图形面积的最大值1

合集下载

初中数学“最值问题”集锦(一)

初中数学“最值问题”集锦(一)

“最值问题”集锦(一)●平面几何中的最值问题 (01)●几何的定值与最值 (07)●最短路线问题 (14)●对称问题 (18)●巧作“对称点”妙解最值题 (22)●平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P’,BP’,在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。

取点A关于直线L的对称点A’,则AP’= AP,在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。

1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,所以所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.-x2+2Rx+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3. 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则∠P′C′B=∠P′BC=∠PCB=45°,所以A,B,C′,C四点共圆,所以∠CC′A=∠CBA=90°,所以在△ACC′中,AC>AC′,即PA+PB>P′A+P′B.4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD⊥BC于D,所以∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以∠1=∠2=45°,∠3=∠4,所以△ADN∽△BDM,又因为∠MDN=90°=∠ADB,所以△MDN∽△BDA,所以∠BAD=∠MND.由于∠BAD=∠LCD,所以∠MND=∠LCD,所以D,C,L,N四点共圆,所以∠ALK=∠NDC=45°.同理,∠AKL=∠1=45°,所以AK=AL.因为△AKM≌△ADM,所以AK=AD=AL.而而从而所以 S△ABC≥S△AKL.5. 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则 PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则 PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则 P1C≤BC=AB.对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.6. 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.7. 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x -10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等; (2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变 思路点拨 先考虑当圆心在正三角形的顶点C 时, 其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下, 动与静是相对的,我们可以研究问题中的变量,考虑当变 化的元素运动到特定的位置,使图形变化为特殊图形时, 研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为 △ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,⌒⌒从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值; (2)构造二次函数求几何最值.学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22 C .2D .13-5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.(1)求证:MN∥AB;(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,∠SPM是一定角.9.已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于点E,交直线AC于点F.(1)当点P在线段AB上时(如图),求证:PA·PB=PE·PF;(2)当点P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是( )25 D.14A.8 B.12 C.211.如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P是半圆上的一个动点,则封闭图形ACPDB的最大面积是( )A.23+3+ D.21+ C.22+ B.212.如图,在△ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案111213●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短”为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上A、B二点之间的最短路线如何求呢?我们用过A、B两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上A、B两点之间不超过半个圆周的弧线就是所求的A、B两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从A地出发,去B地取情报.在去B地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点A关于河岸的对称点 A′,即作 AA′垂直于河岸,与河岸交于点C,且使AC=A′C,连接A′B交河岸于一点P,这时 P点就是饮马的最好位置,连接 PA,此时 PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P点的另一点P′,连接P′A,P′B, P′A′.∵P′A+P′B=P′A′+P′B>A′B=PA′+PB=PA+PB,而这里不等式 P′A′+P′B>A′B成立的理由是连接两点的折线段大于直线段,所以PA+PB是最短路线.此例利用对称性把折线APB化成了易求的另一条最短路线即直线段A′B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上A点,爬到邻近的另一面墙壁β上的B点捕蛾,它可以沿许多路径到达,但哪一条是最近的路线呢?14解:我们假想把含B点的墙β顺时针旋转90°(如下页右图),使它和含A点的墙α处在同一平面上,此时β转过来的位置记为β′,B点的位置记为B′,则A、B′之间最短路线应该是线段AB′,设这条线段与墙棱线交于一点P,那么,折线4PB就是从A点沿着两扇墙面走到B点的最短路线.证明:在墙棱上任取异于P点的P′点,若沿折线AP′B走,也就是沿在墙转90°后的路线AP′B′走都比直线段APB′长,所以折线APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体ABCD—A′B′C′D′中,AB=4,A′A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到B点,问这只小虫怎样爬距离最短?(见图(1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、B两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上 D′B间的最短路线就是连结这两点的直线段,这样,从D′点出发,到B点共有六条路线供选择.①从D′点出发,经过上底面然后进入前侧面到达B点,将这两个面摊开在一个平面上(上页图(2)),这时在这个平面上D′、B间的最短路线距离就是连接D′、B两点的直线段,它是直角三角形ABD′的斜边,根据勾股定理,D′B2=D′A2+AB2=(1+2)2+42=25,∴D′B=5.②容易知道,从D′出发经过后侧面再进入下底面到达B点的最短距离也是5.③从D′点出发,经过左侧面,然后进入前侧面到达B点.将这两个面摊开在同一平面上,同理求得在这个平面上D′、B两点间的最短路线(上页图(3)),有:D′B2=22+(1+4)2=29.④容易知道,从D′出发经过后侧面再进入右侧面到达B点的最短距离的平方也是29.⑤从D′点出发,经过左侧面,然后进入下底面到达B点,将这两个平面摊开在同一平面上,同理可求得在这个平面上D′、B两点间的最短路线(见图),1516D ′B 2=(2+4)2+12=37.⑥容易知道,从D ′出发经过上侧面再进入右侧面到达B 点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D ′点出发,经过上底面然后进入前侧面到达B 点(上页图(2)),或者经过后侧面然后进入下底面到达B 点的路线是最短路线,它的长度是5个单位长度.利用例2、例3中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上A 和B 两点之间的最短路线问题(下左图),同样可以把A 、B 两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接A 、B 成线段AP1P2B ,P1、P2是线段AB 与两条侧棱线的交点,则折线AP1P2B 就是AB 间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在A 点,绕一周之后终点为B 点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线AB 剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时,A ′、B ′分别与A 、B 重合),连接AB ′,再将上页右图还原成上页左图的形状,则AB ′在圆柱面上形成的曲线就是连接AB 且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图,A 、B 在同一母线上,B 为AO 的中点,试求以A 为起点,以B 为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时,A′、B′分别与A、B重合),在扇形中连AB′,则将扇形还原成圆锥之后,AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的A点爬到桶内的B点去寻找食物,已知A点沿母线到桶口C点的距离是12厘米, B点沿母线到桶口 D点的距离是8厘米,而C、D两点之间的(桶口)弧长是15厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于B点在里面,不便于作图,设想将BD延长到F,使DF=BD,即以直线CD为对称轴,作出点B的对称点F,用F代替B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长BD到F,使DF=BD,即作点B关于直线CD 的对称点F,连结AF,交桶口沿线CD于O.因为桶口沿线CD是 B、F的对称轴,所以OB=OF,而A、F之间的最短线路是直线段AF,又AF=AO+OF,那么A、B之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O点后,转向桶内B点爬去.延长AC到E,使CE=DF,易知△AEF是直角三角形,AF是斜边,EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2 =(12+8)2+152=625=252,解得AF=25.即蚂蚁爬行的最短路程是25厘米.例7 A、B两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使A、B两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从A点作河岸的垂线,并在垂线上取AC等于河宽,就相当于把河宽预先扣除,找出B、C两点之间的最短路线,问题就可以解决.17解:如上图,过A点作河岸的垂线,在垂线上截取AC的长为河宽,连结BC交河岸于D点,作DE垂直于河岸,交对岸于E点,D、E两点就是使两村行程最短的架桥地点.即两村的最短路程是AE+ED+DB.例8 在河中有A、B两岛(如下图),六年级一班组织一次划船比赛,规则要求船从A岛出发,必须先划到甲岸,又到乙岸,再到B岛,最后回到A岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作A、B关于甲岸线、乙岸线的对称点A′和B′,连结A′、B′分别交甲岸线、乙岸线于E、F两点,则A→E→F→B→A是最短路线,即最短路程为:AE +EF+FB+BA.证明:由对称性可知路线A→E→F→B的长度恰等于线段A′B′的长度.而从A岛到甲岸,又到乙岸,再到B岛的任意的另一条路线,利用对称方法都可以化成一条连接A′、B′之间的折线,它们的长度都大于线段 A′B′,例如上图中用“·—·—·”表示的路线A→E′→F′→B的长度等于折线AE′F′B的长度,它大于A′B′的长度,所以A→E →F→B→A是最短路线.1819B ●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。

2020年昆山市高一数学下期中第一次模拟试题含答案

2020年昆山市高一数学下期中第一次模拟试题含答案

x y 3 0 上的点连线段最小,所以,切线长的最小值为 ( 1 2 3 )2 2 4 , 2
故选 B . 考点:圆的几何性质,点到直线距离公式.
6.C
解析:C 【解析】 【分析】
根据题意作出图形,欲求球的半径 r .利用截面的性质即可得到三棱锥 S ABC 的体积可
看成是两个小三棱锥 S ABO 和 C ABO 的体积和,即可计算出三棱锥的体积,从而建立 关于 r 的方程,即可求出 r ,从而解决问题. 【详解】 解:根据题意作出图形:
③可以转化为长方体的外接球; ④特殊几何体可以直接找出球心和半径.
4.D
解析:D 【解析】 【分析】
根据圆上两点 M , N 关于直线 x y 1 0对称,可知圆心在该直线上,从而求出圆心坐标 与半径,要使得 PAB 面积最大,则要使得圆上点 P 到直线 AB 的距离最大,所以高最大
为 3 2 1 , SPAB 最大值为 3 2 . 2
作的切线长的最小值是( )
A.2
B.4
C.3
D.6
6.已知三棱锥 S ABC 的所有顶点都在球 O 的球面上, SC 为球 O 的直径,且
SC OA , SC OB , OAB 为等边三角形,三棱锥 S ABC 的体积为 4 3 ,则球 O 3
的半径为( )
A.3
B.1
C.2
D.4
7.正方体 ABCD﹣A1B1C1D1 中,E,F 分别是 AD,DD1 的中点,AB=4,则过 B,E,F 的 平面截该正方体所得的截面周长为( )
(2)在线段 AM 上是否存在点 P ,使得 MC∥平面 PBD ?说明理由.
22.在三棱锥 S ABC 中,平面 SAB 平面 SBC , AB BC , AS AB ,过 A 作 AF SB ,垂足为 F ,点 E , G 分别是棱 SA , SC 的中点. (1)求证:平面 EFG∥平面 ABC . ( 2 )求证: BC SA.

【初中数学】第1课时 几何图形面积问题 [人教版九年级上册] (练习题)

【初中数学】第1课时 几何图形面积问题 [人教版九年级上册] (练习题)

第1课时几何图形面积问题[人教版九年级上册](2912)1.乐乐要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm,这个三角形的面积S(单位:cm2)随x的变化而变化.(1)S与x之间的函数解析式为(写出自变量的取值范围);(2)当x=时,这个三角形的面积S最大,最大面积是.2.如图,在△ABC中,∠B=90∘,AB=8cm,BC=6cm,点P从点A开始沿AB边向点B以2cm/s的速度运动,点Q从点B开始沿BC边向点C以1cm/s的速度运动.如果点P,Q分别从点A,B同时出发,当其中一点到达终点时,另一点也随之停止运动.当△PBQ的面积最大时,运动时间为s.3.已知直角三角形两条直角边的和等于20,当两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少?4.用52cm的铁丝弯成一个矩形,设矩形的一边长为xcm,则另一边长为cm,矩形的面积S=,自变量x的取值范围为.当x=时,该矩形的面积最大,为cm2.5.如图,已知平行四边形ABCD的周长为8cm,∠B=30∘,若边长AB=xcm.(1)平行四边形ABCD的面积y(cm2)与x之间的函数解析式为,自变量x的取值范围为;(2)当x取时,y的值最大,最大值为.6.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.7.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数解析式(写出自变量x的取值范围);(2)当x是多少时,菱形风筝的面积S最大?最大面积是多少?8.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区一面靠长为5m的墙,隔离区分成两个区域,中间用塑料膜隔开.已知整个隔离区塑料膜总长为12m,若隔离区出入口的大小不计,并且隔离区靠墙的面不能超过墙长,小明认为:隔离区的最大面积为12m2;小亮认为:隔离区的面积可能为9m2,则()A.小明正确,小亮错误B.小明错误,小亮正确C.两人均正确D.两人均错误9.如图,在边长为6cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1cm/s的速度沿各边向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动.在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.10.有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C= 135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.参考答案1.【答案】:S=−12x2+20x(0<x<40);20cm.;200cm2.2.【答案】:2【解析】:设运动时间为t s.根据题意,得S△PBQ=12×(8−2t)t=−t2+4t=−(t−2)2+4,则由函数图象知,当t=2时,△PBQ的面积最大,为4cm2.3.【答案】:解:设直角三角形的直角边为x,则另一直角边为20−x,这个直角三角形的面积为S,根据题意得:S=12x(20−x)(0<x<20)配方得:S=−12(x−10)2+50,∴当x=10时,S最大为50,则20−10=10,∴当两直角边长均为10时,面积最大,最大值为50.4.【答案】:(26−x);−x2+26x;0<x<26.;13;1695.【答案】:y=−12x2+2x;0<x<4;2;2【解析】:由ABCD的周长为8cm及AB=xcm,知BC=(4−x)cm.过点A作AH⊥BC于点H,则AH=12xcm,所以y=12x(4−x)=−12x2+2x=−12(x−2)2+2,即当x=2时,y有最大值,最大值为26.【答案】:12.5【解析】:设其中一段铁丝的长为xcm,则另一段铁丝的长为(20−x)cm,则正方形的面积之和为(x4)2+(20−x4)2=18(x2−20x+100)+12.5=18(x−10)2+12.5, ∴当两小段铁丝的长都等于10cm时,面积之和最小,最小值为12.5cm27(1)【答案】解:由题意,得:S =12x(60−x)=−12x 2+30x(0<x <60).(2)【答案】∵S =−12x 2+30x ,a =−12<0,∴S 有最大值.当x =−b 2a =−302×(−12)=30时,S 的最大面积为4ac−b 24a =4×(−12)×0−3024×(−12)=450.∴当x 是30cm 时,菱形风筝的面积S 最大,最大面积为450cm 2.8.【答案】:B【解析】:设隔离区平行于墙的一边长为xm(0<x ≤5),隔离区的面积为S m 2. 由题意,得S =12−x 3·x =−13x 2+4x ,∴对称轴为直线x =−42×(−13)=6.∵0<x ≤5,抛物线开口向下,在对称轴左侧,S 随x 的增大而增大,∴当x =5时,S 取得最大值,最大值为−13×52+4×5=−253+20=353. ∵9<353<12,∴小明错误;令S =9,得9=−13x 2+4x ,解得x 1=9(舍去),x 2=3,∴当x =3时,S =9,∴隔离区的面积可能为9m 2. 故选B .9.【答案】:3;18【解析】:设运动时间为t s (0≤t ≤6),则AE =t cm ,AH =(6−t)cm .根据题意,得S 四边形EFGH =S 正方形ABCD −4S △AEH=6×6−4×12t(6−t)=2t 2−12t +36=2(t −3)2+18, 所以当t =3时,四边形EFGH 的面积最小,其最小值是18cm 2.10(1)【答案】解:①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB⋅BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF//AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG−HG=6−5=1,∴AG=AB−BG=6−1=5,∴S2=AE⋅AG=6×5=30;【解析】:①若所截矩形材料的一条边是BC,过点C作CF⊥AE于F,得出S1=AB⋅BC=6×5=30;②若所截矩形材料的一条边是AE,过点E作EF//AB交CD于F,FG⊥AB于G,过点C 作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,证出△CHF为等腰三角形,得出AE=FG=6,HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG−HG=1,AG=AB−BG=5,得出S2=AE⋅AG=6×5=30;(2)【答案】能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6−x,∴FM=GM+FG=GM+CG=BC+BM=11−x,∴S=AM×FM=x(11−x)=−x2+11x=−(x−5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.【解析】:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,证出△CGF为等腰三角形,得出MG= BC=5,BM=CG,FG=DG,设AM=x,则BM=6−x,FM=GM+FG=GM+CG=BC+BM= 11−x,得出S=AM×FM=x(11−x)=−x2+11x,由二次函数的性质即可得出结果.。

