高频头原理讲解
高频头工作原理
高频头工作原理
高频头是一种常见的电子元件,常用于无线通信、雷达、医疗设备等领域。
它的工作原理基于电磁感应和电子振荡。
首先,高频头通过接收来自外部信号源的高频电流或高频电压。
当输入信号通过高频头时,它会引起内部电路的振荡。
在振荡过程中,高频头会产生电磁场。
这个电磁场会放出高频电磁波,以传输或接收信息。
高频头内部的电子振荡电路是实现这一过程的关键部分。
它通常由一个电感和一个电容组成,这两个元件构成了一个谐振回路。
当谐振频率等于输入信号的频率时,电子振荡电路才会达到最佳状态,从而产生最大的电磁场。
高频头还可能包含其他的辅助元件,如放大器和滤波器,以提高信号的质量和增强传输能力。
总体来说,高频头的工作原理是通过电磁感应和电子振荡来产生高频电磁场,以传输和接收信息。
它在无线通信和其他应用中扮演着重要的角色。
卫星接收机高频头电路原理
卫星接收机高频头电路原理高频头内部各组成部分的电路原理分别介绍如下。
1.低噪声前置场效应管放大器低噪声前置场效应管放大器由多级坊效应管放大器组成,它的输入端加入一个低损耗隔离器以获得较小的电压驻波比,同馈源相匹配。
低噪声前置放大器的组成方框图如下图所示。
下图为典型的三级低噪声场效应管放大器电路原理图,图中场效应管3个脚G、D、S分别为栅极、漏极和源极,放大器的工作点用三极管来稳定,栅极偏压由集成电路555振荡整流输出的约-3.5 V电压供给。
各级放大器的输入/输出端采用微带电路结构组成滤波匹配网络。
2.第一混频器第一混频器的作用是把低噪声放大器送来的卫星电视信号(如3.7~4.2 GHz)与本机振荡信号混频产生第一中频信号(称为降频信号)。
第一混频器按器件分有肖特基二极管混频和场效应管混频,现以肖特基二极管平衡混频器为例,说明其原理。
下图为采用微带结构的肖特基二极管平衡混频器。
图中,前置低噪声放大器输出的信号和第一本振信号分别从双分支定向耦合器的两个隔离端1和3加入,混合后由输出端2和4分别加到二极管VD1、VD2上,然后经过低通滤波器后输出中频信号,送入前置中频放大器。
低通滤波器由图4中的高频短路块和高阻抗的电感组成,其作用是把信号、本振及镜频信号滤除掉而让中频信号通过。
3.第一本振第一本振的作用是使在C频段时产生5.17 GHz左右的振荡频率,在Ku频段时产生10.25 GHz 左右的振荡频率,与低噪声放大器输出的卫星电视信号混频产生第一中频信号。
第一本振大多采用介质稳频场效应管或介质稳频双极型晶体管振荡器。
上图为介质稳频场效应管振荡器电路原理图,它由场效应管振荡器和介质稳频腔组成。
图中,场效应管栅极和漏极之间由电容Cl引入一定的反馈,构成所需频率的非稳频振荡电路,介质谐振器放在距场效应管输出端1/2λg处,调整它与带线间的距离,可以稳定频率。
介质谐振器结构示意图如下图所示。
4.前置中频放大器(1)前置中频放大器的任务是把混频器输出的微弱中频信号放大,以便于传输。
高频头基本原理
高频头基本原理高频头:俗称调谐器,是电视高频信号公共通道的第一部分,目前电视机使用的高频头一般分为数字信号高频头(简称数字高频头)和模拟信号高频头(简称模拟高频头)。
; 数字高频头的作用是接收数字电视高频信号,并进行频道选择和高频信号放大及变频处理,有些还带中频信号放大和高频数字信号解调功能,高频数字信号经解调后,输出的数字信号为TS(Transportnbsp;Stream)流,TS 流:也叫传输流,它是以“帧”为单位的数字信号传输流,每一帧数字信号中含有同步头数据结尾等信号,对于MPEG2 数字信号,每帧信号是由长度为188 字节的二进制信号包组成,其内容含有一个或多个节目。
这里“帧”的概念与电视图像中的帧很类似,但内容不相同,一帧MPEG2 数字信号对应于一帧图像来说,只相当于一幅图像内容中的几个像素点。
; 根据接收高频数字信号的调制方式,数字高频头还分QPSK(Quadraturenbsp;Phasenbsp;Shiftnbsp;Keying 正交键控调相)调制高频头和QAM(Quadraturenbsp;Amplitudenbsp;Modulation 正交调幅)调制高频头。
QPSK 调制高频头主要用于卫星电视信号接收;QAM 调制高频头主要用于有线电视信号接收。
; 模拟高频头的作用是接收模拟电视高频信号,并进行频道选择、高频信号放大及变频处理,模拟高频头一般不带中频信号放大和高频信号解调功能,因此模拟电视还需另外再加一个中频放大器和高频信号解调器。
一般模拟高频信号的接收、放大、解调等电路都需要严格调整才能符合整机的要求,因此很难把高频信号接收、放大、解调等功能全部由高频头来完成,因此模拟高频头的主要任务主是选频道,另外一个任务就是降频,把接收到的高频信号降低到一个固定频率之上,这个固定频率信号就是中频信号,其频率一般为38MHz。
