八年级下《二次根式》单元测试卷含答案
八年级数学下册二次根式单元测试题及答案(含答案)
八年级数学下册二次根式单元测试题及答案(含答案)八年级下册数学目标单元检测题(一)《二次根式》一、选择题:(每小题2分,共26分)1、下列代数式中,属于二次根式的是()。
A、3x 2B、1 4C、 aD、a 32、在二次根式,中,x的取值范围是()。
A、x≥1B、x>1C、x≤1D、x<13、已知(x-1)2+y2=0,则(x+y)2的算术平方根是()。
A、1B、±1C、-1D、44、下列计算中正确的是()。
A、2/11(x2y) 5B、3(x2)2y2C、a/323D、45/3235、化简1/23+11/23=()。
A、1/5B、30C、65D、6306、下列二次根式:12.5a,a,b,1/a,m+y2/(anx)。
其中最简二次根式的有()。
A、2个B、3个C、1个D、4个7、若等式(m3)/(m3)=1成立,则m的取值范围是()。
A、m≥1/2B、m>3C、1/2≤m<3D、m≥38、已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()。
A、5cmB、7cmC、5cm或7cmD、无法确定9、把二次根式x4x2y2化简,得()。
A、2x2yB、x2+xyC、1xyD、x2y210、下列各组二次根式中,属于同类二次根式的为()。
A、2和BB、2和CC、a+1/12ab和DD、a1/ab2和Da1/ab211、如果a≤1,那么化简√(a1)/(1a)=()。
A、(a+1)/(1a)B、(1a)/(a+1)C、(a+1)/√(1a)D、(1a)/√(a+1)12、下列各组二次根式中,x的取值范围相同的是()。
A、x1和x(2x3)B、x21和x2 2C、(x2)2和(x3)2D、√(x24)和√(x22x1)二、填空题:(每小题3分,共36分)13、2633;14、用“>”或“<”符号连接:(1)3(5)2(2)35;27(3)357 3.15、3的相反数是3,绝对值是3.16、如果最简二次根式3a3与72a是同类二次根式,那么a的值是2/3.17、计算:8/24=1/3;(1)2=1;(5)2=25.。
2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)
2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。
八年级数学下册《二次根式》单元测试能力提升卷 含答案 (原卷+详解)
人教版数学八年级下册单元测试能力提升卷《二次根式》一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cm +D .4)cm -4.已知10a -<<( )A .2aB .22a a+ C .2a D .2a-5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =6.计算201820193)3)-的值为( )A .1B 3C 3D .3-7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x -- C .2- D .28.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错10.下列各式中,正确的是个数有()2=a b=+=A.1个B.2个C.3个D.0个11.若实数m满足|4||3|1m m-=-+,那么下列四个式子中与(m-相等的是() AB.CD.二.填空题12a为.13.若x,y4y=,则xy的值为.14.=⋯观察下列各式:请你找出其中规律,并将第(1)n n个等式写出来.15.已知m是实数,且m+1m-都是整数,那么m的值是.16.已知ABC∆的三边长分别为AB=BC=AC=其中7a>,则ABC ∆的面积为 .17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: .18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===, (1分母有理化可得 ;(2)关于x 的方程132x -的解是 .19.已知252a a +=-,225b b +=-,且a b ≠,则化简 .20.(1)(2)02(3)ππ--(3)-(4)21.已知a 为实数,且a +与1a-a 的值是 .三.解答题 22.计算:(1-(2)21)(3)解分式方程:1111x x x+=--;(4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.23.已知:12y 的值.24.若x ,y 是实数,且13y =,求2(3-的值.25.已知:a 、b 、c 是ABC ∆26.化简求值:x =,y =的值.27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a 14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a ==+-=+= (1)填空: 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题: (1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数), 则有222a m n =+,2b mn =.这样小明就找到了一种把类似a + 请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.人教版数学八年级下册单元测试能力提升卷《二次根式》答案详解版一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-【解析】去分母得,2(1)3m x -+-=, 解得,52m x +=, 关于x 的分式方程3211m x x +=--有正数解, ∴502m +>, 5m ∴>-,又1x =是增根,当1x =时,512m +=,即3m =- 3m ∴≠-,有意义,20m ∴-,2m ∴,因此52m -<且3m ≠-, m 为整数,m ∴可以为4-,2-,1-,0,1,2,其和为4-, 故选:D .2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -【解析】23a <<,∴2(3)a a =---23a a =--+ 25a =-.