2019新沪科版九年级数学上册习题课件:21.4-第1课时 求几何图形面积的最值问题

2019新沪科版九年级数学上册习题课件:21.4-第1课时 求几何图形面积的最值问题

(2)x 为何值时,y 有最大值?最大值是多少? 解:y=-34x2+30x=-34(x-20)2+300,由于-34<0,抛物线开口向下, 又 0<x<40,所以当 x=20 时,y 取最大值,最大值为 300m2.
15.某学校为了美化校园环境,计划在一块长 40 米、宽 20 米的长方 形空地上新建一块长 9 米、宽 7 米的长方形花圃.
(2)当 x 是多少时,这个三角形的面积 S 最大?最大面积是多少? 解:当 x=-2ba=-2×2-0 12=20 时,这个三角形的面积最大,最大值 是4ac4-a b2=4×-4×12×-021- 202=200(cm2).
13.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两 边足够长),用 28m 长的篱笆围成一个矩形花园 ABCD(篱笆只围 AB,BC 两边),设 AB=xm.
10.如图,在△ ABC 中,∠B=90°,AB=12mm,BC=24mm,动点 P 从点 A 开始沿边 AB 向 B 以 2mm/s 的速度移动(不与点 B 重合),动点 Q 从点 B 开始沿边 BC 向 C 以 4mm/s 的速度移动(不与点 C 重合).如果 P,Q 分别从 A,B 同时出发,那么经过 33 s,四边形 APQC 的面积最小.
(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划 新建的长方形花圃的面积多 1 平方米,请给出你认为合适的三种不同的方 案;
解:方案 1:长为 917米,宽为 7 米.方案 2:长为 9 米,宽为 719米.方 案 3:长、宽都为 8 米.(答案不唯一)
(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面 积能否增加 2 平方米?如果能,请求出长方形花圃的长和宽;如果不能, 请说明理由.

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

专题33:空间几何体精讲温故知新一.空间几何体的结构1.多面体一般地,由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

2.旋转体一条平面曲线,包括直线,绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面。

封闭的旋转面围成的几何体叫做旋转体。

这条定直线叫做旋转体的轴。

3.棱柱一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形,其余各面叫做棱柱的侧面,它们都是平行四边形,相邻两边的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点。

棱柱的底面可以是三角形、四边形、五边形,我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱。

一般地,我们把侧面垂直于底面的棱柱叫做直棱柱,侧面不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的,直棱柱叫做正棱柱,底面是平行四边形的四棱柱,也叫做平行六面体。

4.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

这个多边形面叫做棱锥的底面,有公共顶点的各个三角形面叫做棱锥的侧面,相邻两边的公共边叫做棱锥的侧棱,这侧面的公共顶点叫做棱锥的顶点。

棱锥,用表示顶点和各面各顶点的字母来表示,其中三棱锥又叫四面体,底面是正多边形并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥。

5.棱台用一个平行于圆锥底面的平面去截棱锥,我们把底面和截面之间那部分多面体叫做棱台。

在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面面,类似于棱柱、棱锥,棱台也有侧面、侧棱和顶点。

6.圆柱与矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面,叫做圆柱的底面,平行的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱侧面的母线。

北师大版七年级上册数学1.3 截一个几何体(解析版)

北师大版七年级上册数学1.3 截一个几何体(解析版)

1.3 截一个几何体一、单选题1.如图,一个有盖..的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是A.B.C.D.【答案】D【解析】【分析】根据圆柱体的截面图形可得.【详解】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯正着放可得到C选项的形状,不能得到三角形的形状,故选D.【点睛】本题主要考查认识几何体,解题的关键是掌握圆柱体的截面形状.2.粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线【答案】B【解析】【分析】点动线,线动成面,将滚筒看做线,在运动过程中形成面.【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B.【点睛】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.3.用一个平面取截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆柱B.球体C.圆锥D.以上都有可能【答案】A【解析】【分析】根据圆柱、球体、圆锥的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【详解】解:A、用一个平面去截一个圆柱,得到的图形可能是四边形,故A选项符合题意;B、用一个平面去截一个球体,得到的图形可能是圆,故B选项不合题意;C、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项不符合题意;D、因为A选项符合题意,故D选项不合题意;故选A.【点睛】本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.4.如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.圆B.长方形C.椭圆D.平行四边形【答案】B【解析】分析:此题实质是垂直圆柱底面的截面形状;解:水面的形状就是垂直圆柱底面的截面的形状,即为长方形;故选B.5.用一个平面去截几何体,截面不可能是三角形的是()A.圆柱B.圆锥C.三棱柱D.正方体【答案】A【解析】【分析】根据正方体、球体、棱柱、圆柱的形状特点判断即可.【详解】A、圆柱的截面跟圆、四边形有关,截面不可能是三角形,符合题意;B、过圆锥的顶点和下底圆心的面得到的截面是三角形,不符合题意;C、过三棱柱的三个面得到的截面是三角形,不符合题意;D、过正方体的三个面得到的截面是三角形,不符合题意.故选:A.【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,从中学会分析和归纳的思想方法.6.用一个平面去截一个几何体,其截面形状是圆,则原几何体可能为()①圆柱①圆锥①球①正方体①长方体A.①①B.①①①C.①①①①D.①①①①①【答案】B【解析】【分析】根据圆柱、圆锥、球、正方体、长方体的形状进行判断即可,可用排除法.【详解】解:①圆柱的截面形状可能是圆,符合题意;①圆锥的截面形状可能是圆,符合题意;①球的截面形状一定是圆,符合题意;①正方体的截面形状不可能是圆,不符合题意;①长方体的截面形状不可能是圆,不符合题意;故选B.【点睛】本题考查了用平面去截一个几何体,截面的形状即与被截的几何体有关,还与截面的角度和方向有关.7.如图所示,用一个平面去截一个圆柱,则截得的形状应是(①A.B.C.D.【答案】B【解析】【分析】当截面的角度和方向不同时,圆柱体的截面不相同进行判断即可.【详解】解:平面平行圆柱底面截圆柱可以得到一个圆,而倾斜截得到椭圆,所以B选项是正确的.【点睛】本题考查的是截面位置与截面的关系, 解答的关键是知道截面位置不同所得截面可能不同;8.一个几何体的一个截面是三角形,则原几何体一定不是下列图形中的( )A.圆柱和圆锥B.球体和圆锥C.球体和圆柱D.正方体和圆锥【答案】C【解析】【分析】观察题目,每个选项中都有圆锥,而圆锥的截面可能是三角形,故可以判断A①B①D;根据圆柱的截面可能是圆,长方形,不会是三角形,球体的截面永远是圆对C选项进行判断.【详解】圆柱的截面可能是圆,长方形,不会是三角形,球体的截面永远是圆,也不会是三角形.故选C①【点睛】本题主要考查的是几何体的有关知识,熟练掌握常见几何体截面的形状是解答本题的关键.9.用一个平面去截圆锥,截面图形不可能是()A.B.C.D.【答案】C【解析】试题分析:根据圆锥的形状特点判断即可,也可用排除法.解:如果用平面取截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形,如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆,如果不与底面平行得到的就是一个椭圆或抛物线与线段组合体,所以不可能是直角形.故选;C.点评:此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.10.一个正方体锯掉一个角后,顶点的个数是① ①A.7个或8个B.8个或9个C.7个或8个或9个D.7个或8个或9个或10个【答案】D【解析】如下图,一个正方体锯掉一个角,存在以下四种不同的情形,新的几何体的顶点个数分别为:7个、8个、9个或10个.故选D.二、填空题11.正方体的截面中,边数最多的是________边形.【答案】六【解析】解:①用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,①最多可以截出六边形.故答案为:六.12.在“长方体、圆柱、圆锥”三种几何体中,用一个平面分别去截三种几何体,则截面的形状可以截出长方形也可以截出圆形的几何体是_____.【答案】圆柱【解析】【分析】首先当截面的角度和方向不同时,长方体的截面始终不是圆,无论什么方向截取圆锥都不会截得长方形,从而可用排除法可得答案.【详解】解:用一个平面截长方体,不管角度与方向,始终截不到圆,所以排除长方体,用一个平面截圆锥,不管角度与方向,始终截不到长方形,所以排除圆锥,用一个平面截圆柱,可以截到长方形与圆.故答案为:圆柱.【点睛】本题考查的是对基本的几何立体图形的认识,掌握长方体,圆柱,圆锥的特点是解题的关键.13.用一个平面去截下列几何体,截面可能是圆的是__________.(填写序号)①三棱柱;①圆柱;①圆锥;①长方体;①球【答案】①①①【解析】【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【详解】用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故答案为:①①①【点睛】本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.14.小华用一个平面去截圆柱体,所得到的截面形状可能是_______(写出一个即可).【答案】长方形或梯形或椭圆或圆【解析】【分析】用平面取截一个圆柱体,横着截时截面是椭圆或圆(截面与上下底平行),竖着截时,截面是长方形(截面与两底面垂直)或梯形.【详解】用平面取截一个圆柱体,横着截时截面是椭圆或圆(截面与上下底平行).竖着截时,截面是长方形(截面与两底面垂直)或梯形.故答案为:长方形或梯形或椭圆或圆.【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.下列说法:①球的截面一定是圆;①正方体的截面可以是五边形;①棱柱的截面不可能是圆;①长方体的截面一定是长方形,其中正确的有___________个【答案】3【解析】【分析】根据用一个平面截几何体,从不同角度截取所得形状会不同,进而分析得出答案.【详解】解::①球的截面一定是圆,说法正确;①正方体的截面可以是五边形,说法正确;①棱柱的截面不可能是圆,说法正确;①长方体的截面中,边数最多的多边形是六边形,也可以是三角形,故说法错误;故答案为:3.【点睛】本题考查了截面的形状.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.主要考查学生的观察图形的能力、空间想象能力和动手操作能力.16.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.【答案】三角形【解析】【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键.17.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.n .【答案】五,六,七,2【解析】【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.18.一块方形蛋糕,一刀切成相等的两块,两刀最多切成4块,试问:五刀最多可切成__ 块相等体积的蛋糕,十刀最多可切成____块(要求:竖切,不移动蛋糕).【答案】16 56【解析】当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+①1+2+3…+n①=1+()12n n+.n=5代入公式得16,n=10,代入公式得56.点睛:找规律题需要记忆常见数列1①2①3①4……n.1①3①5①7……2n-1.2①4①6①8……2n.2①4①8①16①32……2n.1①4①9①16①25 (2)2①6①12①20……n(n+1).学会常见数列的变形,才能具体问题找到规律.三、解答题19.(1)用一个平面去截一个几何体,可以得到圆形的截面的几何体有?(2)用一个平面去截一个几何体,可以得到三角形的截面的几何体有?【答案】(1)球,圆柱,圆锥;(2)三棱柱,三棱锥,正方体.【解析】(1)根据截面是圆,可得几何体是旋转体,根据旋转得到的几何体,可得答案;(2)根据截面与几何体的三个面相交,可得截面是三角形.【详解】(1)用一个平面去截一个几何体,可以得到圆形的截面的几何体有球,圆柱,圆锥;(2)用一个平面去截一个几何体,可以得到三角形的截面的几何体有三棱柱,三棱锥,正方体,故答案为:(1)球,圆柱,圆锥;(2)三棱柱,三棱锥,正方体.【点睛】此题考查截一个几何体,解题关键在于掌握图形的形状结构.20.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少?【答案】(1)()254πcm ;(2)能截出截面最大的长方形,长方形面积的最大值为:()236cm 【解析】【分析】(1)用圆柱上下底面积加上侧面积即可;(2)当截得的面积最大时,长方形的长为底面直径,宽为6,可得面积最大值.解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+;()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .【点睛】本题考查了圆柱表面积的求法和截几何体,根据截面的形状既与被截的几何体有关,还与截面的角度和方向有关,得出这个圆柱体的截面面积最大是长方形是本题的关键.21.如图,图①1①是正方体木块,把它切去一块,可能得到①2①①①3①①①4①①①5①所示的图形,问①2①①①3①①①4①①①5①图中切掉的部分可能是其他几块中的哪一块?【答案】①2①图切掉的部分可能是①3①图和①5①图,①3①图切掉的部分可能是①2①图,①5①图切掉的部分可能是①2①图.【解析】试题分析:如图所示,图(3)可能是通过如下图(6①方法切割得到的,切下去的就是图(2①①图(5)可通过如下图(7)方法切割得到的,切下的是图(2①.试题解析:(2)图切掉的部分可能是(3)图和(5)图,(3)图切掉的部分可能是(2)图,(5)图切掉的部分可能是(2)图.22.如图,用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答下列问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?【答案】(1)三角形;(2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点.【解析】【分析】①1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;①2)当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个点,当截面截取一棱的一点和两底点组成的面时可剩下几何体有8个点,当截面截取由2条棱中点和一顶点组成的面时剩下几何体有9个顶点.当截面截取由三棱中点组成的面时,剩余几何体有10个顶点.【详解】①1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;①2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点,如图所示:【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体.问:其中三面都涂色的小正方体有多少个?两面都涂色的小正方体有多少个?只有一面涂色的小正方体有多少个?各面都没有涂色的小正方体有多少个?【答案】8,12,6,1【解析】试题分析:在大正方体的顶点处的小正方体的三面都有色;有一条棱在大正方体的棱上的小正方体的两面有色,与大正方体没有公共棱的小正方体有一面有色,在大正方体的中心的小正方体各面都无色.试题解析:解:由题意知,各顶点处的小正方体的三面都涂色,共有8个;有一条边在棱上的小正方体有12个,是两面涂色;每个面的正中间有一个只有一面涂色的,有6个;正方体正中心处有1个小正方体,它的各面都没有涂色.因此三面涂色的小正方体有8个,两面涂色的小正方体有12个,只有一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个.24.如图①是一个正方体,不考虑边长的大小,它的平面展开图为图①,四边形APQC是截正方体的一个截面.问截面的四条线段AC,CQ,QP,PA分别在展开图的什么位置上?【答案】线段AC,CQ,QP,PA分别在展开图的面ABCD,BCGF,EFGH,EFBA上.【解析】【分析】把立体图形表面的线条画在平面展开图上,找到四边形APQC四个顶点所在的位置这个关,再进一步确定四边形的四条边所在的平面即可①【详解】根据四边形所在立体图形上的位置,确定其顶点所在的点和棱,以及四条边所在的平面:顶点:A−A①C−C①P在EF边上,Q在GF边上.边AC在ABCD面上,AP在ABFE面上,QC在BCGF面上,PQ在EFGH面上.如图:【点睛】此题考查正方体的展开图,解决此题的关键是抓住四边形APQC四个顶点所在的位置,再进一步确定四边形的四条边所在的平面就可容易地画出.。