中频信号对于视频来说,还是高频信号,它还需要进一步放大,。
卫星高频头原理
卫星高频头原理卫星高频头是一种广泛应用于通信领域的设备,它的工作原理是通过接收和发送高频信号,实现卫星通信。
在这篇文章中,我们将深入探讨卫星高频头的工作原理及其应用。
一、卫星高频头的基本原理卫星高频头主要由天线、放大器、混频器、调制解调器等组成。
它的工作原理可以简单概括为:卫星高频头接收地面发射的高频信号,经过放大器放大后,经过混频器进行频率转换,然后经过调制解调器进行信号调制和解调,最后将信号发送回地面。
具体来说,卫星高频头的工作原理包括以下几个步骤:1. 接收信号:卫星高频头的天线接收地面发射的高频信号。
天线的设计和制造对于接收效果有着至关重要的影响。
2. 信号放大:接收到的信号非常微弱,需要经过放大器进行放大。
放大器可以将信号的强度增加到适合处理的水平。
3. 频率转换:接收到的高频信号经过放大后,需要经过混频器进行频率转换。
混频器将高频信号与本地振荡器产生的本地频率进行混频,得到中频信号。
4. 信号调制:经过混频后得到的中频信号,通过调制解调器进行信号调制。
调制解调器将中频信号转换成数字信号,以便进行后续的处理和传输。
5. 信号解调:在发送信号时,调制解调器将数字信号转换成模拟信号。
这样,信号就可以通过卫星传输到地面接收站。
二、卫星高频头的应用卫星高频头在通信领域有着广泛的应用。
它可以实现地面和卫星之间的双向通信,用于军事通信、民用通信和卫星广播等方面。
1. 军事通信:卫星高频头在军事通信中发挥着重要作用。
它可以实现军队之间的远距离通信,提供高质量的语音和数据传输服务。
军事通信需要保密性和可靠性,卫星高频头能够满足这些要求。
2. 民用通信:卫星高频头在民用通信中也得到了广泛应用。
它可以实现跨越大洋的通信,提供全球范围内的电话、互联网和电视信号传输服务。
卫星高频头的应用使得人与人之间的沟通更加便捷和快速。
3. 卫星广播:卫星高频头还可以用于卫星广播。
通过卫星高频头,广播公司可以将音频信号传输到卫星上,再由卫星广播到全球各地。
高频调谐器(高频头)原理
•
常用机械调谐有两种。
•
开关式高频头, 如KP12—2型, 对应每个
频道的输入线圈、 高放负载线圈和本机振荡线圈
都是独立的, 因此在频道切换时互相不干扰。 在每 个被切换线圈内部都有一个可调节的铜芯, 可以通 过齿轮机构分别微调, 一次调准后, 就不再需要重 新调节。 缺点是由于触点多而产生机械故障。
号之间有一定的时延, 从而使荧屏上显示的图像产 生重影。
精选课件
10
•
为了便于匹配, 调谐器输入、输出阻抗均
设计为75 Ω, 正好与电视机拉杆天线或共用天线分
支器插孔的等效阻抗相同, 采用特性阻抗为75 Ω的
同轴电缆线直接相连就可以匹配。当采用特性阻
抗为300 Ω的半波折合振子引向天线或X型全频道 天线时, 我们除采用特性阻抗为300Ω扁平双导线作 馈线外, 还在馈线和调谐器之间接入天线匹配器。
•
4. 高放级应设有自动增益控制电路
•
一般要求自动增益控制范围应达到20 dB
以上, 以保证当天线输入电平, 在一定范围内变化
时, 视放输出电压基本保持幅度稳定。
精选课件
11
•
5. 本机振荡的频率稳定度要高,
且对外辐射小
•
通常要求VHF段本振漂移小于
±300 kHz, UHF段本振漂移小于±500
kHz。
精选课件
12
6.2 高频调谐器的功能电路分析
• 6.2.1 机械调谐与电子调谐原理
•
为了收看不同频道的电视信号,
根据需要能改变(切换)信号的频道 , 即所
谓高频调谐。 调谐的方法有两种: 机械调
谐 (改变LC回路的电感值) 和电子调谐
(改变LC回路的电容) 。
电视机的高频头
信号处理
信号解调
自动增益控制
对中频信号进行解调,将其还原成原 始的模拟视频和音频信号。
根据信号强弱自动调整信号的增益, 确保输出信号的稳定性和一致性。
信号分离
将视频和音频信号分离,分别进行处 理和传输。
信号
输出接口
高频头通常提供复合视频和音频 输出接口,以便将处理后的信号
传输至电视机或后级设备。
力。
集成化
为了简化电视机结构,高频头正 趋向于与其他电路集成,形成一
体化设计。
智能化
高频头内部集成芯片组,具备信 号处理、故障诊断等功能,提高
了电视机的智能化水平。
高频头与其他设备的集成
与机顶盒集成
高频头与机顶盒集成在一起,实现信号接收与解码的统一管 理,简化了连接和调试过程。
与音响系统集成
高频头与音响系统集成,实现声音信号的同步传输和处理, 提高了音质效果。
数字高频头
用于接收数字信号的高频头,常 见于现代的数字电视接收设备。
02 电视机高频头的工作原理
信号接收
信号接收
高频头的主要功能是接收 来自卫星或地面微波中继 系统的电视信号。
