数为______________.15.定义“在四边形ABCD 中,若AB ∥CD ,且AD ∥BC ,则四边形ABCD 叫做平行四边形.”若一个平行四边形的三个顶点的坐标分别是(0,0),(3,0),(1,3),则第四个顶点的坐标是__.三、解答题16.如图,直线AB 与CD 相交于点O ,EO CD ⊥于点O ,OF 平分AOD ∠,且50BOE ∠=︒,求DOF ∠的度数.17.如图,直线CD 与直线AB 相交于点C ,点P为两直线外一点.(1)根据下列要求画图:①过点P 作//PQ CD ,交AB 于点Q ;②过点P 作PR CD ⊥,垂足为R .(2)若120DCB ∠=︒,则PQC ∠是多少度?请说明理由.(3)连接PC ,比较PC 和PR 的大小,并说明理由.18.解方程组:(1)1{322x y x y =+-=;(2)()()5962{1243x y x y -=-+-=19.如果一个正数a 的两个不相同的平方根是22x -和63x -.求:(1)x 和这个正数a 的值;(2)173a +的立方根.20.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个整数的立方是59319,求这个整数.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?请按照下面的问题试一试:(1)由3101000=,31001000000=(2)由59319的个位上的数是9(3)如果划去59319后面的三位319得到数59,而3327=,3464=,的十位上的数是几吗?(4)已知19683,110592都是整数的立方,请你按照上述方法确定它们的立方根.21.如图,在每个小正方形边长均为1的方格纸中,ABC ∆的顶点都在方格纸格点上,点A 的坐标是()2,1-,点B 的坐标是()6,1-.(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)将ABC ∆向左平移2格,再向上平移3格,请在图中画出平移后的A B C ∆''';(3)在图中能使PBC ABC S S ∆∆=的格点P 有多少个(点P 异于点A ),写出符合条件的P 点坐标.22.完成下面推理过程.如图,已知://AB EF ,EQ 交CD 于点Q ,EP 交AB 于点P ,且EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD .证明:∵//AB EF ,(已知)∴APE PEF ∠=∠.(_________________________________)∵EP EQ ⊥,∴PEQ ∠=_________︒,(垂直的定义)即90QEF PEF ∠+∠=︒.∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴EQC ∠=___________,(同角的余角相等)∴//EF CD ,(______________________)又∵//AB EF ,∴//AB CD .(______________________)23.如图,在平面直角坐标系中,(),0A a ,(),3B b ,()4,0C ,满足()260a b a b ++-+=,线段AB 交y 轴于点F .(1)分别求出A ,B 两点的坐标;(2)求点F 的坐标;(3)在坐标轴上是否存在点P ,使ABP ∆的面积和ABC ∆的面积相等,若存在,求出点P 的坐标,若不存在,请说明理由.参考答案1.C 【详解】试题解析:观察图形可知图案C 通过平移后可以得到.故选C .点睛:图形的平移只改变图形的位置,而不改变图形的形状和大小,易混淆图形的平移与旋转或翻转,而误选A 、B 、D .2.B 【分析】根据算术平方根的定义,求一个非负数a 的算术平方根,也就是求一个非负数x ,使得x 2=a ,则x 就是a 的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B.【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.3.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:东经103o,北纬30o能确定物体的具体位置,故选:C.【点睛】此题主要考查了确定物体具体位置,要明确,一个有序数对才能确定一个点的位置.4.D【分析】直线外一点到直线的垂线段的长度,叫做点到直线的距离,根据点到直线的距离的定义解答即可.【详解】解:∵BD⊥CD于D,∴点B到直线CD的距离是指线段BD的长度.故选:D.【点睛】本题考查了点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.5.B【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答的关键.6.B 【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.7.C 【分析】可以从直线DF 、AB 的截线所组成的“三线八角”图形入手进行判断.【详解】解:A 、∵∠4=∠3,∴DE ∥AC ,不符合题意;B 、∵∠1=∠A ,∴DE ∥AC ,不符合题意;C 、∵∠1=∠3,∴DF ∥AB ,符合题意;D 、∵∠4+∠2=180°,∴DE ∥AC ,不符合题意;故选:C.【点睛】此题考查平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.A【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【详解】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,6)-.故选:A.【点睛】本题主要考查了点在第四象限时点的坐标的符号,解题的关键是点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9.B【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【详解】用一根绳子去量一根长木,绳子还剩余4.5尺,则 4.5y x=+,将绳子对折再量长木,长木还剩余1尺,则11 2y x=-,∴4.5 11 2y xy x=+⎧⎪⎨=-⎪⎩,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第124次跳动至点的坐标是(63,62).故选:A.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.11.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】π-等,大于1且小于2 2(答案不唯一).考点:1.开放型;2.估算无理数的大小.12.=±6【分析】根据平方根的定义即可得到答案.【详解】解:“36的平方根是正负6”用数学式子表示为:6±故答案为:6±.【点睛】本题主要考查了平方根的定义,解决本题的关键是熟记平方根的定义.13.263x-【分析】将x看做已知数求出y即可.【详解】解:2x﹣3y=6,得到y=263x-.故答案为:26 3 x-【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.55︒【分析】延长ED与BC相交于点F,根据两直线平行,内错角相等可得∠BFD=∠ABC,再根据邻补角的定义分别求出∠CDF和∠CFD,然后根据三角形的内角和定理列式计算即可得解.【详解】解:如图,延长ED与BC相交于点F,∵AB∥DE,∴∠BFD=∠ABC=75°,∴∠CFD=180°﹣75°=105°,∴∠CDF=180°﹣∠CDE=180°﹣160°=20°,在△CDF中,∠BCD=180°﹣∠CDF﹣∠CFD=180°﹣20°﹣105°=55°.故答案为:55°.【点睛】本题考查了平行线的性质,邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.15.(4,3)或(-2,3)或(2,-3).【分析】根据题意画出平面直角坐标系,然后描出(0,0)、(3,0)、(1,3)的位置,再找第四个顶点坐标.【详解】解:如图所示,∴第4个顶点的坐标为(4,3)或(-2,3)或(2,-3).故答案为:(4,3)或(-2,3)或(2,-3).【点睛】此题主要考查了平行四边形的性质及坐标与图形的性质,解题关键是要分情况讨论,难易程度适中.16.70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∵∠BOE =50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°,【点睛】此题主要考查了垂直的性质和角平分线的性质,关键是理清图中角之间的和差关系.17.(1)见解析;(2)60PQC ∠=︒,见解析;(3)PR 小于PC ,见解析【分析】(1)①根据同位角相等两直线平行作点P 作PQ ∥CD ;②再利用直角三角板,一条直角边与CD 重合,沿CD 平移,是另一直角边过P ,再画垂线即可;(2)根据两直线平行内角互补可得答案.(3)根据垂线段最短可比较PC 和PR 的大小.【详解】(1)如图所示.(2)60PQC ∠=︒.理由如下:∵CD ∥PQ ,∴∠DCQ +∠PQC =180°,∵∠DCB =120°,∴∠PQC =60°.(3)PR 小于PC ,理由:垂线段最短.【点睛】此题主要考查了复杂作图,平行线的性质和判定以及垂线线段最短等知识,关键是掌握同位角相等两直线平行,据两直线平行内角互补.18.(1)01x y =⎧⎨=-⎩;(2)18{412x y =-=-【详解】试题分析:(1)把第二个方程代入第一个方程,利用代入消元法其解即可;(2)方程组整理后,利用加减消元法求出解即可.试题解析:(1)1322x y x y =+⎧⎨-=⎩①②;把①代入②得,3(y+1)-2y=2,解得y=−1,把y=−1代入①得,x=−1+1=0,所以,原方程组的解是01x y =⎧⎨=-⎩;(2)方程组整理得:56333428x y x y -=⎧⎨-=⎩①②,①×2−②×3得:x=−18,把x=−18代入②得:y=1236-,则方程组的解为181236x y =-⎧⎪⎨=-⎪⎩.19.(1)4x =,36a =;(2)5.【分析】(1)根据平方根的性质列出算式22630x x -+-=,解方程后求出x 的值,再代入22x -即可求出a 的值;(2)求出173a +的值,根据立方根的概念求出答案.【详解】解:(1)∵一个正数a 的两个不相同的平方根是22x -和63x -,∴22630x x -+-=.∴4x =.∴222426x -=⨯-=.∴36a =.(2)∵36a =,∴173********a +=+⨯=.∵125的立方根为5,∴173a +的立方根为5.【点睛】本题考查了平方根和立方根的概念,熟练掌握平方根的性质和立方根的概念是解题的关键.20.(1)两位数;(2)9;(3)3;(4)27,48【分析】(1)根据59319大于1000而小于1000000,即可确定59319的立方根是2位数;(2)根据一个数的立方的个位数就是这个数的个位数的立方的个位数,据此即可确定;(3)根据数的立方的计算方法即可确定;(4)根据(1)(2)(3)即可得到答案.【详解】解:(1)∵1000<59319<1000000,∴10100,(2)只有个位数是9的立方数的个位数依然是9,9;(3)∵27<59<64,∴34,3.(4)经过分析可得,19683的立方根是两位数,19683的立方根的个位数字是7,十位数字是2,故19683的立方根是27;同理可得,110592的立方根是48.【点睛】本题主要考查了立方根以及数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.21.(1)画图见解析,()8,3;(2)见解析;(3)4个;()3,1,()4,3,()5,5,()6,7【分析】(1)根据点A 、点B 的坐标解答;(2)找出点A 、点B 、点C 的对应点,然后用线段连接;(3)根据两平行线间的距离相等求解.【详解】(1)建直角坐标系如图,C 点坐标()8,3.(2)如图所示,A B C ''' 即为所求;(3)如图所示,有4个,坐标分别为()3,1,()4,3,()5,5,()6,7.【点睛】本题考查作图-平移变换,平面直角坐标系,坐标与图形的性质,三角形的面积,以及两平行线间的距离等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.两直线平行,内错角相等;90;QEF ∠;内错角相等,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行【分析】根据平行线的性质得到∠APE =∠PEF ,根据余角的性质得到∠EQC =∠QEF 根据平行线的判定定理即可得到结论.【详解】证明:∵AB ∥EF∴∠APE =∠PEF (两直线平行,内错角相等)∵EP ⊥EQ∴∠PEQ =90°(垂直的定义)即∠QEF +∠PEF =90°∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴∠EQC =∠QEF∴EF ∥CD (内错角相等,两直线平行)又∵//AB EF ,∴AB ∥CD (如果两条直线都与第三条直线平行,那么这两条直线也互相平行),【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.23.(1)()30A -,,()3,3B ;(2)30,2⎛⎫ ⎪⎝⎭;(3)存在,()0,5或()0,2-或()10,0-或()4,0【分析】(1)根据()260a b a b ++-+=结合平方和绝对值的非负性即可计算得到答案;(2)连接OB ,设F 的坐标为(0,t )根据AOF 的面积BOF +△的面积AOB =△的面积进行计算求解即可;(3)先根据前面的已知条件求出ABC 的面积,再根据ABP △的面积APF =△的面积BPF +△的面积进行计算求解即可.【详解】(1)∵()260a b a b ++-+=,()20a b +≥,06a b -+≥∴060a b a b +=⎧⎨-+=⎩∴解得33a b =-⎧⎨=⎩.∴A 的坐标为(-3,0),B 的坐标为(3,3)(2)连接OB ,设F 的坐标为(0,t )∵AOF BOF AOBS S += S ∴1113333222t t ⋅⋅+⋅⋅=⋅⋅.解得32t =.∴点F 的坐标为(0,32).(3)存在.ABC 的面积1217322=⨯⨯=.当P 点在y 轴上时,设P 点的坐标为(0,y ),∵ABP APF BPFS S S =+△△△∴1313213322222y y ⋅-⋅+⋅-⋅=.解得5y =或2y =-.∴此时点P 的坐标为(0,5)或(0,-2)当P 点在x 轴上时,设P 点坐标为(x ,0),则1213322x ⋅+⋅=.解得10x =-或4x =.∴此时点P 的坐标为(-10,0)或(4,0).综上所述,满足条件的点P 的坐标为(0,5)或(0,-2)或(-10,0)或(4,0).【点睛】本题主要考查了坐标系与几何相结合的综合应用,解题的关键在于能够找到几个三角形面积之间的关系.。
七年级下册数学期中考试试卷
七年级下册数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 3x - 5 = 2x + 7C. 4x + 6 = 8x - 2D. 5x - 9 = 10x + 32. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是3. 以下哪个表达式是完全平方?A. x^2 + 2x + 1B. x^2 - 2x + 1C. x^2 + 4x + 4D. x^2 - 4x + 44. 一个三角形的两边长分别为3和4,第三边长x满足的条件是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 75. 以下哪个分数是最简分数?A. 6/8C. 15/20D. 7/146. 如果一个圆的半径是r,那么它的面积是多少?A. πr^2B. 2πrC. πrD. 4πr^27. 下列哪个是不等式?A. 2x + 3 = 5B. 3x - 5 > 2x + 7C. 4x + 6 = 8x - 2D. 5x - 9 < 10x + 38. 一个数的相反数是-a,那么这个数是?A. aB. -aC. a或-aD. 以上都不是9. 以下哪个是二次方程?A. x^2 - 4x + 4 = 0B. x^2 - 4x = 0C. x - 4 = 0D. x^2 - 4x + 410. 如果一个角的补角是120度,那么这个角的度数是?A. 60度B. 30度D. 120度二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______。
12. 如果一个角的余角是30度,那么这个角的度数是______度。
13. 一个等腰三角形的底角是45度,那么顶角的度数是______度。
14. 一个数的立方等于-8,这个数是______。
安徽省合肥市五十中天鹅湖校区2023-2024学年七年级下学期期中数学试题
安徽省合肥市五十中天鹅湖校区2023-2024学年七年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在π(圆周率)、 1.5-、2270.32&&五个数中,无理数有( )个 A .1 B .2 C .3 D .02.石墨烯是世界上目前最薄却也是最坚硬的纳米材料,还是导电性最好的材料,其理论厚度仅为0.00000000034m ,这里“0.00000000034”用科学计数法表示为( ) A .90.3410-⨯ B .1134.010-⨯ C .103.410-⨯ D .93.410-⨯ 3.下列计算正确的是( )A .222236x x x +=B .428x x x ⋅=C .623x x x ÷=D .()2242y xy x =-4.估算1的值是在哪两个整数之间( )A .0和1B .1和2C .2和3D .3和4 5.若()()1a x bx +-的积中不含x 的一次项,那么a 与b 一定是( )A .互为倒数B .互为相反数C .相等D .a 比b 大6.不等式组324253x x -≤⎧⎨+>⎩的解集在数轴上表示正确的是( ) A .B .C .D .7.若多项式29x mx -+是一个完全平方式,则m 的值为( )A .3B .6±C .6D .3±8.已知关于x y 、的方程组343x y a x y a+=-⎧⎨-=⎩,给出下列说法: ①当0a =时,方程组的解也是方程2x y a +=-的解;②当2a =-时,x y 、的值互为相反数;③若31a -≤≤,则43x y =⎧⎨=-⎩是方程组的解,其中说法正确的是( ) A .①② B .①③ C .②③ D .①②③9.有两个正方形A ,B 边长分别为a ,b ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为6和15,则正方形A ,B 的边长之和为( )A .5B .6C .5或6D .无法确定 10.已知三个实数a ,b ,c 满足0a b c -+=,10ac b -+=,则下列结论一定正确的是( )A .若1a =,则240b c -≥B .若0b c +=,则1c <-C .若1c =,则240b a -<D .若0a b +=,则2c b >二、填空题11.1285(填>、<或=). 13.若不等式组231x m x +>⎧⎨-<⎩解集是14x <<,则m 的值是.14.把两个半径分别为1cm的铅球熔化后做成一个更大的铅球,则这个大铅球的半径是cm (球的体积公式34π3V r =,其中r 是球的半径). 15.有一个数值转换器,原理如下:当输入的81x =时,输出的y 等于.16.已知22a =,24b =,20.4c =,25d =,则+++a b c d 的值为.三、解答题172112-⎛⎫ ⎪⎝⎭. 18.解不等式组()23212113x x x x ⎧--≥⎪⎨+->-⎪⎩并把解集在数轴上标出来.19.先化简,再求值:()()()2322x y y x x y -----,其中12x =-,1y =. 20.观察下列等式:第①个等式:2419⨯+=,第②个等式:46125⨯+=,第③个等式:68149⨯+=,…探索以上等式的规律,写出第⑥个等式为______,第n 个等式为______,请证明结论的正确性.21.定义一种新运算“a b ※”:当a b ≥时,2a b a b =+※;当a b <时,2a b b a =-※例如:()()342342-=⨯+-=※,()()6222610-=⨯--=※.(1)填空:()23-=※ ______;(2)若x 是一个负数,且满足()()23137x x --<※,求x 的取值范围.22.如图,用总长21米的篱笆围成三个面积相等的长方形区域①②③,为方便进出,三个区域均留有一扇宽为1米的门,若HC x =米.(1)用含x的代数式表示CD=米,BC=米;(2)用含x的代数式表示长方形ABCD的面积(要求化为最简形式).23.为了进一步落实“双减”政策,增加学生室外活动时间,我校计划从商场一次性购买一批足球和篮球用于开展课后服务训练,经多方调研,现决定购买A品牌篮球和B品牌足球共50个,要求采购总费用不超过1.21万元.若甲、乙两商店销售这两种商品的零售价相同,其中篮球每个零售价300元,足球每个零售价200元.(1)若按照商场零售价直接购买,至多可以买篮球多少个?(2)为促进消费,盘活库存,甲、乙两商店均开展“大订单超值购”活动,推出不同的优惠方案:甲店篮球按零售价格打8折销售,足球按照零售价格原价销售;乙店按照购买篮球和足球的零售总价格打9折销售:若学校至少采购篮球18个,请你运用所学知识,帮采购人员算一算:我校从哪家商店购买篮球和足球更合算?说说你的理由(按照采购规定,篮球和足球只能从同一家商店购买).。
七年级数学下册期中考试试卷(附带答案)
七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。
湖南省邵阳市 新宁县期中联考2023-2024学年七年级下学期期中数学试题(解析版)