专题7-1 立体几何压轴小题:截面与球(讲+练)-2023年高考数学二轮复习讲练测(全国通用原卷版)

专题7-1 立体几何压轴小题:截面与球(讲+练)-2023年高考数学二轮复习讲练测(全国通用原卷版)

专题7-1立体几何压轴小题;截面与球目录讲高考 (1)题型全归纳 (2)【题型一】截面最值 (2)【题型二】球截面 (3)【题型三】截面综合难题 (3)【题型四】线面垂直型求外接球 (4)【题型五】特殊三角形定球心型 (5)【题型六】定义法列方程计算型求球心 (6)【题型七】内切球 (6)【题型八】棱切球型最值 (8)【题型九】内切球与外切球一体综合 (8)【题型十】球综合 (9)专题训练...........................................................................................................................................................................9讲高考1.江西·高考真题)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC 、DC 分别截于E 、F .如果截面将四面体分为体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别为1S ,2S ,则必有()A .12S S <B .12S S >C .12S S =D .12S S 、的大小不能确定2.(2022·全国·统考高考真题)在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1//B EF 平面1A ACD .平面1//B EF 平面11AC D3.(2022·全国·统考高考真题)已知正三棱台的高为1,上、下底面边长分别为其顶点都在同一球面上,则该球的表面积为()A .100πB .128πC .144πD .192π4.(2022·全国·l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]5.(2021·天津·统考高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A .3πB .4πC .9πD .12π6.(2020·全国·统考高考真题)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π题型全归纳【题型一】截面最值【讲题型】例题1..正方体1111ABCD A B C D -为棱长为2,动点P ,Q 分别在棱BC ,1CC 上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP x =,CQ y =,其中x ,[]0,2y ∈,下列命题正确的是_____.(写出所有正确命题的编号)①当0x =时,S 为矩形,其面积最大为4;②当1x y ==时,S 的面积为92;③当1x =,()1,2y ∈时,设S 与棱11C D 的交点为R ,则144RD y =-;④当2y =时,以1B 为顶点,S 为底面的棱锥的体积为定值83. 1.如图,长方体1111ABCD A B C D -中,AB =BC =4,13AA =,M 是线段11D C 的中点,点N 在线段11B C 上,MN ∥BD ,则长方体1111ABCD A B C D -被平面AMN 所截得的截面面积为___________.2.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .【题型二】球截面【讲题型】例题1.在三棱锥A -BCD 中,AB BC CD DA ====∠ADC =∠ABC =90°,平面ABC ⊥平面ACD ,三棱锥A -BCD O 的球面上,E ,F 分别在线段OB ,CD 上运动(端点除外),BE =.当三棱锥E -ACF 的体积最大时,过点F 作球O 的截面,则截面面积的最小值为()A .πBC .3π2D .2π 1.已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.2.在正四棱锥P ABCD -中,已知4PA AB ==,O 为底面ABCD 的中心,以点O 为球心作一半径为3PAB 截该球的截面面积为________.【题型三】截面综合难题例题1.如图,在四棱锥Q EFGH -中,底面是边长为4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为()A .12B .13C .14D .15【练题型】1.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是()A .若12θθ=,则AC BC=B .若12θθ≠,则121tan tan 2θθ⋅=C .θ可能值为6πD .当θ取值最大时,12θθ=2.如图,DE 是边长为6的正三角形ABC 的一条中位线,将△ADE 沿直线DE 翻折至△1A DE ,当三棱锥1A CED -的体积最大时,四棱锥1A BCDE -外接球O 的表面积为______;过EC 的中点M 作球O 的截面,则所得截面圆面积的最小值是______.【题型四】线面垂直型求外接球例题1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,2SA =,若球O16π,则三棱锥S -ABC 的体积的最大值为()A.2B.CD . 1.模板图形原理图122.计算公式2+r r=2sin PC CD R A ⎛⎫= ⎪⎝⎭;其中2【练题型】1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,2SA =,若球O 的表面积为16π,则三棱锥S -ABC 的体积的最大值为()A .332B .3C D .2.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为()A .32πB .2πC .94πD .83π【题型五】特殊三角形定球心型【讲题型】例题1.已知三棱锥底面ABC是边长为2的等边三角形,顶点S 与AB 边中点D 的连线SD 垂直于底面ABC ,且SD =SABC -的外接球半径为()A B C D1.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -A .5πB .6πC .7πD .8π2..在三棱锥-P ABC 中,2,1PA PB AC BC AB PC ======,则三棱锥-P ABC 的外接球的表面积为()A .43πB .4πC .12πD .523π【题型六】定义法列方程计算型求球心【讲题型】例题1.在空间直角坐标系O -xyz 中,四面体ABCD 各顶点坐标分别为()2,2,1A ,()2,1,2B -,()0,2,1C ,()0,0,1D .则该四面体外接球的表面积是___________.1.如图所示几何体ABCDEF ,底面ABCD 为矩形,4AB =,2BC =,△ADE 与△BCF 是等边三角形,EF AB ∥,2AB EF =,则该几何体的外接球的表面积为()A .6πB .12πC .22πD .24π2.直角ABC 中,2AB =,1BC =,D 是斜边AC 上的一动点,沿BD 将ABD △翻折到A BD ' ,使二面角A BD C '--为直二面角,当线段A C '的长度最小时,四面体A BCD '的外接球的表面积为()A .134πB .143πC .133πD .125π【题型七】内切球【讲题型】例题1.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为()A.3BC.92D.2【讲技巧】椎体的内切球,多采用体积分割法求解。

桐城市第三中学九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时几何图形的最大面积教

桐城市第三中学九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时几何图形的最大面积教

22.3 实际问题与二次函数第1课时 几何图形的最大面积1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系. 2.会运用二次函数求实际问题中的最大值或最小值. 3.能应用二次函数的性质解决图形中最大面积问题.一、情境导入孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.当x 为何值时,S 有最大值?并求出最大值.二、合作探究探究点:最大面积问题【类型一】利用二次函数求最大面积小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x2,从而表示出面积;(2)利用配方法求出顶点坐标. 解:(1)根据题意,得S =60-2x 2·x =-x 2+30x .自变量x 的取值范围是0<x <30.(2)S =-x 2+30x =-(x -15)2+225,∵a =-1<0,∴S 有最大值,即当x =15(米)时,S 最大值=225平方米.方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】利用二次函数判断面积取值成立的条件用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y 的最大值,与70比较大小,即可作出判断.解:(1)y =x (16-x )=-x 2+16x (0<x <16);(2)当y =60时,-x 2+16x =60,解得x 1=10,x 2=6.所以当x =10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y =70时,-x 2+16x =70,整理得:x 2-16x +70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:y =-x 2+16x =-(x -8)2+64,当x =8时,y 有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.【类型三】最大面积方案设计施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图所示).(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.解:(1)M (12,0),P (6,6).(2)设这条抛物线的函数关系式为y =a (x -6)2+6,因为抛物线过O (0,0),所以a (0-6)2+6=0,解得,a =-16,所以这条抛物线的函数关系式为:y =-16(x -6)2+6,即y=-16x 2+2x .(3)设OB =m 米,则点A 的坐标为(m ,-16m 2+2m ),所以AB =DC =-16m 2+2m .根据抛物线的轴对称,可得OB =CM =m ,所以BC =12-2m ,即AD =12-2m ,所以l =AB +AD +DC =-16m 2+2m +12-2m -16m 2+2m =-13m 2+2m +12=-13(m -3)2+15.所以当m =3,即OB =3米时,三根木杆长度之和l 的最大值为15米.三、板书设计教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.8 圆内接正多边形1.掌握正多边形和圆的关系.2.理解正多边形的中心、半径、中心角、边心距等概念.3.能运用正多边形的知识解决圆的有关计算问题.4.能利用尺规作一个已知圆的内接正多边形.重点掌握正多边形的概念与正多边形和圆的关系,并能进行有关计算.难点正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题.一、复习导入1.什么叫正多边形?2.正多边形是轴对称图形、中心对称图形吗?其对称轴有几条?对称中心是哪一点?3.以对称中心为圆心,以对称中心到正多边形的一个顶点的长为半径画圆,你有何发现?引导学生得出:①正多边形的顶点都在圆上;②圆经过正多边形的所有顶点.二、探究新知1.圆内接正多边形的概念定义:顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.(1)把一个圆n等分(n≥3 ),依次连接各分点,我们就可以作出一个圆内接正多边形.(2)如图,五边形 ABCDE是⊙O的内接正五边形,圆心O叫做这个正五边形的中心;OA是这个正五边形的半径;∠AOB是这个正五边形的中心角;OM⊥BC,垂足为 M,OM 是这个正五边形的边心距.2.尺规作一个已知圆的内接正多边形(1)用尺规作一个已知圆的内接正六边形.作法:①作⊙O的任意一条直径FC;②分别以F,C为圆心,以⊙O的半径R为半径作弧,与⊙O相交于点E,A和D,B,则A,B,C,D,E,F是⊙O的六等分点;③顺次连接AB,BC,CD,DE,EF,FA,便得到正六边形ABCDEF.(2)用尺规作一个已知圆的内接正四边形. (3)思考:作正多边形有哪些方法? 三、举例分析例 如图,在圆内接正六边形 ABCDEF 中,半径OC =4,OG ⊥BC ,垂足为 G ,求这个正六边形的中心角、边长和边心距.(1)正六边形的中心角是多少度?(2)正六边形的中心角的一半是多少度? (3)如何作出正六边形的边心距?(4)你能利用已知条件构造直角三角形吗? (5)你能利用解直角三角形的知识解决问题吗? 解:连接OD.∵六边形ABCDEF 为正六边形. ∴ ∠COD =360°6=60°.∴ △COD 为等边三角形. ∴ CD =OC =4.在 Rt △COG 中,OC =4,CG =12BC =2,∴OG =2 3.∴正六边形ABCDEF 的中心角为60°,边长为4,边心距为 2 3.总结:正多边形的有关计算可转化为解直角三角形,这个直角三角形的构成是:斜边为半径,一直角边为边心距,另一直角边为边长的一半,顶点在中心的锐角为中心角的一半.四、练习巩固1.正三角形的边心距、半径和高的比是( )A .1∶2∶3B .1∶ 2 ∶ 3C .1∶ 2 ∶3D .1∶2∶ 32.已知正六边形的外接圆半径为3 cm ,那么它的周长为________cm .3.已知:如图,正三角形ABC ,求作:正三角形ABC 的外接圆和内切圆.(要求:保留作图痕迹,不写作法)五、课堂小结1.易错点:(1)求正多边形的中心角、边长和边心距;(2)用尺规作圆内接正多边形.2.归纳小结:(1)正多边形的概念:各边相等、各角也相等的多边形叫做正多边形;(2)顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆;(3)一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距.3.方法规律:(1)把一个圆分成几等分,连接各分点所得到的多边形是正多边形,它的中心角等于360°;边数(2)正多边形的有关计算可转化为解直角三角形,这个直角三角形的构成是:斜边为半径,一直角边为边心距,另一直角边为边长的一半,顶点在中心的锐角为中心角的一半.六、课外作业1.教材第98页“随堂练习”.2.教材第99页习题3.10第1、2、3、4、5题.本节课新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的严格定义不能要求过高.在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表达有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习.所以在教学的过程中应尽量使用多媒体教学手段.22.1 比例线段第1课时相似图形1.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .2.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形(要求:所画三角形为钝角三角形,标明字母,并说明理由).4.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.5.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是多大?。

人教版九年级数学上册《用定值周长围成的图形面积问题》练习 (1)

人教版九年级数学上册《用定值周长围成的图形面积问题》练习 (1)

实际问题与二次函数1:用定值周长围成图形面积问题教学目标:1、学会用二次函数方法研究几何面积问题;2、体会一元二次方程与二次函数内在关系;3、面积最值的基本求法教学过程:一、问题引入1、用长为100cm的金属铝制成一个矩形方框,能否制成面积是600cm2的矩形框?2、同样的条件,能否制800cm2的矩形方框问1:预设学生的做法:设金属丝矩形方框一边长是x cm,另一边为(50-x)cm,得x(50-x)=600,答:可以制成面积为600cm2的矩形方框问2:预设有的说能,有的说不能,还有学生只作判断不说理由,老师要求说明理由。

则上述方程为:x(50-x)=800x2-50x+800=0△=b2-4ac=-700<0原方程无实根,即没有这样的实数,使矩形面积为800cm,所以不能制成。

问3:面积是600cm2可以制成,面积是800cm2不能制成,同学们有何想法?学生:面积不能太大师问:面积多大才能保证矩形可制成呢? 二、问题探究(多维思考)老师引导:此时面积有具体数值,如600、800等,为研究问题方便怎么办?用什么数学模型解决,有几种方法?学生找到解决问题方法:设面积为S ,则S=x(50-x) 可得方法1:-x 2+50x -s=0(方程思想)x 2-50x+s=0△=2500-4s ≥0才有解S ≤625此法从方程根的判别式求最值,此时学生可能还有疑惑, 由此想到方法2:S=x(50-x)= -x 2+50x (函数思想)S=-(x -25)2+625∵-(x -25)2≤0 ∴S ≤625 即当x=25时,S 矩形最大为625cm 22、推及一般师问:当x=25时,矩形长宽分别为多少?此时矩形有何特殊性。