信号选择
高频头通过调谐器选择所 需的信号频率,并从众多 信号中提取出目标电视信 号。
信号降频
将接收到的射频信号(高 频信号)降频至中频信号, 以便于后续的信号处理。
高频头的头的主要功能是接收 来自电视台发射塔的无线 信号。
信号调谐
将接收到的信号进行调谐, 将其从射频信号转换为中 频信号,以便于电视机内 部电路进行处理。
信号解调
将调谐后的中频信号进行 解调,还原出原始的电视 信号。
高频头的种类
模拟高频头
用于接收模拟信号的高频头,常 见于早期的电视接收设备。
细说高频头
细说高频头细说高频头细说高频头(一)-说起高频头来都不陌生,知道高频头这是俗称,它的正式名称为高频调谐器。
这对于从事卫星电视、卫星通信专业人员以及卫视爱好者来讲并不陌生。
高频头是卫星电视、卫星通信设备系统中甚为重要且不可缺少的一个器件。
在电视接收机中,也有一个高频头器件。
两者的名子一样,作用也相似,只是它们工作的频段不一样而已。
现在的高频头(LNB及LNBF)一般由两部分组成,一部分是无源部分又称天馈部分,一部分是有源部分即高放。
本振、混频部分。
如图一和图二所示。
天馈即天线与馈源,这一部分是由天线(振子)和放置天线的谐振波导而构成的辐射器组成。
说到这里,有些读者可能感到困惑,怎么天线竟然在高频头里?天线不是几米大的庞然大物吗,就是小型偏馈天线也要有0.6m、0.75m……这么大的天线怎么一下子跑到小小的高频头里?实际上我们常说的几米几米的大天线,那不是真正意义上的天线,而是天线的反射面或反射器。
电波通过这个几米大的反射面(器)反射并聚焦到馈源天线上去(即接收)。
或者天线上的电信号,经馈源射通过反射面(器)传播到空中去(即发射)。
因此真正意义上的天线是存在于高频头馈源里面的那个像探针一样的小小的振子,如图三其几何尺寸是远远小于天线反射面的尺寸的。
我们把这个小小的天线称为天线振子或者耦合振子简称振子,就是因为它是线性天线中最基本的谐振天线单元。
在卫星接收中,就是这个称为振子的天线将天线反射面(器)反射过来的电波吸收并耦合到高频头的高放中去,经过后面的一系列处理,从而获得完整的图像信号和伴音信号。
这个小小的振子天线的长短是与接收的电波的波长有关的。
因为它属于线性的单谐振天线的非对称型的半波天线,因此它的长度应该是它所接收的电波波长的1/4左右。
比如C 波段,频率范围在f=3.7~4.2GHz之间,它所对应的波长λ=7.143~8.108cm。
那么C波段高频头内天线振子是1/4波长,对应的尺寸长度在1.786~2.027cm范围。
高频头
第二章 模拟彩色电视接收机 的工作原理
调谐(或选台)、放大及变频,输出中频信号。 2、高频头的组成与工作过程: (1)高频头的组成:
高频伴音信号fC
输入 电路
高 频 放大器
变频 电路
伴音中频fCI 图像中频fPI
高频图像信号fP
高频本振信号fO
本 机 振荡器 高频头组成框图
高职高专“十一五”国家级规划教材
上图中: W
VD
f
1 2 LC j
实际电路中,调谐器的输入回路,高放的双调谐回路, 本振回路都要加一个变容二极管,各变容二极管上的电压 均来自同一调谐电压。
高职高专“十一五”国家级规划教材
彩色电视机原理与维修
第二章 模拟彩色电视接收机 的工作原理
③频段切换: 在VHF段,变容二极管的容量变化不能覆盖整个频段。 因此,将VHF频段分为两个频段,即VL段(1-5频道)和VH频 段(6 -12频道)。 以TDQ-3中电路为例说明:
V单元 RF 40~300MHz 复合带通
VHF本振 VHF 高放
UHF 中放 VHF 混频 S
IF
450MHz高通 滤波器 U单元
UHF 高放
UHF 混频
UHF本振
【点击观看】
高职高专“十一五”国家级规划教材
彩色电视机原理与维修 (2)调谐原理:
第二章 模拟彩色电视接收机 的工作原理
Cj/pF 18
BS
BU BT
30
12 0.5~30
高放AGC电压输入
自动频率微调电压输入
UAGC
UAFT
8~0.5
6.5±4
注:BS=30V时,接收L段; BS=0V为时接收H段。
高职高专“十一五”国家级规划教材
c波段高频头
c波段高频头C波段高频头是一种高频磁头,其主要作用是将电磁信号转换成电信号,这种类型的磁头被广泛应用于无线通信领域中的信号检测和发送。
以下是围绕C波段高频头的详细阐述:第一步:了解C波段高频头的定义C波段高频头是一种高频磁头,其工作频率范围为4-8GHz,能够接收和发送高频电磁信号。
由于高频电磁信号具有极高的频率和短波长,要求接收和发送的设备具有非常高的灵敏度和准确性,而C波段高频头正是能够满足这些要求的设备之一。
第二步:C波段高频头的工作原理C波段高频头的工作原理是利用磁场感应原理,将接收的电磁信号转换成电信号的输出,或者将输入的电信号转换成电磁信号的发送。
