2019中考数学压轴题精选

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019中考数学压轴题

1.(眉山)如图1,在平面直角坐标系中,抛物线y =﹣9

4x 2

+bx+c 经过点A (﹣5,0)和点B (1,0).

(1)求抛物线的解析式及顶点D 的坐标;

(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE ⊥x 轴于点E ,PG ⊥y 轴,交抛物线于点G.过点G 作GF ⊥x 轴于点F.当矩形PEFG 的周长最大时,求点P 的横坐标;

(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作∠DMN =∠DBA , MN 交线段AD 于点N ,是否存在这样点M ,使得△DMN 为等腰三角形若存在,求出AN 的长;若不存在,请说明理由.

O

2.(甘肃)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y

轴交于点C.

(1)求二次函数的解析式;

(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;

(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.

3.(广安)如图,抛物线与x轴交于A、B两点在B的左侧,与y轴交于点N,过A点的直线l:与y轴交于点C,与抛物线的另一个交点为D,已知,,P点为抛物线上一动点不与A、D重合.

求抛物线和直线l的解析式;

当点P在直线l上方的抛物线上时,过P点作轴交直线l于点E,作轴交直线l于点F,求的最大值;

设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形若存在,求出点M的坐标;若不存在,请说明理由.

4.(武威)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点

C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.

(1)求此抛物线的表达式;

(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;

(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m 为何值时PN有最大值,最大值是多少

5.(无锡)已知二次函数42

-+=bx ax y (a >0)的图像与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .D 为顶点,直线AC 交对称轴于点E ,直线BE 交y 轴于点F ,AC :CE =2:1.

(1)求C 点坐标,并判断b 的正负性;

(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA =1:2,直线BD 与

y 轴交于点E ,连接BC .①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三

角形,请直接写出OA 的取值范围.

6.(菏泽)如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,

0)P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.

(1)求抛物线的函数表达式;

(2)若点P在第二象限内,且PE=OD,求△PBE的面积.

(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM 是以BD为腰的等腰三角形若存在,求出点M的坐标;若不存在,请说明理由.

7.(凉山州)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).

(1)求抛物线的解析式;

(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;

(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S

=S△PAC若存在,请求出点M的坐标;若不存在,请说明理由.

△PAM

y A M O B

x

P

C

y

A O B

x

C

8. (河南)如图,抛物线y ? ax ? 1

2

x ? c 交x 轴于A ,B 两点,交y 轴于点C ,直线

y ? ? 1

2x ? 2经过点 A ,C .

(1)求抛物线的解析式. (2)点 P 是抛物线上一动点,过点 P 作 x 轴的垂线,交直线 AC 于点 M ,设点 P 的横

坐标为 m .

①当△PCM 是直角三角形时,求点 P 的坐标;

②作点 B 关于点 C 的对称点 B ?,则平面内存在直线 l ,使点 M ,B , B ?到该直线的距离都相等.当点 P 在 y 轴右侧的抛物线上,且与点 B 不重合时,请直接写出直线 l : y ? kx ? b 的解析式.(k ,b 可用含 m 的式子表示)

9.(衡阳)如图,二次函数c bx x y ++=2

的图象与x 轴交于点A (-1,0)和点B (3,0),与y 轴交于点N ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上的一动点,连接CP ,过点P 作CP 的垂线与y 轴交于点E. (1)求该抛物线的函数关系表达式;

(2)当P 点在线段OB (点P 不与O 、B 点重合)上运动至何处时,线段OE 的长有最大值并求出这个最大值.

(3)在第四象限的抛物线上任取一点M ,连接MN 、MB.请问:△MNB 的面积是否存在最大值若存在,求此时点M 的坐标;若不存在,请说明理由.

相关文档
最新文档