预设生答:长宽等于25cm ,是正方形。

师追问:确实是正方形,那么可以这样小结:矩形周长一定时,它的面积最大时一定是正方形呢?(课下探究)设金属丝长为Lcm ,矩形面积为Scm 2,设矩形一边长为x cm ,则 S=x(2L-x)=-x 2+2L x=-(x 2-2L x+162L )+162L =-(x -4L )2+162L∵-(x -4L )2≤0 ∴S ≤162L当x=4L 时,S 矩形最大=162Lcm ,此时矩形变成正方形。

2024-2025学年第一学期杭州学军中学新高一分班考 数学卷(含答案)

2024-2025学年第一学期杭州学军中学新高一分班考 数学卷(含答案)

学军中学新高一分班考数学卷一、选择题:本大题有8个小题,每小题3分,共24分。

1. 下列四个命题:①平分弦的直径垂直于弦;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧。

其中真命题的个数有()A. 1个B. 2个C. 3个D. 4个2. 如图,在2014年的体育中年高考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A. 28,28,1B. 28,27.5,3C. 28,28,3D. 28,27.5,13. 已知方程组{3x−2y=3a−42x−3y=2a−1的解满足x>y,则a的取值范围是()A. a>1B. a<1C. a>5D. a<54. 如图,在直角△BAD中,延长斜边BD到点C,使BD=2DC,连接AC,tanB=53,则tan∠CAD的值是()A. 33B. 35C. 13D. 155. 如图,在Rt△ABC中,AC=4,BC=3,∠ACB=90°,四边形DEFG、GHIJ均为正方形,点E在AC上,点I在BC上,J为边DG的中点,则GH的长为()A. 1921B. 1 C. 6077D. 1802596. 如图,正方形OABC的一个顶点O是平面直角坐标系的原点,顶点A,C分别在y轴和x轴上,P为边OC上的一个动点,且BP⊥PQ,BP=PQ,当点P从点C运动到点O时,可知点Q始终在某函数图象上运动,则其函数图象是()A. 线段B. 圆弧C. 抛物线的一部分D. 不同于以上的不规则曲线7. 如图,以点M(-5,0)为圆心,4为半径的圆与x轴交于A,B两点,P是☉M上异于A,B的一动点,直线PA,PB分别交y轴于点C,D,以CD为直径的☉N与x轴交于点E,F则EF的长为()A. 42B. 43C. 6D. 随P点位置而变化8. 已知二次函数图象的对称轴为x=1,且过点A(3,0)与B(0,1.5),则下列说法中正确的是()①当0≤x≤22+1时,函数有最大值2;②当0≤x≤22+1时,函数有最小值-2;③P是第一象限内抛物线上的一个动点,则△PAB面积的最大值为32;④对于非零实数m,当x>1+1m 时,y都随着x 的增大而减小。

学练优九年级下册数学(北师大版)精品教学课件 2.4 第1

学练优九年级下册数学(北师大版)精品教学课件 2.4 第1
问题1 矩形面积公式是什么?
问题2 如何用l表示另一边?
问题3 面积S的函数关系式是什么?
例 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一
边长l的变化而变化.当l是多少时,场地的面积S最大? s
解:根据题意得
S=l(30-l), 200
即 S=-l2+30l (0<l<30).
100
因此,当 l b 30 15 2a 2 (1)
变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形 菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最 大,最大面积是多少?
x
x
问题1 变式2与变式1有什么异同?
问题2 可否模仿变式1设未知数、列函数关系式? 60-2x
问题3 可否试设与墙平行的一边为x米?则如何表示另一边?
答案:设矩形面积为Sm2,与墙平行的一边为x米,则
C
Q
图1
A P 图2 B
2.如图2,在△ABC中, ∠B=90 °,AB=12cm,BC=24cm,动点P从
点A开始沿AB向B以2cm/s的速度移动(不与点B重合),动点Q从
点B开始BC以4cm/s的速度移动(不与点C重合).如果P、Q分别
从A、B同时出发,那么经过 3 秒,四边形APQC的面积最小.
第二章 二次函数
2.4 二次函数的应用
第1课时 图形面积的最大值
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.分析实际问题中变量之间的二次函数关系.(难点) 2.会运用二次函数求实际问题中的最大值或最小值. 3.能应用二次函数的性质解决图形中最大面积问题.(重点)
导入新课
复习引入 写出下列抛物线的开口方向、对称轴和顶点坐标,并写出其最值.

人教A版必修第一章1.2.1《中心投影与平行投影》精选题高频考点(含答案)-1

人教A版必修第一章1.2.1《中心投影与平行投影》精选题高频考点(含答案)-1

人教A 版必修第一章1.2.1《中心投影与平行投影》精选题高频考点(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC ∆在该正方体各个面上的射影可能是()A .①②③④B .①③C .①④D .②④【答案】C 2.已知正方体的棱长为1,平面α过正方体的一个顶点,且与正方体每条棱所在直线所成的角相等,则该正方体在平面α内的正投影面积是( )A .2BCD .4【答案】B3.设四面体ABCD 各棱长均相等,S 为AD 的中点,Q 为BC 上异于中点和端点的任一点,则SQD ∆在四面体的面BCD 上的的射影可能是( )A .①B .②C .③D .④【答案】C 4.正四面体A-BCD 中,DA =2,保持BC 在平面α内,正四面体A-BCD 绕BC 旋转过程中,正四面体A-BCD 在平面α内的投影面积的最大值等于( )A .BC .4D .2【答案】D5.一只蚂蚁从正方体1111ABCD A B C D - 的顶点A 出发,经正方体的表面,按最短路线爬行到顶点1C 的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是A .(1)(2)B .(1)(3)C .(3)(4)D .(2)(4)【答案】D 6.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中俯视图由两个半圆和两条线段组成,则该几何体的表面积为( )A .1712π+B .2012π+C .1212π+D .1612π+【答案】B 7.将正三棱柱截去三个角(如图1所示A ,B ,C 分别是△CHI 三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为A.B.C.D.【答案】A8.一个四棱锥的三视图如图所示,关于这个四棱锥,下列说法正确的是()A.侧面三角形中有且仅有一个等腰三角形B.侧面四个三角形都是直角三角形CD【答案】C9.某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为()A.3 B.1 C D.2【答案】A10.某几何体及其俯视图如图所示,下列关于该几何体主视图和左视图的画法正确的是()A.B.C.D.【答案】A11.如下图所示,空心圆柱体的主视图是()A.B.C.D.【答案】C12.下列说法正确的是()A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与物体的摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形【答案】C13.如图是一个水平放置的正四棱柱被截掉一只角后的实物图,则它的俯视图是()A .B .C .D .【答案】C 14.某几何体的正视图如图所示,这个几何体不可能是( )A .圆锥与圆柱的组合B .棱锥与棱柱的组合C .棱柱与棱柱的组合D .棱锥与棱锥的组合【答案】D 15.如图所示,O 是正方体1111ABCD A B C D 对角线1A C 与1AC 的交点,E 为棱1BB 的中点,则几何体11OEC D 在正方体各面上的正投影不可能是( )A .B .C .D .【答案】A16.对几何体的三视图,下列说法正确的是( )A .三视图反映几何体的长和宽B .俯视图反映几何体的长和高C .左视图反映几何体的高和宽D .主视图反映几何体的高和宽【答案】C17.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是( )A.B.C.D.【答案】D18.有一正六棱锥如图所示,则下面是正六棱锥的侧视图的是()A.B.C.D.【答案】B19.如图,为一圆柱切削后的几何体及其正视图,则相应的侧视图可以是()A.B.C.D.【答案】B20.某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为()A.2 B C.D.3【答案】D二、填空题21.一个四面体的三视图如图所示,则该四面体四个面当中最大面的面积是______.【答案】22.如图,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是________.(要求:把可能的图的序号都填上)【答案】2,323.正四面体ABCD的棱长为2,棱AB∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的最小值是______,最大值是______.,224.已知某几何体的主视图和左视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数是______.【答案】425.下列说法中正确的个数是______.①正方形的平行投影一定是菱形;②平行四边形的平行投影一定是平行四边形;③三角形的平行投影一定是三角形.【答案】026.下列关于平行投影与中心投影的叙述正确的有______.①平行投影和中心投影是几何体的不同表现形式,在实际问题中可根据需要进行选择;②平行投影的投射线互相平行,中心投影的投射线交于一点;③人的视觉和照片都具有中心投影的特点;④太阳光线形成的投影是中心投影.【答案】①②③27.在棱长为1的正方体1111ABCD A B C D 中,对角线AC ,在六个面上的平行投影(投射线与投射面垂直)长度总和是______.【答案】28.下列物品:①探照灯;②车灯;③太阳;④月亮;⑤台灯发出的光线所形成的投影是中心投影的是_______.【答案】①②⑤29.某空间几何体的三视图如图所示,则该几何体的体积为________【答案】230.已知正四面体ABCD 的棱长为a ,其在平面α内射影的图形为F ,则图形F 的面积的最大值为________. 【答案】212a 31.如图,在正方体1111ABCD A B C D -中,E F ,分别是11A D ,1CC 的中点,G 为正方形ABCD 的中心,则空间四边形AEFG 在该正方体面上的投影可能是图中的______(把正确的序号都填上).【答案】①②④32.两条异面直线在一个平面内的射影是________.【答案】两条平行直线或一条直线和一个点或两条相交直线33.一个等腰直角三角形在一个平面内的平行投影可能是下列图形中的________(把你认为正确的选项代号都填上).①等腰直角三角形;②直角非等腰三角形;③钝角三角形;④锐角三角形;⑤线段.【答案】①②③④⑤34.球的三视图都是________;长方体的三视图都是________;圆锥的正视图、侧视图都是________,俯视图是________;圆柱的正视图、侧视图都是________,俯视图是________.【答案】圆 矩形 全等的等腰三角形 有圆心的圆 全等的矩形 圆 35.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为___________。

九年级数学上册 第二十二章《二次函数》22.3 实际问题与二次函数 第1课时 几何图形的面积问题试题

九年级数学上册 第二十二章《二次函数》22.3 实际问题与二次函数 第1课时 几何图形的面积问题试题

22.3实际问题与二次函数第1课时几何图形的面积问题知识要点基础练知识点利用二次函数求图形面积的最值1.用长60 m的篱笆围成一个矩形花园,则围成的花园的最大面积为(D)A.150 m2B.175 m2C.200 m2D.225 m22.已知一个直角三角形两直角边之和为20 cm2,则这个直角三角形的最大面积为(B)A.25 cm2B.50 cm2C.100 cm2D.不确定3.如图,用总长度为12米的不锈钢材料设计成如图所示的外观为矩形的框架,所有横档和竖档分别与AD,AB平行,则矩形框架ABCD的最大面积为4平方米.4.手工课上,小明准备做个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积为S,随其中一条对角线的长x的变化而变化.(1)求S与x之间的函数解析式.(不要求写出取值范围)(2)当x是多少时,菱形风筝的面积S最大?最大的面积是多少?解:(1)S=x(60-x)=-x2+30x.(2)由(1)得S=-x2+30x=-(x-30)2+450,故当x是30 cm时,菱形风筝的面积S最大,最大的面积是450 cm2.综合能力提升练5.合肥寿春中学劳动课上,老师让学生利用成直角的墙角(墙足够长),用10 m长的栅栏围成一个矩形的小花园,花园的面积S m2与它一边长a m的函数解析式是S=-a2+10a ,面积S 的最大值是25.6.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为2s.7.(衢州中考)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为144 m2.8.如图,有一块边长为a的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中虚线折起,做成一个无盖的直三棱柱纸盒,若该纸盒侧面积的最大值是 cm2,则a的值为3cm.9.在美化校园的活动中,巢湖一中初三一班的兴趣小组利用如图所示的直角墙角(两边足够长),用32 m长的藤条圈成一个长方形的花圃ABCD(藤条只围AB,BC两边),设AB=x m.(1)若花圃的面积为252 m2,求x的值;(2)正好在P处有一棵桃树与墙CD,AD的距离分别是17 m和8 m,如果把将这棵桃树围在花圃内(含边界,不考虑树的粗细),老师让学生算一下花圃面积的最大值是多少?解:(1)因为AB=x,则BC=32-x,所以x(32-x)=252,解得x1=14,x2=18,故x的值为14 m或18 m.(2)因为AB=x,所以BC=32-x,所以S=x(32-x)=-x2+32x=-(x-16)2+256,因为在P处有一棵桃树与墙CD,AD的距离分别是17 m和8 m,所以,所以8≤x≤15,所以当x=15时,S取到最大值为S=-(15-16)2+256=255,故花圃面积S的最大值为255 m2.10.如图所示,在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A出发,沿AB边向点B以1 cm/s 的速度移动,同时点Q从点B出发,沿BC边向点C以2 cm/s的速度移动,如果P,Q两点在分别到达B,C两点后就停止移动,回答下列问题:(1)运动开始后第多少秒时,△PBQ的面积等于8 cm2.(2)设运动开始后第t秒时,五边形PQCDA的面积为S cm2,写出S与t的函数解析式,并指出自变量t的取值范围.(3)t为何值时S最小?求出S的最小值.解:(1)设x秒后△PBQ的面积等于8 cm2.则AP=x,QB=2x,∴PB=6-x,∴×(6-x)×2x=8,解得x1=2,x2=4.运动开始后第2秒或第4秒时△PBQ的面积等于8 cm2.(2)第t秒时,AP=t cm,PB=(6-t) cm,BQ=2t cm,∴S△PBQ=·(6-t)·2t=-t2+6t.∵S矩形ABCD=6×12=72,∴S=72-S△PBQ=t2-6t+72(0≤t≤6).(3)∵S=t2-6t+72=(t-3)2+63,∴当t=3秒时,S有最小值63 cm2.11.工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12 dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?解:(1)如图所示:设裁掉的正方形的边长为x dm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2 dm,底面积为12 dm2.(2)因为长不大于宽的五倍,所以10-2x≤5(6-2x),解得0<x≤2.5,设总费用为w元,由题意可知w=0.5×2x(16-4x)+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24,因为对称轴为x=6,开口向上,所以当0<x≤2.5时,w随x的增大而减小,所以当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5 dm的正方形时,总费用最低,最低费用为25元.拓展探究突破练12.(安徽中考)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域面积相等.设BC的长度是x米,矩形区域ABCD的面积为y平方米.(1)求y与x之间的函数解析式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?解:(1)设AE=a,由题意得AE·AD=2BE·BC,AD=BC,∴BE=a,AB=a.由题意得2x+3a+2·a=80,∴a=20-x.∴y=AB·BC=a·x=x,即y=-x2+30x(0<x<40).(2)∵y=-x2+30x=-(x-20)2+300,∴当x=20时,y有最大值,最大值是300平方米.13.如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.解:(1)由题意得:S=x×=-x2+8x(0<x≤10).(2)由S=-x2+8x=45,解得x1=15(舍去),x2=9,所以x=9,AB==5,又S=-x2+8x=-(x-12)2+48,0<x≤10,因为当x≤10时,S随x的增大而增大,所以当x=10米时,S最大,为平方米>45平方米,所以平行于院墙的一边长为10米时,就能围成面积比45平方米更大的花圃.(3)根据题意可得,则n=4,x=35或n=2,x=33.如有侵权请联系告知删除,感谢你们的配合!。