其具体原理是当电磁波穿过一个螺旋线圈时,将在线圈中产生电流。
当电磁波频率等于线圈的共振频率时,将产生很大的感应电压,这个过程就是高频头接收信号的原理。
当电信号加到螺旋线圈上时,将在线圈中产生电流,从而在天线中产生电磁波。
这个过程就是C波段高频头发送信号的原理。
第三步:C波段高频头的应用C波段高频头的应用非常广泛,涉及到许多无线通信的领域,例如雷达、卫星通信、无线电频段测试、无线电信号接收和发送。
C波段高频头的应用也可以包括医疗诊断、导航和无线传感器网络通讯等领域中。
第四步:C波段高频头的未来发展趋势随着无线网络的发展和技术的不断进步,C波段高频头也将不断得到升级和改进。
例如,在新一代卫星通信领域,C波段高频头已被广泛应用,并且将很快被用于5G通信领域。
随着技术的不断进步和创新,C波段高频头有望在未来变得更加灵敏和更加准确。
总结C波段高频头作为一种高频磁头,在无线通信领域中具有非常重要的作用。
其工作原理是基于磁场感应原理,能够将电磁信号转换成电信号的输出,或将输入的电信号转换成电磁信号的发送。
除了无线通信领域的应用外,C波段高频头也涉及到医疗诊断、导航和无线传感器网络通讯等领域中。
未来,随着技术的不断进步和创新,C波段高频头将继续得到升级和改进,有望变得更加灵敏和准确。
高频头基础知识介绍
高频头基础知识介绍一、高频头的作用:完成信号的选通、接收、变频。
二、高频头的用途:CRT电视、平板电视、DVD-RW、Satellite、车载电视或广播;三、高频头的分类:A、模拟:VS、FS、TWO IN ONE;1、在模拟产品中,按产品性质细分可以分为:PAL制(包含38.0MHz、38.9MHz 中频信号);NTSC制(45.75MHz、58.75 MHz中频信号);SECAM制(38.9 MHz 中频信号)B、数字:DVB-S、DVB-T、DVB-C;C、调制器、收音头、RF分配器;四、高频头的基本工作原理:A、VS高频头工作原理VS高频头原理框图B、FS高频头工作原理:A+BI2C及PLL部分原理框图C、一体化高频头工作原理:A+B+C中频部分(VIF)原理框图D、DVB-C/T高频头工作原理E、DVB-S高频头工作原理一、DVBS接收机前端模块五、模拟高频头在使用过程中常见的问题:1、当不能准确判断问题的性质时,可以将本机的A V输出接到已经OK的商品机,再将商品机的A V输出接到本机的A V输入,对比观察两台机器的画面效果,从而方便判断问题的出处。
2、FS高频头或一体化高频头在应用过程中的搜台问题:A、地址字节(ADRESS BYTE)错误,整个搜索过程中无台。
B、频道划分同规格书不符,将漏掉部分边缘频道。
C、部分频段搜不到台,频段控制字节(BAND SWITCH BYTE)错误。
D、搜台过程有节目出现,但不能正常存台,AFT信息错误,偏离正常值;或AFT电压太过灵敏,S曲线太陡。
E、搜台过程中谐波台多,AFT电压变化太缓慢,S曲线太缓。
3、整机开机无图、黑屏或不能正常切换节目:高频头短路(部分引脚电压不正常,部分引脚对地电阻不正常)或总线(I2C BUS)失效。
4、整机图像信号弱:高频头混频IC失效,测试BM脚电阻不正常;AGC电压不正常,不能正常起控。
5、电视整机在低端频道(图像载频小于100MHz)图像亮点干扰很多:电源辐射干扰,注意电源的屏蔽隔离和接地。
抗5g干扰高频头原理
抗5g干扰高频头原理
抗5G干扰高频头的工作原理主要基于滤波和屏蔽技术。
高频头在接收卫星信号时,会受到周围环境中各种电磁波的干扰,其中就包括5G信号。
为了消除这种干扰,高频头内部通常会集成一个或多个滤波器,这些滤波器能够根据信号的频率特性将其中的5G信号滤除,从而保证卫星信号的纯净接收。
此外,高频头外壳通常会采用金属材料,对内部电路和元件起到一定的屏蔽作用,进一步降低5G信号对接收过程的干扰。
以上内容仅供参考,可以查阅关于抗5G干扰高频头的资料,以获取更全面准确的信息。
高频头种类及工作原理
高频头种类及工作原理摘要:高频头是一种常见的工业设备,广泛应用于加热、焊接、熔炼等领域。
本文将介绍高频头的种类和工作原理,以帮助读者了解该设备的运作原理和特点。
一、高频头的种类1. 振荡管高频头振荡管高频头采用振荡管作为振荡源,常见的振荡管有石英管和管状三极管。
这种高频头体积小、重量轻,适用于小型设备,但功率较低。
2. 功率管高频头功率管高频头采用功率管工作在开关状态下,常见的功率管有金属二极管和场效应晶体管。
这种高频头功率较大,适用于大型设备。
3. IGBT高频头IGBT高频头采用绝缘栅双极晶体管(Insulated Gate Bipolar Transistor)作为功率开关元件,兼具功率管和振荡管的优点。