故选:C .3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cmD .4)cm【解析】设小长方形卡片的长为x ,宽为y ,根据题意得:2x y += 则图②中两块阴影部分周长和是2(42)2(4)4442162(2)1616()y x y x x y cm -+-=⨯--=-+=-.故选:B .4.已知10a -<<( )A .2aB .22a a+C .2a D .2a-【解析】10a -<<,∴==11()a a a a=--+2a =-.故选:D . 5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =【解析】分母有理化,可得2a =+,2b =(2(2a b ∴-=+--=A 选项错误;(2(24a b +=++=,故B 选项错误;(2(2431ab =+⨯=-=,故C 选项正确;22(2437a =+=+=+22(2437b ==-=-22a b ∴≠,故D 选项错误;故选:C .6.计算201820193)3)-的值为( )A .1B 3C 3D .3【解析】原式201820183)3)3)=⨯20183)]3)=⨯2018(109)3)=-⨯13)=⨯3=,故选:B .7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x --C .2-D .2【解析】|3|7x -,|3||4|7x x ∴-++=,43x∴-,2|4|x∴+2(4)|26|x x=+--2(4)(62)x x =+--42x=+,故选:A.8.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+【解析】代入计算可得,1f f+=,1f f+=,⋯,1f f+=,所以,原式11(1)22n n=+-=-.故选:A.9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错【解析】甲同学在计算时,将分子和分母都乘以是有可能等于0,此时变形后分式没有意义,所以甲同学的解法错误;乙同学的解法正确;故选:B .10.下列各式中,正确的是个数有( )2=a b =+= A .1个 B .2个C .3个D .0个【解析】2不能合并,故①错误,若1a =,2b =a b ≠+,故②错误,,故③正确,3a +=故选:B .11.若实数m 满足|4||3|1m m -=-+,那么下列四个式子中与(m -( )A B .C D .【解析】由|4||3|1m m -=-+得,3m ,40m ∴-<,30m -,(m ∴-故选:D . 二.填空题12a 为 2 .a 为2, 故答案为:2.13.若x ,y 4y =,则xy 的值为 2 .【解析】x ,y 4y =,210x ∴-=,4y =,则12x =,故1422xy =⨯=.故答案为:2.14.(2019秋•===,⋯观察下列各式:请你找出其中规律,并将第(1)n n (n =+===,⋯得(n =+(n =+15.已知m 是实数,且m +1m-都是整数,那么m 的值是 3-3- 【解析】22m +是整数,m a ∴=-,(其中a 为整数),∴1m ==,又1m -是整数,281a ∴-=,3a ∴=±,3m ∴=-或3m =--故答案为:3-3--.16.已知ABC ∆的三边长分别为AB =BC AC =其中7a >,则ABC ∆的面积为 168 .【解析】2AB ==BC =AC =如图,点(,24)A a ,(,24)B a --,(7,0)C11124247242168222ABC S OC OC ∆∴=⨯+⨯=⨯⨯⨯=故答案为:168.17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: 0a b += .【解析】2(1)1a ab +=,等式的两边都乘以)a b a =①,等式的两边都乘以)b -a b +②,①+b a b a =,整理,得220a b += 所以0a b += 故答案为:0a b +=18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===,(11 ;(2)关于x的方程132x -=+ 的解是 . 【解析】(11==1;(2)132x -=,132x -=,132x -=+⋯+,113122x -=+,611x -=-+6x =x =,故答案为:2.19.已知252a a +=-,225b b +=-,且a b ≠,则化简+=【解析】252a a +=-,225b b +=-,即2520a a ++=,2520b b ++=,且a b ≠,a ∴、b 可看做方程2520x x ++=的两不相等的实数根,则5a b +=-,2ab =,0a ∴<,0b <,则原式=-==(254)2-=-=故答案为:20.(1)(2)02(3)ππ--(3)-(4)【解析】(1)原式==(2)原式2(3)1ππ=---+231ππ=--++2=;(3)原式=3=;(4)原式322=-+3=.21.已知a 为实数,且a +1a-a 的值是 5-5-【解析】a +a ∴是含-1a -∴化简后为1a 为含5a ∴=-5--故答案为:5-5--. 三.解答题(共9小题) 22.计算:(1-(2)21)(3)解分式方程:1111x x x +=--; (4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =+时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.【解析】(1)原式11=-=-;(2)原式426=-=- (3)两边都乘以1x -,得:11x x -=-, 解得:1x =,检验:当1x =时,10x -=,1x ∴=是原分式方程的增根,则原分式方程无解;(4)①原式211(1)[](1)(1)(1)(1)2x x x x x x x -+=-+-+-- 22(1)(1)(1)2x x x x x -+=+--11x x +=-,当1x 时,原式===;②若代数式A 的值为3,则131x x +=-,解得2x =,当2x =时,原式没有意义,∴代数式A 的值不可能为3.23.