2024年七年级下期期中考试数学试卷一、选择题(本题共10个小题,每小题3分,共计30分,每小题只有一个正确答案,请将正确答案的选项代号填在下面相应的方框内)1. 如图所示图形中轴对称图形是( )A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A 、不是轴对称图形,不符合题意;B 、不是轴对称图形,不符合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不符合题意;故选C .【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键.2. 下列运算正确的是( )A.B. C. D. 【答案】B【解析】【分析】本题考查了合并同类项,同底数幂的乘法,完全平方公式等知识.熟练掌握合并同类项,同底数幂的乘法,完全平方公式是解题的关键.根据合并同类项,同底数幂的乘法,完全平方公式对各选项进行判断作答即可.【详解】解:A 中,故不符合要求;B 中,故符合要求;C 中,故不符合要求;D 中,故不符合要求;故选:B.235x y xy +=22555m m m ⋅=()222a b a b -=-236m m m ⋅=235x y xy +≠23555m m m ⋅=()222222a b a ab b a b -=-+≠-2356m m m m ⋅=≠3. 下列计算正确的是 ( )A. B. C. D. 【答案】C【解析】【分析】本题考查完全平方公式以及平方差公式,掌握完全平方公式以及平方差公式是解题的关键.【详解】解:A. ,选项错误,不符合题意;B. ,选项错误,不符合题意;C. ,选项正确,符合题意;D. ,选项错误,不符合题意.故选:C4. 已知,,那么之间满足的等量关系是( )A. B. C. D. 【答案】D【解析】【分析】根据乘方运算,积的乘方运算的逆运算法则即可求解.【详解】解:∵变形得,,,∴,则,选项,,故选项错误,不符合题意;选项,,故选项错误,不符合题意;选项,,故选项错误,不符合题意;选项,,故选项正确,符合题意;∴之间满足的等量关系是,故选:.【点睛】本题主要考查乘方运算,掌握积的乘方运算及逆运算的法则是解题的关键.5. 下列说法中正确的是( )()()22222x y x y x y +-=-()()22x y x y x y ---=--()2²²2x y x xy y--=++()²²²x y x y +=+()()22224x y x y x y +-=-()()22x y x y y x --=--()2²²2x y x xy y --=++()2²²2x y x xy y +=++2n a =3n b =24n c =,,a b c 3c a b=+3c a b =+3c ab =3c a b=24n c =(83)n c ⨯=83n n c ⨯=3338(2)2n n n a ===32424(2)3n n n n c ===⨯A 32324n n n ⨯+≠A B 3(2)38383n n n n n n +=+≠⨯B C 13232324n n n n n +⨯⨯=⨯≠C D 3(2)383(83)24n n n n n n c =⨯=⨯=⨯=D ,,a b c 3c a b =DA. 过直线外一点有且只有一条直线与已知直线平行B. 相等的两个角一定是对顶角C. 在同一平面内,垂直于同一条直线的两直线互相垂直D. 同旁内角相等,两直线平行【答案】A【解析】【分析】根据平行线的性质与判定,对顶角相等,逐项分析判断即可求解.【详解】解:A 、过直线外一点有且只有一条直线与已知直线平行,故该选项正确,符合题意;B 、相等的两个角不一定是对顶角,故该选项不正确,不符合题意;C 、在同一平面内,垂直于同一条直线的两直线互相平行,故该选项不正确,不符合题意;D 、同旁内角互补,两直线平行,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了平行线的性质与判定,对顶角相等,掌握平行线的性质是解题的关键.6. 已知关于、的方程组的解为,则的值为( )A. 5B. -1C. 1D. 不能确定【答案】C【解析】【分析】利用加减消元法解答,即可求解.【详解】解:,由①+②得:,解得:.故选:C【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法——代入消元法,加减消元法是解题的关键.7. 若,,则等于( )A. 25B. 1C. 21D. 29【答案】D【解析】x y 322233x y a x y a +=+⎧⎨+=-⎩x y +322233x y a x y a +=+⎧⎨+=-⎩①②555x y +=1x y +=5a b +=1ab =-()2a b -【分析】先把变形为,然后把,代入计算即可.【详解】解:,当,时,原式.故选:D .【点睛】本题考查了完全平方公式,掌握是解题的关键.8. 在同一平面内,已知,若直线之间的距离为,直线之间的距离为,则直线间的距离为( )A. 或B.C.D. 不确定【答案】A【解析】【分析】分两种情况,当直线在直线、之间时,当直线在直线、外部时,即可解决问题.【详解】解:当直线在直线、之间时,如图(1),直线、间的距离为;当直线在直线、外部时,如图(2),直线、间的距离为,直线、间的距离是或.故选:A .【点睛】本题考查平行线的距离,清晰的分类讨论是解本题的关键.9. 将一副三角板按如图放置,其中,则下列结论:①如果与互余,则,②; ③如果,则有;④如果,必有, 其中正确的有()()2a b -()24a b ab +-5a b +=1ab =-()()224a b a b ab -=+-5a b +=1ab =-()254129=-⨯-=()()224a b a b ab -=+-a b c ∥∥a b 、7cm b c 、3cm a c 、4cm 10cm4cm 10cm c a b c a b c a b a c ()734cm -=c a b a c ()7310cm +=∴a c 410cm 30D ∠=︒2∠E ∠∥D E A C 180BAE CAD ∠+∠=︒BC AD ∥260∠=︒150CAD ∠=︒4C ∠=∠A. ①②③B. ①②④C. ①③④D. ①②③④【答案】B【解析】【分析】此题考查了平行线的判定与性质,余角,熟记平行线的判定定理与性质定理是解题的关键.根据根据平行线的判定与性质进行逐一判断即可.【详解】解:由题意得,,∵与互余,∴,∵,∴,∴,故①符合题意;,,如图:又,,又,,即,故②符合题意;90CAB EAD ∠=∠=︒45B C ∠==︒∠903060E ∠=︒-︒=︒2∠E ∠290E ∠+∠=︒1290∠+∠=︒1E ∠=∠∥D E A C 90DAE ∠=︒ 118090EAM CAM DAE ∴∠=∠+∠=︒-∠=︒2190CAB ∠=∠+∠=︒ 2CAM ∴∠=∠180CAD CAM ∠+∠=︒ 2180CAD ∴∠+∠=︒180BAE CAD ∠+∠=︒,,,,故③不符合题意;,,,,,,,,,,,故④符合题意.故选:B .10. 如图,若,用含有∠1,∠2,∠3的式子表示∠α,则∠α应为( )A. B. C. D. 【答案】D【解析】【分析】过点E 作,过点G 作,根据平行推理得到,结合平行线性质得到角度关系即可得到答案;【详解】解:如图,过点E 作,过点G 作,BC AD 345B ∴∠=∠=︒2390∠+∠=︒ 245∴∠=︒150CAD ∠=︒ 180CAM CAD ∠+∠=︒BAE CAM ∠=∠30BAE =∴∠︒60E ∠=︒ 90DGA BAE E ∴∠=∠+∠=︒490B ∴∠+∠=︒45B ∠=︒ 445∴∠=︒45C ∠=︒ 4C ∴∠=∠AB CD ∥123∠+∠+∠231∠+∠-∠180123︒+∠+∠-∠180213︒+∠-∠-∠EF AB ∥HG CD ∥AB CD GH EF ∥∥∥EF AB ∥HG CD ∥∵,,,∴,∴,,,∴,,∴.故选D ;【点睛】本题考查平行线性质探究角度关系问题,解题的关键是作出辅助线结合平行线性质得到角的关系.二、填空题(本大题有8小题,每小题3分,共24分)11. 计算:_____.【答案】【解析】【分析】根据同底数幂的乘法、积的乘方的逆运算进行计算即可求出答案.【详解】解:故答案为:.【点睛】本题考查的是同底数幂的乘法法则和积的乘方的逆运算.解题过程中需要注意的是一个负数数的奇次幂依然等于这个负数是易错点.12. 分解因式: ___________.【答案】##【解析】AB CD EF AB ∥HG CD ∥AB CD GH EF ∥∥∥1180BEF ∠+∠=︒FEG EGH ∠=∠3HGC ∠=∠1801BEF ∠=︒-∠23FEG EGH ∠=∠=∠-∠180213BEF FEG α∠︒=∠+∠=+∠-∠-∠20232023512125⎛⎫⎛⎫-⨯= ⎪ ⎪⎝⎭⎝⎭1-20232023512125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭2023512125⎛⎫=-⨯ ⎪⎝⎭()20231=-1=-1-()(54)116x x -++=2(3)x +()23x +【分析】先根据整式的乘法去括号,然后根据完全平方公式因式分解即可求解.【详解】解:原式,故答案为:.【点睛】本题考查了因式分解,熟练掌握完全平方公式因式分解是解题的关键.13. 如图,要在河岸l 上建一个水泵房,修建引水渠到村庄处.施工人员的做法是:过点作于点,将水泵房建在了处.这样修建引水渠最短,既省人力又省物力,这样做蕴含的数学原理是________.【答案】垂线段最短【解析】【分析】根据垂线段最短原理解题.【详解】过点作于点,将水泵房建在了处,这样做既省人力又省物力,其数学原理是:垂线段最短,故答案为:垂线段最短.【点睛】本题考查垂线段最短的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.14. 若,则M 与N 的大小关系为______.【答案】##【解析】【分析】本题考查了整式的加减,完全平方公式因式分解,计算,进而即可求解.【详解】解:∵∴21155564x x x =+--+269x x =++2(3)x =+2(3)x +D C C CD l ⊥D D CD C CD l ⊥D D 2221215,811M x x N x x =-+=-+M N ≥N M≤M N -()220x =-≥2221215,811M x x N x x =-+=-+M N -()2221215811x x x x =-+--+2221215811x x x x =-++--∴,故答案为:.15. 定义一种新运算A ※B =A 2+AB .例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x +2)※(2﹣x )=20,则x =_____.【答案】3【解析】【分析】先根据新定义规定的运算法则得出(x +2)2+(x +2)(2﹣x )=20,再将左边利用完全平方公式和平方差公式去括号,继而合并同类项、移项、系数化为1可得答案.【详解】解:根据题意得(x +2)2+(x +2)(2﹣x )=20,∴x 2+4x +4+4﹣x 2=20,∴4x +8=20,4x =12,解得x =3,故答案为:3.【点睛】本题主要考查整式混合运算与解一元一次方程,解题的关键是根据新定义列出关于x 的方程、熟记完全平方公式、平方差公式及解一元一次方程的步骤.16. 如图,△ABC 绕点A 逆时针旋转50°得到△ADE ,,则∠DAC 的度数为__________.【答案】10°##10度【解析】【分析】由旋转的性质可得∠BAD =50°,即可求解.【详解】解:∵△ABC 绕点A 逆时针旋转50°得到△ADE ,∴∠BAD =50°,∴∠DAC =∠BAC −∠BAD =10°,的244x x =-+()220x =-≥M N ≥M N ≥60BAC ∠=︒故答案为:10°.【点睛】本题考查了旋转的性质,掌握旋转的性质是解题的关键.17. 如图,下列条件中:①;②;③;④;⑤,则一定能判定的条件有________(填写所有正确的序号).【答案】①③④【解析】【分析】根据平行线的判定定理逐项分析判断.【详解】解:①若,根据同旁内角互补,两直线平行可得,符合题意;②若,根据内错角相等,两直线平行可得,不合题意;③若,根据内错角相等,两直线平行可得,符合题意;④若,根据同位角相等,两直线平行可得,符合题意;⑤若,根据内错角相等,两直线平行可得,不合题意;故答案为①③④.【点睛】本题考查平行线的判定,熟练掌握两直线平行的判定方法是解题关键.18. 已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为____【答案】325【解析】【详解】试题解析:故答案为 三、解答题(本大题有8个小题, 共66分, 其中第19-21题各6分, 22题9分,23、24题各8分,第25题11分,第26题12分,解答时应写出文字说明及演算步骤)19.请把下列各式分解因式180B BCD ∠+∠=︒12∠=∠34∠=∠5B ∠=∠5D ∠=∠AB CD ∥180B BCD ∠∠=︒+AB CD ∥12∠=∠AD BC ∥3=4∠∠AB CD ∥5B ∠=∠AB CD ∥5D ∠∠=AD BC ∥222222222123456232425,a b -=-+-+-+⋯-+()()()222222132542524,=+-+-+⋯+-()()()132542524,=+++++⋯++()2525112345242525133252+=+++++⋯++==⨯=,325.(1) ;(2).【答案】(1)(2)【解析】【分析】本题考查了综合提公因式和公式法进行因式分解,利用公式法进行因式分解.熟练掌握综合提公因式和公式法进行因式分解,利用公式法进行因式分解是解题的关键.(1)综合提公因式和公式法进行因式分解即可;(2)先利用平方差,然后利用完全平方公式进行因式分解即可.【小问1详解】解:;【小问2详解】解:.20. 解方程组:(1)(2).【答案】(1);(2).【解析】【分析】(1)整理后,利用加减消元法进行计算即可;(2)整理后,利用加减消元法进行计算即可.【小问1详解】()()2a a b b a -+-()222224a b a b +-()()()11a b a a -+-()()22a b a b +-()()()()()()()22111a a b b a a b a a b a a -+-=--=-+-()()()()()22222222222422a b a b a b ab a b ab a b a b +-=+++-=+-1224y x x y ⎧+=⎪⎨⎪+=⎩413323x y x y -=⎧⎪⎨+=⎪⎩123x y ⎧=⎪⎨⎪=⎩43x y =⎧⎨=⎩解:方程组整理得,①②,得,解得,把代入②,得,解得,所以,原方程组的解为;【小问2详解】解:方程组整理得①②,得,解得,把代入①,得,解得,所以,原方程组的解为.【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法是解题的关键.21. 先化简,再求值:,其中.【答案】;【解析】【分析】先根据整式混合运算法则,进行化简,然后求出,,最后把,代入求值即可.【详解】解:2224x y x y -=-⎧⎨+=⎩①②+42=x 12x =12x =14y +=3y =123x y ⎧=⎪⎨⎪=⎩4133218x y x y -=⎧⎨+=⎩①②2⨯-1144x =4x =4x =1613y -=3y =43x y =⎧⎨=⎩()()()21332x y x y x y y ⎛⎫⎡⎤--+-÷ ⎪⎣⎦⎝⎭()2230x y ++-=204y x -682x =-3y =2x =-3y =()()()21332x y x y x y y ⎛⎫⎡⎤--+-÷ ⎪⎣⎦⎝⎭()22221292x xy y x y y ⎛⎫⎡⎤=-+--÷ ⎪⎣⎦⎝⎭,∵,∴,,解得:,,把,代入得:原式.【点睛】本题主要考查了整式混合运算,绝对值的非负性和二次方的非负性,解题的关键是熟练掌握整式混合运算法则,准确计算.22. 在边长为1正方形方格纸中,有如图所示的 (顶点都在格点上).(1)先画出该三角形关于直线l 成轴对称的;(2)再画将 绕点逆时针方向旋转后的;(3)求的面积.【答案】(1)见解析(2)见解析(3)3【解析】【分析】本题考查了作轴对称图形,作旋转图形,利用网格求三角形面积等知识,熟练掌握作轴对称图形,作旋转图形是解题的关键.(1)利用轴对称的性质作图即可;(2)利用旋转的性质作图即可;的()22221292x xy y x y y ⎛⎫=-+-+÷ ⎪⎝⎭()211022y xy y ⎛⎫=-÷ ⎪⎝⎭204y x =-()2230x y ++-=20x +=30y -=2x =-3y =2x =-3y =()2034260868=⨯-⨯-=+=ABC A B C ''' A B C ''' B '90︒A B C ''''''△A B C ''''''△(3)根据,计算求解即可.【小问1详解】解:由轴对称的性质作图,如图1;【小问2详解】解:由旋转的性质作图,如图2,【小问3详解】解:由题意知,,∴的面积为3.23 如图所示,,.(1)试判断与的位置关系?并说明理由;(2)如果,,,求的度数.【答案】(1),见解析.1322A B C S ''''''=⨯⨯ 13232A B C S ''''''=⨯⨯= A B C ''''''△AGF ABC ∠=∠12180∠+∠=︒BF DE DE AC ⊥2150∠=︒AFG ∠BF DE ∥(2)【解析】【分析】本题考查的是平行线的性质和判定,用到的知识点为:两直线平行,同位角相等.(1)根据平行线的判定与性质解答即可;(2)根据平行线的性质解答即可.【小问1详解】解:理由如下:已知同位角相等,两直线平行两直线平行,内错角相等又已知等量代换;【小问2详解】解:,已知等量代换已知垂直定义已证两直线平行,同位角相等.24. 如图,已知,于点,.(1)求证:;60︒BF DE∥(AGF ABC ∠=∠ )FG BC ∴∥()1(FBD ∴∠=∠)12180(∠+∠=︒ )2180(FBD ∴∠+∠=︒)BF DE ∴∥12180∠+∠=︒ 2150(∠=︒)130(∴∠=︒)(DE AC ⊥ )90(DEF ∴∠=︒)BF DE ∥ ()90(BFA DEF ∴∠=∠=︒)903060AFG ∴∠=︒-︒=︒90BAC ∠=︒DE AC ⊥H 180ABD CED ∠+∠=︒BD EC ∥(2)连接,若,且,求的度数.【答案】(1)证明见解析(2)【解析】【分析】(1)根据题意得到,根据平行线的性质推出,即可判定;(2)结合题意,根据平行线的性质定理求解即可.【小问1详解】证明:,,,,,,,,;【小问2详解】由(1)可得,,,,,,.【点睛】本题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.25. 某校准备组织七年级400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?BE 30BDE ∠=︒50DBE ABE ∠=∠+︒ABE ∠50ABE ∠=︒BA DE ∥BDE CED ∠=∠BD EC ∥DE AC ⊥ 90AHE ∴∠=︒90BAC ∠=︒ 90AHE BAC ∴=∠=∠︒AB DE ∴∥180ABD BDE ∴∠+∠=︒180ABD CED ∠+∠=︒ BDE CED ∴∠=∠∴BD EC ∥180BD ABD E ∠+=∠︒30BDE ∠=︒ 180********ABD BDE ∴∠=︒-∠=︒-︒=︒50DBE ABE ∠=∠+︒ 50250150ABD ABE DBE ABE ABE ABE ∴∠=∠+∠=∠+∠+︒=∠+︒=︒50ABE ∴∠=︒(2)若学校计划租用小客车a 辆,大客车b 辆,一次送完,且恰好每辆车都坐满.①请你设计出所有的租车方案;②若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的租车方案,并求出最少租金.【答案】(1)1辆小客车和1辆大客车都坐满后一次可送65名学生;(2)①方案一:小客车20车、大客车0辆;方案二:小客车11辆,大客车4辆;方案三:小客车2辆,大客车8辆;②方案三租金最少,最少租金为3440元.【解析】【分析】(1)每辆小客车能坐a 名学生,每辆大客车能坐b 名学生,根据用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;列出方程组,再解即可;(2)①根据题意可得小客车m 辆运的人数+大客车n 辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金200元,大客车每辆租金380元分别计算出租金即可.【详解】解:(1)设每辆小客车能坐x 名学生,每辆大客车能坐y 名学生根据题意,得解得:;∴(人)答:1辆小客车和1辆大客车都坐满后一次可65名学生;(2)①由题意得:,∴,∵a 、b 为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:200×20=4000(元);方案二租金:200×11+380×4=3720(元);方案三租金:200×2+380×8=3440(元),31052110x y x y +=⎧⎨+=⎩2045x y =⎧⎨=⎩204565x y +=+=2045400a b +=8049a b -=200a b =⎧⎨=⎩114a b =⎧⎨=⎩28a b =⎧⎨=⎩∴方案三租金最少,最少租金为3440元.【点睛】此题主要考查了二元一次方程(组)的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.26. 如图,直线,P 是截线上的一点.(1)若,求;(2)如图1,当点P 在线段上运动时,与的平分线交于Q,问是否为定值,若是定值,请求出;若不是定值,请说明理由;(3)如图2,若T 是直线上且位于M 点的上方的一点,如图所示,当点P 在射线上运动时,与的平分线交于Q ,问的值是否和(2)问中的情况一样呢?请你写出探究过程,说明理由.【答案】(1) (2)是为定值,定值为 (3)和(2)的结论仍成立,探究过程,理由见解析【解析】【分析】(1)过点P 作,根据平行线的传递性可得,再根据平行线的性质和角的和差进行求解即可;(2)由平行线的性质及角的和差可得,再根据角平分线的定义可得,进而求解即可;(3)过点P 作,过点Q 作,由平行线的性质及角的和差可得,再根据角平分线的定义可得,进而求解即可.AB CD ∥MN 45,20MNB MDP ∠=︒∠=︒MPD ∠MN CDP ∠ABP ∠Q DPB ∠∠MN MT CDP ∠ABP ∠Q DPB∠∠25︒Q DPB∠∠1212Q DPB ∠=∠PE AB ∥PE CD ∥DPB CDP ABP ∠=∠+∠11,22CDQ CDP ABQ ABP ∠=∠∠=∠PF AB ∥QE AB ∥DPB CDP ABP ∠=∠+∠11,22CDQ CDP ABQ ABP ∠=∠∠=∠【小问1详解】如图1,过点P 作,又∵,∴,∵,∴,∴,∵,∴,∴;【小问2详解】由(1)得,,,∴,∴,∵与的平分线交于Q ,∴,同理,,∴,∴为定值,定值为;【小问3详解】如图2,过点P 作,过点Q 作,是PE AB ∥45MNB ∠=︒45MPE MNB ∠=∠=︒AB CD ∥PE CD ∥DPE MDP ∠=∠20MDP ∠=︒20DPE MDP ∠=∠=︒452025MPD MPE DPE ︒︒︒∠=∠-∠=-=PE AB ∥PE CD ∥,DPE CDP BPE ABP ∠=∠∠=∠DPB CDP ABP ∠=∠+∠CDP ∠ABP ∠11,22CDQ CDP ABQ ABP ∠=∠∠=∠()1122Q CDQ ABQ CDP ABP DPB ∠=∠+∠=∠+∠=∠12Q DPB ∠=∠Q DPB ∠∠12PF AB ∥QE AB ∥∵,∴,,∴,∴,∵与平分线交于Q ,∴,同理,,∴,即(2)的结论仍然成立.【点睛】本题考查了平行线的判定和性质,角平分线的定义,熟练掌握知识点,准确添加辅助线是解题的关键.的AB CD ∥PF CD ∥QE CD ∥,BPF ABP DPF CDP ∠=∠∠=∠DPB BPF DPF ABP CDP ∠=∠-∠=∠-∠CDP ∠ABP ∠11,22CDQ CDP ABQ ABP ∠=∠∠=∠()1122BQD ABQ CDQ ABP CDP DPB ∠=∠-∠=∠-∠=∠12Q DPB ∠=∠。
人教版七年级下册数学期中考试试题含答案