IGBT 高频头在工作时,可以实现高效转换和控制,广泛应用于工业生产中。
二、高频头的工作原理高频头利用电磁感应原理进行工作。
当高频电源输出的交流电通过变压器进行降压、变压换流后,进入高频头。
高频头内的振荡电路将直流电转换为高频交流电,并将其传递到工作线圈或电极上,产生强烈的电磁场。
工作物体(如金属材料)置于该电磁场中时,会受到磁场的作用,从而达到加热、焊接或熔炼等目的。
在高频头的振荡电路中,振荡管、功率管或IGBT等元件扮演着重要角色。
振荡管根据其特定的工作方式,产生宽频谱的高频信号,形成强烈的磁场。
功率管或IGBT则负责将电流控制在合适的范围内,以确保工作负载得到适当的加热或焊接。
高频头的振荡电路中通常还配备了保护电路,以确保设备的安全和可靠运行。
同时,高频头的工作效果也与工作线圈和电极的设计和材料选择有关。
工作线圈和电极的材料一般选择高导磁性和高导电性的材料,以提高能量传递效率和加热效果。
工作线圈和电极的设计则需要考虑到工作物体的形状和尺寸,以及加热或焊接的要求。
结论:高频头是一种常见的工业设备,通过振荡电路产生高频信号,产生强烈的电磁场,从而实现对工作物体的加热、焊接或熔炼。
不同种类的高频头在工作原理和应用领域上有所不同,读者可以根据自身需求选择合适的高频头。
卫星接收天线高频头的原理与维修
2高频头原理及常识高频头的好坏决定了视频的稳定程度这是因为其一方面能够放大接收到的微弱影像信号另一方面能够对由于传输不稳定和接收干扰信号等原因引起的图像变形失真与干扰进行处理
高频头原理
高频调谐器原理高频调谐器的作用、组成和主要性能指标一、作用与电路组成高频调谐器亦名频道选择器或高频头。
处于电视接收机最前端的电路,通常由输入回路,高频放大器、本振和混频器组成。
其作用是从天线感应的电信号中选出所需高频电视信号、并进行放大,由混频级产生图象中频信号和伴音第一中频信号,并将它们送到图象中放通道进行放大。
一体化高频头是将中频处理电路内置,混频级产生38M图象中频信号和31.5M伴音第一中频信号通过声表进入中频处理电路,输出标准的复合视频信号和声音信号和第二伴音中频。
二、调谐器的主要性能指标1.选择性与通频带因为接收天线感应到的电磁信号多种多样,高频头从中选出所需要的信号进行放大,而把不需要的信号衰减掉,特别是要有效地抑制邻近频道和镜像的干扰,调谐器应有适当的通频带和良好的选择性。
为此,一般要求调谐器总和频率特性为双峰曲线,顶部不平度小于20%,-6dB处带宽应小于11MHz。
对于镜象干扰和中频干扰应具有40dB的抑制能力。
因为镜象频率(等于本振f0加中频fi的频率)变频后,它和本振之差等于中频,能顺利地通过中放电路,故要求高放级能及早将它抑制掉。
2. 功率增益和噪声系数因为高频头是整个电视接收机最前端部件,因此接收机的灵敏度和信噪比将主要取决于他的功率增益和噪声系数的高低。
为了保证图象背景的纯洁、无雪花状干扰,一般要求调谐器的杂波系数低于8dB。
为此一方面要减少回路的插入损耗;另一方面,应选用低噪声管以及合理安排晶体管的工作状态来解决。
为了提高接收机的灵敏度和信杂比,一般要求调谐器的功率增益为20~30dB,同时要求高低频道的增益差应小于8dB。
高放管都要求是高放低噪声管。
3.交叉调制如果邻近频道的信号很强,由于晶体管器件存在着一定的非线性,就会对欲接收频道的电视信号进行调制,结果出现两个不同图象。
这种现象叫做交叉调制。
因此高频头对于邻近频道的抑制应尽可能地大。
4.频道范围高频头覆盖的频率范围。
卫星电视接收技术
高频头常识一、高频头原理(1)LNB(Low Noise Block Kownconverter) ,低噪声降频放大器的意思,俗称高频头.作用是把C波段频率范围3.4-GHz--4.2GHz; Ku波段10.75GHz--12.75GHz卫星传送下来的微弱信号放大后再与其中的本振作用后输出卫星接收机所需要的950MHz---2150MHz中频信号。
(2)高频头内部结构基本上由4个单元组成, 即低噪声前置放大----极化信号变换---本振电路、混频器--中频放大输出信号,和电源部分。
(3)本振频率(C)段高频头本振频率一般为5150MHz,双本振5150MHz和5750MHz两种;Ku段本振较多,有9.75GHz、10.0GHz、10.6GHz、10.75GHz、11.25GHz、11.30GHz等.了解本振频率很重要,因为卫星下行频率与本振混频后所产生的信号中频,必需在接收机输入频率950MHz----2150GHz之内.否则收不到或者部分信号,通过查阅卫星下行频率,我们就很快知道应该选用什么本振的高频头。
(br) C段输出中频=本振频率-下行频率; Ku段输出中频=下行频率-本振频率(4)用( K )表示如25°K 、17°K等。