已知:12y =的值. 【解析】180x -,18x810x -,18x,18x ∴=,12y =,∴原式4===.24.若x ,y 是实数,且13y =,求2(3-的值.【解析】x ,y 是实数,且13y ,410x ∴-且140x -,解得:14x =,13y ∴=,2(3∴-的值.2===18=25.已知:a 、b 、c 是ABC ∆【解析】a 、b 、c 是ABC ∆的三边长,a b c ∴+>,b c a +>,b a c +>,∴原式||||||a b c b c a c b a =++-+-+--()()a b c b c a b a c =++-+-++-a b c b c a b a c =++--+++- 3a b c =+-.26.化简求值:x =,y的值.【解析】22x ===-,2y ===,∴====27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a+14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a =+-=+= (1)填空: 乙 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<【解析】(1)乙的做法错误.当14a =时,10a a ->1a a =-,故乙的做法错误.故答案为:乙(2)当0a <a -;(3)35x <<,70x ∴-<,250x ->.7252x x x =-+-=+28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题:(1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值. 【解析】(1)2310a a -+=,231a a ∴-=-,213a a +=,13a a +=,32232531a a a ∴--++2232(3)(3)333a a a a a a a =-+-+-+ 12(1)(1)33a a a =⨯-+-+-+12133a a a =--+-+ 14a a =-+ 34=-1=-;(2)2x =+,2x ∴-= ∴432295543x x x x x x ---+-+322(2)(2)7(2)19(2)33(2)1x x x x x x x x -+------=--======962-=32=.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.【解析】(1)原式92=-+7=;(2)22x y xy +()xy x y =+11)=+1=⨯=.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数),则有222a m n =+,2b mn =.这样小明就找到了一种把类似a +请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = 227m n + ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.【解析】(1)设222(72a m m n +=+=++a 、b 、m 、n 均为整数),则有227a m n =+,2b mn =;故答案为227m n +,2mn ;(2)62mn =,3mn ∴=, a 、m 、n 均为正整数,1m ∴=,3n =或3m =,1n =,当1m =,3n =时,22313928a m n =+=+⨯=;当3m =,1n =时,22393112a m n =+=+⨯=;即a 的值为为12或28;(3t =,则244t =8=+8=+81)=+6=+21)=,1t ∴=.。
沪科版数学八年级下册第16章《二次根式》测试题附答案
【解析】
【分析】
根据二次根式的运算法则逐项计算即可判断.
【详解】
解:A、 和 不是同类二次根式,不能合并,故错误;
B、 =2 ,故错误;
C、 = ,故错误;
D、 = =2 ,故正确.
故选D.
【点睛】
本题考查了二次根式的四则运算.
10.A
【解析】
分析:由m<0,利用二次根式的性质 及绝对值的性质计算即可.
解:原式 ,
,
,
故选:A.
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,先进行二次根式的乘除运算,然后合并同类二次根式.
8.D
【解析】
【分析】
先化简各二次根式,再计算乘法,最后合并同类二次根式可得.
【详解】
原式=8× ﹣ ×3 +4×
=4 ﹣ +
= ,
故选:D.
【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.
故|b-3|= =0,
则b=3,a=5,
故ab-1=52=25.
【点睛】
考查了二次根式的性质和化简及非负数的性质,解题的关键是将所给的式子化为非负数的和为0的等式,然后利用非负性求出a、b的值,本题属于中等题型.
23.(1) ;(2)9
【解析】
【分析】
(1)先化简各二次根式,再合并同类二次根式即可得;
=b-a+2c
【点睛】
此题主要考查了二次根式以及绝对值的性质与化简,正确化简二次根式是解题关键.
26.(1)a=2 ,b=5,c=3 ;(2)能,5 +5.
【解析】
【分析】
(1)根据非负数的性质列式求解即可;
八年级下册数学二次根式单元试卷(含答案)
, x − 3 ≥ 0
{ 3−x ≥ 0
解得x=3,
将 代入 ,得 x=3
−−−−−
−−−−−
y = √x − 3 + √3 − x + 2
, y = 2 将x=3、y=2代入xy得 9,
所以xy=9.
13.使式子
−−−−− √m − 2
有意义的最小整数m是
.
【参考答案】
答案:2. 解:根据题意得,m-2≥0, 解得m≥2, 所以最小整数m是2.
−−−−−−−
−−−−−−−
已知 < < ,化简 14.
2x5
√(x
−
2
2)
+
√(x
−
2
5)
=
.
【参考答案】
答案:3.
−−−−−−−
−−−−−−−
解: , √(x − 2)2 + √(x − 5)2 = | x - 2 | + | x - 5 |
因为2<x<5,所以x-2>0,x-5<0,
所以|x-2|+|x-5|=x-2+5-x=3.
,宽为
2
−− √10
,则下列说法不正确的是().