人教版七年级下册数学期中考试试卷一、单选题1.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.2.下列说法中正确的是()A.36的平方根是6B.8的立方根是2CD.9的算术平方根是-3的平方根是23.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩A.小于2.3米B.等于2.3米C.大于2.3米D.不能确定4.若点P在x轴上方,y轴的左侧,到每条坐标轴的距离都是6,则点P的坐标为() A.(6,6)B.(﹣6,6)C.(﹣6,﹣6)D.(6,﹣6) 5.如图,下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠1+∠ACE=180°其中,能判定AD∥BE的条件有()A.4个B.3个C.2个D.1个6.下列各组数中,两个数互为相反数的是()A .-2B .-2与12-C .-2D .|-2|与27.如图,已知AD ⊥BC 于D ,DE ∥AB ,若∠B=48°,则∠ADE 的度数为()A .32°B .42°C .48°D .52°8.在平面直角坐标系中,点A(1,2)平移后的坐标是A′(-3,3),按照同样的规律平移其他点,则符合这种要求的变换是()A .(3,2)→(4,-2)B .(-1,0)→(-5,-4)C .(2,5)→(-1,5)D .(1,5)→(-3,6)9.如图,在数轴上表示2C ,B ,点C 是AB 的中点,则点A 表示的数是()A .B .C .D二、填空题10.如图,将正整数按下图所示规律排列下去,若用有序数对(n ,m)表示n 排从左到右第m 个数.如(4,3)表示9,则(11,3)表示()A .56B .57C .58D .5911.9的算术平方根是.12.在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度再向上平移1个单位长度得到的点的坐标是_____.13.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=30°,则∠2=______.14.如图,//AB CD ,CF 交AB 于点E ,AEC ∠与C ∠互余,则CEB ∠是__________度.15.===,…,根据你发现=、b 为正整数)=_______.16.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠AEB=70°,那么∠BFC′的度数为______度.三、解答题1718.求未知数:(1)9(x-3)2=64.(2)(2x-1)3=-8. 19.已知一个数的平方根是±(a+4),算术平方根为2a﹣1,求这个数.20.中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图(1),按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4).(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→____→(六,4);(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数限定4步以内),①画图:把“马”行走的路线端点,从出发点到目标点先后依次用线段连接;②仿照题(1)表述,写出你所画图①的走法是:_____________.21.已知:如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:,理由如下:∵AB∥CD,∴∠B=∠BCD,()∵∠B=70°,∴∠BCD=70°,()∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴+=180°,∴EF∥,()∴AB∥EF.()22.如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.23.如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.24.阅读下面的文字,解答问题.的小数部分我们不可能完全地写出来,﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:(1)的整数部分和小数部分;(2)已知:,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.25.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案1.D【解析】【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,依次判断即可.【详解】可看作图案的某一部分经过平移所形成的是D选项所示图形,故选D.【点睛】此题主要考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而导致错选.2.B【解析】【分析】根据立方根、平方根和算术平方根的定义判断即可.【详解】A、36的平方根是6±,错误;B、8的立方根是2,正确;C的平方根是D、9的算术平方根是3,错误,故选B.【点睛】本题考查了平方根与立方根,熟练掌握它们的定义以及求解方法是解题的关键. 3.A【解析】【分析】直接利用垂线段最短即可得出小明的跳远成绩.【详解】如图,过点P作PE⊥AC,垂足为E,∴PE<PA,∵PA=2.3米,∴这次小明跳远成绩小于2.3米,故选A.【点睛】本题考查了垂线段最短的性质,熟悉测量跳远成绩的方法是解题的关键.4.B【解析】【分析】根据点到直线的距离和各象限内点的坐标特征进行解答即可.【详解】解:∵点P在x轴上方,y轴的左侧,∴点P是第二象限内的点,∵点P到每条坐标轴的距离都是6,∴点P的坐标为(﹣6,6).故选B.【点睛】本题考查了各象限内的点的坐标特征及点的坐标的几何意义,熟练掌握平面直角坐标系中各个象限的点的坐标的符号特点是解此类题的关键.5.C【解析】【分析】根据平行线的判定方法逐一进行分析判断即可.【详解】①∠1=∠2,内错角相等,两直线平行,则能判定AD∥BE;②∠3=∠4,内错角相等,两直线平行,能判定AB∥CD,但不能判定AD//BE,故不符合题意;③∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD,但不能判定AD//BE,故不符合题意;④∠1+∠ACE=180°,同旁内角互补,两直线平行,则能判定AD∥BE,所以满足条件的有2个,故选C.【点睛】本题考查了两直线平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行,并要分清给出的角所截的是哪两条直线.6.C【解析】【分析】根据立方根的定义、算术平方根的定义以及绝对值的性质结合相反数的定义逐一进行分析即可得答案.【详解】A,两数相等,不能互为相反数,故选项错误;B、-2与12-互为倒数,故选项错误;C=2与-2互为相反数,故选项正确;D、|-2|=2,两数相等,不能互为相反数,故选项错误,故选C.【点睛】本题考查了立方根、算术平方根、绝对值的化简、相反数等知识,熟练掌握相反数的定义是解本题的关键.7.B【解析】【分析】根据平行线的性质和两角互余解答即可.【详解】解:∵DE∥AB,∴∠EDC=∠B=48°,∵AD⊥BC,∴∠ADE=90°﹣48°=42°,故选B.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解决问题的关键.8.D【解析】由点A(1,2)平移后的坐标是A′(-3,3),得出平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,再将各选项逐一检验即可.【详解】解:∵点A(1,2)平移后的坐标是A′(-3,3),∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,∴选项D符合要求.故选D.【点睛】本题考查了坐标与图形变化-平移,根据点P与P′的坐标,得出平移前后点的坐标变化规律是解题的关键.9.A【解析】【分析】先求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2的对应点分别为C,B,∴-2,∵点C是AB的中点,∴AC=BC=-2,∵OA=OC-AC,∴-2)=4-∴点A表示的数是故选A.本题考查了实数与数轴,线段的和差,准确识图,熟练掌握相关知识是解题的关键. 10.58【解析】【分析】从图中可以发观,第n排的最后的数为:12n(n+1),据此规律进行求解即可.【详解】从图中可以发观,第n排的最后的数为:12n(n+1),∵第10排最后的数为:12×10×(10+1)=55,∴(11,3)表示第11排第3个数,则第11排第3个数为55+3=58,故选C.【点睛】本题考查了规律型——数字的变化类,找到第n排的最后的数的表达式是解题的关键.11.3.【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239 ,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12.(2,3).【解析】将点P的横坐标加3,纵坐标加1即可求解.【详解】点P(﹣1,2)向右平移3个单位长度再向上平移1个单位得到的点的坐标是(﹣1+3,2+1),即(2,3).故答案为(2,3).【点睛】本题考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.15°【解析】【分析】先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【详解】如图,过点B作BD∥l.∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=30°.∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣30°=15°,∴∠2=∠3=15°.故答案为15°.【点睛】本题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.14.135【解析】【分析】根据//AB CD 知AEC ∠=C AEC ∠∠,又与C ∠互余,故AEC ∠=C ∠=45°,再跟邻补角的性质即可求出CEB ∠的度数.【详解】∵//AB CD∴AEC ∠=C ,∠又AEC ∠与C ∠互余,∴AEC ∠=C ∠=45°,∴CEB ∠=180°-AEC ∠=135°.【点睛】此题主要考查平行线的性质,解题的关键是熟知余角与补角的定义.15.4【解析】【分析】从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,据此求出a 、b 的值即可求得答案.【详解】===,…,∴用含n (1n =+,=∴a=8-1=7,b=a+2=9,=4,故答案为4.【点睛】本题考查了本题考查了规律型——数字的变化类,找到变化的规律是解题的关键.16.70°.【解析】【分析】由AD//BC可以求得∠EBF的度数,由折叠的性质知:∠EBC′、∠BC′F都是直角,继而可求得∠FBC′的度数,在Rt△BC′F中利用直角三角形两锐角互余即可求得答案.【详解】∵AD//BC,∴∠EBF=∠AEB=70°,由折叠的性质知,∠EBC′=∠D=90°,∠BC′F=∠C=90°,∴∠FBC′=∠EBC′-∠EBF=90°-70°=20°,在Rt△B C′F中,∠BC′F=90°,∴∠BFC′=90°-∠FBC′=70°,故答案为70.【点睛】本题考查了折叠的性质,涉及了平行线的性质,直角三角形两锐角互余的性质等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.17.【解析】=-++=试题解析:原式331 1.故答案为1.18.(1)x=173,或x=13;(2)x=-12.【解析】【分析】(1)利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可.【详解】(1)(x-3)2=649,则x-3=±83,即x=173或x=13;(2)(2x-1)3=-8,2x-1=-2,∴x=-12.【点睛】本题考查了利用平方根定义以及立方根定义解方程,熟练掌握相关定义是解题的关键.19.这个数是81.【解析】【分析】根据平方根与算术平方根的定义即可列出式子进行求解.【详解】∵一个数的平方根是±(a+4),算术平方根为2a ﹣1,∴a+4=2a ﹣1或-(a+4)=2a-1,解得:a=5或a=-1,由于2a ﹣1≥0,∴a=-1舍去.∴a=5∴这个数的平方根为±9,这个数是81.【点睛】此题主要考查平方根与算术平方根的定义,解题的关键是熟知平方根与算术平方根的联系. 20.(1)(五,6)或(八,5);(2)①画图见解析;(答案不唯一)②(四,6)(二,5)→(三,3)→(四,5)→(六,4)(答案不唯一).【解析】【分析】(1)根据点的坐标移动按照从“日”字形长方形的对角线的一个端点到另一个端点,观察图形即可得知从(七,7)到(六,4)中间所缺的一步;(2)①此题只需根据点的坐标移动按照从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少”来确定行走路线即可(答案不唯一);②根据①的线路写出走法即可.【详解】(1)观察图形,结合“马”的行棋规则可得缺失的一步是(五,6)或(八,5),故答案为(五,6)或(八,5);(2)①如图所示(答案不唯一);(2)图示的走法为:(四,6)(二,5)→(三,3)→(四,5)→(六,4),故答案为(四,6)(二,5)→(三,3)→(四,5)→(六,4).【点睛】本题考查了坐标确定位置,体现了规律性,需要灵活求解.21.AB∥EF,两直线平行,内错角相等;等量代换,∠E,∠DCE,CD,同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行.【解析】【分析】依据平行线的性质,即可得到∠BCD=70°,进而得出∠E+∠DCE=180°,进而得到EF∥CD,进而得到AB∥EF.【详解】AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)【点睛】本题考查平行线的性质和判定,解题的关键是熟练掌握平行线的判定和性质.22.(1)AC∥DF,理由见解析;(2)40°.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;【详解】解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.【点睛】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.23.见解析【解析】【分析】先根据题意画出图形,再根据平行线的性质进行解答即可.【详解】∠ABC与∠DEF的数量关系是相等或互补,理由如下:①如图,∵DE∥AB,∴∠ABC=∠DPC,又∵EF∥BC,∴∠DEF=∠DPC,∴∠ABC=∠DEF;②如图,因为DE∥AB,∴∠ABC+∠DPB=180°,又∵EF∥BC,∴∠DEF=∠DPB.∴∠ABC+∠DEF=180°.【点睛】本题考查了平行线的性质,根据题意画出图形是解答此题的关键,解答此题时要注意分两种情况讨论,否则会造成漏解.24.(1)3,【解析】【分析】(1)根据阅读材料知,1+2的整数部分,然后再去求其小数部分即可;(2)x-y的相反数即可.【详解】(1)∵1<2,∴3<4,+2的整数部分是1+2=3,+2﹣1;(2)∵2<3,∴12<<13,∴12,﹣2,即x=12,2,∴x﹣y=12﹣(2)=12=14则x﹣y14.【点睛】本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题.25.(1)证明见解析;(2)证明见解析;(3)45°【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=12∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【详解】(1)解:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=12(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=12∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.。
福建省泉州市鲤城区福建省泉州第五中学2023-2024学年七年级下学期期中数学试题(解析版)
泉州五中2023−2024学年下学期初一年期中考试数学试卷(满分:150分;考试时间:120分钟)一、选择题(每小题4分,共40分).在答题卡上相应题目的答题区域内作答.1. 下列各方程中,是二元一次方程的是( )A.=y +5x B. 3x +1=2xy C. x =y 2+1 D. x +y =1【答案】D【解析】【分析】根据二元一次方程的定义逐一排除即可.【详解】解:A 、=y +5x 不是二元一次方程,因为不是整式方程;B 、3x +1=2xy 不是二元一次方程,因为未知数的最高项的次数为2;C 、x =y 2+1不是二元一次方程,因为未知数的最高项的次数为2;D 、x +y =1是二元一次方程.故选:D .【点睛】此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.2. 不等式的解集在数轴上表示正确的是( ).A.B. C.D.【答案】D【解析】【分析】本题考查的是利用数轴表示不等式的解集,掌握大于折线向右是解本题的关键.由包含分界点用实心点,大于折线向右,从而可得答案.【详解】解:∵,∴1处是实心点,且折线向右.故选:D .23x y -1523x y-151x ≥1x ≥3. 下面4个汉字中,可以看作是轴对称图形的是( )A.B. C. D.【答案】A【解析】【分析】利用轴对称图形的定义进行解答即可.【详解】解:A 、是轴对称图形,故此选项符合题意;B 、不是轴对称图形,故此选项不合题意;C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意;故选A .【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4. 已知,下列不等式成立的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵,∴,故不符合题意;B . ∵,∴,∴,故符合题意;C .∵,∴,故不符合题意;D . ∵,∴,故不符合题意.故选:B.a b >a b->-22a b -<-22a b <0a b -<a b >a b -<-a b >a b -<-22a b -<-a b >22a b >a b >0a b ->5. 现有两根长度为3和4(单位:cm )的小木棒,下列长度的小木棒不能与它们搭成三角形的是( )A. 4B. 5C. 6D. 7【答案】D【解析】【分析】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.设第三根木棒的长为,再根据三角形的三边关系得出l 取值范围即可.【详解】解:设第三根木棒的长为,则,即.观察选项,只有选项D 符合题意.故选:D .6. 某人用同种正多边形瓷砖铺设无缝地板,他购瓷砖形状可能是( )A. 正五边形B. 正六边形C. 正七边形D. 正九边形【答案】B【解析】【分析】本题主要考查了平面镶嵌,判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成,则说明能够进行平面镶嵌;反之则不能,据此逐一判断即可.【详解】解:A 、正五边形的一个内角度数为,不能整除,不能进行平面镶嵌,不符合题意;B 、正六边形的一个内角度数为,能整除,能进行平面镶嵌,符合题意;C 、正七边形的一个内角度数为,不能整除,不能进行平面镶嵌,不符合题意;D 、正九边形的一个内角度数为,不能整除,不能进行平面镶嵌,不符合题意;故选B.7. 图中表示被撕掉一块的正边形纸片,若,则的值是( )cm l cm l 4343l -<<+17l <<()180521085︒⨯-=︒360︒()180621206︒⨯-=︒360︒()1807290077︒⨯-⎛⎫=︒ ⎪⎝⎭360︒()180921409︒⨯-=︒360︒n a b ⊥nA. B. C. D. 【答案】C【解析】【分析】本题考查了垂直的定义,正边形的外角和为,根据垂直的定义可知,再根据直角三角形的性质及正边形的外角和为即可解答.【详解】解:如图,延长,交于点,∵,∴,∴正多边形的一个外角为∴,故选:C .8. 《九章算术》中记载这样一个问题:“以绳测井,若将绳三折测之,绳多四尺,绳多一尺.问绳长、井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份;如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?下列解题方案:①设井深为x 尺,列方程为;②设绳长为y尺;③设绳长、井深分别为a 尺,b 尺,其中正确的是( )A ① B. ①② C. ②③ D. ①②③【答案】C.57810n 360︒90ACB ∠=︒n 360︒a b C a b ⊥90ACB ∠=︒180180904522ACB BAC ABC ︒-∠︒-︒∠=∠===︒360845n ︒==︒3441x x +=+4134y y -=-()()3441a b a b ⎧=+⎪⎨=+⎪⎩【解析】【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找到等量关系,列出相应的方程组.用代数式表示绳长或井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】解:①设井深尺,两次测量绳长不变,可列方程.②设绳长为尺,两次测量井深不变,可列方程;③设绳长、井深分别为尺,尺,列方程组为,其中正确的是②③,故选:C .9. 如图所示把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是 ( )A. 正三角形B. 正方形C. 正五边形D. 正六边形【答案】A 【解析】【详解】试题分析:对于此类问题,只要亲自动手操作,答案就会很直观地呈现.试题解析:由第二个图形可知:∠AOB 被平分成了三个角,每个角60°,故选A .考点:剪纸问题.10. 有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数,只显示不运算,接着再输入整数,后则显示的结果,比如依次输入1,2,则输出结果是;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.①依次输入1,2,3,4,则最后输出的结果是1;②若将2,3,6这3个整数任意的一个一个输入,全部输入完毕后显示的结果的最大值是4;为x 3(4)4(1)x x +=+y 4134y x -=-a b 3(4)4(1)a b a b =+⎧⎨=+⎩1x 2x 12x x -121-=③若随意地一个一个地输入三个互不相等的正整数,2,,全部输入完毕后显示的最后结果为,若的最大值为2021,那么的最小值为2019.以上说法正确的个数有( )个.A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查了整数的奇偶性问题以及有绝对值的函数最值问题,解题的关键是读懂题意.①根据题意每次输入都是与前一次运算结果求差后取绝对值,将已知数据输入求出即可;②根据运算规则可知最大值是5;③根据题意可得出只有3个数字,当最后输入最大值时结果得到的值最大,当首先将最大值输入则结果是最小值,进而分析得出即可.【详解】解:根据题意可得出:,,,故①不符合题意;②对于2,3,6,按如下次序输入:2,3,6,可得,按如下次序输入:2,6,3,可得,按如下次序输入:3,2,6,可得,按如下次序输入:3,6,2,可得,按如下次序输入:6,2,3,可得,按如下次序输入:6,3,2,可得,全部输入完毕后显示的结果的最大值是5,故②不符合题意;③对于随意地一个一个地输入三个互不相等的正整数,2,,全部输入完毕后显示的最后结果为,若的最大值为2021,由②得当最后输入最大值时结果得到的值最大,当首先将最大值输入则结果是最小值;∴设为较大的数字,当时,,a b k k k 1211-=-=1322-=-=2422-=-=2365--=2631--=3265--=3621--=6231--=6321--=a b k k b 1a =1212021b b --=-=解得:,故此时输入后得到的最小数为:,故③符合题意;故选:B .二、填空题(每小题4分,共24分).在答题卡上相应题目的答题区域内作答.11. “x 与6和小于17”用不等式表示为______.【答案】##【解析】【分析】本题考查列不等式,正确得翻译句子,列出不等式即可.【详解】解:由题意,可列不等式为;故答案为:.12. 如图,是的一条中线,若的面积是.则的面积为______.【答案】【解析】【分析】本题考查的是三角形的中线的性质,利用三角形的中线等分三角形的面积即可得到答案.【详解】解:∵是的一条中线,的面积是.∴,故答案为:13. 如图,是正六边形的一条对角线,则的度数______.【答案】##90度的2022b =2022212019--=617x +<617x +<617x +<617x +<AD ABC ABC 210cm ABD △2cm 5AD ABC ABC 210cm ()215cm 2ABD ABC S S == 5AC ABCDEF FAC ∠90︒【解析】【分析】本题考查了,多边形内角和公式,等边对等角,三角形内角和定理,解题的关键是:熟练掌握相关公式定理.根据正多边形内角和公式,求出,的度数,结合等边对等角,三角形内角和定理,即可求解.【详解】解:∵正六边形,∴,,∴,∴,∴,故答案为:.14. 已知三元一次方程组,则______.【答案】####19.5【解析】【分析】此题考查了解三元一次方程组,本题的技巧为将三个方程相加.方程组中三个方程左右两边相加,变形即可得到的值.【详解】解:,①+②+③,得,∴,故答案为.15. 