都说数字越小越好;、0.6dB等。
(5) 增益(GAIN) 常见LBN增益为60dB,数值偏高为好.但不能太高,放大倍数过高容易使放大器工作不稳定高频自激,形成网纹干扰.一般来讲,单输出窄带高频头比双极性宽带高频头有更高的增益,低噪声温度比高噪声温度的高频头对信号的接收有更高增益。
(6)双极性LNBF每个卫星上通常拥有24个转发器24个频道,为充分利用这些频道,以及避免相邻频道的相互干扰,通常将频道顺序按单、双分开,分别以不同极化方式的电磁波发射,即水平与垂直,因为卫星的带宽为27MHz,但频道间隔为20MHz.说明有部分频率重合了.双极化高频头是一种不用伺服马达的与馈源一体化的.从LNB 圆波导口看进去,您将看到两个互相垂直的探针,用来分别接收垂直极化和水平极化的信号. LNBF 波导采用最先进的设计,使两个探针间的水平/垂直信号隔离度超过20dB 并获得超低系数噪声温度利用来自接收机的13/18V 两种可切换的供电电压来确定所需要的是水平极化信号还是垂直极化信号。
卫星电视下变频器(高频头)的工作原理
卫星电视下变频器(高频头)的工作原理俞德育1卫星电视下变频器(高频头)的作用卫星电视低噪声下变频器又称为高频头(也称卫星电视的室外单元),它是由微波低噪声放大器,微波混频器,第一本振和第一中频前置放大器组成,其框图如图1所示。
图1高频头的原理框图一般的卫星电视接收系统主要包括:(1)天线;(2)馈源;(3)低噪声下变频器,也称为高频头(是由低噪声放大器与下变频器集成的组件),用LNB表示;(4)电缆线;(5)端子接头;(6)卫星接收机;(7)电视接收机。
卫星电视接收系统框图如图2所示。
图2卫星电视接收系统框图由于卫星电视接收系统中的地面天线接收到的卫星下行微波信号经过约40000km左右的远距离传输已是非常微弱,通常天线馈源输出载波功率约为-90dBmW〔注〕。
若馈线损耗为0.5dB,则低噪声放大器输入端载波功率为-90.5dBmW。
第一变频器和带通滤波器的损耗约为10dB,第一中放的增益约为30dB。
这样,若低噪声放大器给出增益(40~50)dB,则下变频器输出端可以输出(-30~-20)dBmW的信号。
因此,卫星电视下变频器的作用是在保证原信号质量参数的条件下,将接收到的卫星下行频率的信号进行低噪声放大并变频。
2卫星电视下变频器的结构卫星电视下变频器中的低噪声放大器一般是将波导同轴转换器与低噪声放大器合成一个部件。
如果要达到噪声温度低和增益高,通常包含3~4级放大,前两级为低噪声放大器,主要采用高电子迁移率晶体管HEMT器件,后两级为高增益放大器,主要采用砷化镓场效应晶体管GaAsFET。
典型的LNA的噪声温度在C波段约为(20~40)°K。
增益约为(40~50)dB,输出输入电压驻波比(VSMR)小于1.5。
图3给出了低噪声放大器(LNA)的电原理图,设计时通常先给出必要的参数,如S参数、电路级数、匹配电路的方式、噪声参数、输出输入阻抗等等,然后利用计算机CAD软件进行优化设计并作出微带线电路图。
高频调谐器(高频头)原理
检波电路输出的基带信号可以直接用 于电视机的显示或进一步处理。
检波电路通常由一个检波二极管和滤 波器组成,检波二极管将调谐后的信 号转换为直流信号,滤波器则用于抑 制不需要的干扰信号。
输出电路
01
输出电路:负责将检波电路输出 的基带信号传输至电视机的显示 部分。
02
输出电路通常由一个电容和一个 电阻组成,用于调整基带信号的 幅度和阻抗,使其与电视机的输 入要求相匹配。
新工艺
引入先进的微纳加工技术和表面贴装 技术,减小高频调谐器的体积和重量, 提高生产效率和可靠性。
高频调谐器(高频头)在未来的应用前景
卫星通信
随着卫星通信技术的发展,高频 调谐器在卫星电视接收、卫星广 播、卫星导航等领域的应用将更
加广泛。
移动终端
随着移动设备的普及,高频调谐器 在智能手机、平板电脑等移动终端 上的应用将更加普遍。
镜像抑制比不合格
总结词
镜像抑制比不合格是指高频调谐器在接收信号时,无 法有效地抑制镜像干扰信号,导致干扰和误码率增加 。
详细描述
可能的原因包括调谐器内部电路设计、提高 元件性能等。
06
高频调谐器(高频头)的发 展趋势与未来展望
高频调谐器(高频头)的未来发展方向
灵敏度降低
总结词
灵敏度降低是指高频调谐器接收信号的能力下降,无 法正常接收和输出信号。
详细描述
可能的原因包括调谐器内部元件老化、信号干扰、连 接线路接触不良等。解决方案包括检查调谐器连接线 路、更换老化元件、加强信号抗干扰能力等。
选择性差
要点一
总结词
选择性差是指高频调谐器在接收信号时,无法有效地滤除 不需要的信号,导致干扰和误码率增加。
信号放大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 高频调谐器 图像中频通道 伴音通道