A.大长方形的长为6
−− √10
B.大长方形的宽为5
−− √10
C.大长方形的周长为11
−− √10
D.大长方形的面积为300
【参考答案】
答案:C.
解:
由题意得大长方形的两边分别为 , , −−
−−
−−
3 √10 + 2 √10 = 5 √10
−−
−−
人教版数学八年级第十六章 二次根式单元卷
一、选择题
新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(包含答案解析)
一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22== 2.若x=,则2x 2x -=( )A B .1 C .2D 13.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤14.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+6 5.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .=6.下列算式中,正确的是( )A .3=B =C =D 4= 7.下列四个数中,是负数的是( )A .2-B .2(2)-C .D 8.下列计算正确的是( )A 7=±B 7=-C 112=D =9x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 10.下列各式计算正确的是( )A +=B .26=(C 4=D = 11.下列计算正确的是( )A .336a a a +=B .1=C .()325x x =D .642b b b ÷=12. )A B .C D .二、填空题13.计算:()235328-+---=__________.14.如果代数式1x -有意义,那么实数x 的取值范围是____15.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.16.若224y x x =-+-+,则y x 的平方根是__________.17.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.18.13a a+=a a =______. 19.计算:232)(32)=______.20.2121=-+3232=+4343=+,请从上述等式找出规律,并利用规律计算(20082)32435420082007++⋅⋅⋅++=++++_________. 三、解答题21.(1)计算:503248- (2)计算:16215)362(3)解方程组:25214323x y x y -=-⎧⎨+=⎩(4)解方程组:4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 22.计算:(1)121850322(2)21)-.23.计算:(12- (2) 248(31)(31)(31)(31)1++++- 24.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2++⋯+; (3)设a =,b =c =,比较a ,b ,c 的大小关系.25()201220202π-⎛⎫+-- ⎪⎝⎭26.计算:.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.B解析:B【分析】直接将已知分母有理化,进而代入求出答案.【详解】解:∵ x==1=, ∴ ()2x 2x x x 2-=- )112=- 21=-1=.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.3.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A.【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.5.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.C解析:C【分析】根据二次根式的除法与加减法法则逐项判断即可得.【详解】A、=B235=+=,此项错误;C==D2==,此项错误;故选:C.【点睛】本题考查了二次根式的除法与加减法,熟练掌握运算法则是解题关键.7.C解析:C先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】-=>,不符合题意;A、220-=>,不符合题意;B、()2240C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.8.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C====,故该选项正确;D2故选:D.【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键.9.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 11.D解析:D【分析】依次根据合并同类项法则,二次根式的加减、幂的乘方和同底数幂的除法判断即可.【详解】解:A. 3332a a a +=,故该选项错误;B. =C. ()32236x x x ⨯==,故该选项错误;D. 64642b b b b -÷==,故该选项正确.故选:D .【点睛】本题考查幂的相关计算,合并同类项和二次根式的加减.掌握相关运算法则,能分别计算是解题关键.12.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D、=,所以2故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.14.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵x-≥,∴10∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.15.