若关于的不等式组的解集为,且关于的方程有非负整数解,则满足条件的所有整数的和为__.ABC ∠FAB ∠ABCDEF ()621801206ABC FAB -⨯︒∠=∠==︒BA BC =ACB BAC ∠=∠1801801203022ABC ACB ︒-∠︒-︒===︒∠1203090FAC ∠=︒-︒=︒90︒3045x y x z y z +=⎧⎪+=⎨⎪+=⎩x y z ++=3921192x y z ++3045x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③22239x y z ++=392x y z ++=392x 11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩x a ≤y 27y a =+a【答案】【解析】【分析】此题考查了解一元一次不等式,一元一次方程的解,一元一次不等式的整数解,关键是能准确求解,并根据题意确定字母参数的取值.先解该不等式组并求得符合题意的的取值范围,再解关于的方程并求得符合题意的的取值范围,然后确定的所有取值,最后计算出此题结果.【详解】解:,解不等式①得,解不等式②得,由题意得,解方程得,,关于的方程有非负整数解,且为奇数,解得,,的取值范围为:,为奇数,整数的取值为,,,,1,3,符合条件的所有整数的和为:.故答案为:.16. 如图,,点M 、N 分别在射线、上,,的面积为12,P 是直线上的动点,点P 关于对称的点为,点P 关于对称的点为,当点P 在直线上运动时,的面积最小值为______.12-a y 27y a =+a a ()1142423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩①②x a ≤5x <5a <27y a =+72a y +=y 27y a =+∴702a +≥a 7a ≥-a ∴75a -≤<a ∴a 7-5-3-1-∴a 75311312----++=-12-45AOB ∠=︒OA OB 8MN =OMN MN OA 1P OB 2P NM 12OPP【答案】【解析】【分析】连接,过点作交的延长线于,先利用三角形的面积公式求出,再根据轴对称的性质可得,,,从而可得,然后利用三角形的面积公式可得的面积为,可得当点与点重合时,取得最小值,的面积最小,由此即可得.【详解】解:如图,连接,过点作交的延长线于,,且,,点关于对称的点为,点关于对称的点为,,,,,,92OP O O H M N ⊥NM H OH 1AO P AO P ∠=∠2B O P B O P ∠=∠12OP OP OP ==1290POP ∠=︒12OPP 212OP P H OP 12OPP OP O O H M N ⊥NM H 1122OMN S MN OH =⋅= 8MN =3OH ∴= P OA 1P P OB 2P 1AOP AOP ∴∠=∠2B O P B O P ∠=∠12OP OP OP ==45AOB ∠=︒ 122()290POP AOP BOP AOB ∴∠=∠+∠=∠=︒的面积为,由垂线段最短可知,当点与点重合时,取得最小值,最小值,的面积的最小值为,故答案为:.【点睛】本题考查了轴对称、垂线段最短等知识点,掌握轴对称的性质是关键.三、解答题(共86分).在答题卡上相应题目的答题区域内作答.17. 解方程组:.【答案】.【解析】【分析】此题考查了解二元一次方程组.方程组利用加减消元法求出解即可.【详解】解:,得,解得,将代入②得,解得,∴方程组的解为.18. 解不等式组,并在数轴上表示其解集且写出它的所有的非正整数解.【答案】画图见解析,,所有的非正整数解为:,,.【解析】【分析】本题考查的是在数轴上表示不等式的解集,一元一次不等式组的解法,不等式组的整数解的含义,掌握解法步骤是解本题的关键;先分别解不等式组中的两个不等式,再在数轴上表示两个不等式的解集,利用数轴确定不等式组的解集,再确定非正整数解即可.为∴12OPP 2121122OP OP OP ⋅=P H OP 3OH =∴12OPP 219322⨯=923210521x y x y +=⎧⎨-=⎩41x y =⎧⎨=-⎩3210521x y x y +=⎧⎨-=⎩①②2+⨯①②1352x =4x =4x =2021y -=1y =-41x y =⎧⎨=-⎩()23952214x x x x ⎧-+>⎪⎨+>-⎪⎩①②32x -<<2-1-0【详解】解:由①得:,解得:,由②得:,解得:,在数轴上表示不等式的解集如下:∴不等式组的解集为:,∴所有的非正整数解为:,,.19. 已知一个多边形的边数为,若这个多边形的每个内角都比与它相邻的外角的4倍多,求这个多边形对角线的总条数.【答案】【解析】【分析】本题考查了求多边形内角和与外角和的综合,求多边形对角线的总条数,掌握多边形对角线的总条数计算公式是解题的关键.根据题意,求出每个外角的度数,再用外角和除以外角的度数得到边数,代入多边形对角线的总条数计算公式求解即可;【详解】解:设这个多边形的每个外角为,则每个内角为,依题意得,,解得,∴,∴这个多边形对角线的总条数,答:这个多边形对角线的总条数为.20. 中,,,是高,是三角形的角平分线.求的度数.()23952214x x x x ⎧-+>⎪⎨+>-⎪⎩①②23x x ->-3x >-5284x x +>-2x <32x -<<2-1-0n 30︒54360︒()32n n -x ︒()430x +︒430180x x ++=30x =3603012n =︒÷︒=()12312542-⨯==54ABC 26B ∠=︒74C ∠=︒AD AE DAE ∠【答案】【解析】【分析】本题考查了三角形的内角和定理,三角形平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.根据三角形内角和定理求出,再根据角平分线的定义求出,根据直角三角形两锐角互余求出,然后求解即可.【详解】解:∵,,,是的角平分线,,是的高,,,,.21. 已知关于x ,y 的二元一次方程组与方程组有相同的解.(1)求这两个方程组的相同解;(2)求的值.【答案】(1) (2)1【解析】【详解】(1)由题意,得①+②,得5x =10,解得x =2.把x =2代入①,得4+5y =-26,解得y =-6.24︒BAC ∠BAE ∠BAD ∠26B ∠=︒74C ∠=︒180180267480BAC B C \Ð=°-Ð-Ð=°-°-°=°AE ABC 1402BAE BAC ∴∠=∠=︒AD ABC 90BDA ∴∠=︒90BAD B ∴∠+∠=︒90902664BAD B ∴∠=︒-∠=︒-︒=︒644024EAD BAD BAE \Ð=Ð-Ð=°-°=°35368x y bx ay -=⎧⎨+=-⎩25264x y ax by +=-⎧⎨-=-⎩()20242a b +26x y =⎧⎨=-⎩2526,3536,x y x y +=-⎧⎨-=⎩①②∴这两个方程组的相同解为(2)把代入得解此方程组,得a =1,b =-1,∴(2a +b )2024=(2-1)2024=1.22. 我市某校为了落实“阳光体育活动”,在八年级开展了篮球赛.比赛规则是:八年级10个班级每个班级派出一支队伍参赛,赛制采用的是单循环积分赛(每个班级都与其他9个班级进行一场比赛),胜一场记2分,负一场记1分,然后按照积分高低进行排名.赛程过半,小明所在的班级已经进行了5场比赛,积9分.(1)求小明所在班级胜、负的场次各是多少;(2)根据分析,总积分超过15分才能确保进入前两名,小明的班级若想进入前两名在剩下的比赛中至少还要取得几场胜利?【答案】(1)小明所在的班级胜4场,负1场(2)小明的班级若想进入前两名在剩下的比赛中至少还要取得3场胜利【解析】【分析】本题考查了二元一次方程组,一元一次不等式的应用,解题的关键是找准等量关系,正确列出二元一次方程组.(1)设小明所在班级胜了场,负了场,根据小明所在的班级已经进行了5场比赛,积9分,即可得出关于,的二元一次方程组,解之即可得出结论;(2)设小明的班级在剩下的比赛中还要胜场,根据总积分超过15分才能确保进入前两名,即可得出关于的一元一次不等式,解之取其中的最小整数值即可得出结论.【小问1详解】解:设小明所在的班级胜场,负场,依题意得解得,答:小明所在的班级胜4场,负1场.【小问2详解】设小明的班级在剩下的比赛中还要胜场,依题意得解得,2,6.x y =⎧⎨=-⎩2,6x y =⎧⎨=-⎩4,8,ax by bx ay -=-⎧⎨+=-⎩264,268.a b b a +=-⎧⎨-=-⎩x y x y m m x y 529x y x y +=⎧⎨+=⎩41x y =⎧⎨=⎩m 295915m m +--+>>2m为正整数,答:小明的班级若想进入前两名在剩下的比赛中至少还要取得3场胜利.23. 数学小组的同学发现,折纸中蕴含着许多数学问题.现有一张三角形纸片,点,分别是边,上的点,若沿直线折叠,点的对应点为点,且点在直线的右侧.(1)若如图1所示,点恰好在边上,则与的数量关系是______.(2)记,,且,的度数均不为0,试通过折痕的变化,探索,和之间的数量关系.【答案】(1)(2)【解析】【分析】本题主要考查了三角形内角和定理,折叠的性质,三角形外角的性质等等:(1)由折叠的性质可得,则,再由三角形外角的性质可得;(2)先由三角形内角和定理得到,由折叠的性质可得,,由平角的定义可得,结合:,进而得到.【小问1详解】解:由折叠的性质可得,∵,∴,即,故答案为:;【小问2详解】由折叠的性质可得,,∵,∴,∵,m 3m ∴≥ABC M N AC BC MN ABC C D D AB D BC 1∠ACB ∠1AMD ∠=∠2BND ∠=∠1∠2∠MN 1∠2∠ACB ∠12ACB =∠∠122ACB∠+∠=∠CM DM =∠=∠C CDM 12ACB =∠∠140CMN CNM +=︒∠∠DMN CMN DNM CNM ==∠∠,∠∠D ACB ∠=∠2212360CMN CNM ∠+∠+∠+∠=︒222360ACB CMN CNM ∠+∠+∠=︒122ACB ∠+∠=∠∠=∠C CDM 1C CDM =+∠∠∠12C ∠=∠12ACB =∠∠12ACB =∠∠DMN CMN DNM CNM ==∠∠,∠∠D ACB ∠=∠11802180DMN CMN DNM CNM ++=︒++=︒∠∠∠,∠∠∠2212360CMN CNM ∠+∠+∠+∠=︒360D DMN DNM CMN CNM C ∠+∠+∠+∠+∠+∠=︒∴∴;24. 某学校实践课准备用图甲所示的A 型正方形板材和B 型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若学校现有库存A 型板材55张,B 型板材120张,用这批板材制作两种类型的箱子,恰好将库存板材用完时,能制作出竖式和横式的箱子各多少只?(2)现有A 型板材162张,B 型板材340张,若要做这两种箱子共100个,请问有哪几种生产方案?(3)若学校新购得张规格为的C 型正方形板材,将其中一张板材切割成了3张A 型板材和2张B 型板材,将其余的全部切割成A 型或B 型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求竖式箱子制作20只,且材料恰好用完,求的最小值?【答案】(1)制作出竖式和横式的箱子各15只和20只;(2)①做竖式纸箱38个,则横式纸箱62个,②做竖式纸箱39个,则横式纸箱61个,③做竖式纸箱40个,则横式纸箱60个.(3)n 的最小值是35.【解析】【分析】本题考查的是二元一次方程组的应用,二元一次不等式组的应用,二元一次方程的正整数解问题,确定相等关系是解本题的关键;(1)设竖式做个,横式做个,根据现有库存A 型板材55张,B 型板材120张,用这批板材制作两种类型的箱子,恰好将库存板材用完,再建立方程组求解即可;(2)设做竖式纸箱个,则横式纸箱个,利用有A 型板材162张,B 型板材340张,做这两种箱子共100个,建立不等式组求解即可;(3)设C 型板有x 张全部切成A 板,则有张全部切成B 板,再利用剩余的A 板与B 板之比为建立二元一次方程,再利用方程的正整数求解即可.【小问1详解】解:由题意可得:竖式纸盒做1个需要1张A ,4张B ,横式纸盒做1个需要2张A ,3张B,设竖式做222360ACB CMN CNM ∠+∠+∠=︒122ACB ∠+∠=∠n 33m ⨯n x y m ()100m -()1n x --2:3x个,横式做个,则,解得,答:制作出竖式和横式的箱子各15只和20只;【小问2详解】设做竖式纸箱个,则横式纸箱个,则,解得:,∵为整数,∴或或,∴一共有三种方案:①做竖式纸箱38个,则横式纸箱62个,②做竖式纸箱39个,则横式纸箱61个,③做竖式纸箱40个,则横式纸箱60个.【小问3详解】∵竖式箱子制作20只用掉20张A 板,80张B 板,设C 型板有x 张全部切成A 板,则有张全部切成B 板,且一张的C 型板可以切成张A 型板或3张B 型板,∴板有张,板有张,竖式箱子制作20只后剩余板张,剩余板张,根据题意,得,整理,得,∵,∴,∵,都为正整数,y 25543120x y x y +=⎧⎨+=⎩1520x y =⎧⎨=⎩m ()100m -()()210016243100340m m m m ⎧+-≤⎪⎨+-≤⎪⎩3840m ≤≤m 38m =3940()1n x --33m ⨯339⨯=A ()93x +B ()312n x ⎡⎤--+⎣⎦A ()9320x +-B ()31280n x ⎡⎤--+-⎣⎦()()9320:312802:3x n x ⎡⎤+---+-=⎣⎦33111331185185662x x x n x x +++==++=++9200x -≥209x ≥x n∴的最小值为,则的最小值为;∴n 的最小值是35.25. 引入概念1:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.引入概念2:从不等边三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形.若分成的两个小三角形中一个是满足有两个角相等的三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(1)如图1,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,请写出图中两对“等角三角形”.① ;② .(2)如图2,在△ABC 中,CD 为角平分线,∠A=40°,∠B=60°.请你说明CD 是△ABC 的等角分割线.(3)在△ABC 中,若∠A=40°,CD 为△ABC 的等角分割线,请你直接写出所有可能的∠B 度数.【答案】(1)与;与(2)理由见解析 (3)60°;30°;;【解析】【分析】(1)由题意知,,可说明与是“等角三角形”,根据,可说明与是“等角三角形”,进而可得答案;(2)根据三角形内角和定理计算,由角平分线的定义可知,,可说明是有两个角相等的三角形,由,,,可说明与原来三角形是“等角三角形”,进而结论得证;(3)由题意可知,分4种情况求解:①当是有两个角相等的三角形,且时,x 3n 311853352++⨯+=ACD CBD △ACD ABC 1403︒1003︒90ADC CDB ACB ∠=∠=∠=︒CAD BCD ∠=∠ACD CBD ∠=∠ACD CBD △CAD BAC ∠=∠ACD ABC 18080ACB A B ∠=︒-∠-∠=︒1402ACD BCD ACB ∠=∠=∠=°ACD A ∠=∠ACD 280CDB A ACB ∠=∠=︒=∠A BCD ∠=∠B B ∠=∠CBD △ABC ACD 40A ACD ∠=∠=︒如图1,由(2)可知,;②当是有两个角相等的三角形,且时, 如图2,由题意知,则,,进而可知的值;③当是有两个角相等的三角形,且时,与是“等角三角形”,如图3,,,根据求出的值即可;④当是有两个角相等的三角形,且时,与是“等角三角形”如图4,则,,根据求出的值即可.【小问1详解】解:∵,∴∵∴同理∴与是“等角三角形”∵∴与是“等角三角形”故答案为:与;与.【小问2详解】解:∵,∴∵CD 为角平分线∴∵∴是有两个角相等三角形∵,,∴与原来三角形是“等角三角形”∴CD 是△ABC 的等角分割线.【小问3详解】的=60B ∠︒ACD 18040702ADC ACD ︒-︒∠=∠==︒40BCD A ∠=∠=︒110BDC ACB ACD BCD ∠=∠=∠+∠=︒18030CBD ABC A ACB ∠=∠=︒-∠-∠=︒B ∠CBD △B BCD ∠=∠ACD ABC 2ADC B ACB ∠=∠=∠ACD B ∠=∠2180A B B ∠+∠+∠=︒B ∠CBD △BDC BCD ∠=∠ACD ABC ACD B ∠=∠BDC A ACD A B ∠=∠+∠=∠+∠2()180B A B ∠+∠+∠=︒B ∠90ACB ∠=︒CD AB⊥90ADC CDB ACB ∠=∠=∠=︒90ACD CAD ACD BCD ∠+∠=∠+∠=︒CAD BCD∠=∠ACD CBD∠=∠ACD CBD △CAD BAC∠=∠ACD ABC ACD CBD △ACD ABC 40A ∠=︒=60B ∠︒18080ACB A B ∠=︒-∠-∠=︒1402ACD BCD ACB ∠=∠=∠=°ACD A∠=∠ACD 280CDB A ACB ∠=∠=︒=∠A BCD ∠=∠B B∠=∠CBD △ABC解:①当是有两个角相等的三角形,且时,如图1,由(2)可知,,满足CD 为△ABC 的等角分割线;②当是有两个角相等的三角形,且时, 如图2,由题意知,∴,∴,∴时,满足CD 为△ABC 的等角分割线;③当是有两个角相等的三角形,且时,与是“等角三角形”,如图3,,∵ACD 40A ACD ∠=∠=︒=60B ∠︒ACD 18040702ADC ACD ︒-︒∠=∠==︒40BCD A ∠=∠=︒110BDC ACB ACD BCD ∠=∠=∠+∠=︒18030CBD ABC A ACB ∠=∠=︒-∠-∠=︒30B ∠=︒CBD △B BCD ∠=∠ACD ABC 2ADC B ACB ∠=∠=∠ACD B∠=∠2180A B B ∠+∠+∠=︒∴∴时,满足CD 为△ABC 的等角分割线;④当是有两个角相等的三角形,且时,与是“等角三角形”如图4,∴∵∴∴ 时,满足CD 为△ABC 的等角分割线;综上所述,的度数为 或或或 .【点睛】本题考查了角平分线,等边对等角,三角形内角和定理,三角形外角的性质等知识.解题的关键在于理解题意熟练掌握角度的求解.1403B ︒∠=1403B ︒∠=CBD △BDC BCD ∠=∠ACD ABC ACD B∠=∠BDC A ACD A B∠=∠+∠=∠+∠2()180B A B ∠+∠+∠=︒1003B ︒∠=1003B ︒∠=B ∠60︒30︒1403︒1003︒。
江苏省扬州市梅岭中学2023-2024学年七年级下学期4月期中考试数学试题
江苏省扬州市梅岭中学2023-2024学年七年级下学期4月期中考试数学试题一、单选题1.下列图形中,能将其中一个图形平移得到另一个图形的是( )A .B .C .D . 2.已知三角形的三边长分别为3,5,x ,则x 不可能是( )A .3B .5C .7D .83.下列各式从左到右的变形,属于因式分解的是( )A .ab +bc +b =b (a +c )+bB .a 2﹣9=(a +3)(a ﹣3)C .(a ﹣1)2+(a ﹣1)=a 2﹣aD .a (a ﹣1)=a 2﹣a4.下列运算正确的是( )A .235x x x +=B .()325x x =C .235x x x ?D .623x x x ÷= 5.如图,点E 在AC 的延长线上,下列条件中能判断AB CD P 的是( )A .3=4∠∠B .D DCE ∠=∠C .12∠=∠D .2B ∠=∠ 6.若一个多边形的内角和为1080°,则这个多边形的边数为( )A .5B .6C .7D .87.如图,在ABC V 中E 是BC 上的一点,2EC BE =,点D 是AC 的中点,设ABC V ,ADF △,BEF △的面积分别为ABC S V ,ADF S △,BEF S V ,且24ABC S =V ,则ADF BEF S S -=V V ( )A .6.5B .6C .5D .48.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号∑.如记1123...(1),n k k n n ==++++-+∑3()(3)(4)...()n k x k x x x n =+=++++++∑,已知22[()(1)]33n k x k x k xx m =+-+=+-∑,则m 的值是( )A .-40B .20C .-24D .-20二、填空题9.“白日不到处,青春恰自来.”苍花如米小,也学牡丹开.“这是清朝袁枚的一首《苔》.若苔花的花粉直径约为0.0000084m ,则数据0.0000084用科学记数法表示为.10.把方程21x y -=写成用含有x 的代数式表示y 的形式.11.若28x x b -+是一个完全平方式,则b =.12.若()23280m m x y --++=是关于x 、y 的二元一次方程,则m =.13.一副三角板和一张对边平行的纸条按如图方式摆放,则1∠的度数是°.14.关于x ,y 的方程组242x y x y m +=⎧⎨+=⎩的解满足1x y +=,则m 的值为 . 15.已学的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方.在“(a 2•a 3)2=(a 2)2•(a 3)2=a 4•a 6=a 10”的运算过程中,运用了上述幂的运算中的.(按运算顺序填序号) 16.如图,把ABC V 沿着射线AC 方向平移得到DEF V ,2BE DC ==,则AF =.17.若方程组 23 4.73519.4a b a b -=⎧⎨+=⎩的解是 4.31.3a b =⎧⎨=⎩,则方程组 2(1)3(1) 4.73(1)5(1)19.4x y x y --+=⎧⎨-++=⎩的解为 18.已知两个完全相同的直角三角形纸片ABC V 、DEF V ,如图放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .90C EFB ∠=∠=︒,30E ABC ∠=∠=︒,现将图中的ABC V 绕点F 按每秒15︒的速度沿逆时针方向旋转180︒,在旋转的过程中,ABC V 恰有一边与DE 平行的时间为秒.三、解答题19.计算: (1)()()12024011π 3.142-⎛⎫-+-+- ⎪⎝⎭ (2)()23423x x x -+⋅20.因式分解:(1)3244a a a -+(2)()()29a m n m n +-+ 21.解方程组:(1)432x y x y +=⎧⎨+=⎩ (2)353123x y x y -=-⎧⎪⎨-=⎪⎩ 22.先化简,再求值:()()()25a b a b a b ab +-+-+,其中37a =,2b =-. 23.如图,在小正方形边长为1的方格纸内将ABC V 向上平移1个单位长度,再向右平移3个单位长度得到A B C '''V ,点A 、B 、C 的对应点分别为A '、B '、C '.(1)在图中画出平移后的A B C '''V ;(2)ABC V 的面积为________;(3)作AB 边上的高CD ;(4)能使=QBC ABC S S V V 的格点Q 共有________个(A 点除外).24.如图,ABC V 中,点D ,E 分别在,AB AC 上,F ,G 在BC 上,EF 与DG 交于点O ,3B ∠=∠.若,1218060C ︒︒∠+∠=∠=.(1)判断线段DE 和BC 的位置关系,并说明理由;(2)求DEC ∠的度数.25.若m n a a =(0a >且1a ≠),则m n =.利用上面结论解决下面的问题:(1)已知23382x x +=,求x 的值.(2)若1239273x x x ⨯⨯=,求x 的值.(3)若53m x =-,425m y =-,用含x 的代数式表示y .26.如图,已知AB ∥CD .(1)如图1所示,∠1+∠2= ;(2)如图2所示,∠1+∠2+∠3= ;并写出求解过程.(3)如图3所示,∠1+∠2+∠3+∠4= ;(4)如图4所示,试探究∠1+∠2+∠3+∠4+⋯+∠n = .27.我们学过单项式除以单项式、多项式除以单项式,那么多项式除以多项式该怎么计算呢?我们也可以用竖式进行类似演算,即先把被除式、除式按某个字母的指数从大到小依次排列项的顺序,并把所缺的次数项用零补齐,再类似数的竖式除法求出商式和余式,其中余式为0或余式的次数低于除式的次数.例:计算()()286121x x x ++÷+,可依照67221÷的计算方法用竖式进行计算.因此()()28612141x x x x ++÷+=+.(1)()()22393x x x +-÷+=________.(2)()()324562x x x x ++-÷+的商是________,余式是________.(3)已知一个长为()2x +,宽为()2x -的长方形A ,若将它的长增加6,宽增加a 就得到一个新长方形B ,此时长方形B 的周长是A 周长的2倍(如图3).另有长方形C 的一边长为()10x +,若长方形B 的面积比C 的面积大76,求长方形C 的另一边长(用只含有x 的代数式表示).28.直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE 、BE 分别是BAO ∠和ABO ∠角的平分线,点A 、B 在运动的过程中,AEB∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小.(2)如图2,已知AB 不平行CD ,AD 、BC 分别是BAP ∠和ABM ∠的角平分线,又DE 、CE 分别是ADC ∠和BCD ∠的角平分线,点A 、B 在运动的过程中,CED ∠的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA 至G ,已知BAO ∠、OAG ∠的角平分线与BOQ ∠的角平分线及延长线相交于E 、F ,在AEF △中,如果有两个角度数的比是3:2,直接写出ABO ∠的度数.。