椭圆定义一

椭圆定义一

椭圆的定义编制:胡翠霞学习目标:1、椭圆是圆锥曲线的一种,是高中数学教学中的重点和难点,所以这部分内容中的知识点学生必须达到理解、应用的水平;2、利用投影、计算机模拟动点的运动,增强直观性,激励学习动机,培养数学想象和抽象思维能力。

学习重点:椭圆的推导与方程形式记忆 学习难点:椭圆方程的推导 学习过程: 一、预习新知1.复习:动点轨迹方法的一般求法有哪些?2.定义:平面内 的点的轨迹叫做椭圆。

叫做椭圆的焦点,两焦点的距离叫做 (一般用 表示)。

表示距离之和的常数一般用 表示,易得0___2___2c a (填>、<或=)举例:椭圆是常见的图形,如:汽车油罐的横截面,立体几何中圆的直观图,天体中行星绕太阳运行的轨道等等; 二、课堂新知问题:已知点P 到距离为c 2的两定点F 1、F 2的距离之和为)0(2>>c a a ,求点P 的轨迹方程?P.F 1. F 2.注意:1.点P 的轨迹是什么图形?2.如何建立直角坐标系才能使问题解决最简单?3.在推导过程中,怎样消去方程中的根式?4.其中焦点为 、 ,________2=b ;5.如果焦点在y 轴上,焦点为 、 ,标准方程为例1 平面内两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程.练习:课本P42、1三、课堂总结:本节课学习了椭圆的定义及标准方程,应注意以下几点: ①椭圆的定义中, 022>>c a②椭圆的标准方程中,焦点的位置看 来确定 ③a 、b 、c 的几何意义: 四、作业练习作业本:P42:2,3 五、课后巩固1.椭圆22143x y +=上一点M 到该椭圆的左焦点的距离为3,则M 到右焦点的距离为 。

2.平面内一个动点P 到两定点A (),B )的距离之和为6,设动点P 的轨迹是E ,求轨迹E 的方程。

3.椭圆11003622=+y x 上一点P ,求△PF 1F 2的周长?4.椭圆1366422=+y x 的弦PQ 过F 1,求△PQF 2的周长?椭圆练习题编制:胡翠霞一、选择题.1、与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是 ( )(A)185y 80x )D (145y 20x )C (125y 20x )B (120y 25x 22222222=+=+=+=+2、椭圆的两个焦点和短轴两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为 ( ) (A)21 (B)23 (C)33 (D)21或23 3、若直线y=kx+1(k ∈R)与焦点在x 轴上的椭圆1722=+ay x 总有公共点, 则实数a 的取值范围是 ( ) (A )0<a ≤1 (B )0<a <7 (C )1≤a <7 (D )1<a ≤74、已知F 是椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的一个焦点, PQ 是过其中心的一条弦, 记22b a c -=,则△PQF面积的最大值是 ( ) (A )ab 21(B )ab (C )ac (D )bc 5、设M 是椭圆1162522=+y x 上一点,F 1、F 2为焦点,且∠F 1MF 2=6π,则△MF 1F 2的面积是 ( ) (A)3316 (B)16(2+3) (C)16(2-3) (D)16 6、若椭圆2kx 2+ky 2=1的一个焦点坐标是(0,4),则k 的值为 ( ) (A)81 (B)321 (C)2 (D)163 7、如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 ( ) (A)(0,+∞) (B)(0,2) (C)(1,+∞) (D)(0,1)8、以椭圆上一点和椭圆的两焦点为顶点的三角形的面积最大值为1,该椭圆长轴长的最小值为 ( ) (A)22 (B)2 (C)2 (D)1二填空题9、已知点P (0,1)是椭圆x 2+4y 2=4上的一点,P 是椭圆上的动点,当弦AP 的长度最大时,点P 的坐标为________________10、椭圆19)2(16)1(22=-+-y x 关于点(-2,1)的对称曲线的方程是________. 11、椭圆13422=+y x 中, 一组平行弦的中点轨迹方程x+2y=0(在椭圆内的一段), 则这组平行弦的斜率k=______.12、若椭圆的两焦点为F 1(-4,0),F 2(4,0), 椭圆的弦AB 过点F 1,且△ABF 2的周长为20, 则该椭圆的方程为________. 三、解答题13、已知△ABC 的三个顶点均在椭圆4x 2+5y 2=80上, 且点A 是椭圆短轴的一个端点, △ABC 的重心是椭圆的右焦点,试求直线BC 的方程.14、已知椭圆中心在原点, 长轴在x 轴上,直线x+y=1被椭圆截得的弦AB 的长为22, 且AB 的中,与椭圆中心连线的斜率为22, 求这个椭圆方程.椭圆的几何性质编制:胡翠霞学习目的:知识目标:通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.能力目标:通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方 程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等. 德育目标:数学中数形结合的辩证思想 学习重点:椭圆的几何性质 学习难点:椭圆的几何性质初步运用,椭圆离心率的概念的理解椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变. 学习过程: 一、课前预习 复习引入:1.椭圆的定义:2.椭圆的标准方程:3.对椭圆标准方程12222=+by a x (a>b>0):(1)取值范围: ≤x ≤ , ≤y ≤ ,这说明椭圆在 所围成的矩形里。

【同步检测】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

【同步检测】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

2019-2020学年人教A 版数学必修2第一章 空间几何体测试B 卷(提升)1、以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形; ③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形. 其中,真命题的个数为( )A.4B.3C.2D.12、用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是( ) A .棱锥B .圆柱C .球D .圆锥3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4、如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8?,高为5,点,M N 分别在棱1111,A B D C 上,且111A M D N ==.若过点,M N 的平面α与此四棱台的下底面相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为( )A. 187B. 302C. 661D. 363 5、已知一个三棱锥的六条棱的长分别为1,1,1,1,2,a ,且长为a 的棱与长为2的棱所在直线是异面直线,则三棱锥的体积的最大值为( )A.212 B. 3C. 26D. 366、如图所示,在棱长为1的正方体1111ABCD A B C D -中,P 是1A B 上一动点,则1AP D P +的最小值为( )A .2B.62+ C .2+2 D.22+7、某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 16B. 13C.12D. 18、如图,ABC ∆的斜二测直观图为等腰''Rt A B C ∆,其中''2A B =,则原ABC ∆的面积为( )A .2B .4C .22 D .429、在三棱锥P ABC -中,2,2,3AB AC BC PA PB PC =====,若三棱锥P ABC -的顶点均在球O的表面上,则球O 的半径为( )1313232210、如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为( )A.323π B. 32π C. 36π D. 48π11、一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和边长为a 的正三角形,则它们的表面积之比为__________.12、已知某几何体的三视图如图所示,则该几何体的表面积为_________体积为_________.13、如图,正方形O ABC '的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是__________.14、已知三棱锥P ABC -中,PAB △是面积为43π4ACB ∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_______.15、如图,正方体ABCD A B C D-的棱长为a,连接''''-.求:,,,,,,得到一个三棱锥A BC D''''''''AC A D A B BD BC C D(1)求三棱锥A BC D''-的表面积与正方体表面积的比值;(2)求棱锥A BC D-的体积.''答案以及解析1答案及解析:答案:B解析:由正棱锥的性质可得①正确; ②不正确,如直棱柱的底面是梯形时,侧面不是全等的矩形;由圆柱的母线的定义知,③正确;由圆锥的轴截面是全等的等腰三角形知,④正确.综上,①③④正确,②不正确,故选B.2答案及解析:答案:A解析:用一个平面去截一个棱锥,得到的截面是三角形,不可能是圆,所以A正确;用一个平面去截一个圆柱,截面与底面平行,得到的截面是圆面,所以B 不满足题目要求;用一个平面去截一个球,得到的截面是圆面,所以C 不满足题目要求;用一个平面去截一个圆锥,截面与底面平行,得到的截面是圆面,所以D 不满足题目要求; 故选:A.3答案及解析: 答案:A解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .故选:A .4答案及解析: 答案:B解析:当平面α经过点,,,B C N M 时与四棱台的面的交线围成的图形的面积最大,此时所围成的图形为等腰梯形,上底4?MN =,下底8BC =. 此时作正四棱台1111ABCD A B C D -俯视图如下.则MN 的中点在底面的投影到BC 的距离为8215--=, 因为正四棱台1111ABCD A B C D -的高为5. 所以截面等腰梯形的高为2255=52+.所以截面面积的最大值为()1S=48523022⨯+⨯=.故选B.5答案及解析: 答案:A解析:如图所示,三棱锥A BCD -中, ,2,1AD a BC AB AC BD CD ======,则该三棱锥为满足题意的三棱锥,将△BCD 看作底面,则当平面ABC ⊥平面BCD 时,该三棱锥的体积有最大值,此时三棱锥的高22h =,△BCD 是等腰直角三角形, 则12BCD A ∆=,综上可得,三棱锥的体积的最大值为112232⨯⨯=.本题选择A 选项.6答案及解析:答案:D解析:把对角面1A C 绕1A B 旋转,使其与1AA B ∆在同一平面上,连接1AD ,则在1AA D ∆中,1AD7答案及解析: 答案:A解析:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积111122S =⨯⨯=,高为1,故棱锥体积1136V Sh ==.8答案及解析: 答案:D解析:∵'''O A B Rt ∆是一平面图形的直观图,直角边长为''2A B =,222⨯=,因为平面图形与直观图的面积的比为∴原平面图形的面积是2⨯=.9答案及解析: 答案:B 解析:如图,取AB 的中点D ,连接,PD CD ,由2,2AB AC BC PA PB =====,可得,CD AB PD AB ⊥⊥,且3CD PD ==,又3PC =,所以PDC △是正三角形,60PDC ∠=o 易知平面PDC ⊥平面ABC ,所以点O 在平面PDC 内,过点O 作OE CD ⊥于点E ,OF PD ⊥于点F ,则点,E F 分别是,ABC PAB △△外接圆的圆心,且OE OF =,连接OD ,在Rt ODE △中,1330,3ODE DE CD ︒∠===,所以313OE DE ==,连接,OB OE ,在Rt OBE △中,233BE =,因此球O 的半径221121399R OE BE =+=+=.10答案及解析: 答案:D解析:由三视图可知,这个四面体为三棱锥,且三棱锥的每个顶点都在边长为4的正方体上,如下图所示三棱锥底面为直角边长等于4的等腰直角三角形,同时三棱锥的高为4,三条侧棱长分别为22222224442,4442,44443+=+=++=,由图可知四面体的外接球与正方体的外接球为同一个外接球,所以外接球的半径222444R 232++==,故外接球表面积24R 48S ππ==,故选项D 正确.11答案及解析: 答案:2:1解析:由题意,得圆柱的表面积2232π2ππ222a a S a a ⎛⎫=⋅+⋅⋅= ⎪⎝⎭圆柱圆锥的表面积223πππ224a a S a a ⎛⎫=+⋅⋅= ⎪⎝⎭圆锥所以面积比圆柱面积比圆锥面积为2:112答案及解析: 答案:5π2+;3π2解析:由三视图还原该几何体的直观图如图所示.可看作是由一个底面半径为1,高为1的圆柱和一个底面半径为1,高为1的半圆柱组合而成的,故该几何体的表面积为212π12π112π11215π22⨯+⨯⨯+⨯⨯⨯+⨯=+,体积为2213π11π11π22⨯⨯+⨯⨯⨯=13答案及解析:答案:8cm解析:水平放置的平面图形的直观图是用斜二测画法,所以与x 轴平行的保持不变,与y 轴平行的变为原来的一半,所以将直观图还原如图所示的图形, 11OA =,1222OB OB ==,113A B ∴=,所以原图形的周长是()3+12=8cm ⨯.14答案及解析:答案:112π3解析:当平面CAB ⊥平面PAB 时,三棱锥P ABC -的体积达到最大; 记点,D E 分别为,APB ACB △△的外心,并过两个三角形的外心作三角形所在平面的垂线,两垂线交于点O ,则点O 即为三棱锥P ABC -外接球的球心,AO 即为球的半径;因为43PAB S ∆=4AB =;在ACB △中,45ACB ∠=︒,则90AEB =︒∠,由正弦定理可2sin AB AE ACB =∠,故22AE EB EC === 记AB 的中点为F ,则1132333OE DF PF AB ==== 故22283OA OE AE =+=2112π4π3S R ==.故答案为:112π315答案及解析:答案:(1)∵ABCD A B C D ''''-是正方体,∴六个面都是正方形, ∴A C A B A D BC BD C D ''''''=====,∴224)S =三棱锥=,26S a 正方体=,∴S S 正方体三棱锥(2)显然,三棱锥A ABD C BCD D A D C B A B C ''''''''-、-、-、-是完全一样的, ∴32311144323A BC D A ABD V V V a a a a '''⨯⨯⨯=三棱锥-正方体三棱锥-=-=-解析:。