﹣2a【分析】依据数轴即可得到a+1<0b﹣1>0a﹣b<0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a .【分析】依据数轴即可得到a +1<0,b ﹣1>0,a ﹣b <0,即可化简|a +1|.【详解】解:由题可得,﹣2<a <﹣1,1<b <2,∴a +1<0,b ﹣1>0,a ﹣b <0,∴|a +1|=|a +1|﹣|b ﹣1|+|a ﹣b |=﹣a ﹣1﹣(b ﹣1)+(﹣a +b )=﹣a ﹣1﹣b +1﹣a +b=﹣2a ,故答案为:﹣2a .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.16.【分析】根据二次根式的有意义的条件得出x 值进而求出y 代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零 解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =, ∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零.17.【分析】设两个正方形AB的边长是xy(x<y)得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x)x求出即可【详解】解:设两个正方形AB的边长是xy(x<y)则x2=2y2=6x=y=解析:2【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=6,求出,,代入阴影部分的面积是(y-x)x求出即可.【详解】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=6,,,则阴影部分的面积是(y-x)x=-=2-,故答案为:2-.【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13aa+=,取算数平方根即可求解.【详解】∵13aa+=,∴212325aa=++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.19.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键. 20.2006【分析】所求代数式第一个括号内可由已知的信息化简为:然后利用平方差公式计算【详解】解:原式故答案为:2006【点睛】本题考查了数字型规律二次根式的混合运算解答此类题目的关键是认真观察题中式子解析:2006【分析】 所求代数式第一个括号内可由已知的信息化简为:,然后利用平方差公式计算.【详解】解:1===⋯ ∴原式==20082=-2006=.故答案为:2006.【点睛】本题考查了数字型规律,二次根式的混合运算,解答此类题目的关键是认真观察题中式子的特点,找出其中的抵消规律.三、解答题21.(1)72;(2)-2)25x y =⎧⎨=⎩;(4)368x y =⎧⎨=⎩【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)由二次根式的性质和乘法运算进行化简,再计算加减运算即可;(3)利用加减消元法解二元一次方程,即可得到答案;(4)利用加减消元法解二元一次方程,即可得到答案;【详解】解:(1)4=4 =142-=72; (2)=-=-;(3)25214323x y x y -=-⎧⎨+=⎩①②, 由②-①⨯2,得1365y =,∴5y =,把5y =代入①,得22521x -=-,∴2x =,∴方程组的解为25x y =⎧⎨=⎩; (4)4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩①②, 由①-②,得334x x -=, ∴36x =,把36x =代入①,得124y -=,∴8y =, ∴方程组的解为368x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,二次根式的性质,二元一次方程组的解法,解题的关键是熟练掌握运算法则,正确的进行解题.22.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 23.(1)52;(2)16332- 【分析】(1)先由二次根式的性质、立方根、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)由平方差公式进行化简,然后得到答案.【详解】解:(1)原式31322=++52=; (2)原式248(31)(31)(31)(31)(31)12-++++=-16163133122--=-=. 【点睛】本题考查了平方差公式,实数的混合运算,二次根式的性质,以及绝对值的化简,解题的关键是熟练掌握运算法则进行计算.24.(1==2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (21=+1=1=.(3)a ==2b ==2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.25.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.26.【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:====【点睛】本题考查了二次根式的混合运算,掌握二次根式混合运算的相关运算法则是解题的关键.。
第1章 二次根式单元尖子生测试题(答案与解析)
浙教版八下数学第1章《二次根式》单元尖子生测试题答案解析部分一、单选题1.【答案】D【考点】二次根式的混合运算【解析】【解答】选项D符合平方差公式,计算也是正确的,故选D.【分析】能够根据题意判断计算二次根式的正确性是深刻理解二次根式加减法法则的重要体现.2.【答案】C【考点】二次根式的应用【解析】【解答】解:A中5×= = <1;B中∵π=3.14159>3.141,∴<1;C中= = = (-1)>1;D中∵<=0.25,∴2 <0.5,∴0.3+2 +0.2<1,即(+ )2<1,∴+ <1.故答案为:C【分析】先利用将根号外因式移到根号内、分母有理化、放缩法、平方法对各选项进行判断,据此即可答案。