北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)
仁和中学2023-2024学年度第二学期期中考试初一年级数学试卷一、选择题(每题2分,共20分)1. 不等式的解集在数轴上表示正确的是( )A. B.C.D.【答案】D【解析】【分析】本题主要考查了一元一次不等式的求解,在数轴上表示不等式解集;解不等式,即可得出合适的选项.【详解】解:解不等式,可得,故不等式解集在数轴上表示为:故选:D .2. 下列命题中,假命题是( )A. 同角的补角相等B. 同一平面内,过一点有且只有一条直线与已知直线垂直C. 如果,,那么D. 两条直线被第三条直线所截,同旁内角互补【答案】D【解析】【分析】利用同角的补角的性质、垂直的定义、平行线的性质等知识分别判断后即可.【详解】解:A 、同角的补角相等,是真命题,故本选项不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故本选项不符合题意;C 、如果,,那么,是真命题,故本选项不符合题意;D、两条平行直线被第三条直线所截,同旁内角互补,故原命题是假命题,故本选项符合题意;的10x +<10x +<10x +<1x <-10x +<a b =b c =a c=a b =b c =a c =【点睛】考查了命题与定理的知识,解题的关键是了解同角的补角的性质、垂直的定义、平行线的性质等知识,难度不大.3. 下列各组数值中,哪个是方程的解( )A. B. C. D. 【答案】B【解析】【分析】将四个选项分别代入原方程,能使方程左右两边相等的未知数的值是方程的解.【详解】解:将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项符合题意;将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项不符合题意.故选:.【点睛】本题主要考查了二元一次方程的解.正确利用二元一次方程的解的意义是解题的关键.4. 如图,,射线在内部,下列说法一定成立的是( )A. 和互余B. 和互补C. 和互为对顶角D. 和相等21x y +=21x y =⎧⎨=⎩13x y =-⎧⎨=⎩13x y =⎧⎨=-⎩22x y =⎧⎨=-⎩ 21x y =⎧⎨=⎩5=≠A ∴ 13x y =-⎧⎨=⎩1==B ∴13x y =⎧⎨=-⎩1=-≠C ∴ 22x y =⎧⎨=-⎩2=≠D ∴B AO OB ⊥OC AOB ∠1∠2∠1∠2∠1∠2∠1∠2∠【解析】【分析】本题考查了角的互余概念、对顶角的定义,准确理解角的互余概念,对顶角的定义是解题的关键.【详解】解:∵,∴,又∵射线在内部,∴,∴和互余,故选A5. 如图,下列条件中,能判断的是( )A. B. C. D. 【答案】A【解析】【分析】由平行线的判定方法,即可判断.【详解】解:A.,由内错角相等,两直线平行,能判断,故A 符合题意;B.不是被截成的内错角,不能判断,故B 不符合题意;C. 不是被截成的内错角,不能判断,故C 不符合题意;D.不是被截成的同旁内角,不能判断,故D 不符合题意;故选:A .【点睛】本题考查平行线的判定,熟练掌握:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行,是解题的关键.6. 如图,由可以得到的结论是( )AO OB ⊥90AOB ∠=︒OC AOB ∠1290∠∠+=︒1∠2∠AB CD 12∠=∠13∠=∠14∠=∠13180∠+∠=︒12∠=∠AB CD 13∠∠、AB CD 、()AD BC AB CD 14∠∠、AB CD 、()AD BC AB CD 13∠∠、AB CD 、()AD BC AB CD AB CD ∥A. B. C. D. 【答案】B【解析】【分析】由平行线的性质,角平分线的定义逐项判断可求解【详解】解:A .当平分时,,故此选项不符合题意;B .当时,,故此选项符合题意;C .当时,,故此选项不符合题意;D .当平分时,,故此选项不符合题意.故选:B .【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.掌握平行线的性质是解题的关键.也考查了角平分线的定义.7. 将一个长方形的长减少,宽变成现在的2倍,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据长方形的长减少宽变成现在的2倍,列出方程即可.【详解】解:设这个长方形的长为,宽为,根据题意得:,故C 正确.故选:C .【点睛】本题主要考查了列二元一次方程,解题的关键是找出题目中的等量关系.8. 实数,对应的位置如图所示,下列式子正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据数轴得出a 和b 的范围,进而得出,,根据有理数运算法则逐一判断即可.【详解】解:由数轴可得:,,∴,,12∠=∠14∠=∠23∠∠=34∠∠=AC BAD ∠12∠=∠AB CD ∥14∠=∠AD BC ∥23∠∠=AC BCD ∠34∠∠=5cm cm x cm y 52x y+=52x y +=+52x y -=52x y -=+5cm=cm x cm y 52x y -=a b 22a b <22a b -<-50a +<44a b +<+a b <a b >54a -<<-3<<4b a b <a b >∴,,,,故A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查了利用数轴判断式子的正负,有理数运算和符号之间的关系,乘、除法注意:同号得正,异号得负.9. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由图可得,小丽的重量为50千克,且进入电梯后,警示音没有响起,小欧的重量分别为70千克.且进入电梯后,警示音响起,分别列出不等式即可求解.【详解】由题意可知:当电梯乘载的重量超过400千克时警示音响起,小丽进入电梯前,电梯内已乘载的重量为x 千克,由图可知:小丽的重量为50千克,且进入电梯后,警示音没有响起,所以此时电梯乘载的重量,解得因为小欧的重量为70千克.且进入电梯后,警示音响起,所以此时电梯乘载的重量,解得因此的取值范围是故选:A【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是根据题意找到不等关系.22a b >22a b ->-50a +>44a b +<+x x 280350x <≤280400x <≤330350x <≤330400x <≤50400x +≤350x ≤5070400x ++>280x >x 280350x <≤10. 已知关于的不等式组有以下说法:①当时,则不等式组的解集是;②若不等式组的解集是,则;③若不等式组无解,则;④若不等式组的整数解只有,0,1,2,则.其中正确的说法有( )A. ①③B. ②④C. ①②③D. ①②③④【答案】C【解析】【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:关于的不等式组,①当时,则不等式组的解集是,故本小题正确,符合题意;②若不等式组的解集是,则,故本小题正确,符合题意;③若不等式组无解,则,故本小题正确,符合题意;④若不等式组的整数解只有,0,1,2,则,故本小题错误,不符合题意;故选:C .【点睛】本题考查的是由不等式组的解集情况求参数,熟知解一元一次不等式组的基本步骤是解题的关键.二、填空题(每题2分,共20分)11. 用不等式表示“的3倍与7的差小于11”为______.【答案】【解析】【分析】首先表示“的3倍”为,再表示“与7的差”为,最后再表示“小于11”为.【详解】解:∵“的3倍”为,再表示“与7的差”为,∴用不等式表示“的3倍与7的差小于11”为:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”、“至少”、“最多”等等,正确选择不等号.x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-2m =x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-23m <≤m 3711m -<m 3m 37m -3711m -<m 3m 37m -m 3711m -<3711m -<12. 已知方程的三个解为方程的三个解为则方程组的解为______.【答案】【解析】【分析】根据方程组解的定义,能够同时满足方程组中的两个方程的解是方程组的解观察得出两个方程的解中相同的解为方程组的解.【详解】解:根据方程组的解的定义,能够同时满足方程组中的两个方程的解是方程组的解,可知是这两个方程中所有的解中能同时满足两个方程的解,∴方程组的解为,故答案为:.【点睛】此题主要是考查了方程组的解的定义,能够熟练掌握同时满足方程组中的两个方程的解是方程组的解是解答此题的关键.13. 如图,利用工具测量角,则的大小为______.【答案】##30度【解析】【分析】根据对顶角的性质解答即可.【详解】解:量角器测量的度数为,根据对顶角相等的性质,可得,故答案为:.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.的24x y -+=1,2;x y =-⎧⎨=⎩0,4;x y =⎧⎨=⎩1,6,x y =⎧⎨=⎩1x y +=2,3;x y =-⎧⎨=⎩1,2;x y =-⎧⎨=⎩0,1.x y =⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩1∠30︒30︒130∠=︒30︒14. 如图,将含有的直角三角板的两个顶点分别放在直尺的一组对边上,如果,那么______°.【答案】40【解析】【分析】首先根据题意求出,然后根据平行线的性质求解即可.【详解】解:如图,∵∴ ∵∴.故答案为:40.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15. 下列命题中,①对顶角相等;②内错角相等;③平行于同一条直线的两条直线平行;④若,则.是真命题的是______.【答案】①③【解析】【分析】根据对顶角的性质判断①;根据平行线的性质判断②;根据平行公理的推论判断③;根据平方根定义判断④.【详解】解:①对顶角相等,是真命题;②内错角不一定相等,是假命题;③平行于同一条直线的两条直线互相平行,是真命题;60︒120∠=︒2∠=140EBC ABC ∠=∠-∠=︒120∠=︒140EBC ABC ∠=∠-∠=︒EB CD∥240EBC ∠=∠=︒22a b >a b >④若,则a 不一定大于b ,是假命题;故答案为:①③.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16. 如果关于的不等式的解集为,则的值是___________.【答案】1【解析】【分析】解不等式得,结合关于的不等式的解集为,得出,解之可得答案.详解】解:∵,∴,则, ∵关于的不等式的解集为,∴, 解得,故答案为:1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17. 在一本书上写着方程组的解是,其中的值被墨渍盖住了,但我们可解得的值为___________.【答案】【解析】【分析】根据,代入中,解得;把,代入中,即可求出的值.【22a b >x 3223x a a +≤-1x ≤-a 253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-3223x a a +≤-325x a ≤-253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-1a =43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩y p 321x =3x y +=2y =1x =2y =4x py +=p【详解】解:∵方程组的解是,∴代入中,解得,把,代入,得解得.故答案为:.【点睛】本题考查二元一次方程组的知识,解题的关键是代入中,求出.18. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 是135°,则第二次的拐角∠B 是________, 根据是________________.【答案】①. 135° ②. 两直线平行,内错角相等【解析】【分析】由两次转弯后,和原来的方向相同可知拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:如图:∵两次转弯后,和原来的方向相同,∴AC∥BD,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为135°;两直线平行,内错角相等.【点睛】本题考查了平行线性质的应用,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.19. 如图,四边形纸片,.折叠纸片,使点D 落在上的点处,点C 落在点处,折痕为.若,则______.43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩1x =3x y +=2y =1x =2y =4x py +=124p +=32p =321x =3x y +=2y =ABCD AD BC ∥ABCD AB 1D 1C EF 102EFC ∠=︒1AED ∠=︒【答案】24【解析】【分析】根据平行线的性质可得,再根据折叠的性质可得,然后利用平角的定义求解即可.【详解】∵,∴,∵,∴,∵折叠纸片,使点D 落在上的点处,∴,∴,故答案为:24.【点睛】本题考查了折叠的性质,平行线的性质,平角的定义等知识点,熟练掌握其性质是解决此题的关键.20. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;180EFC DEF ∠+∠=︒178DEF D EF ∠=∠=︒AD BC ∥180EFC DEF ∠+∠=︒102EFC ∠=︒18010278DEF ∠=︒-︒=︒ABCD AB 1D 178DEF D EF ∠=∠=︒1180787824AED ∠=︒-︒-︒=︒(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】①. 160②. 180【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y=8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(共60分,第21-24题,每题3分,第25题5分,第26-27题,每题4分,第28题6分,第29-31题,每题5分,第32-33题7分)21. 解方程组【答案】【解析】【分析】利用加减消元法求解可得;【详解】解:,得∴把代入①,得∴所以,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解决本题的关键是要掌握消元的方法,即代入消元法与加减消元法.22. 解方程组:【答案】【解析】【分析】方程组整理后,方程组利用加减消元法求解即可.【详解】整理得,得,解得,将代入①得:342,328.x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩342,328.x y x y +=⎧⎨-=⎩①②-①②66y =-1y =-1y =-()3412x +⨯-=2x =2,1.x y =⎧⎨=-⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩12x y =⎧⎨=⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩24321x y x y +=⎧⎨-=-⎩①②2⨯+①②77x =1x =1x =214y ⨯+=∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.23. 解不等式,并把解集在数轴上表示出来.【答案】,图见解析【解析】【分析】先去括号,再移项、合并同类项、最后系数化为1即可,再在数轴上把解集表示出来.【详解】解:去括号得,,去括号得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,是基础知识要熟练掌握.24. 解不式组:并求出它的整数解.【答案】,整数解为3或4【解析】【分析】本题考查了解一元一次不等式组,不等式组的整数解.熟练掌握解一元一次不等式组,不等式组的整数解是解题的关键.先分别求出两个不等式的解集,进而可得不等式组的解集,最后求整数解即可.【详解】解:,,,12x y =⎧⎨=⎩()3157x x +-≤2x ≥-3357x x +-≤3573x x -≤-24x -≤2x ≥-()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩24x <≤()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩()224x x -->224x x -+>,,,,解得,,∴不等式组的解集为,整数解为3或4.25. 完成下列计算,并在括号内填写推理依据.如图,,直线分别交、于点E 和点F ,过点E 作交直线于点G .若,计算的度数.解:∵,∴ ( ).∵,∴ ().∴ .【答案】;两直线平行,内错角相等;垂直定义;;;【解析】【分析】由平行线的性质得,由垂直的定义得,进而可求的度数.【详解】解:∵,∴(两直线平行,内错角相等).∵,∴(垂直定义).∴.1213x x +≥-()1231x x +≥-1233x x +≥-4x -≥-4x ≤24x <≤AB CD MN AB CD EG MN ⊥CD 60EGF ∠=︒MEB ∠AB CD 60EGF ︒=∠=EG MN ⊥90MEG ∠=︒MEB ∠=-906030=︒-︒=︒BEG ∠MEG ∠BEG ∠60BEG EGF ︒∠=∠=90MEG ∠=︒MEB ∠AB CD 60BEG EGF ︒∠=∠=EG MN ⊥90MEG ∠=︒906030MEB MEG BEG ︒︒︒∠=∠-∠=-=故答案为:;两直线平行,内错角相等;垂直定义;;.【点睛】本题考查了平行线的性质,垂直的定义,数形结合是解答本题的关键.26. 如图,在三角形中,平分,求的度数.【答案】【解析】【分析】根据平行线的性质可得,根据角平分线的性质可得,则,最后根据三角形的一个外角定于与它不相邻两个内角之和,即可解答.【详解】解:∵,∴,∵平分,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的外角定理,解题的关键是掌握两直线平行,内错角相等;三角形的一个外角定于与它不相邻两个内角之和.27. 如图,点B 、C 在线段异侧,E 、F 分别是线段、上的点,和分别交于点G 和点H .已知,,.求证:.BEG ∠MEG ∠BEG ∠ABC CD ,,80ACB DE BC AED ∠∠=︒∥EDC ∠40︒BCD EDC ∠=∠ECD BCD ∠=∠ECD EDC ∠=∠DE BC ∥BCD EDC ∠=∠CD ACB ∠ECD BCD ∠=∠ECD EDC ∠=∠80AED ∠=︒180402EDC ∠=⨯︒=︒AD AB CD EC BF AD AEG AGE ∠=∠DGC C ∠=∠180BEC BFD ∠+∠=︒EC BF ∥【答案】见解析【解析】【分析】先证明出,从而得到,得到,再根据条件,得出,再根据平行线的判定求解即可.【详解】证明:证明:∵,,又∵∴,∴∴∵∴∴.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.28. 围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.【答案】(1)A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)A 种材质的围棋最多能采购10套;(3)商店销售完这30套围棋能实现利润为1300元的目标;理由见解析.【解析】AEG C ∠=∠AB CD ∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD ∠=∠AEG AGE ∠=∠DGC C ∠=∠DGC AGE∠=∠AEG C ∠=∠AB CD∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD∠=∠EC BF ∥【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据表格中的销量和收入列方程组求解即可;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,根据“用不多于5400元的金额再采购A 、B 两种材质的围棋共30套”列不等式求解即可;(3)设销售利润为w ,根据题意列出一次函数解析式,然后利用一次函数的性质求解.【小问1详解】解:设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:,答:A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;【小问2详解】解:设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,答:A 种材质的围棋最多能采购10套;【小问3详解】解:商店销售完这30套围棋能实现利润为1300元的目标;理由:设销售利润为w ,由题意得:,∵,∴w 随a 的增大而增大,∵a 的最大值为10,∴当时,w 取最大值1300,即商店销售完这30套围棋能实现利润为1300元的目标.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组、不等式以及一次函数解析()30a -3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤()()()25020021017030101200w a a a =-+--=+100>10a =式.29. 已知:如图,点D 在线段上,过点D 作交线段于点E ,连接,过点D 作于点F ,过点F 作交线段于点G .(1)依题意补全图形;(2)用等式表示与的数量关系,并证明.【答案】(1)见解析;(2),证明见解析.【解析】【分析】(1)根据题意画出图形即可;(2)根据平行线的性质得出,,等量代换得出,根据,可知,进而可得出结论.【小问1详解】解:图形如下:【小问2详解】解:,证明:∵,∴,∵,∴,∴,∵,∴,∴,AB DE BC ∥AC CD DF BC ⊥FG CD ∥AB CDE ∠DFG ∠90CDE DFG ∠+∠=︒12∠=∠23∠∠=13∠=∠DF BC ⊥3490∠+∠=°90CDE DFG ∠+∠=︒DE BC ∥12∠=∠CD FG ∥23∠∠=13∠=∠DF BC ⊥3490∠+∠=°1490∠+∠=︒即.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.30. 