【同步课堂】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

【同步课堂】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

2019-2020学年人教A 版数学必修2第一章 空间几何体测试B 卷(提升)1、以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形; ③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形. 其中,真命题的个数为( )A.4B.3C.2D.12、用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是( ) A .棱锥B .圆柱C .球D .圆锥3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4、如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8?,高为5,点,M N 分别在棱1111,A B D C 上,且111A M D N ==.若过点,M N 的平面α与此四棱台的下底面相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为( )A. 187B. 302C. 661D. 363 5、已知一个三棱锥的六条棱的长分别为1,1,1,1,2,a ,且长为a 的棱与长为2的棱所在直线是异面直线,则三棱锥的体积的最大值为( )A.212 B. 3C. 26D. 366、如图所示,在棱长为1的正方体1111ABCD A B C D -中,P 是1A B 上一动点,则1AP D P +的最小值为( )A .2B.62+ C .2+2 D.22+7、某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 16B. 13C.12D. 18、如图,ABC ∆的斜二测直观图为等腰''Rt A B C ∆,其中''2A B =,则原ABC ∆的面积为( )A .2B .4C .22 D .429、在三棱锥P ABC -中,2,2,3AB AC BC PA PB PC =====,若三棱锥P ABC -的顶点均在球O的表面上,则球O 的半径为( )1313232210、如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为( )A.323π B. 32π C. 36π D. 48π11、一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和边长为a 的正三角形,则它们的表面积之比为__________.12、已知某几何体的三视图如图所示,则该几何体的表面积为_________体积为_________.13、如图,正方形O ABC '的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是__________.14、已知三棱锥P ABC -中,PAB △是面积为43π4ACB ∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_______.15、如图,正方体ABCD A B C D-的棱长为a,连接''''-.求:,,,,,,得到一个三棱锥A BC D''''''''AC A D A B BD BC C D(1)求三棱锥A BC D''-的表面积与正方体表面积的比值;(2)求棱锥A BC D-的体积.''答案以及解析1答案及解析:答案:B解析:由正棱锥的性质可得①正确; ②不正确,如直棱柱的底面是梯形时,侧面不是全等的矩形;由圆柱的母线的定义知,③正确;由圆锥的轴截面是全等的等腰三角形知,④正确.综上,①③④正确,②不正确,故选B.2答案及解析:答案:A解析:用一个平面去截一个棱锥,得到的截面是三角形,不可能是圆,所以A正确;用一个平面去截一个圆柱,截面与底面平行,得到的截面是圆面,所以B 不满足题目要求;用一个平面去截一个球,得到的截面是圆面,所以C 不满足题目要求;用一个平面去截一个圆锥,截面与底面平行,得到的截面是圆面,所以D 不满足题目要求; 故选:A.3答案及解析: 答案:A解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .故选:A .4答案及解析: 答案:B解析:当平面α经过点,,,B C N M 时与四棱台的面的交线围成的图形的面积最大,此时所围成的图形为等腰梯形,上底4?MN =,下底8BC =. 此时作正四棱台1111ABCD A B C D -俯视图如下.则MN 的中点在底面的投影到BC 的距离为8215--=, 因为正四棱台1111ABCD A B C D -的高为5. 所以截面等腰梯形的高为2255=52+.所以截面面积的最大值为()1S=48523022⨯+⨯=.故选B.5答案及解析: 答案:A解析:如图所示,三棱锥A BCD -中, ,2,1AD a BC AB AC BD CD ======,则该三棱锥为满足题意的三棱锥,将△BCD 看作底面,则当平面ABC ⊥平面BCD 时,该三棱锥的体积有最大值,此时三棱锥的高22h =,△BCD 是等腰直角三角形, 则12BCD A ∆=,综上可得,三棱锥的体积的最大值为112232⨯⨯=.本题选择A 选项.6答案及解析:答案:D解析:把对角面1A C 绕1A B 旋转,使其与1AA B ∆在同一平面上,连接1AD ,则在1AA D ∆中,1AD7答案及解析: 答案:A解析:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积111122S =⨯⨯=,高为1,故棱锥体积1136V Sh ==.8答案及解析: 答案:D解析:∵'''O A B Rt ∆是一平面图形的直观图,直角边长为''2A B =,222⨯=,因为平面图形与直观图的面积的比为∴原平面图形的面积是2⨯=.9答案及解析: 答案:B 解析:如图,取AB 的中点D ,连接,PD CD ,由2,2AB AC BC PA PB =====,可得,CD AB PD AB ⊥⊥,且3CD PD ==,又3PC =,所以PDC △是正三角形,60PDC ∠=o 易知平面PDC ⊥平面ABC ,所以点O 在平面PDC 内,过点O 作OE CD ⊥于点E ,OF PD ⊥于点F ,则点,E F 分别是,ABC PAB △△外接圆的圆心,且OE OF =,连接OD ,在Rt ODE △中,1330,3ODE DE CD ︒∠===,所以313OE DE ==,连接,OB OE ,在Rt OBE △中,233BE =,因此球O 的半径221121399R OE BE =+=+=.10答案及解析: 答案:D解析:由三视图可知,这个四面体为三棱锥,且三棱锥的每个顶点都在边长为4的正方体上,如下图所示三棱锥底面为直角边长等于4的等腰直角三角形,同时三棱锥的高为4,三条侧棱长分别为22222224442,4442,44443+=+=++=,由图可知四面体的外接球与正方体的外接球为同一个外接球,所以外接球的半径222444R 232++==,故外接球表面积24R 48S ππ==,故选项D 正确.11答案及解析: 答案:2:1解析:由题意,得圆柱的表面积2232π2ππ222a a S a a ⎛⎫=⋅+⋅⋅= ⎪⎝⎭圆柱圆锥的表面积223πππ224a a S a a ⎛⎫=+⋅⋅= ⎪⎝⎭圆锥所以面积比圆柱面积比圆锥面积为2:112答案及解析: 答案:5π2+;3π2解析:由三视图还原该几何体的直观图如图所示.可看作是由一个底面半径为1,高为1的圆柱和一个底面半径为1,高为1的半圆柱组合而成的,故该几何体的表面积为212π12π112π11215π22⨯+⨯⨯+⨯⨯⨯+⨯=+,体积为2213π11π11π22⨯⨯+⨯⨯⨯=13答案及解析:答案:8cm解析:水平放置的平面图形的直观图是用斜二测画法,所以与x 轴平行的保持不变,与y 轴平行的变为原来的一半,所以将直观图还原如图所示的图形, 11OA =,1222OB OB ==,113A B ∴=,所以原图形的周长是()3+12=8cm ⨯.14答案及解析:答案:112π3 解析:当平面CAB ⊥平面PAB 时,三棱锥P ABC -的体积达到最大; 记点,D E 分别为,APB ACB △△的外心,并过两个三角形的外心作三角形所在平面的垂线,两垂线交于点O ,则点O 即为三棱锥P ABC -外接球的球心,AO 即为球的半径; 因为43PAB S ∆=4AB =;在ACB △中,45ACB ∠=︒,则90AEB =︒∠, 由正弦定理可2sin AB AE ACB =∠,故22AE EB EC === 记AB 的中点为F ,则1132333OE DF PF AB ==== 故22283OA OE AE =+=2112π4π3S R ==.故答案为:112π315答案及解析:答案:(1)∵ABCD A B C D ''''-是正方体,∴六个面都是正方形, ∴A C A B A D BC BD C D ''''''=====,∴224)S =三棱锥=,26S a 正方体=,∴S S 正方体三棱锥(2)显然,三棱锥A ABD C BCD D A D C B A B C ''''''''-、-、-、-是完全一样的, ∴32311144323A BC D A ABD V V V a a a a '''⨯⨯⨯=三棱锥-正方体三棱锥-=-=-解析:。

一轮复习专题43 立体几何大题解题模板

一轮复习专题43 立体几何大题解题模板

专题43立体几何大题解题模板一、立体几何大题解题模板答题技巧:1、证明面面垂直只能证明线面垂直。

如证明平面β⊥α,一般都是在两个面中找其中一个面中的一条直线与另一个面垂直,这里有一个小技巧,一般都是在β面中找直线。

小技巧:欲证平面⊥α平面β,则只需在平面α内找一条直线垂直于平面β内的两条相交直线,但一般需要倒过来证平面⊥β平面α,具体思路是:(1)在平面β中找到一条直线1l ,在平面α中找到两条直线2l 、3l ;(2)21l l ⊥,这一般题中直接给;(3)31l l ⊥,这一般需要证:⊥3l 平面ν,ν⊂1l ,则13l l ⊥;(4)A l l =32 ,即2l 与3l 有交点(这步必须写),2l 、3l 在平面α上(这步可以写可以不写);(5)⊥1l 平面α,从而推出平面⊥β平面α,最后证出平面⊥α平面β。

2、等体积公式:由于三棱锥是由4个三角形围成的四面体,任何一个三角形都可以看成其底面。

但在求体积时需要选择合适的底和高,这就需要灵活换底面,但是三棱锥的体积保持不变。

这种方法我们称为“等积法”,它是三棱锥求体积的巧妙方法,也是其“专属产品”。

其他的,如四棱锥求体积就不能随意换底,不能用等积法求体积。

另外,等积法的优越性还体现在求“点到平面的距离”中。

但注意:等积法求体积时,要谨记“先证后求”的原则,先作出或证明底面的高,再计算三棱锥的体积。

3、注意一般立体几何涉及到计算最好把各个需要计算的平面或图形在草纸上画出平面图形,这样就导成解简单的平面解析几何,也就是解三角形,使计算和理解更容易。

二、2021年高考预测从近几年各地高考试题分析,立体几何题型一般是1个解答题,1至2个填空或选择题。

解答题一般与棱柱和棱锥相关,主要考查线线关系、线面关系和面面关系,其重点是考查空间想象能力和推理运算能力。

高考试题中,立体几何侧重考查学生的空间概念、逻辑思维能力、空间想象能力及运算能力。

高考对立体几何的考查侧重以下几个方面:1、从命题形式来看:涉及立体几何内容的命题形式最为多变、除保留传统的“四选一”的选择题型外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类考题往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作--证--求”,强调作图、证明和计算相结合。

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)(4)

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)(4)