3.【答案】C【考点】二次根式的加减法【解析】【解答】由原式成立,所以x<0,所以原式=+=,故选C.【分析】根据二次根式成立的条件,正确判断字母的正负性,从而判断每一项的正负性,最后进行二次根式的加减法计算.4.【答案】B【考点】分式有意义的条件,二次根式有意义的条件【解析】【解答】解:根据被开方数为非负数以及分母不为零,可得知,x-1≥0且x-3≠0,解得x≥1,x≠3.故答案为:B.【分析】根据被开方数的非负性以及分母有意义的条件,可得出x的取值范围。
5.【答案】B【考点】二次根式有意义的条件【解析】解答:由题意是正整数所以>0,且n为整数,所以12-n>0,所以n<12,所以n最大取11,故选B分析:利用二次根式有意义的条件和正整数的范畴进行合格判断是解题的一般过程6.【答案】B【考点】二次根式的混合运算【解析】【解答】∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选B.【分析】根据题目所给的运算法则进行求解.7.【答案】C【考点】二次根式的化简求值【解析】【解答】解:由m=1+ 得m﹣1= ,两边平方,得m2﹣2m+1=2即m2﹣2m=1,同理得n2﹣2n=1.又(7m2﹣14m+a)(3n2﹣6n﹣7)=8,所以(7+a)(3﹣7)=8,解得a=﹣9故答案为:C【分析】先变形已知条件,得到m2-2m、n2-2n的值,再整体代入得到a的方程,从而求出a的值。
人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
八年级下册数学《二次根式》单元测试卷含答案
八年级下册数学《二次根式》单元测试卷1 .使代数式」三有意义的自变量X 的取值范围是()x-42 .下列根式中,最简二次根式是(3 .若Jx+y-l+(y + 3『=0,则不一丁的值为()A. 1个B. 2个C. 3个D. 4个5 .如果式子底可一lx —21化简的结果为5-2x,则x 的取值范围是()126 .化简行+石的结果为(7 .已知x = 2-JJ ,则代数式(7 + 46)/+(2 + /» +6的值是()A. 2->/3B. 2 + 73C.小D. 08 .等腰三角形中,两边长为26和5直,则此等腰三角形的周长为() A. 46+5近B. 2/+10^C 46 + 50或2褥+10" D.以上都不对A. x>3B. x>3 且 xW4C. x ,3 且 xW4D. x>3A. >/24C. D.A. 1B. -1C. -7D.4.下歹ij 计算或判断:(1) ±3是27的立方根;(2) 17=a府的平方根是2; (4)疤>±8:(5)]V6-V5= #+",其中正确的有(A. x>3B. x<2C. x>2D. 2<A <3A. V3 + V2B. y/3-42C. y/2 + 2y/3D.百+ 2应一、单选题评卷人 得分二、填空题13.后输再(a>0,b>0)=i ----214 .化简计算:正2尸= ___________ ,百p15 .计算:(2j?-3)237x (2jI + 3)刈三16 .实数a 在数轴上的位置如图所示,化简Ja2—2“ + l+|2a _4卜.-------- 1~1 ------------------ ■ -------------- »o I a 217 .已知a, b 是正整数,若JJ+秒是不大于2的整数,则满足条件的有序数对(。
【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)
人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C. 9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c ) A. 2a -2c B. -2c C. 2b D.2a11、已知a ,b a 、b ,则下列表示正确的是( ) A. 0.3ab B. 3ab C. 0.1ab D.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是( )C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)a a b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+同理可得:32321-=+从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB 二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1; 18、±3三、解答题 19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+;四、解答题21、22、; 23、2017; 24、-a 五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0. (3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版八年级数学下册 第十六章 二次根式 单元测试题(含答案)一、选择题。
(完整版)八年级数学下册二次根式单元测试题及答案
C. x 2 2x 1 x 1
D. (2.5)2 ( 2.5)2
9.化简 8 2( 2 2) 得(
)
A.—2 B. 2 2 C.2 D. 4 2 2
10.如果数轴上表示 a、b 两个数的点都在原点的左侧,且 a 在 b 的左侧,则
a b (a b)2的值为( )A. 2b B. 2b C. 2a D. 2a
⑵ 请写出满足上述规律的用 n(n 为任意自然数,且 n≥2)表示的等式,并加以验
证
3
The shortest way to do many things is to only one thin
《二次根式》测试题
11
A.
B. 30 330
330