解答题:解方程组时,由于,的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,不仅计算量大,而且易出现运算错误,而采用下面的解法则比较简单:①②得,所以③,③①得,解得,从而,所以原方程组的解是.请你运用上述方法解方程组:.【答案】【解析】【分析】仿照例子,利用加减消元法可解方程组求解.【详解】解:,得:,∴③,③①得:,解得:,将代入③得:,∴原方程组的解为.90CDE DFG ∠+∠=︒323538303336x y x y +=⎧⎨+=⎩①②x y -222x y +=1x y +=35⨯-33x =-=1x -2y =12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩①②-②①333x y +=1x y +=2018⨯-22x =-=1x -=1x -2y =12x y =-⎧⎨=⎩【点睛】本题主要考查二元一次方程组解法,解二元一次方程组由代入消元法和加减消元法.31. 先阅读绝对值不等式和的解法,再解答问题:①因为,从数轴上(如图1)可以看出只有大于而小于6的数的绝对值小于6,所以的解集为.②因为,从数轴上(如图2)可以看出只有小于的数和大于6的数的绝对值大于6,所以的解集为或.(1)的解集为_________,的解集为_________;(2)已知关于x ,y 的二元一次方程组的解满足,其中m 是负整数,求m 的值.【答案】(1),或(2)【解析】【分析】本题考查了绝对值的意义,不等式组的解集,加减消元法解二元一次方程组等知识.理解题意是解题的关键.(1)根据题意求解集即可;(2)加减消元法解二元一次方程组得,由题意知,,即,,可求,然后作答即可.【小问1详解】解:由题意知,的解集为,的解集为或;故答案为:,或;【小问2详解】解:,的||6x <||6x >||6x <6-||6x <66x -<<||6x >6-||6x >6x <-6x >||2x <||5x >254482x y m x y m -=+⎧⎨+=-+⎩||3x y +≤22x -<<5x <-5x >1-42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩472333m m +-≤23m -≤323m -≤-≤15m -≤≤||2x <22x -<<||5x >5x <-5x >22x -<<5x <-5x >254482x y m x y m -=+⎧⎨+=-+⎩①②得,,解得,,将代入①得,,解得,,∴,∵,∴,即,∴,解得,,∵m 是负整数,∴m 的值为.32. 已知:如图,直线,点A 、B 在直线a 上(点A 在点B 左侧),点C 、D 在直线b 上(点C 在点D 左侧),和相交于点E .(1)求证:;(2)分别作和的角平分线相交于点F .① 结合题意,补全图形;② 用等式表示和的数量关系,并证明.【答案】(1)见解析(2)①见解析;②;见解析【解析】【分析】(1) 过点E 作,证明 ,,可得,从而可得答案;2⨯-②①921y m =-73y m =-73y m =-72543x m m ⎛⎫--=+ ⎪⎝⎭423x m =+42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩||3x y +≤472333m m +-≤23m -≤323m -≤-≤15m -≤≤1-a b ∥AD BC BED BAD BCD ∠=∠+∠BAD ∠BCD ∠AFC ∠BED ∠12AFC BED ∠=∠EM AB ∥BAD AEM ∠=∠BCD MEC ∠=∠AEC BAD BCD ∠=∠+∠(2)①根据题意补全图形即可;②过点F 作,可得 ,证明,可得,结合、分别平分和,可得,结合,从而可得答案.【小问1详解】过点E 作,∴ ,∵,∴,∴,∵,∴,∵,∴.【小问2详解】①补全图形如图所示:②;证明:过点F 作,∴∵,∴,FN AB ∥AFN BAF ∠=∠NFC FCD ∠=∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠EM AB ∥BAD AEM ∠=∠AB CD ∥EM CD ∥BCD MEC ∠=∠AEC AEM MEC ∠=∠+∠AEC BAD BCD ∠=∠+∠AEC BED ∠=∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠FN AB ∥AFN BAF ∠=∠AB CD ∥FN CD ∥∴,∵,∴,∵、分别平分和,∴,∵,∴.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,熟练的利用平行线的性质进行证明是解本题的关键.33. 给出如下定义:如果一个未知数的值使得方程和不等式(组)同时成立,那么这个未知数的值称为该方程与不等式(组)的“关联解”.例如:已知方程和不等式,对于未知数,当时,使得,同时成立,则称是方程与不等式 的“关联解”.(1)判断是否是方程与不等式的“关联解”_____(填是或否);判断是方程与不等式(组)①,②,③中_______的“关联解”;(只填序号)(2)如果是关于的方程与关于的不等式组的“关联解”,那么____,的取值范围是_______;(3)如果是关于方程与关于的不等式组的“关联解”,求的取值范围.【答案】(1)否;①;(2);;(3).【解析】的NFC FCD ∠=∠AFC AFN NFC ∠=∠+∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠321x -=40x +>x 1x =3121⨯-=41450x +=+=>1x =321x -=40x +>3x =260x -=()234x +<=1x -231x +=1322x -<132x ->2050x x ->⎧⎨-<⎩2x =x 20x a -=x ()11212x x a b +⎧>-⎪⎨⎪+-≤⎩=a b x m =x 24x n -=x 121n m x m n x ⎧-+>-⎪⎨⎪-->-⎩m 4a =3b ≥-36m <<【分析】(1)根据“关联解”的定义求解即可;(2)根据“关联解”的定义,将代入方程即可求出,再解不等式得:,即可得出答案;(3)根据“关联解”的定义得出不等式组,求解即可【小问1详解】解:当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,成立,则是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式组 的“关联解”;故答案为:否;①;【小问2详解】解:根据题意可得:,解得:,不等式组解不等式得:,即,解得:;故答案为:;;【小问3详解】2x =4a =②8122b +-≥4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩3x =2360⨯-=()2334+<3x =260x -=()234x +<=1x -()2131⨯-+=13122--<=1x -231x +=1322x -<=1x -()2131⨯-+=1132-->=1x -231x +=132x ->=1x -()2131⨯-+=120150-->⎧⎨--<⎩=1x -231x +=2050x x ->⎧⎨-<⎩220a ⨯-=4a =()11212x x a b +⎧>-⎪⎨⎪+-≤⎩①②②212b a x +-≤8122b +-≥3b ≥-4a =3b ≥-解:根据题意可得:,∴,不等式组为,化简得:,解不等式组得:.【点睛】本题考查解一元一次不等式组,方程的解,正确理解新定义是解题的关键.24m n -=42-=m n 4122412m m m m m m -⎧-+>-⎪⎪⎨-⎪-->-⎪⎩4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩36m <<。
人教版七年级下期中数学试卷(含答案)
人教版七年级数学下学期期中测试卷(含答案)班级:姓名:学号:分数:(考试时间:120分钟试卷满分:120分)一、选择题(1—6题每题2分,7-16题每题3分,共42分)1.若2a=,10b=,则20用含a,b的式子表示是()A.2a B.2b C.a b+D.ab2.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.3.如图,若12∠=∠,则下列选项中可以判定//AB CD的是()A.B.C.D.4.下列各数比1大的是()A.0 B.12C2D.3-5.下面四个命题中,它们的逆命题是真命题的是()①对顶角相等;②同旁内角互补,两直线平行;③直角三角形两锐角互余;④如果a,b都是正数,那么0ab>.A.①②③B.②③④C.②③D.③④6.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为() A.(5,3)--D.(3,5)-B.(5,3)-C.(3,5)7.如图,数轴上点N表示的数可能是()A.2B.3C.7D.108.4的算术平方根是()A.2±B.2 C.2-D.16±9.若点(,)x y+=)y=,则(x=,||3P x y在第四象限,且||2A.1-B.1 C.5 D.5-10.一辆汽车在笔直的公路上行驶,第一次左拐50︒,再在笔直的公路上行驶一段距离后,第二次右拐50︒,两次拐弯后的行驶方向与原来的行驶方向()A.恰好相同B.恰好相反C.互相垂直D.夹角为100︒11.如图,四边形OABC是矩形,(2,1)B,点C在第二象限,则点C的坐标是()A,(0,5)A.(1,3)--D.(2,4)-C.(2,3)-B.(1,2)12.小明做了四道练习题:①有公共顶点的两个角是对顶角;②两个直角互为补角;③一个三角板中两个锐角互为余角;④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角;⑤平面内,有且只有一条直线与已知直线垂直;⑥两条直线相交,一定垂直;⑦若两条直线相交所形成的四个角都相等,则这两条直线互相垂直.其中正确的有()A.4个B.3个C.2个D.1个14. 已知则( )A. B. C. D.5215.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为A. B. C. D.16.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D →E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C.D.二.填空题(每题3分,共12分)17.长为3m+2n,宽为5m-n的长方形的面积为__________.18.已知:OE平分∠AOD,AB∥CD,OF⊥OE于O,∠D = 50°,则∠BOF=________。
吉林省长春市第二实验学校2023-2024学年七年级下学期期中数学试题(原卷版)
吉林省第二实验(高新远洋)学校2023-2024学年度下学期七(2)年级期中考试数学试卷一、选择题(每小题3分,共24分)1. 下列是一元一次方程是( )A. B. C. D. 2. 下列各组数是二元一次方程组的解是( )A. B. C. D. 3. 把不等式组的解集在数轴上表示出来,正确的是( )A.B. C. D.4. 用三角板作△ABC 边BC 上的高,下列三角板的摆放位置正确的是( )A. B.C. D.5. 《孙子算经》记载:今有人盗库绢,不知所失几何?但闻草中分绢:人得六匹,盈六匹;人得七匹,不足七匹.问:人、绢各几何?意思是:如果每个人分6匹,还多出6匹,每个人分7匹,还差7匹,问:现在有多少人,有多少匹绢?设现在有x 人,有绢y 匹,下列所列方程(组)正确的是( )A. B. C. D.的的10x -=25x y +=2230x x --=7xy =371x y x y +=⎧⎨-=-⎩70x y =⎧⎨=⎩01x y =⎧⎨=⎩12x y =⎧⎨=⎩12x y =⎧⎨=-⎩25322x x -≤⎧⎪⎨+<⎪⎩6677x x -=+6677x x +=-6677y x y x =+⎧⎨-=⎩6677y x y x=-⎧⎨+=⎩6. 如图,有四种瓷砖图案,用同一种瓷砖能铺满地面的是( )(1) (2)(3) (4)A. (1)(2)(4)B. (2)(3)(4)C. (1)(3)(4)D. (1)(2)(3)7. 如图所示,在中,已知点D 、E 、F 分别为边中点,且的面积是,则阴影部分面积等于( ).A. B. 1 C. D. 28. 如图的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC 成轴对称的格点三角形一共有( )A. 2个B. 3个C. 4个D. 5个二、填空题(每小题3分,共18分)9. 正六边形的内角和为___度.10. 等腰三角形的两边长分别为、,则这个等腰三角形的周长为_____cm .11. 不等式的最小整数解为_______.12. 一个正方形和两个等边三角形的位置如图所示,若,则的度数为______.13.如图为小丽和小欧依序进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已的ABC BC AD CE 、、ABC 24cm 2cm 0.5 1.55cm 11cm 20x +>x =360∠=︒12∠+∠知当电梯乘载的重量超过300公斤时警示音响起,且小丽、小欧的重量分别为50公斤、70公斤.若小丽进入电梯前,电梯内已乘载的重量为x 公斤,则满足题意的x 的范围是______.14. 关于的二元一次方程组的解满足,则的范围为_____.三、解答题(本大题共7小题,共78分)15. (1)解方程:;(2)解方程组:16. 解下列不等式(组),并把解集表示在数轴上.(1);(2)17. 如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =69°,求∠DAC 的度数.对于上述问题,在以下解答过程的空白处填上适当地内容(理由或数学式).解:∵∠1=∠2,∠3=∠4(已知),而∠3=∠1+∠2( ),∴∠3=∠4=∠1+∠2=2∠1,∵∠DAC +∠3+∠4=180°( ),∴∠DAC +4∠1=180°(等量代换),∵∠BAC =∠1+∠DAC =69°(已知),∴∠1+180°﹣4∠1=69°,∴∠1= ,∴∠DAC =∠BAC ﹣∠1= .,x y 3234x y a x y a+=+⎧⎨+=-⎩2x y +<-a ()34x x +=8524310x y x y +=⎧⎨-=-⎩()3210x x -+>21512x x ->-⎧⎨-+≥⎩18. 图1、图2、图3均是的正方形网格,每个小正方形的顶点称为格点,的三个顶点都在格点上.(提醒:①每个小正方形边长1;②所面图中不用标注顶点字母)(1)在图1中,画出一个与关于直线AC 成轴对称格点三角形.(2)在图2中,画出一个与关于直线BC 成轴对称的格点三角形.(3)在图3中,画出一个与面积相等且形状不同的格点三角形.19. 在△ABC 中,CD 平分∠ACB 交AB 于点D ,AH 是△ABC 边BC 上的高,且∠ACB =70°,∠ADC =80°,求:∠BAC 和∠BAH 的度数.20. 如图1是1个纸杯和4个叠放在一起的纸杯的示意图,设杯子底部到杯沿底边高为,杯沿高为.(1)用代数式表示4个叠放在一起纸杯的总高度(用含h 的代数式表示).(2)某型号的纸杯4个叠在一起的总高度为.①求h 的值.②该型号纸杯有40个装、50个装、60个装共三种包装,均把纸杯叠放成一叠进行包装,图2是某品牌饮的的44⨯ABC ABC ABC ABC ()cm h 0.6cm 10.9cm水机的示意图,储藏柜的高度是,若要把该型号纸杯按原包装竖直(杯口向上)放入储藏柜,该储藏柜能放得下这三种包装中哪些包装的纸杯?说明理由.21. 一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走,平路每小时走,下坡每小时走,那么从甲地到乙地需,从乙地到甲地需.甲地到乙地全程是多少?根据以上条件,下列解题思路或结论说法正确的有______.①设上坡路长x 千米,平路长y 千米,可列方程组.②根据条件,能求出甲地到乙地的全程是3.1千米.③列算式即可求出上坡路长.④设上坡路长x千米,可列方程22. 小红在数学课上学习了角的相关知识后,立即对角产生了浓厚的兴趣.她查阅书籍发现两个有趣的概念,三角形中相邻两条边的夹角叫做三角形的内角;三角形一条边的延长线与其邻边的夹角,叫做三角形的外角.小红还了解到三角形的内角和是180°,同时她很容易地证明了三角形外角的性质,即三角形的一个外角等于与它不相邻的两个内角的和.于是,爱思考的小红在想,三角形的内角是否也具有类似的性质呢?三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?①尝试探究:(1)如图1,∠1与∠2分别为△ABC 的两个外角,试探究∠A 与∠1+∠2之间存在怎样的数量关系?为什么?解:数量关系:∠l+∠2=180°+∠A理由:∵∠1与∠2分别为△ABC 的两个外角∴∠1=180°-∠3,∠2=180°-∠4∴∠1+∠2=360°-(∠3+∠4)40cm 3km 4km 5km 54min 42min 543460425460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩()()544253-÷-5442356060x x -=-∵三角形的内角和为180°∴∠3+∠4=180°-∠A∴∠l+∠2=360°-(180°-∠A)=180°+∠A小红顺利地完成了探究过程,并想考一考同学们,请同学们利用上述结论完成下面的问题.②初步应用:(2)如图2,在△ABC 纸片中剪去△CED,得到四边形ABDE ,∠1=130°,则∠2-∠C=________;(3)如图3,在△ABC 中,BP 、CP 分别平分外角∠DBC、∠ECB,则∠P 与∠A 有何数量关系?________________.(直接填答案)③拓展提升:(4)如图4,在四边形ABCD 中,BP 、CP 分别平分外角∠EBC、∠FCB,则∠P 与∠1、∠2有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由.)23. 在中,.点D 、E 分别在的边上,且均不与的顶点重合,连接,将沿折叠,使点A 的对称点始终落在四边形的外部,交边于点F ,且点与点C 在直线的异侧.(1)如图①,则_______.(2)如图②,则_______.(3)如图③,设图②中的.求的度数;(4)当的某条边与或垂直时,直接写出的度数.ABC 90,42C A ∠=︒∠=︒ABC AC AB 、ABC DE ABC DE A 'BCDE A D 'AB A 'AB B ∠=︒BED CDE ∠+∠=︒1,2CDF A EF ∠=∠∠=∠'12∠-∠A DE ' AB AC ADE ∠。
福建省漳州市漳州一中区域联考2023-2024学年七年级下学期期中数学试题(解析版)
2023~2024学年第二学期期中考七年级数学科试卷考试时间:120分钟 满分:150分一、选择题(每题4分,共40分,请将答案涂在答题卡的相应位置上)1. 计算a 2·a 3 的结果是 ( )A. a 4B. a 5C. a 6D. a 8【答案】B【解析】【分析】根据同底数幂相乘,底数不变,指数相加,计算后即可选取答案.【详解】a 2•a 3=a 2+3=a 5,故选B .【点睛】本题考查了同底数幂的乘法的法则,熟练掌握运算是解题的关键.2. 如图,直线相交于点,若,则的度数是( )A. B. C. D. 【答案】C【解析】【分析】本题考查对顶角,根据对顶角相等,即可得出结果.【详解】解:由题意,得:是对顶角,,∴;故选C .3. 对于圆的周长公式,下列说法正确的是( )A. C ,是变量,2是常量B. r 是变量,C 是常量C. C 是变量,r 是常量D. C ,r 是变量,是常量【答案】D【解析】【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:圆的周长公式表明圆的周长与半径成正比,比值为是一个常数,变量为周长和半径AB CD 、O 130∠=︒2∠10︒20︒30︒40︒1,2∠∠130∠=︒2130∠=∠=︒2πC r =π2π2πC.故选:D .【点睛】本题考查了常量、变量,熟记相关概念是解题关键.4. 如图,△ABC 中,∠A =60°,∠B =40°,则∠C 等于( )A. 100°B. 80°C. 60°D. 40°【答案】B【解析】【详解】由三角形内角和定理得,∠C =180°﹣∠A ﹣∠B =80°,故选:B .5. 下列运算正确的是( )A. B. C. D.【答案】D【解析】【分析】本题主要考查了积的乘方计算,幂的乘方计算,完全平方公式和平方差公式,熟知相关计算法则是解题的关键.【详解】解:A 、,原式计算错误,不符合题意;B 、,原式计算错误,不符合题意;C 、,原式计算错误,不符合题意;D 、,原式计算正确,符合题意;故选:D .6. 如图,某同学在体育课上跳远后留下的脚印,在图中画出了他的跳远距离,能正确解释这一现象的数学知识是()r ()235a a =()33626a a =()222a b a b +=+()()22a b a b a b -+=-()236a a =()33928a a =()2222a b a ab b +=++()()22a b a b a b -+=-A. 两点之间,线段最短B. 垂线段最短C. 两点确定一条直线D. 经过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】由点到直线的距离的定义及跳远比赛的规则作出判断.【详解】解:能正确解释这一现象的数学知识是垂线段最短,故选:B .【点睛】此题考查了垂线段最短的性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.7. 变量与之间的关系式是,当自变量时,因变量的值是( )A. B. C. 2 D. 1【答案】C【解析】【分析】本题主要考查了求函数值,直接把代入中进行求解即可.【详解】解:在中,当时,,故选:C .8. 用直尺和圆规作一个角等于已知角的示意图如图所示,则说明的依据是( )A B. C. D. 【答案】A【解析】【分析】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.由作法易得.y x 112y x =+2x =y 2-1-2x =112y x =+112y x =+2x =12122y =⨯+=A O B AOB '''∠=∠SSS SAS AAS ASA,,,根据可得到三角形全等.【详解】解:由作图可知,,,,.故答案为:A .9. 如图,下列条件中,能判定的是( )A. B. C. D. 【答案】A【解析】【分析】根据平行线的判定条件逐一判断即可.【详解】解:由,可以判定(内错角相等,两直线平行),故A 符合题意;由,不能判定,故B 不符合题意;由,能判定(同位角相等,两直线平行),不能判定,故C 符合题意;由,可以判定(同旁内角互补,两直线平行),不能判定,故D 不符合题意;故选A .【点睛】本题主要考查了平行线判定,熟知平行线的判定条件是解题的关键.10. 如图,为上方一点,H 、G 分别为上的点,、的角平分线交于点的角平分线与的延长线交于点,下列结论:①;②;③;④,则.其中正确的结论有( )A. ①②③B. ②③④C. ①③④D. ①②③④【答案】D的OD O D ''=OC O C ''=CD C D ''=SSS OD O D ''=OC O C ''=CD C D ''=∴()SSS COD C O D ''' ≌AB CD ∥23∠∠=14∠=∠15∠=∠4180ADC ∠+∠=︒23∠∠=AB CD ∥14∠=∠AB CD ∥15∠=∠AD BC ∥AB CD ∥4180ADC ∠+∠=︒AD BC ∥AB CD ∥,AB CD P ∥AB AB CD 、PHB ∠PGD ∠,E PGC ∠EH F EG FG ⊥P PHB PGD ∠+∠=∠2P E ∠=∠AHP PGC F ∠-∠=∠60F ∠=︒【解析】【分析】由角平分线的性质以及平行线的性质可求出,即可判断①;设交于点M ,交于点N ,根据平行的性质即有,再结合三角形外角的性质即可判断②;根据角平分线的性质有,再证即可得∠PGD =2∠EGD ,即可判断③;先证,根据,即有,再结合,即可判断④正确;【详解】∵平分,平分,∴,∵,∴,∴,故①正确;设交于点M ,交于点N ,如图,∵,∴,∵,∴,故②正确;∵平分,平分,∴,∵,∴,∵,∴,∵,∴,故③正确;90EGF ∠=︒PG AB GE AB PGD PMB ∠=∠2,2PHB EHB PGD EGD ∠=∠∠=∠,P PHB PGD E EHB EGD ∠+∠=∠∠+∠=∠,P F ∠=∠90E F ∠+∠=︒90P E ∠+∠=︒2P E ∠=∠GF PGC ∠EG PGD ∠1122PGF PGC PGE PGD ∠=∠∠=∠,180PGC PGD ∠+∠=︒90PGF PGE ∠+∠=︒EG FG ⊥PG AB GE AB AB CD PGD PMB ∠=∠P PHB PMB ∠+∠=∠P PHB PGD ∠+∠=∠HE PHB ∠EG PGD ∠2,2PHB EHB PGD EGD ∠=∠∠=∠AB CD ∥,ENB EGD PMB PGD ∠=∠∠=∠,P PHB PMB E EHB ENB ∠+∠=∠∠+∠=∠,P PHB PGD E EHB EGD ∠+∠=∠∠+∠=∠2,2PHB EHB PGD EGD ∠=∠∠=∠2P E ∠=∠∵,∴,∴,∵,∴,∵,∴,∴,∵,∴,∴,故④正确;故选:D .