一、选择题1.已知离心率2e =2222:1(0,0)x y C a b a b -=>>的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O A 、两点.若AOF ∆的面积为1,则实数a 的值为( )A .1B C .2 D .42.已知抛物线E :()220y px p =>的焦点为F ,准线为l ,经过点F 的直线交E 于A ,B 两点,过点A ,B 分别作l 的垂线,垂足分别为C ,D 两点,直线AB 交l 于G点,若3AF FB =,下述四个结论: ①CFDF②直线AB 的倾斜角为π4或3π4 ③F 是AG 的中点④AFC △为等边三角形 其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )A .(B .(1,1C .)+∞D .()1++∞4.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于P ,Q 两点,若1F PQ 为等边三角形,则椭圆的离心率是( )A .2B .3C .2D .35.设抛物线2:4C y x =的焦点为F ,倾斜角为30的直线l 过点F 且与曲线C 交于,A B 两点,则AOB (O 为坐标原点)的面积S=( )A .4B C .D .26.已知圆2221:(0)C x y b b +=>与双曲线22222:1(0,0)-=>>x y C a b a b,若在双曲线2C 上存在一点P ,使得过点P 所作的圆1C 的两条切线互相垂直,则双曲线2C 的离心率的取值范围是( )A .⎛ ⎝⎦B .,2⎫+∞⎪⎪⎣⎭C .(D .)+∞7.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .528.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A.9B.9C.7112+D.83129.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥,则离心率的取值范围为( ) A.10,2⎛⎤ ⎥⎝⎦B.2]C.12⎛⎤⎥ ⎝⎦D.1]10.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x=的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( ) ABC.3D .211.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-12.已知椭圆22221(0)x y a b a b +=>>的右焦点为F,离心率2,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12-D .12二、填空题13.已知椭圆2214x y P +=,是椭圆的上顶点,过点P 作直线l ,交椭圆于另一点A ,设点A 关于原点的对称点为B ,则PAB S的最大值为________.14.12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,且1260F PF ︒∠=,则12F PF ∆的内切圆半径等于___________15.若ABC ∆的两个顶点坐标()4,0A -、()4,0B ,ABC ∆的周长为18,则顶点C 轨迹方程为 _____________16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 且斜率为ab的直线l 与双曲线的右支交于点P ,与其中一条渐近线交于点M ,且有13PM MF =,则双曲线的渐近线方程为________.17.已知椭圆22221(0)x y a b c a b+=>>>的左、右焦点分别为1F ,2F ,若以2F 为圆心,b c -为半径作圆2F ,过椭圆上一点P 作此圆的切线,切点为T ,且PT 的最小值不小于3()2a c -,则椭圆的离心率e 的取值范围是________. 18.中心在原点的椭圆1C 与双曲线2C 具有相同的焦点()1,0F c -、()()2,00F c c >,P 为1C 与2C 在第一象限的交点,112PF F F =且25PF =,若双曲线2C 的离心率()22,3e ∈,则椭圆1C 的离心率1e 的范围是__________.19.如图,已知椭圆C 的中心为原点O ,(25,0)F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的标准方程为__________.20.已知抛物线21:8C y x =的焦点是F ,点M 是其准线l 上一点,线段MF 交抛物线C 于点N .当23MN MF →→=时,NOF 的面积是______三、解答题21.已知椭圆的焦点在x 轴上,一个顶点为()0,1,离心率e =,过椭圆的右焦点F 的直线l 与坐标轴不垂直,且交椭圆于A ,B 两点 (1)求椭圆的标准方程 (2)当直线l 的斜率为12时,求弦长AB 的值. 22.在直角坐标系xOy 中,已知一动圆经过点()3,0,且在y 轴上截得的弦长为6,设动圆圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点3(,0)2作相互垂直的两条直线1l ,2l ,直线1l 与曲线C 相交于A ,B 两点,直线2l 与曲线C 相交于E ,F 两点,线段AB ,EF 的中点分别为M 、N ,求证:直线MN 恒过定点,并求出该定点的坐标.23.已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足||||AB CD =,求直线l 的方程. 24.已知抛物线()220y px p =>的焦点F 恰是椭圆2212x y +=的一个焦点,过点F 的直线与抛物线交于,A B 两点. (1)求抛物线方程.(2)若45AFx ∠=,求AB .25.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为12F F 、,点P 在椭圆上运动,求12PF PF ⋅的取值范围; (2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB 、COD △的面积分别为1S 、2S ,求12S S 的取值范围. 26.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. (1)将||AB 表示为t 的函数; (2)若||AB =AFB △的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】双曲线2222:1x y C a b-=的右焦点为F ,O 为坐标原点,以OF 为直径圆与双曲线C 的一条渐近线相交于O ,A 两点,所以FA OA ⊥,则FA b =,OA a =,AOF ∆的面积为1, 可得1 12ab =,双曲线的离心率e =222225 4c a b a a +==, 即12b a=,解得1b =,2a =,故选C. 点睛:本题考查直线与圆锥曲线的位置关系的应用,双曲线的简单性质,考查了计算能力;利用双曲线的离心率求出渐近线方程,利用三角形中直径所对的圆周角为直角,可求得直角三角形AOF ∆的面积1 12ab =,结合离心率以及恒等式222c a b =+即可得到关于,,a b c 方程组求出a 即可;2.D解析:D 【分析】由题意画出图形,由平面几何知识可得①正确;设出AB 的方程,与抛物线方程联立,可得A ,B 横坐标的积,结合已知向量等式求解A 的坐标,再求出AF 所在直线斜率,可得AB 的倾斜角,判断②错误,再结合选项可知D 正确.【详解】解:如图,由抛物线定义可知,AC AF =,BD BF =, 则AFC ACF CFO ∠=∠=∠,BFD BDF DFO ∠=∠=∠, 则2AFC BFD CFO DFO CFD π∠+∠=∠+∠=∠=,CF DF ∴⊥,故①正确;设AB 所在直线方程为()2p y k x =-, 联立2()22p y k x y px⎧=-⎪⎨⎪=⎩,得22222(2)04k p k x k p p x -++=.设1(A x ,1)y ,2(B x ,2)y ,则2124p x x =,又3AF FB =,∴123()22p px x +=+,即123x x p =+, 联立2121243p x x x x p⎧=⎪⎨⎪=+⎩ ,解得12px =-(舍)或132x p =, 则13y p =,即3(,3)2A p p ,则333122FA Pk p p ==-,可得直线AB 的倾斜角为3π,④正确 由对称性,若A 在x 轴下方,则直线AB 的倾斜角为23π,故②错误. 由3(,3)2A p p ,(,0)2p F ,G 点的横坐标为2p -,可得F 是AG 的中点,故③正确;故选:D . 【点睛】本题考查抛物线的简单性质,考查数形结合的解题思想方法,考查运算求解能力,是中档题.3.D解析:D 【分析】由题将x c =代入双曲线,可求出圆半径,再根据题意可得22bc a<,即可由此求出离心率.【详解】由题可得AB x ⊥轴,将x c =代入双曲线可得2by a=±,∴以AB 为直径的圆的半径为2b AF a=,双曲线的左焦点在以AB 为直径的圆内,22b c a∴<,即22b ac >,即222c a ac ->,两边除以2a 可得2210e e -->,解得1e <1e >故双曲线离心率的取值范围是()1+∞. 故选:D. 【点睛】本题考查双曲线离心率的取值范围的求解,解题的关键是求出圆半径,根据题意得出22b c a <.4.D解析:D 【分析】利用1F PQ 为等边三角形可得21222b PF PF a==,利用椭圆定义得,,a b c 的方程,消去b 后可得()22232a c a -=,从而可得离心率.【详解】不妨设椭圆的标准方程为()222210x y a b a b+=>>,半焦距为c ,左右焦点为12,F F ,设P 在第一象限,则()2,0F c .令x c =,则22221c y a b +=,解得2P b y a =,故22bPF a=,1F PQ 为等边三角形,则1PF PQ =,即21222b PF PF a==,由椭圆定义得122PF PF a +=,故232b a a⨯=,即()22232a c a -=,故213e =,解得e =故选:D. 【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.5.A解析:A 【分析】由已知求得直线l 的方程,与抛物线的方程联立,设1122(,),(,),A x y B x y 得出根与系数的关系1212 4.y y y y +==-再表示三角形的面积1211||2OABOAFOFBSSSy y =+=⨯⨯-,代入计算可得选项. 【详解】由2:4C y x =得(1,0)F ,所以直线l的方程为1)yx =-,即1x =+,联立得241y xx ⎧=⎪⎨=+⎪⎩,化简得240.y --=,设1122(,),(,),A x y B x y 则12124.y y y y +==-, 所以12111||422OABOAFOFBSSSy y =+=⨯⨯-===,故选:A . 【点睛】方法点睛:本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,将所求的目标转化到交点的坐标上去.6.B解析:B【分析】根据题意,若过点P 所作的圆1C的两条切线互相垂直,则OP =,则只需在双曲线,设点(),P x y ,则利用OP ===有解求出离心率e 的取值范围.【详解】 如图所示,设点P 为双曲线上一点,过点P 作圆2221:(0)C x y b b +=>的两条切线PA 与PB ,切点分别为A 与B ,连接OP ,若两条切线互相垂直,则22OP OB b ==,设点(),P x y ,则22222212x OP x y x b b a ⎛⎫=+=+-= ⎪⎝⎭有解,整理得22223c x b a =有解,即22223a b x c=,又22x a ≥,所以2231b c ≥,又222b c a =-,故22233c a c -≥,解得62c e a =≥. 故选:B.【点睛】本题考查双曲线离心率的取值范围求解,求解离心率的的值及取值范围的关键在于画出图形,根据图形找到各边的数量关系,通过数量关系列出,,a b c 的齐次式求解.7.A解析:A【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.8.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--,又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 9.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围,进而求得()2224232c a c <≤-,再求离心率的范围即可 【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由11QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()22211e e e-<≤-,所以,2142e <≤-1e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()22211e e e -<≤-,进而求解 属于中档题10.B解析:B 【分析】求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=, 则22444c a -=,所以a =故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..11.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.12.C解析:C 【分析】先根据已知得到222a b =,再利用点差法求出直线的斜率. 【详解】由题得222222242,4()2,22c c a a b a a b a =∴=∴-=∴=. 设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩, 两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=, 所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-. 故选:C 【点睛】本题主要考查椭圆离心率的计算,考查直线和椭圆的位置关系和点差法,意在考查学生对这些知识的理解掌握水平,属于中档题.二、填空题13.2【分析】由题意设直线的方程代入椭圆中求出点的坐标进而由题意得点的坐标再整理成用到均值不等式形式求出面积的最大值【详解】由题意可知直线的斜率一定存在因此设直线的方程为代入椭圆方程整理得所以所以所以由解析:2 【分析】由题意设直线PA 的方程代入椭圆中,求出点A 的坐标,进而由题意得点B 的坐标,PABS1||||2A B OP x x =-,再整理成用到均值不等式形式,求出面积的最大值. 【详解】由题意可知直线的斜率一定存在,因此设直线l 的方程为1y kx =+, 代入椭圆方程整理得22(14)80k x kx ++=,所以2814kx k -=+,所以221414k y k -=+所以A 28(14k k -+,2214)14k k -+, 由题意得B 28(14k k +,2241)14k k -+,所以三角形PAB 的面积21116||||||2214A B k S OP x x k =-=+因为0k ≠, 所以118||821244PABSk k==+.故答案为:2. 【点睛】关键点睛:一是要构建三角形面积的方案,采用了割补思想,二是在求最值时转化为基本不等式问题,这些都是解决本问题的关键.14.【分析】由题意知由余弦定理可得由面积公式即可求解【详解】因为分别为椭圆的左右焦点为该椭圆上一点所以则由余弦定理得即所以故的面积设的内切圆半径为则解得故答案为:【点睛】本题主要考查了椭圆的定义椭圆的简1 【分析】由题意知12124,F P PF F F +==1243F PPF =‖,由面积公式12121211sin |)2602(S F P PF F P PF F F r ︒=⋅+⋅=‖+|即可求解.【详解】因为12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,所以12124,F P PF F F +==则由余弦定理得,2221212122cos 60F F F P PF F P PF ︒=+-‖,()2121212122cos602F P PF F P PF F P PF ︒=+--,即1212163F PPF =-‖, 所以1243F PPF =‖, 故12PF F ∆的面积121sin 602S F P PF ︒=⋅‖=设12F PF ∆的内切圆半径为r ,则12121|)(4122(3F P PF F F r r S +⋅=+⋅==+|,解得13r =-1 【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,余弦定理,面积公式,属于中档题.15.【分析】根据三角形的周长为定值得到点到两个定点的距离之和等于定值即点的轨迹是椭圆椭圆的焦点在轴上写出椭圆方程去掉不合题意的点【详解】的两个顶点坐标周长为点到两个定点的距离之和等于定值点的轨迹是以为焦解析:221259x y +=(0)y ≠【分析】根据三角形的周长为定值,,得到点C 到两个定点的距离之和等于定值,即点C 的轨迹是椭圆,椭圆的焦点在x 轴上,写出椭圆方程,去掉不合题意的点 【详解】ABC ∆的两个顶点坐标()40A -,、()40B ,,周长为18 810AB BC AC ∴=+=,108>,∴点C 到两个定点的距离之和等于定值,∴点C 的轨迹是以A 、B 为焦点的椭圆 210283a c b ==∴=,,∴椭圆的标准方程是221259x y += ()0y ≠故答案为221259x y += ()0y ≠【点睛】本题主要考查了轨迹方程,椭圆的标准方程,解题的关键是掌握椭圆的定义及其求法.16.【分析】根据题意求出点M 的坐标再根据求出点P 的坐标将点P 的坐标代入双曲线方程即可求出进而求出双曲线的渐近线方程【详解】设双曲线的左焦点为所以直线l 的方程为:由直线l 与其中一条渐近线交于点M 且有可知解解析:43y x =±【分析】根据题意求出点M 的坐标,再根据13PM MF =求出点P 的坐标,将点P 的坐标代入双曲线方程即可求出ba,进而求出双曲线的渐近线方程. 【详解】设双曲线的左焦点为(),0c -,所以直线l 的方程为:()ay x c b=+, 由直线l 与其中一条渐近线交于点M ,且有1PM=3MF ,可知()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩,解方程可得2a x c aby c ⎧=-⎪⎪⎨⎪=⎪⎩,即2,a ab M c c ⎛⎫-⎪⎝⎭, 过点M 、P 分别作x 轴垂线,垂足为A 、B 因为13PM MF =,所以1114AF BF =,14AM BP =, 不妨设04,ab P x c ⎛⎫ ⎪⎝⎭,则204c x a c c +-=,解得2043a x c c=-, 所以2443,a ab P c c c ⎛⎫- ⎪⎝⎭,将点2443,a ab P c c c ⎛⎫- ⎪⎝⎭代入()222210,0x y a b a b -=>>, 即()2222244310,0a ab c c c a b a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=>>,整理可得22925c a =,即()222925a b a +=,解得22169b a =,43b a ∴=,所以双曲线的渐近线方程为43y x =±.故答案为:43y x =± 【点睛】本题考查了双曲线的简单几何性质,此题要求有较高的计算能力,属于中档题.17.【分析】利用切线的性质和勾股定理可得利用椭圆的性质可得的最小值为由题意可得最小值为即可得出离心率满足的不等式再利用得联立两个不等式即可解出的取值范围【详解】因为所以当且仅当取得最小值时取得最小值而的解析:3,52⎡⎢⎣⎭【分析】利用切线的性质和勾股定理可得||)PT b c =>,利用椭圆的性质可得2PF 的最小值为a c -,由题意可得PT )a c -,即可得出离心率e 满足的不等式,再利用b c >,得222a c c ->,联立两个不等式即可解出e 的取值范围.【详解】因为||)PT b c =>,所以当且仅当2PF 取得最小值时,PT 取得最小值.而2PF 的最小值为a c -,所以PT 23()2a c -, 所以22()4()a cbc --,所以2()a c b c --,所以2a c b +, 所以()222()4a c a c +-,所以225302c ac a +-≥,所以25230e e +-.①又b c >,所以22b c >,所以222a c c ->,所以221e <.② 联立①②,得3252e <.故答案为:35⎡⎢⎣⎭【点睛】本题主要考查了椭圆的性质,离心率的计算公式,圆的切线的性质,勾股定理,一元二次不等式的解法,属于基础题18.【分析】由于P 为与在第一象限的交点分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到再分别由其对应离心率公式表示并由不等式性质求得答案【详解】设椭圆:与双曲线:因为P 为与在第一象限的交点所以焦点三解析:32,53⎛⎫⎪⎝⎭【分析】由于P 为1C 与2C 在第一象限的交点,112PF F F =,分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到2a c m =-,再分别由其对应离心率公式表示并由不等式性质求得答案. 