C.
D. 30 11
30
30
一、选择题(每小题 3 分,共 30 分)
8.下列各式中,一定能成立的是(
)
1.下列各式中① a ;② b 1 ; ③ a 2 ; ④ a 2 3 ; ⑤ x 2 1 ;
52
5 2。
5 2 ( 5 2)( 5 2)
1-2a + a2 26.先化简再求 a-1 -
的值,其中 a= (5 分)
试求:(1) 1 的值;(2) 1 的值
7 6
3 2 17
30、观察下列各式及验证过程:
27.若代数式 2x 1 有意义,则 x 的取值范围是什么? 1 | x |
28.若 x,y 是实数,且 y x 1 1 x 1 ,求 | 1 y | 的值。
A. x 2 9 x 3 x 3
B. a 2 ( a )2
⑥ x 2 2x 1 一定是二次根式的有(
)个。
A.1 个
人教版八年级数学下册第十六章二次根式单元测试卷(含答案)
⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。
有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。
合并的是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
4.下列各式计算正确的是()A.错误!未找到引⽤源。
+错误!未找到引⽤源。
=错误!未找到引⽤源。
B.4错误!未找到引⽤源。
-3错误!未找到引⽤源。
=1C.2错误!未找到引⽤源。
×3错误!未找到引⽤源。
=6错误!未找到引⽤源。
D.错误!未找到引⽤源。
÷错误!未找到引⽤源。
=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2B.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2C.错误!未找到引⽤源。
=x-1D.错误!未找到引⽤源。
=错误!未找到引⽤源。
·错误!未找到引⽤源。
6.已知a=错误!未找到引⽤源。
+1,b=错误!未找到引⽤源。
,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。
÷错误!未找到引⽤源。
×错误!未找到引⽤源。
的结果为()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。
+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。
-1,ab=错误!未找到引⽤源。
2020-2021学年人教版八年级数学下册第16章 二次根式单元测试卷及答案
第16章二次根式一、选择题(本大题共10小题,共30分)1.使根式有意义的x的范围是()A.x≥0B.x≥4C.x≥﹣4D.x≤﹣42.若二次根式在实数范围内有意义,则实数x的取值范围是()A.x<3B.x>3C.x≠3D.x≤33.下列运算正确的是()A.B.C.D.4.下列二次根式中,最简二次根式是()A.B.C.D.5.下面是二次根式的是()A.B.﹣3C.D.06.估计﹣的运算结果在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.下列四个数中,数值不同于其他三个的是()A.|﹣1|B.﹣(﹣1)C.﹣D.(﹣1)48.下列计算正确的是()A.B.C.D.9.下列计算正确的是()A.B.C.D.10.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2021次相遇在()边上.A.CD B.AD C.AB D.BC二、填空题(本大题共6小题,共18分)11.=,=.12.已知x<0,化简二次根式的结果是.13.要使二次根式有意义,x应满足的条件是.14.分解因式:x2﹣2x﹣1=.15.已知+|y﹣3|=0,那么x y=.16.化简:(a>0,b>0)=.三、计算题(本大题共2小题,共12分)17.若ab=1,我们称a与b互为倒数,我们可以用以下方法证明+1与﹣1互为倒数:方法一:∵=2﹣1=1,∴+1与﹣1互为倒数.方法二:∵﹣1,∴+1与﹣1互为倒数.(1)请你证明+与﹣互为倒数;(2)若(x﹣1)2=x,求的值;(3)利用“换元法”求的值.18.观察下列及其验证过程:2.验证:2.(1)请仿照上面的方法来验证.(2)根据上面反映的规律,请写出用自然数n(n≥2)所表示的等式,并说明其成立的理由.四、解答题(本大题共5小题,共40分)19.计算:(1)﹣++;(2).20.若a>0,b>0且(+)=3(+5),求的值.21.已知x=+1,y=﹣1,求:(1)代数式xy的值;(2)代数式x3+x2y+xy2+y3的值.22.计算:﹣4+(﹣)÷.23.阅读材料,并解答问题我们知道,如果a,b都是整数,并且有整数c.使得a=bc,①那么就称b为a的约数.通常我们只讨论正整数的正约数,即①中的a,b,c都是正整数,以下如不特别申明,所有的字母都表示正整数.72有多少个约数?不难一一列举,72的约数有12个,它们是1,2,3,4,6,8,9,12,18,24,36,72.请注意其中包含1及72本身.有没有一个公式,可以帮助我们算出一个数的约数的个数呢?有的.如果将72分解为质因数的乘积,即72=23×32②那么72的所有约数都是2×3③的形式,其中k1可取4个值:0,1,2,3;k2可取3个值:0,1,2;(例如:在k1=0,k2=0时,③是1;在k1=3,k2=2时,③是72).因此,72的约数共有4×3=12(个).一般地,设有自然数即可以分解为n=p1p2……p m,其中p1,p2……p m是不同的质数,k1,k2,……k m是正整数,其中k1可取k1+1个值:0,1,2,3,……k1;k2可取k2+1个值,0,1,2,3,……,k2,k m可取k m+1个值,0,1,2,3……k m;所以n的约数共有(k1+1)(k2+1)……(k m+1)个.根据上述材料请解答以下题目:(1)试求6000的约数个数.(2)恰有10个约数的数最小是多少?(3)求72的所有的约数和.参考答案与试题解析一、选择题(本大题共10小题,共30分)1.