【点睛】本题考查了平行线的性质、角平分线的性质、三角形外角的性质以及直角三角形中两个锐角互余等知识,灵活运用平行线的性质和三角形的外角的性质是解答本题的关键.二、填空题(每题4分,共24分,请将答案填在答题卡相应的横线上)11. 很多人可能都知道蓝鲸是迄今发现的地球上最大的动物,却都不了解体积最小的动物,世界上体积最小的动物要比蚂蚁小很多倍,它是被命名为H 39的原生动物,它的最长直径也不过才0.0000003米.其中数据0.0000003用科学记数法表示为______.【答案】【解析】【分析】本题主要考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为的形式,其中,n 为整数.解题关键是正确确定a 的值以及n 的值.【详解】0.0000003用科学记数法表示为.故答案为:.12. 已知,,则______.【答案】【解析】【分析】本题主要考查同底数幂的除法.根据逆用同底数幂的除法运算法则进行计算即可得到答案.【详解】解:∵,,AB CD ∥PMA PGC ∠=∠AHP PGC AHP PMH P ∠-∠=∠-∠=∠AHP PGC F ∠-∠=∠P F ∠=∠90FGE ∠=︒90E F ∠+∠=︒90P E ∠+∠=︒2P E ∠=∠30E ∠=︒260P F E ∠=∠=∠=︒7310-⨯10n a ⨯1<10a ≤7310-⨯7310-⨯2m a =3n a =m n a -=232m a =3n a =∴,故答案为:.13. 等腰三角形的两条边长分别为3和6,则这个等腰三角形的周长是______.【答案】15【解析】【分析】分两种情况讨论,当3为底时和当3为腰时,再求和即可;本题主要考查等腰三角形的知识,熟练掌握构成三角形的定义是解题的关键.【详解】解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为:.②当3为腰时,其它两边为3和6,,不能构成三角形,故舍去,故答案为:15.14. 某汽车生产厂对其生产的型汽车进行油耗试验(油箱已加满),试验中汽车为匀速行驶,在行驶过程中,油箱的余油量(升)与行驶时间(小时)之间的关系如下表:(小时)0123(升)80726456则与之间的关系式为______.【答案】【解析】【分析】本题主要考查了求函数关系式,根据行驶时间每增加1小时,油箱的余油量减少8升进行求解即可.【详解】解:观察表格可知,行驶时间每增加1小时,油箱的余油量减少8升,∴,故答案为:.15. 如图,,点在直线上,点在直线上,.若,则∠1的度数为2233m n m n a a a -=¸=¸=2336615++=336+= ∴A y t t y y t ()808010y t t =-≤≤()808010y t t =-≤≤()808010y t t =-≤≤a b ∥A b C a AB BC ⊥2140∠=︒【答案】##130度【解析】【分析】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.过点B 作,则有,由平行线的性质可得,,再由,即可求解.【详解】解:过点B 作,如图,,,,,,,,,,.故答案为:.16. 如图,已知四边形中,厘米,厘米,厘米,,点E 为线段的中点.如果点P 在线段上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段上由C 点向D 点运动.当点Q 的运动速度为______厘米/秒时,能够使与以C 、P 、Q三点所构成的三角130︒BD a ∥BD b ∥2180CBD ∠+∠=︒1180ABD ∠+∠=︒90ABC ∠=︒BD a ∥2180CBD ∴∠+∠=︒2140∠=︒ 180240CBD ∴∠=︒-∠=︒AB BC ⊥ 90ABC ∴∠=︒9050ABD CBD ∴∠=︒-∠=︒a b BD b ∴∥1180ABD ∴∠+∠=︒1180130ABD ∴∠=︒-∠=︒130︒ABCD 12AB =8BC =14CD =B C ∠=∠AB BC CD BPE【答案】或【解析】【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q 的运动速度.【详解】解:设点P 运动的时间为t 秒,则,,∵,∴①当,时,,此时,解得,∴,此时,点Q 的运动速度为厘米/秒;②当,时,,此时,,解得,∴点Q 的运动速度为厘米/秒;综上所述,点Q 的运动速度为3厘米/秒或厘米/秒时,能够使与以C 、P 、Q 三点所构成的三角形全等.3923BP t =83CP t =-B C ∠=∠6BE CP ==BP CQ =BPE CQP ≅ 683t =-23t =2BP CQ ==2233÷=6BE CQ ==BP CP =BPE CPQ ≅ 383t t =-43t =49632÷=92BPE故答案为:或.【点睛】本题考查了全等三角形的性质和判定的应用.解决问题的关键是掌握全等三角形的对应边相等.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17. 计算:(1)(2)(3)(4)(简便计算)【答案】(1)2 (2) (3)(4)1【解析】【分析】本题考查负整数指数幂,零指数幂,整式的运算:(1)先进行负整数指数幂,零指数幂和乘方运算,再进行加减运算即可;(2)利用多项式乘多项式的法则,进行计算即可;(3)先利用平方差公式进行计算,再利用完全平方公式进行计算即可;(4)利用平方差公式进行简算即可.【小问1详解】解:原式;【小问2详解】原式;【小问3详解】原式;【小问4详解】原式.18. 先化简,再求值:,其中.3921020241( 3.14)(1)2π-⎛⎫+--- ⎪⎝⎭(39)(68)x x ++()()x y z x y z +-++2202420252023-⨯2187872x x ++2222x xy y z ++-2112=+-=2218245472187872x x x x x =+++=++22222()2x y z x xy y z =+-=++-()()222202420241202412024202411=-+⨯-=-+=()()()222x y x y x y xy y ⎡⎤+---+÷⎣⎦x 1,y 2==-【答案】,【解析】【分析】本题主要考查了整式的化简求值,先根据完全平方公式和平方差公式去小括号,然后合并同类项,接着根据多项式除以单项式的计算法则化简,最后代值计算即可.【详解】解:,当时,原式.19. 如图,已知,试说明:.【答案】见解析【解析】【分析】本题考查平行线的判定,邻补角求出的度数,进而得到,即可得证.【详解】证明:∵,∴,∵,∴,∴.20. 阅读并完成相应的任务:如图,小明站在堤岸凉亭A 点处,正对他的B 点(与堤岸垂直)停有一艘游艇,他想知道凉亭与这艘游艇之间的距离,于是制定了如下方案.2x y -4()()()222x y x y x y xy y⎡⎤+---+÷⎣⎦()2222222x y x xy y xy y ⎡⎤=---++÷⎣⎦()2222222x y x xy y xy y =--+-+÷()2422xy y y=-÷2x y =-x 1,y 2==-()2124=⨯--=1105275∠=︒∠=︒,a b ∥3∠13∠=∠275∠=︒31802105∠=︒-∠=︒1105∠=︒13∠=∠a b ∥AB课题测量凉亭与游艇之间的距离测量工具皮尺测量方案示意图(不完整)测量步骤①小明沿堤岸走到电线杆C旁(直线与堤岸平行);②再往前走相同的距离,到达D点;③他到达D点后向左转90度直行,当自己,电线杆与游艇在一条直线上时停下来,此时小明位于点E处测量数据米,米,米问题解决:(1)任务一:根据测量步骤将测量方案示意图补充完整;(2)任务二:小明的解答如下,请你帮忙补充完整;米,米,,,在和中(③)(④)()米【答案】(1)见详解;(2)①;②对顶角相等;③;④.【解析】【分析】本题考查了三角形全等的判定与性质,根据题意画出图形并进行全等三角形的证明是解题的关键.结合测量方案示意图,证明,再通过全等三角形的性质,推出的长度.【详解】(1)AC20AC=20CD=8DE=20AC=20CD=90A∠= 90D∠=AC DC∴=A D∠=∠ABCDEC()____A DAC DC⎧∠=∠⎪=⎨⎪⎩①②ABC DEC∴≌AB DE∴=AB∴=BCA ECD∠=∠ASA8ABC DEC≌△△AB(2)由题意可知,米,米,米,,,在和中()(全等三角形对应边相等)米故答案为:①;②对顶角相等;③全等三角形对应边相等;④8.21. 完成下面推理填空:如图,点E ,F 分别在和上,与互余,于点.求证:.证明:( ① )② ( ③ )( ④ )与互余( ⑤ )( ⑥ )【答案】垂直的定义;;同位角相等,两直线平行;两直线平行,同位角相等;同角的余角相等;内错角相等,两直线平行【解析】20AC =20CD =8DE =90A ∠= 90D ∠=AC DC ∴=A D∠=∠ABC DEC A D AC DCBCA ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩(对顶角相等)ABC DEC ∴ ≌ASA AB DE ∴=8AB ∴=BCA ECD ∠=∠AB CD 1,2D ∠=∠∠C ∠AF CE ⊥G AB CD ∥AF CE ⊥ 90CGF ∴∠=︒1D ∠=∠ AF ∴∥4CGF ∴∠=∠234180∠+∠+∠=︒ 2390∴∠+∠=︒2∠ C ∠290C ∴∠+∠=︒3C ∴∠=∠AB CD ∴∥DE【分析】本题主要考查了平行线的性质与判定,垂直的定义,根据平行线的性质和判定条件,垂直的定义结合已给推理过程进行证明即可.【详解】证明:(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)与互余(同角的余角相等)(内错角相等,两直线平行)故答案为:垂直的定义;;同位角相等,两直线平行;两直线平行,同位角相等;同角的余角相等;内错角相等,两直线平行.22. 如图,点B ,E ,C ,F 在一条直线上.(1)过点E 向上作射线,使得;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,在射线上截取,连接,若,试说明:.【答案】(1)见解析 (2)证明见解析【解析】【分析】此题考查了过一个点作已知直线的平行线,全等三角形的性质和判定,(1)利用尺规作出即可;(2)首先根据题意画出图形,然后由得到,然后证明出,即可得到.【小问1详解】AF CE ⊥ 90CGF ∴∠=︒1D ∠=∠ AF DE ∴∥4CGF ∴∠=∠234180∠+∠+∠=︒ 2390∴∠+∠=︒2∠ C ∠290C ∴∠+∠=︒3C ∴∠=∠AB CD ∴∥DE EM EM AB ∥EM ED BA =FD BE CF =A EDF ∠=∠MEC B ∠=∠BE CF =BC EF =()SAS ABC DEF ≌A EDF ∠=∠如图所示,射线即为所求;【小问2详解】如图所示,∵∴,即∵,∴∴.23. 甲、乙两人从A 地出发,骑自行车沿同一条路行驶到B 地,他们离出发地的距离s (单位:)和行驶时间t (单位:h )之间的关系的图象如图所示,且甲停止一段时间后再次行走的速度是原来的一半,回答下列问题:(1)求乙的速度;(2)两人相遇时,离B 地的路程是多少千米?【答案】(1)乙的速度为(2)两人相遇时,离B 地的路程是10千米【解析】EM BE CF=BE EC FC EC +=+BC EF =ED BA =MEC B ∠=∠()SAS ABC DEF ≌A EDF ∠=∠km 40km/h 3【分析】本题考查了从函数图象获取信息、一元一次方程的应用,读懂函数图象,正确获取信息是解题关键.(1)根据乙在内骑行了即可得;(2)首先求出,设乙骑行了小时与甲相遇,根据相遇时,两人离出发地的距离相等建立方程,解方程求出的值,由此即可得.【小问1详解】解:乙速度为,答:乙的速度为.【小问2详解】解:甲停止前的速度为,甲停止一段时间后再次行走的速度为,则,设乙骑行了小时与甲相遇,则可列方程为,解得,则,答:两人相遇时,离B 地的路程是10千米.24. 若x 满足,求的值.解:设,则,则请仿照上面的方法求解下面问题:(1)若满足,则的值为;(2)若满足,求的值;(3)已知正方形的边长为x ,E ,F 分别是、上的点,且,长方形的面积是15,分别以、为边作正方形,求阴影部分的面积.的 1.5h 20km ()()2.520881h a =--÷=x x ()()402020.5km/h 3÷-=40km/h 3()80.516km/h ÷=()1628km/h ÷=()()2.520881h a =--÷=x ()40880.53x x =+-34x =40403202010334x -=-⨯=()()944x x --=()()2249x x -+-9,4x a x b -=-=()()944x x ab --==945a b x x +=-+-=()()()22222294252417x x a b a b ab ∴-+-=+=+-=-⨯=x ()()722x x --=()()2272x x -+-n ()()222021202334n n -+-=()240442n -ABCD AD DC 1,3AE CF ==EMFD MF DF【答案】(1)21 (2)64(3)16【解析】【分析】本题考查代数式求值,涉及完全平方公式、整体代入求值等,读懂题意,找准条件与所求代数式的练习,利用完全平方公式变形,整体代入求值即可得到答案.(1)设,,根据材料中的方法,求出和与差,利用完全平方公式代值求解即可得到答案;(2)设,,根据材料中的方法,求出和与差,利用完全平方公式代值求解即可得到答案;由,代值求解即可得到答案;(3)根据题意,得到正方形边长,数形结合得到,设,,利用材料中的方法,求出,代值求解即可得到答案.【小问1详解】解:设,,则,,;故答案:21;【小问2详解】解:,,设,,则,,,即,解得,为7x a -=2x b -=2023n a -=2021n b -=()()()()222404422404420212023n n n n ⎡⎤-=-=-+-⎣⎦()42S x =-影3x a -=1x b -=()228x -=7x a -=2x b -=()()722ab x x =--=()()725a b x x +=-+-=()()()22222272252221x x a b a b ab ∴-+-=+=+-=-⨯=()()222021202334n n -+-= ()()222023202134n n ∴-+-=2023n a -=2021n b -=()()()()2023202120212023ab n n n n =--=---()()202320212a b n n +=-+-=()()()22222202320212n n a b a b ab ∴-+-=+=+-23422ab =-2342152ab --==;,;【小问3详解】解:根据题意可知正方形的边长为,正方形的边长为,正方形的边长为不为负值,,即,,长方形的面积是15,,设,,则,,,即,负值舍去;,阴影部分的面积是.25. 如图,在中,,动点是线段上一点,连接,以为边向右作,使得,连接与交点为.(1)若,则 , ;(2)点D 在线段上运动的过程中,试说明:是的角平分线.∴()()2021202315n n --=()()()()222404422404420212023n n n n ⎡⎤-=-=-+-⎣⎦ ∴()()22224044223421564n b a a b ab -=-=+-=+⨯=GFDH 3x -MFRN 1x - GFDH 3x -30x ∴->3x >()()()221342MFRN GFDH S S S x x x ∴=-=---=-影正方形正方形 EMFD ∴()()1315EMFD S x x =--=长方形3x a -=1x b -=()()3115ab x x =---=-()()312a b x x +=-+-=()()()()()2222231244241564x x x a b a b ab ⎡⎤∴-+-=-=-+=+-=+⨯=⎣⎦()228x -=()4216S x ∴=-=影∴16ABC AB AC =D BC AD AD ADE V ,AD AE DAE BAC α=∠=∠=CE DE DE ,,AC M 40α=︒DCA ∠=ACE ∠=BC CM DCE △(3)点在线段上运动的过程中,若是的中线时,如图所示,依照题意补全图形,并说明此时是的高.【答案】(1); (2)见解析 (3)画图见解析,说明见解析【解析】【分析】本题主要考查了等腰三角形的性质与判定,全等三角形的性质与判定,三角形内角和定理:(1)先由等边对等角和三角形内角和定理求出,再证明,即可得到,(2)根据等边对等角和全等三角形的性质可得,是的角平分线;(3)根据三角形中线的定义和全等三角形的性质得到,根据(2)的结论结合三线合一定理即可得到是的高.【小问1详解】解:∵,∴,∵,∴,又∵,,∴,∴,故答案:;;【小问2详解】证明:∵,∴,∵,∴,∴,∴是的角平分线;【小问3详解】解:补全图形如下:为D BC AD ABC CM DCE △70︒70︒70DCA B ==︒∠∠()SAS ABD ACE ≌70ACE B ==︒∠∠ACE ACB ∠=∠CM DCE △CD CE =CM DCE △40AB AC BAC ==︒,∠180702BACDCA B ︒-===︒∠∠∠DAE BAC α∠=∠=BAD CAE ∠=∠AD AE =AB AC =()SAS ABD ACE ≌70ACE B ==︒∠∠70︒70︒AB AC =B ACB ∠=∠ABD ACE ≌△△ACE B ∠=∠ACE ACB ∠=∠CM DCE △∵是的中线,∴,∵,∴,∴,∵是的角平分线,∴是的高.AD ABC BD CD =ABD ACE ≌△△BD CE =CD CE =CM DCE △CM DCE △。
福建省莆田第一中学2023-2024学年七年级下学期期中数学试题(解析版)
莆田第一中学2023-2024学年度下学期七年级数学期中考试试卷时间(120分钟)一、单项选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 无论x 取什么实数,下列不等式总成立的是( )A. B. C. D. 【答案】D【解析】【分析】此题主要考查了不等式的性质,利用平方数可以为0,也可以为正数得出是解题关键.通过对各选项逐一讨论计算进行辨别.【详解】A .,不符合题意;B .当时,可得选项不成立,不符合题意;C .当时,可得选项不成立,不符合题意;D .不论x 取何值,由平方定义可得,选项一定成立,符合题意;故选:D .2. 若,,那么代数式的值是( )A. 1B. C. 1或 D. 1或【答案】D【解析】【分析】先由平方根与立方根定义求出x 、y 值,再代入计算即可.【详解】解:∵∴,∵,∴,当,时,;当,时,;20x >30x -≤2(5)0x -+<2(05)x +≥20x ≥=1x -310x -=>5x =-2(5)0x -+=()223x =-38y =-x y +1-1-5-()2239x =-=3x =±38y =-=2y -3x ==2y -321x y +=-=3x =-=2y -325x y +=--=-∴的值是1或,故选:D .【点睛】本题考查平方根与立方根,代数式求值,熟练掌握求一个数的平方根与立方根是解题的关键.3. 实数,,在数轴上的对应点的位置如图所示,则正确的结论是( )A. B. C. D. 【答案】B【解析】【分析】观察数轴得到实数,,的取值范围,根据实数的运算法则进行判断即可.【详解】∵,∴,故A 选项错误;数轴上表示的点在表示的点的左侧,故B 选项正确;∵,,∴,故C选项错误;∵,,,∴,故D 选项错误.故选:B.【点睛】主要考查数轴、绝对值以及实数及其运算.观察数轴是解题关键.4. 如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A. B.C. 2D. 【答案】A【解析】,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.【详解】解:∵矩形内有两个相邻的正方形面积分别为4 和 2,,2,的x y +5-a b c ||4a >0cb ->0ac >0a c +>abc 43a -<<-34a <<b c a<00c >0ac <a<00c >a c >0a c +<∴阴影部分的面积 故选A .【点睛】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.5. 已知,,那么点关于y 轴的对称点Q 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】此题主要考查了关于轴对称的点的坐标,点关于轴的对称点的坐标是.直接利用关于轴对称点的性质得出对应点坐标,进而分析横纵坐标的符号即可得出答案.【详解】解:,,点位于第四象限,点关于y 轴的对称点在第三象限.故选:C .6. 比较下列各组数的大小,错误的是( )A. B. C. D. 【答案】B【解析】【分析】根据无理数的估算方法逐项判断即可.【详解】解:A,正确,不符合题意;B 、∵,∴,∴,,原式错误,符合题意;C 、∵,(22242=+⨯--=.0a <()3,21P a a --y (,)P x y y P '(,)x y -y 0a < 30,210a a ∴->-<∴()3,21P a a --∴()3,21P a a --<0.5< 1.5>7><459<<23<<112<-<12>>0.5459<<∴,∴,,正确,不符合题意;D 、∵,,且,,正确,不符合题意.故选:B .【点睛】本题考查了实数的大小比较,熟练掌握实数大小比较的方法以及无理数的估算是解题的关键.7. 如图,在平面内,两条直线,相交于点O ,对于平面内任意一点M ,若P ,q 分别是点M 到直线,的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点的个数有( )A. 2B. 3C. 4D. 5【答案】C【解析】【分析】到的距离为2的直线有2条,到的距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】解:因为两条直线相交有四个角,因此每一个角内就有一个到直线,的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:C .【点睛】本题考查了点的坐标,读懂题目信息,理解“距离坐标”的定义是解题的关键.8. 两位同学在解关于x 、y 的方程组时甲看错①中的a ,解得,乙看错②中的b ,解得,那么a 和b 的正确值应是( )23<<314<<32> 1.5>250=2749=5049>7>1l 2l 1l 2l 1l 2l 1l 2l 3932ax y x by +=⎧⎨-=⎩①②21,==x y 31x y ,==-A.B. C. D.【答案】C【解析】【分析】甲看错了a ,则甲的结果满足②,乙看错了b ,则乙的结果满足①,由此建立关于a 、b 的方程求解即可.【详解】解:∵两位同学在解关于x 、y 的方程组时甲看错①中的a ,解得,乙看错②中的b ,解得,∴把代入②,得,解得:,把代入①,得,解得:,∴,故选:C .【点睛】本题主要考查了二元一次方程组的错解问题,正确理解题意是解题的关键.二、多项选择题(本题共2小题,每小题4分,共8分,选全得4分,不全得2分,选错不给分.)9. 下列判断正确的有( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】ACD【解析】【分析】本题考查了不等式的性质,掌握不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.