【详解】设椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>,因为P 为1C 与2C 在第一象限的交点,112PF F F =,所以焦点三角形12PF F 是以2PF 为底边的等腰三角形,即在椭圆中有1221122222PF PF aPF a c PF F F c ⎧+=⎪⇒=-⎨==⎪⎩①;同理,在双曲线中有222PF c m =-②,由①②可知,2a c m =-,因为()221112,3,,32c e m e ⎛⎫=∈∈ ⎪⎝⎭,且12111222c c e m a c m c e ====---, 由不等式的性质可知,132,53e ⎛⎫∈ ⎪⎝⎭. 故答案为:32,53⎛⎫⎪⎝⎭【点睛】本题考查椭圆与双曲线共焦点问题中求椭圆的离心率范围问题,属于中档题.19.【分析】由已知可得而由可求出点的坐标再将点的坐标代入椭圆方程中再结合可求出的值【详解】解:由题意设椭圆的标准方程为因为为椭圆的左焦点所以因为所以设点的坐标为则解得则所以点的坐标为因为为椭圆上一点所以解析:2213616x y +=【分析】由已知可得c =||||OP OF ==,||4PF =,可求出点P 的坐标,再将点P 的坐标代入椭圆方程中,再结合222a b c =+,可求出22a b ,的值.【详解】解:由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,因为(F -为椭圆C的左焦点,所以c =, 因为||||OP OF =,所以||||OP OF ==, 设点P 的坐标为(,)P m n,则11422OF n ⋅=⨯解得n =m =, 所以点P 的坐标为⎛ ⎝, 因为P 为椭圆C 上一点, 所以223664155a b += 因为22220a b c -==,所以解得2236,16a b ==,所以椭圆的标准方程为2213616x y +=,故答案为:2213616x y +=【点睛】此题考查的是椭圆的简单的几何性质,考查了运算能力,属于中档题.20.【分析】由抛物线的方程可得焦点坐标及准线方程因为可得在之间设垂直于准线交于由抛物线的性质可得可得求出直线的方程代入抛物线的方程求出的横坐标进而求出的面积【详解】由题意抛物线的标准方程为:所以焦点准线【分析】由抛物线的方程可得焦点F 坐标及准线方程,因为23MN MF →→=,可得N 在M ,F 之间,设NN '垂直于准线交于N ',由抛物线的性质可得NN NF '=,可得tan FMN '∠=,求出直线MF 的方程,代入抛物线的方程求出N 的横坐标,进而求出NOF ∆的面积.【详解】由题意抛物线的标准方程为:28x y =,所以焦点(0,2)F ,准线方程为2y =-, 设NN '垂直于准线交于N ',如图,由抛物线的性质可得NN NF '=, 因为23MN MF →→=,可得N 在M ,F 之间, 所以22MN NF NN '==,所以1sin 2NN FMN MN ''∠==, 所以3tan FMN '∠=, 即直线MF 的斜率为33,所以直线MF 的方程为323y x =+, 将直线MF 的方程代入抛物线的方程可得:283160x --=,解得3x =或43x (舍), 所以114343||||222NOF N S OF x ∆=⋅=⨯ 43 【点睛】本题主要考查抛物线的几何性质,抛物线的定义,三角形的面积公式,属于中档题. 三、解答题21.(1)2215x y +=(2105 【分析】(1)根据顶点坐标得到1b =,根据离心率25c e a ==,结合222a b c =+得到25a =,则可得椭圆的标准方程;(2)联立直线与椭圆,利用弦长公式可求得结果.【详解】(1)依题意设椭圆的标准方程为22221x y a b+=(0)a b >>, 则1b =,c a =,所以22221a b c ⎫=+=+⎪⎪⎝⎭,解得25a =, 所以椭圆的标准方程为2215x y +=. (2)由(1)知(2,0)F ,则直线:l 1(2)2y x =-, 联立221(2)215y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y 并整理得22009x x -=, 设1122(,),(,)A x y B x y , 则12209x x +=,120x x =,所以||AB ==209==. 【点睛】结论点睛:斜率为k 的直线l 与圆锥曲线交于11(,)A x y 、22(,)B x y两点,则弦长||AB =22.(1)26y x =;(2)证明见解析,9(,0)2.【分析】(1)设圆心(),C x y ,然后根据条件建立方程求解即可; (2)设直线1l 的方程为3()2y k x =-,然后算出22363(,)2k M k k +,236(,3)2k N k +-,然后表示出直线MN 的方程即可.【详解】(1)设圆心(),C x y ,由题意得2229(3)x x y =-++,即26y x =所以曲线C 的方程为26y x =(2)由题意可知,直线12,l l 的斜率均存在,设直线1l 的方程为3()2y k x =-,()11,A x y ,()22,B x y联立方程组2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得22224(1224)90k x k x k -++=, 所以212236k x x k++=,12126(3)y y k x x k +=+-= 因为点M 是线段AB 的中点,所以22363(,)2k M k k+ 同理,将k 换成1k -得236(,3)2k N k +-, 当222363622k k k ++≠,即1k ≠±时 2222333636122MN k k k k k k k k +-==++-- 所以直线MN 的方程为22363()12k k y k x k -++=-- 即29()12k y x k -=--, 所以直线MN 恒过定点9(,0)2当1k =±时,直线MN 的方程为92x =,也过点9(,0)2 所以直线MN 恒过定点9(,0)2【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意. 23.(1)22143x y +=;(2)123y x =-+或123y x =--. 【分析】(1)根据题设条件列方程解得,a b 可得椭圆方程;(2)利用几何方法求出弦长||CD ,利用弦长公式求出弦长||AB,再根据||||4AB CD =可求出m ,代入直线l :y =-12x +m ,可求得结果. 【详解】(1)由题设知22212b c a b a c ⎧=⎪⎪=⎨⎪=-⎪⎩,解得a =2,bc =1, ∴椭圆的方程为22143x y +=. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l :220x y m +-=的距离d =,由d <1,得||m <||CD ∴=== 设A (x 1,y 1),B (x 2,y 2),由221,21,43y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 并整理得x 2-mx +m 2-3=0, 由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3.||AB =∴==由||||4AB CD =1,解得3m =±,满足(*). ∴直线l的方程为123y x =-+或123y x =--. 【点睛】关键点点睛:掌握几何方法求弦长和弦长公式求弦长是解题关键.24.(1)24y x =;(2)8.【分析】(1)由题意得焦点()1,0F ,则12p =,即可得出结果;(2)利用直线的倾斜角求得斜率,由点斜式得到直线AB 的方程,和抛物线方程联立后利用根与系数的关系得到126x x +=,代入抛物线的弦长公式即可得解.【详解】(1)因为抛物线()220y px p =>的焦点F 恰是椭圆2212x y +=的一个焦点,所以焦点()1,0F , 则122p p =⇒=, 则抛物线的方程为:24y x =;(2)因为45AFx ∠=,所以直线AB 的斜率为tan 451︒=,又抛物线的焦点为()1,0F ,则直线AB 的方程为:011y x y x -=-⇒=-,由214y x y x =-⎧⎨=⎩, 得2610x x -+=,设()()1122,,,A x y B x y ,则126x x +=, 所以128AB x x p =++=.【点睛】关键点睛:直线与抛物线方程联立,化为关于x 的方程后利用一元二次方程根与系数的关系解决本题是解题的关键.25.(1)[0,3];(2)⎡⎢⎣⎦. 【分析】(1)设(),P x y ,求出21212PF PF x ⋅=,即得解; (2)①当直线l 的斜率不存在时,求得122S S =;②若直线l 的斜率存在,设其方程为y kx m =+,联立直线和椭圆方程得到韦达定理,求出12S S =换元求解.最后综合得解.【详解】(1)由已知,())12,F F ,设(),P x y,(x ≤,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-. 结合22163x y +=,得22132y x =-, 故2121[0,3]2PF PF x ⋅=∈.所以12PF PF ⋅的取值范围为[0,3].(2)①当直线l的斜率不存在时,其方程为x =由对称性,不妨设x()(),,1,1,1,1A B C D -, 故12221S S ==. ②若直线l 的斜率存在,设其方程为y kx m =+,=,则()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立,得()222214260k x kmx m +++-=, 由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD ==22221122113,322x y y x =-=-,可知12S S == 将根与系数的关系代入整理得:12S S =结合()2221m k =+,得12S S =. 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12S S ∴的取值范围是2,2⎡⎢⎣⎦. 【点睛】关键点点睛:解答本题的关键是求出12S S =值范围.本题利用了两次换元,转化成二次函数求范围.换元法是高中数学常用的一个解题技巧,要理解掌握灵活运用.26.(1)||AB =12t;(2)7+ 【分析】 (1)设点1(A x ,1)y ,2(B x ,2)y ,联立直线方程和抛物线方程,运用韦达定理和弦长公式,化简计算即可得到所求函数;(2)运用抛物线的定义和(1)的结论,结合12||||2AF BF x x +=++,进而得到AFB △的周长.【详解】(1)224y x t y x=+⎧⎨=⎩, 整理得()224410x t x t +-+=,则2212212163216161632044144t t t t t x x t t x x ⎧⎪∆=-+-=->⎪-⎪+==-⎨⎪⎪=⎪⎩, AB===,其中12t ;(2)由||AB =4t =-, 经检验,此时16320t ∆=->,所以1215x x t +=-=,由抛物线的定义,有1212||||()()52722p p AF BF x x x x p +=+++=++=+=,又||AB =所以AFB△的周长为7+【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 二次函数的应用第1课时 图形面积的最大值1.能根据实际问题列出函数关系式,并根据问题的实际情况确定自变量取何值时,函数取得最值;(重点)2.通过建立二次函数的数学模型解决实际问题,培养分析问题、解决问题的能力,提高用数学的意识,在解决问题的过程中体会数形结合思想.(难点)一、情境导入如图所示,要用长20m 的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为x m ,花圃的面积为y m 2,那么y =x (20-2x ).试问:x 为何值时,才能使y 的值最大?二、合作探究探究点一:二次函数y =ax 2+bx +c 的最值已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( ) A .3 B .-1 C .4 D .4或-1 解析:∵二次函数y =ax 2+4x +a -1有最小值2,∴a >0,y 最小值=4ac -b 24a =4a (a -1)-424a =2,整理,得a 2-3a -4=0,解得a =-1或4.∵a >0,∴a =4.故选C. 方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法. 变式训练:见《学练优》本课时练习“课堂达标训练” 第1题 探究点二:利用二次函数求图形面积的最大值 【类型一】 利用二次函数求矩形面积的最大值如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式及自变量的取值范围; (2)当x 取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.解析:(1)根据AB 为x m ,则BC 为(24-4x )m ,利用长方形的面积公式,可求出关系式;(2)由(1)可知y 和x 为二次函数关系,根据二次函数的性质即可求围成的长方形花圃的最大面积及对应的AB 的长;(3)根据BC 的长度大于0且小于等于8列出不等式组求解即可.解:(1)∵AB =x ,∴BC =24-4x ,∴S =AB ·BC =x (24-4x )=-4x 2+24x (0<x <6);(2)S =-4x 2+24x =-4(x -3)2+36,∵0<x <6,∴当x =3时,S 有最大值为36;(3)∵⎩⎪⎨⎪⎧24-4x ≤8,24-4x >0,∴4≤x <6.所以,当x =4时,花圃的面积最大,最大面积为32平方米.方法总结:根据已知条件列出二次函数式是解题的关键.但要注意不要漏掉题中自变量的取值范围.变式训练:见《学练优》本课时练习“课堂达标训练” 第8题【类型二】 利用割补法求图形的最大面积在矩形ABCD 的各边AB ,BC ,CD ,DA上分别选取点E ,F ,G ,H ,使得AE =AH =CF =CG ,如果AB =60,BC =40,四边形EFGH 的最大面积是( )A .1350B .1300C .1250D .1200 解析:设AE =AH =CF =CG =x ,四边形EFGH的面积是S .由题意得BE =DG =60-x ,BF =DH =40-x ,则S △AHE =S △CGF =12x 2,S △DGH =S △BEF = 12(60-x )(40-x ),所以四边形EFGH 的面积为S =60×40-x 2-(60-x )(40-x )=-2x 2+100x =-2(x -25)2+1250(0<x ≤40).当x =25时,S 最大值=1250.故选C. 方法总结:考查利用配方法求二次函数的最值,先配方,确定函数的对称轴,再与函数的自变量的取值范围结合即可求出四边形EFGH 的面积最大值. 变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 动点问题中的最值问题如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连接DE ,作EF ⊥DE ,垂足为E ,EF 与线段BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若y =12m,要使△DEF 为等腰三角形,m 的值应为多少?解析:(1)利用互余关系找角相等,证明△BEF ∽△CDE ,根据对应边的比相等求函数关系式;(2)把m 的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF =90°,只有当DE =EF 时,△DEF 为等腰三角形,把条件代入即可.解:(1)∵EF ⊥DE ,∴∠BEF =90°-∠CED =∠CDE .又∠B =∠C =90°,∴△BEF ∽△CDE ,∴BF CE =BE CD ,即y x =8-xm ,解得y =8x -x 2m; (2)由(1)得y =8x -x 2m,将m =8代入,得y =-18x 2+x =-18(x 2-8x )=-18(x -4)2+2,所以当x =4时,y 取得最大值为2;(3)∵∠DEF =90°,∴只有当DE =EF 时,△DEF 为等腰三角形,∴△BEF ≌△CDE ,∴BE =CD=m ,此时m =8-x .解方程12m =8x -x 2m,得x =6,或x =2.当x =2时,m =6;当x =6时,m =2.方法总结:在解题过程中,要充分运用相似三角形对应边的比相等的性质建立函数关系式,是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】 图形运动过程中的最大面积问题如图,有一边长为5cm 的正方形ABCD和等腰△PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一条直线l 上,当C 、Q 两点重合时,等腰△PQR 以1cm/秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为S cm 2.解答下列问题:(1)当t =3秒时,求S 的值; (2)当t =5秒时,求S 的值; (3)当5秒≤t ≤8秒时,求S 与t 的函数关系式,并求出S 的最大值.解析:当t =3秒和5秒时,利用三角形相似求出重合部分的面积.当5秒≤t ≤8秒时,利用二次函数求出重合部分面积的最大值.解:(1)如图①,作PE ⊥QR ,E 为垂足.∵PQ=PR ,∴QE =RE =12QR =4cm.在Rt △PEQ 中,PE=52-42=3(cm).当t =3秒时,QC =3cm.设PQ 与DC 交于点G .∵PE ∥DC ,∴△QCG ∽△QEP .∴S S △QEP =(34)2.∵S △QEP =12×4×3=6,∴S =(34)2×6=278(cm 2);(2)如图②,当t =5秒时,CR =3cm.设PR 与DC交于G ,由△RCG ∽△REP ,可求出CG =94,∴S △RCG=12×3×94=278(cm 2).又∵S △PQR =12×8×3=12(cm 2),∴S =S △PQR -S △RCG =12-278=698(cm 2);图③(3)如图③,当5秒≤t ≤8秒时,QB =t -5,RC =8-t .设PQ 交AB 于点H ,PR 交CD 于点G .由△QBH ∽△QEP ,EQ =4,∴BQ ∶EQ =(t -5)∶4,∴S △BQH ∶S △PEQ =(t -5)2∶42,又S △PEQ =6,∴S △QBH=38(t -5)2.由△RCG ∽△REP ,同理得S △RCG =38(8-t )2,∴S =12-38(t -5)2-38(8-t )2=-34t 2+394t -1718.当t =-3942×(-34)=132时,S 最大,S 的最大值=4ac -b 24a =16516(cm 2). 方法总结:本题是一个图形运动问题,解题的方法是将各个时刻的图形分别画出,由“静”变“动”,再设法求解,这种分类画图的方法在解动态的几何问题时非常有效.探究点三:利用二次函数解决拱桥问题一座拱桥的轮廓是抛物线形(如图①),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②),求抛物线的解析式;(2)求支柱EF 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶三辆宽2m 、高3m 的汽车(汽车间的间隔忽略不计)?请说明你的理由.解析:(1)根据题目可知A ,B ,C 的坐标,设出抛物线的解析式代入可求解;(2)设F 点的坐标为(5,y F ),求出y F ,即可求出支柱EF 的长度;(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.作GH ⊥AB 交抛物线于点H ,求出点H 的纵坐标,判断是否大于汽车高度即可求解.解:(1)根据题目条件,A ,B ,C 的坐标分别是(-10,0),(10,0),(0,6).设抛物线的解析式为y =ax 2+c ,将B ,C 的坐标代入y =ax 2+c ,得⎩⎪⎨⎪⎧6=c ,0=100a +c ,解得⎩⎪⎨⎪⎧a =-350,c =6.所以抛物线的解析式为y =-350x 2+6;(2)可设F 点的坐标为(5,y F ),于是y F =-350×52+6=4.5,从而支柱EF 的长度是10-4.5=5.5(米);(3)如图②,设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是(7,0).过G 点作GH ⊥AB交抛物线于H 点,则y H =-350×72+6=3.06>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.方法总结:利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计图形面积的最大值1.求函数的最值的方法2.利用二次函数求图形面积的最大值 3.利用二次函数解决拱桥问题由于本节课的内容是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的.。

相关文档
最新文档