5、伴音通道的工作过程
视频检波后得到的第二伴音中频 信号,经过预视放电路放大、送入伴 音限幅放大器进行限幅放大后,由鉴 频器鉴频,从6.5MHz的调频信号中解 调出音频信号,再通过音频电压、功 率放大器的进一步放大,最后以足够 的功率去推动扬声器发出声音。
第六讲 高频调谐器 图像中频通道 伴音通道
四、高频调谐器的类型
1、机械调谐式(优缺点) 2、电子调谐式(优缺点)
第六讲 高频调谐器 图像中频通道 伴音通道
五、电子调谐高频头的特点
1、变容二极管 2、开关二极管
第六讲 高频调谐器 图像中频通道 伴音通道
3、电调谐原理(如图2.1.4所示)
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
4、 声表面波滤波器的特点
(1)选择性好
(2)无需调整
(3)设计、使用方便 (4)稳定性好
(5)可靠性高
*不足之处:插入损耗大
第六讲 高频调谐器 图像中频通道 伴音通道
5、声表面波滤波器应用电路(如图3.2.4所示)
第六讲 高频调谐器 图像中频通道 伴音通道
UHF本振
第六讲 高频调谐器 图像中频通道 伴音通道
UHF
UHF 高放
混频
VHF 高放
UHF 本振
VHF
VHF
VIF
本振
混频
第六讲 高频调谐器 图像中频通道 伴音通道
上述电路采用的是一次变频
第六讲 高频调谐器 图像中频通道 伴音通道
3、自动本振频率微调 ( AFT )
(1)方框图
(2)工作过程
第六讲 高频调谐器 图像中频通道 伴音通道
2、框图(集成电路) 如图4.1.2所示
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
3、伴音信号的传输过程(黑白)
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
4、伴音通道的作用
预 视 放 , AGC 电 路 , ANC 电 路 及 AFT电路等。
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
二、声表面波滤波器 *声表面波是一种沿着弹性固体表 面或界面传播的机械振动或弹性振 动
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
*为了给鉴频器提供一个幅度 符合要求的伴音中频信号,必须 对第二伴音中频信号进行一定的 放大。
*伴音中频放大电路如图6-2-1所示
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
四、鉴频电路
1、鉴频电路的作用:是从6.5MHz第二 伴音中频中解调出原调制信号——音频 伴音信号。
33.57MHz—31.5MHz=2.07MHz 2.07MHz*2=4.14MHz (4.43MHz)
第六讲 高频调谐器 图像中频通道 伴音通道
4、对于高邻频道的图像差频 (30MHz )和低邻频道的伴音差频 (39.5MHz )均应衰减40分贝以上。
**为什么 ?
第六讲 高频调谐器 图像中频通道 伴音通道
1、声表面波的特点:
(1)声表面波的能量只集中在固体表面 的一定范围内,即它只在固体表面的大约 一个声波长的有限范围内传播。 (2)声表面波是一种机械波或弹性波,其 传播速度仅为电磁波的十万分之一,而且 其传播的速度与频率无关。
第六讲 高频调谐器 图像中频通道 伴音通道
2、 声表面波滤波器的结构 3、 声表面波滤波器的工作原理
第六讲 高频调谐器 图像中频通道 伴音通道
1、多采用峰值AGC 电路 2、在AGC的调控过程中,中频幅频 特性应不受影响 3、AGC的作用范围要足够大。一般 要求中放AGC控制能力大于40分贝。
第六讲 高频调谐器 图像中频通道 伴音通道
3.2 图像中频通道的组成
一、图像中频通道的组成(集成化) 图像中频放大器,视频检波器,
第六讲 高频调谐器 图像中频通道 伴音通道
3、类型有两端和三端陶瓷滤 波器。
如图4.1.3所示
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
三、对伴音通道的要求
1、非线性失真要小 2、频带要宽 3、功率余量要大 4、对调幅信号的抑制能力要强 5、信杂比要高 6、鉴频器零点漂移要图像中频通道 伴音通道
三、高频调谐器的的作用
1、 选台——从电视接收天线接收到的众多频 道的电视信号中,学则出欲接收频道的电视信 号,并有效地抑制邻频道及其他的干扰信号。 2、 放大——将选出的高频电视信号进行放大, 以提高接收机的灵敏度。 3、变频——将接收机的任何一个频道的高载 频电视信号,变换成一固定的中载频电视信号。
中频信号怎样处理?