根据不等式的基本性质判断即可.【详解】解:A 选项,,则可得,成立.B 选项,,则可能或,不成立.1.57a b ==-,42a b ==,44a b ==,7 1.5a b =-=,39 32 ax y x by +=⎧⎨-=⎩①②21,==x y 31x y ,==-21,==x y 62b -=4b =31x y ,==-339a -=4a =44a b ==,0b a ->>0ab <0ab >0,0a b >>,0a b c >≠22ac bc >,0a b c >≠a c b c--<--0b a ->>0,0b a <>0ab <0ab >0,0a b >>0,0a b <<C 选项,则由不等式性质2可得,成立.D 选项,,由不等式性质3则,再由不等式性质1可得,成立.故选:ACD10. 已知关于x ,y 的方程组,以下结论其中不成立是( ).A. 不论k 取什么实数,的值始终不变B. 存在实数k ,使得C. 当时,D. 当,方程组的解也是方程的解【答案】D【解析】【分析】把k 看成常数,解出关于x ,y 的二元一次方程组(解中含有k ),然后根据选项逐一分析即可.【详解】解:,解得:,然后根据选项分析:A 选项,不论k 取何值,,值始终不变,成立;B 选项,,解得,存在这样的实数k ,成立;C 选项,,解得,成立;D 选项,当时,,则,不成立;故选D .【点睛】本题考查了含有参数的二元一次方程组的解法,正确解出含有参数的二元一次方程组(解中含有参数)是解决本题的关键.三、填空题(共6小题,每小题4分,共24分.)11. 已知,则x 的值为__________.【答案】2【解析】【分析】此题考查了开立方运算的应用能力,关键是能准确理解并运用立方根和立方间互逆运算的关系.运20,0c c ≠>a b >a b -<-22331x y k x y k +=⎧⎨+=-⎩3x y +0x y +=1y x -=-1k =0k =23x y -=-22331x y k x y k +=⎧⎨+=-⎩321x k y k =-⎧⎨=-+⎩()332311x y k k +=-+-+=()3210k k -+-+=12k =()1321k k -+--=-1k =0k =21x y =-⎧⎨=⎩22243x y -=--=-≠-3(2)64x +=用开立方运算求得,再求解的值.【详解】解:,,解得,故答案为:2.12. 已知二元一次方程,用含的代数式表示= __________.【答案】【解析】【分析】根据等式的性质表示即可.【详解】解:∵ 3x −y =1 ,根据等式的性质可得 y =3x −1.故答案为3x -1【点睛】本题考查等式的性质,掌握等式的基本性质是解题的关键.13. 已知是关于,的方程的解,则代数式的值为________.【答案】【解析】【分析】本题考查二元一次方程的解.根据方程的解的定义,得到,整体代入法求代数式的值即可.【详解】解:由题意,得:,∴;故答案为:.14.整数部分为a ,小数部分为b ,__________,【解析】【分析】此题考查了对无理数大小的估算能力,关键是能准确理解并运用该方法.运用算术平方根知识进行估算、求解.【详解】解:的24x +=x 3464=24x \+=2x =31x y -=x y 31x -23x y =⎧⎨=⎩x y 4-=mx ny 645n m -+3-234m n -=234m n -=()64522352453n m m n -+=--+=-⨯+=-3-123a b a +=23,<< 314,∴<<的整数部分为,小数部分为,,.15. 小明同学在学习了“平方根”这节课后知道了“负数在实数范围内没有平方根”,他对这句话产生了兴趣,他想知道负数在其他范围内是否有平方根,所以他上网查找了以下一些资料.定义:如果一个数的平方等于,记为,这个数i 叫做虚数单位.在这种规定下,数的范围就由实数扩充到了复数,于是负数在复数范围内就有平方根.比如:就是的平方根.那么在复数范围内的平方根是___________.【答案】【解析】【分析】根据平方根的概念计算,结合虚数单位的意义计算即可.详解】解:由题意可得:,则,故答案为:.【点睛】本题考查了新定义的实数运算,平方根,理解新定义、正确运用平方根的定义是解题的关键.16. 数学思想与数学思维都非常重要,数学思维就是用数学思考和解决问题的思维活动形式,数学思维中联想发散能力非常重要,比如我们生活中常见的脑经急转弯与谐音梗广告,总让人眼前一亮,记忆深刻.从而创造巨大财富.比如药品广告:“咳”不容缓(刻不容缓),自行车车广告:“骑”乐无穷(其乐无穷),脑经急转弯:什么蔬菜有手机?答:萝卜青菜,各有“索爱”.为什么两只老虎打架非要你死我活才罢休,答:没有人敢去劝架.思考回答:1.哪种动物最没有方向感?2.林老师取了个网名.3.风的孩子是谁?4.为什么家里两个孩子恰恰好?5.一颗心值多少钱?6.不能给谁讲笑话?发散你的思维,从下面备选答案中选择与上面6个问题最有关联的答案依次填入_____(填番号)①大海;②水起;③好运降林;④不孝有三;⑤一亿;⑥麋鹿.【答案】⑥③②④⑤①【解析】【分析】本题考查了脑经急转弯问题,主要是训练学生的思维反应能力,依据题目进行解答即可.【1+3a =132b =+-=23a b a +∴==1-21i =-i ±1-9-3i±21i =-3i =±3i ±【详解】1.麋鹿最没有方向感;2.林老师取了个网名:好运降林.3.风的孩子是水起:4.为什么家里两个孩子恰恰好?是因为不孝有三;5.一颗心值一亿;6.不能给大海讲笑话;故答案为:⑥③②④⑤①四、解答题(共9小题,共86分.解答应写出文字说明、证明过程或者演算步骤.格式规范.)17. 计算:(1);(2.【答案】(1);(2).【解析】【分析】本题考查了实数的运算,准确熟练地进行计算是解题的关键.(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【小问1详解】,,【小问2详解】,,2024312|2|-+-4(1)-+-714-2024312|2|-+++1282=-+++7=4(1)+-12314=--+18. 解下列方程组:(1);(2).【答案】(1); (2).【解析】【分析】本题考查了解二元一次方程,掌握消元思想是解题的关键.(1)利用加减消元法求解;(2)利用加减消元法求解.【小问1详解】解:,由得:,解得:,将代入②得:,解得:,方程组的解集为;【小问2详解】原方程组可化为,,得,14=-22212n m m n ⎧-=⎪⎨⎪+=⎩11324(25)11x y x y +⎧-=⎪⎨⎪--=⎩44m n =⎧⎨=⎩03x y =⎧⎨=-⎩22212n m m n ⎧-=⎪⎨⎪+=⎩①②2⨯+①②416m =4m =4m =812n +=4n =∴44m n =⎧⎨=⎩23923x y x y -=⎧⎨-=⎩①②-①②=3y -把代入①,得此方程组的解.19. 已知:和是的两个不同的平方根,的整数部分.(1)求,,的值.(2)求的平方根.【答案】(1),, (2)【解析】【分析】(1)一个正数的两个不同的平方根的和为0,可求出的值,把的值代入或,得到的一个平方根,可求出即,得到,求出的值;(2)将(1)中的值代入,求其平方根即可.【小问1详解】解:由题意得,,解得,,;,即的整数部分是3,,解得故答案为:,,【小问2详解】把代入,3的平方根是=3y -0,x =∴03x y =⎧⎨=-⎩21x -43x +m 22y +x y m 14y +13x =-12y =259m =x x 21x -43x +m m <<34<<223y +=y y 14y +21430x x -++=13x =-15212133x ∴-=-⨯-=-2525()39m ∴=-=<<34<<223y ∴+=12y =13x =-12y =259m =12y =1141432y +=+⨯=故答案为:【点睛】本题考查平方根的概念和平方根的性质,解题关键是一个正数的两个不同的平方根的和为0;一个数算术平方根的整数部分的确定方法:找到与被开方数最接近的两个平方数,较小的这个平方数的算术平方根即是它的整数部分;易错点是一个正数的算术平方根只有一个,它的平方根有两个,且一正一负.20. 如图,已知四边形ABCD .(1)写出点A ,B ,C ,D 的坐标;(2)试求四边形ABCD 的面积(网格中每个小正方形的边长均为1)【答案】(1) ;(2)16【解析】【分析】(1)根据各点所在的象限,对应的横坐标、纵坐标,分别写出点的坐标;(2)首先把四边形ABCD 分割成规则图形,再求其面积和即可.【详解】解:(1)由图象可知;(2)作于于,则【点睛】此题主要考查了点的坐标,以及求不规则图形的面积,关键是把不规则的图形正确的分割成规则图形.21. 已知,当时,;当时,.(1)求k 、b 的值:(2)解不等式,并画数轴上表示解集.()()()()2,1,3,2,3,2,1,2A B C D ----()()()()2,1,3,2,3,2,1,2A B C D ----AE BC ⊥E DG BC ⊥,G 111=+=13+24+3+43=16222ABE DGC ABCD AEGD S S S S +⨯⨯⨯⨯⨯⨯ 四边形梯形()y kx b =+2x =1y =-=1x -5y =1kx b +≥【答案】(1)(2),在数轴上表示见解析【解析】【分析】本题主要考查解二元一次方程组和一元一次不等式,解题的关键是掌握解二元一次方程组的能力.(1)根据二元一次方程组的求解方法,求出、的值各是多少即可.(2)列出一元一次不等式并求解即可.【小问1详解】根据题意可得:,解得:,;【小问2详解】由(1)得,移项得,合并同类项得,系数化为1得,在数轴上表示解集为:22. 在数轴上点A 表示a ,点B 表示b ,且a ,b 满足.(1)直接写出a 和b 的值:并求点A 与点B 之间的距离;(2)若点A 与点C 之间的距离用AC 表示,点B 与点C 之间的距离用BC 表示,请在数轴上找一点C ,使得,求点C 在数轴上表示的数c 的值.【答案】(1),(2【解析】【分析】本题考查实数与数轴,利用非负数的性质得到与的值是解题关键.2,3k b =-=1x ≤k b 215k b k b +=-⎧⎨-+=⎩23k b =-⎧⎨=⎩2,3k b ∴=-=231x -+≥213x -≥-22x -≥-1x ≤||1a =2AC BC =0a b ==AB =a b(1)根据非负数的性质可得与的值,再根据两点间的距离可得的距离;(2)分别用含的代数式表示出和,再列方程可得的值.【小问1详解】,,点A 与点B 之间的距离为;小问2详解】①若点C 点A 与点B 之间,则②若点C 在点B 左边,则综上可得,c或.23. 足球是世界第一运动,2022年世界杯足球赛再一次点燃了人们对足球运动的热情. 世界杯期间光明区某文具店用14400元购进了甲、乙两款足球,一共200个. 两款足球的进价和标价如下表:类别甲款足球乙款足球进价/(元/个)8060标价/(元/个)12090(1)求该文具店的甲、乙两款足球分别购进多少个?(2)该文具店为了加快销售,回笼资金,决定对甲款足球打8折销售,乙款足球打9折销售,若所购的足球全部售出,则该文具店能获利多少元?【答案】(1)该文具店甲款足球购进120个,乙款足球购进80个【在a b AB c AC BC c 2|| 1.11a b =+≥ 0,0,a b ∴==0a b ∴==0,>∴|0|AB ==,0,2,AC c BC c c AC BC =-=-==2,c c -=c ∴=,0,2,AC c BC c c AC BC =-=-=-=2(),c c =-c ∴=(2)所购的足球全部售出,则该文具店能获利3600元【解析】【分析】本题主要考查了一元一次方程的应用和有理数混合运算的应用,解题的关键是根据题意列出算式或方程,准确计算.(1)设甲款足球购进了x 个,则乙款足球购进了个,根据两种足球总共花费为14400元,列出方程,解方程即可;(2)根据题意列出算式,进行计算即可.【小问1详解】解:设甲款足球购进了x 个,则乙款足球购进了个,根据题意得:,解得:,则(个),答:该文具店甲款足球购进120个,乙款足球购进80个.【小问2详解】解:(元),答:所购的足球全部售出,则该文具店能获利3600元.24. 在平面直角坐标系中,已知点,点.(1)若点M 在x 轴上,求m 的值和点M 坐标;(2)若点M 到x 轴,y 轴距离相等,求m 的值;(3)若轴,且,求n 的值.【答案】(1); (2)或(3)的值为4或2【解析】【分析】(1)根据轴上的点的纵坐标等于0即可得;(2)先点的横、纵坐标的绝对值相等即可得;(3)先根据可得的值,再根据轴可得点的横坐标相等,由此即可得.()200x -()200x -()806020014400x x +-=120x =20012080-=()()1200.880120900.960803600⨯-⨯+⨯-⨯=()2,27M m m --(),3N n MN y ∥2MN =72m =3,02M ⎛⎫ ⎪⎝⎭5m =3m =n x M 2MN =m MN y ∥,M N【小问1详解】解:点在轴上,,解得:,,∴点M 的坐标为.【小问2详解】解:点到轴,轴距离相等,,即或,解得:或.【小问3详解】解:轴,且,点,点,,,解得或,当时,,当时,,综上,的值为4或2.【点睛】本题主要考查了点的坐标规律、点到坐标轴的距离,熟练掌握点坐标的特征是解题关键.25. 如图,在平面直角坐标系中,已知点,,,.(1)求三角形的面积;()2,27M m m --x 270m ∴-=72m =732222m -=-=3,02⎛⎫⎪⎝⎭()2,27M m m --x y 227m m ∴-=-227m m -=-272m m -=-5m =3m =MN y ∥2MN =()2,27M m m --(),3N n 2732m ∴--=2n m =-4m =6m =4m =422n =-=6m =624n =-=n ()05A -,()30B -,()04C ,()P m n ,ABC(2)设点是轴上一点,若,试求点坐标;(3)若点在线段上,求用含的式子表示.【答案】(1) (2)或 (3)【解析】【分析】(1)根据三角形的面积公式解答即可;(2)根据三角形的面积公式和坐标特点得出方程解答即可;(3)根据,进行计算即可解答.【小问1详解】解:,,,,,;【小问2详解】解:设点是轴上一点,坐标为,,,,,即,解得:或,或;【小问3详解】解:如图,连接,P y 12PAB PCB S S =P P AB n m 272()02P -,()014-,335m n =--1122AOB BOP AOP P P S S S OB y OA x =+=⋅+⋅ ()05A - ,()30B -,()04C ,3OB ∴=()459AC =--=112739222ABC S OB AC ∴=⋅=⨯⨯= P y ()0n ,()55PA n n ∴=--=+4PC n =-12PAB PCB S S = 111222PA OB PC OB ∴⋅=⨯⋅()1542n n --=⨯-2n =-14n =-()02P ∴-,()014-,OP,,,,,,,,,点在第三象限,,,,整理得:.【点睛】本题主要考查了坐标与图形,三角形的面积公式,熟练掌握三角形的面积公式是解题的关键.()05A - ,()30B -,5OA ∴=3OB =111553222AOB S OA OB ∴=⋅=⨯⨯= 1122AOB BOP AOP P P S S S OB y OA x =+=⋅+⋅ ()P m n ,111535222n m ∴⨯⨯+⨯⨯= P 0m ∴<0n <3515222n m ∴---=335m n =--。
湖南省张家界市永定区2023—2024学年七年级下学期期中考试数学试题(含答案)
永定区2024年春季学期七年级期中质量监测试卷数学题号一二三总分得分考生注意:本卷共三道题,满分120分,时量120分钟。
D.二、填空题(本大题共8个小题,每小题3分,共24分)2 4S23.(本题8分)用4个全等的长和宽分别为的长方形拼摆成一个如图的正方形. (1)请用含有a 、b 字母的代数式来表示阴影部分面积,并写出三个代数式 之间的等量关系;(2)根据(1)中你探索发现的结论,计算:当时,求的值.24.(本题8分)已知代数式:.(1)化简这个代数式.(2)若,求原代数式的值.25.(本题8分)上数学课时,王老师在讲完乘法公式的多种运用后,要求同学们运用所学知识解答:求代数式的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:,当时,的值最小,最小值是0,当时,的值最小,最小值是1,的最小值是1.请你根据上述方法,解答下列各题(1)当等于多少时,代数式有最小值,最小值是多少.(2)请判断有最大值还是最小值;这个值是多少?此时等于哪个数?,a b 2(),a b +2(),a b ab -3,10x y xy +==-x y -()()()221m m n m n n -++-+230m m --=222()2a b a ab b ±=±+245x x ++22245441(2)1x x x x x ++=+++=++2(2)0x +≥ ∴2x =-2(2)x +2(2)11x ∴++≥∴2(2)0x +=2(2)1x ++245x x ∴++x 2612x x -+223x x -+-x26.(本题10分)某商店拟购进A ,B 两种品牌电风扇进行销售.已知购进3台A 种品牌电风扇所需费用与购进2台B 种品牌电风扇所需费用相同,购进1台A 种品牌电风扇与2台B 种品牌电风扇共需400元.(1)A ,B 两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A 种品牌电风扇定价为180元/台,B 种品牌电风扇定价为250元/台,商店拟用1000元购进这两种品牌电风扇(1000元刚好全部用完,且两种品牌电风扇都购进).为能在销售完这两种品牌电风扇后获得最大的利润,该商店应采用哪种进货方案?永定区2024年春季学期七年级期中质量监测试卷数学参考答案一、选择题题号12345678910答案CADCCADCDA二、填空题11.12.613.314.15.16.17.1418.15三、解答题19.(1)(2)20.(1)解:原式;(2)原式.21.(1)(2)22.解:设正常收费标准为x 元/m 3,超过部分y 元/m 3.由题意,得:,解得:,答:正常收费标准为2元/m 3,超过部分3元/m 3.23.(1)解:由题意可知,(写出的等式成立即可)(2)解:由(1)的结论可知:.24.(1)解: (2)解:∵,∴,249a b 2<1-13x y =-⎧⎨=-⎩52x y =⎧⎨=⎩4555322(3)235x x x x x x x =⋅+-=⋅-=2222245(44)454421x x x x x x x x x =+-+-+=+-+-+=-()643ab a b -()()312m a m --()()1015103510181044x y x y ⎧+-=⎪⎨+-=⎪⎩23x y =⎧⎨=⎩2()4S a b ab=+-阴2224a ab b ab=++-222a ab b =-+22()()4.a b a b ab ∴-=+-()222()()4341049x y x y xy -=+-=-⨯-=7.x y ∴-=±()()()2221221m m n m n n m m -++-+=-+230m m --=222221m m m n n =-++-+23m m -=。
北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)
北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(下)期数学期中考试卷
一、填一填,你最行:(本大题8个小题,每小题3分,共24分) l 、已知P (-1,-2),则点P 在第 象限。
2、在电影院内找座位,将“4排3号”简记为(4,3),则(6,7)表示 。
3、若从一个多边形的一个顶点出发,最多可以引3条对角线,则它是 边形。
4、猜谜语(打两个几何名称)。
剩下十分钱: ;两牛相斗: 。
5.如图,170=o
∠,270=o
∠,388=o
∠,则4=∠_____________.
6.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________. 7、把命题“等角的补角相等”改写成“如果……那么………”的形式是_____ 8、六边形的内角和是它外角和的 倍。
二、选一选,相信你:(本大题6个小题,每小题3分,共18分 ) 9、若点P 的坐标是(m ,n ),且m <0,n >0,则点P 在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10、一以下列各组线段为边,能组成三角形的是( ) A.2cm ,3cm ,5cm B.5cm ,6cm ,10cm C.1cm ,1cm ,3cm D.3cm ,4cm ,9cm 11、如图,已知棋子“车”的坐标为(-2,3),
棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( ) A .(3,2) B .(3,1)C .(2,2) D .(-2,2)
12.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A.43∠=∠ B. 21∠=∠
C. DCE D ∠=∠
D. ο
180=∠+∠ACD D 13、只用下列图形不能相环嵌的是( ) A 、三角形 B 、四边形 C 、正五边形 D 、正六边形
14、如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于点P ,若∠A=50°,则 ∠BPC 等于( )
A 、90°
B 、130°
C 、100°
D 、150°
……………………………………密………………………………………………封………………………………………………线……………………………
班级___________________ 姓名___________________座号_____________
31
42
5题
6题
E
D
C B
A
432
1
P
C
A
E
D
三、解与答,你最棒!
15、一个多边形的外角和是内角和的7
2
,求这个多边形的边数(8分)
16、(8分)如图,A 点在B 处的北偏东40°方向,C 点在B 处的北偏东85°方向,A 点在C 处的
北偏西45°方向,求∠B AC 及∠B CA 的度数.8分
17、(8分)王霞和爸爸、妈妈到人民公园游玩,回家后,她利用平面直角坐标系画出了公园的景区地图,如图所示。
可是她忘记了在图中标出原点和x 轴、y 轴。
只知道游乐园D 的坐标为(2,-2),你能帮她求出其他各景点的坐标?
18、(10分)如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1 ,2).
(1)、写出点A 、B 的坐标:A ( , )、B ( , )
(2)△ABC 的面积为______________平方单位. (3)将△ABC 先向左平移3个单位长度,再向 上平移2个单位长度,得到△A 'B 'C ',则 △ A 'B 'C '的三个顶点坐标分别是 A '( 、 )、B '( 、 )、C '( 、 )
y O A B C x
F
E D
C
B
音乐台
湖心亭
牡丹园
望春亭游乐园(2,-2)……………………………………密………………………………………………封……………………
19、如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.
因为EF∥AD,(8分)
所以∠2=____(____________________________)
又因为∠1=∠2
所以∠1=∠3(______________)
所以AB∥_____(_____________________________)
所以∠BAC+______=180°(_____________________)
因为∠BAC=80°
所以∠AGD=_______
20、如图AD是△ABC的角平分线,∠BAD=∠ADE,∠BDE=76°求∠C的度数(8分)
21、⊿ABC中,∠ABC、∠ACB的平分线相交于点O。
(8分)
(1)若∠ABC = 40°,∠ACB = 50°,则∠BOC =_______。
(2)若∠A = 76°,则∠BOC =_______。
(3)若∠BOC = 120°,则∠A =_______。
(4)你能找出∠A与∠BOC 之间的数量关系吗?。