第六讲 高频调谐器 图像中频通道 伴音通道
中频通道教学目标 1、掌握中频通道的作用
2、掌握图像中频通道的组成 3、掌握视频检波和预视放电路及其工作原理。 4、掌握AGC电路的工作原理 5、了解对图像中频通道的要求。 6、了解ANC电路
第六讲 高频调谐器 图像中频通道 伴音通道
*操作机构
第六讲 高频调谐器 图像中频通道 伴音通道
*频道预选器电路
第六讲 高频调谐器 图像中频通道 伴音通道
二、频道预选器的工作过程
•*8个引线脚的作用 •*节目预选过程 •*AFT控制开关
三、红外线遥控接收器 四、红外线遥控发射器
前面所学的内容
1、彩色电视接收机的组成 2、高频调谐器的类型(机械调谐式,电子调谐 式) 3、高频调谐器的作用——选台、放大和混频 4、高频调谐器的组成(输入回路,高频放大, 本振电路,混频电路) 5、彩色电视接收机混频得到的信号——38MHz 的图象中频,31.5MHz伴音中频,同时得到 33.57MHz的色度副载波中频
第六讲 高频调谐器 图像中频通道 伴音通道
6、黑白与彩色伴音通道的不同
*6.5MHz第二伴音中频信号获得的方法不同。
第六讲 高频调谐器 图像中频通道 伴音通道
??为什么?? ??如何获得??
第六讲 高频调谐器 图像中频通道 伴音通道
33.57MHz – 31.5MHz=2.07MHz*2=4.14MHz
2.2 高频调谐器的工作原理 (如图2.2.1所示)
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
1、VHF高频调谐器 2、UHF高频调谐器 (1)一次变频 (2)二次变频
第六讲 高频调谐器 图像中频通道 伴音通道
UHF
UHF 高放
混频
VHF
混频 VIF
UHF 中放
第六讲 高频调谐器 图像中频通道 伴音通道
重点:伴音通道的工作过程,彩色 和黑白电视接收机伴音通道的区别
难点:鉴频器的工作过程(模拟电路
中学过)
第六讲 高频调谐器 图像中频通道 伴音通道
4.1 伴音通道的组成及性能要求
一、伴音通道的组成
1、框图(分立元件)如图4.1.1所示
第六讲 高频调谐器 图像中频通道 伴音通道
第六讲 高频调谐器 图像中频通道 伴音通道
五、音频放大电路
??音频放大电路主要是什 么放大器??
第六讲 高频调谐器 图像中频通道 伴音通道
作业: P50(彩色) 1、3、4、6 P75(彩色)1、3
2、鉴频过程:通常是先把等幅的调频 信号转换为幅度随频偏而变化的调幅调 频信号,然后再通过振幅检波电路将其 幅度的变化包络检出来,从而完成调频 波的解调,获得原调制信号。
第六讲 高频调谐器 图像中频通道 伴音通道
3、鉴频器的类型:对称式比例鉴频器 电路和不对称比例鉴频器
4、对称式比例鉴频器电路(如图6-2-4 所示)
7频道 8频道
9频道
184.25 190.75 192.25
182.75
30 31.5 38 39.5
第六讲 高频调谐器 图像中频通道 伴音通道
二、必须满足一定的相频特性
目的是亮度信号和色度信号严格地在相 应的位置上正确地重现。
三、中频增益要高
目的获得较高的整机灵敏度,以利检波
四、要具有良好的AGC特性
第六讲 高频调谐器 图像中频通道 伴音通道
图像中频通道的作用:
把来自高频调谐器的图象中频和 伴音中频、色副载波中频加以放大, 使之达到视频检波正常工作所需的 幅度。
第六讲 高频调谐器 图像中频通道 伴音通道
3.1 对图像中频通道的要求 一、应具有符合要求的中频幅频 特性
1 、 图 像 中 频 3 8 MHz 应 处 于 最 大 幅 度 的 50%,这是残留边带发送方式所要求的。 2、色度副载波中频33。57MHz 也置于最 大幅度的50%处,这是由于窄带所限。
*因此,分立元件彩色电视机一般 采用声、像分别检波方式,即采 用两只二极管,分别进行视频检 波和伴音第二中频检波。
第六讲 高频调谐器 图像中频通道 伴音通道
二、陶瓷滤波器
1、 陶瓷滤波器是一种利用具有压电 效应的陶瓷片制成的滤波元件。 2、 特点是结构简单、Q值高、滤波 特性好、不需调整、使用方便。通常 用在频率精度和稳定性要求不太高的 场合。
第六讲 高频调谐器 图像中频通道 伴音通道
教学目标
通过本讲学习,同学们要了解 高频头的类型及机械式高频头的工 作过程,了解频道预选装置及工作 过程,了解中频通道的组成及作用, 了解伴音通道的组成及作用,掌握 电子调谐原理。