使根式有意义的x的范围是()A.x≥0B.x≥4C.x≥﹣4D.x≤﹣4【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:使根式有意义,则4+x≥0,解得:x≥﹣4,故x的范围是:x≥﹣4,故选:C.2.若二次根式在实数范围内有意义,则实数x的取值范围是()A.x<3B.x>3C.x≠3D.x≤3【分析】直接利用二次根式有意义的条件得出答案.【解答】解:若二次根式在实数范围内有意义,故3﹣x≥0,解得:x≤3.故选:D.3.下列运算正确的是()A.B.C.D.【分析】利用二次根式的加减法对A、C进行判断;根据二次根式的性质对B、D进行判断.【解答】解:A、与﹣不能合并,所以A选项错误;B、原式=2,所以B选项正确;C、与不能合并,所以C选项错误;D、原式=|﹣2|=2﹣,所以D选项错误.故选:B.4.下列二次根式中,最简二次根式是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含分母,故C错误;D、被开方数含能开得尽方的因式,故D错误;故选:B.5.下面是二次根式的是()A.B.﹣3C.D.0【分析】根据二次根式的定义作答.【解答】解:、﹣3、0都不是二次根式,只有符合二次根式的定义.故选:C.6.估计﹣的运算结果在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】先把算式化简,再估算的大小,即可解答.【解答】解:∵=,5<<6,∴估计﹣的运算结果在5和6之间.故选:C.7.下列四个数中,数值不同于其他三个的是()A.|﹣1|B.﹣(﹣1)C.﹣D.(﹣1)4【分析】将原数化简即可求出答案.【解答】解:(A)原式=1;(B)原式=1;(C)原式=﹣1;(D)原式=1;故选:C.8.下列计算正确的是()A.B.C.D.【分析】根据二次根式的乘法法则(根指数不变,被开方数相乘)判断A;二次根式的加减就是合并同类二次根式即可判断B、D;根据=|a|即可判断C.【解答】解:A、因为•==,故本选项正确;B、因为+,不是同类二次根式,不能合并,故本选项错误;C、因为=2,故本选项错误;D、因为+=2,故本选项错误;故选:A.9.下列计算正确的是()A.B.C.D.【分析】根先化简二次根式,再计算.==5,(2)2=12.【解答】解:A、==5,故本选项错误;B、2﹣=,故本选项错误;C、(2)2=12,故本选项错误;D、==,故本选项正确.故选:D.10.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2021次相遇在()边上.A.CD B.AD C.AB D.BC【分析】根据甲、乙运动的方向结合速度间的关系即可得出甲、乙第1次相遇在边CD 上、第2次相遇在边AD上、第3次相遇在边AB上、…,由此即可得出甲、乙相遇位置每四次一循环,再根据2021=505×4+1即可得出结论.【解答】解:∵甲的速度是乙的速度的3倍,∴甲、乙第1次相遇时,乙走了正方形周长的×=,∴甲、乙第1次相遇在边CD上.∵甲的速度是乙的速度的3倍,甲点依顺时针方向环行,乙点依逆时针方向环行,∴甲、乙第2次相遇在边AD上,甲、乙第3次相遇在边AB上,甲、乙第4次相遇在边BC上,甲、乙第5次相遇在边CD上,…,∴甲、乙相遇位置每四次一循环.∵2021=505×4+1,∴甲、乙第2021次相遇在边CD上.故选:A.二、填空题(本大题共6小题,共18分)11.=3,=4y.【分析】直接利用二次根式的性质化简求出即可.【解答】解:=3,=4y.故答案为:3,4y.12.已知x<0,化简二次根式的结果是﹣x.【分析】根据二次根式有意义,可知y≤0,再由二次根式的性质解答.【解答】解:∵x<0,﹣x2y≥0,∴y≤0,∴=﹣x.故答案为:﹣x.13.要使二次根式有意义,x应满足的条件是x≥3.【分析】一般地,形如(a≥0)的式子,叫做二次根式.根据二次根式的定义可知被开方数必须为非负数.【解答】解:依题意有2x﹣6≥0,解得x≥3.14.分解因式:x2﹣2x﹣1=.【分析】先令x2﹣2x﹣1=0,解得x=1±,即可对所给代数式因式分解.【解答】解:先令x2﹣2x﹣1=0,解得x=1±,∴x2﹣2x﹣1=[x﹣(1+)][x﹣(1﹣)]=(x﹣1﹣)(x﹣1+).故答案是(x﹣1﹣)(x﹣1+).15.已知+|y﹣3|=0,那么x y=﹣8.【分析】先根据非负数的性质列出关于x、y的方程,求出x、y的值,再把x、y的值代入所求代数式进行计算即可.【解答】解:∵+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴x y=(﹣2)3=﹣8.故答案为:﹣8.16.化简:(a>0,b>0)=2b.【分析】直接利用二次根式的性质化简得出答案.【解答】解:(a>0,b>0)==2b.故答案为:2b.三、计算题(本大题共2小题,共12分)17.若ab=1,我们称a与b互为倒数,我们可以用以下方法证明+1与﹣1互为倒数:方法一:∵=2﹣1=1,∴+1与﹣1互为倒数.方法二:∵﹣1,∴+1与﹣1互为倒数.(1)请你证明+与﹣互为倒数;(2)若(x﹣1)2=x,求的值;(3)利用“换元法”求的值.【分析】(1)利用倒数的定义证明即可;(2)求出=3,根据完全平方公式进行变形求值即可;(3)设m=2+,n=2﹣,则mn=1,原式变形为(mn)10,代入mn的值即可.【解答】解:(1)(+)(﹣)=()2﹣()2=3﹣2=1,所以+与﹣互为倒数;(2)∵(x﹣1)2=x,∴x2﹣3x+1=0,∴x﹣3+=0,即x+=3,∴=(x+)2﹣4=9﹣4,=5;(3)设m=2+,n=2﹣,则mn=()()=1,∴原式=m10n10=(mn)10=110,=1.18.观察下列及其验证过程:2.验证:2.(1)请仿照上面的方法来验证.(2)根据上面反映的规律,请写出用自然数n(n≥2)所表示的等式,并说明其成立的理由.【分析】(1)仿照例题做法依次变形即可得;(2)类比已知等式得出n=,再依据二次根式的性质,类比题干解答过程依次变形即可得.【解答】解:(1)4====;(2)n=,验证:n====.四、解答题(本大题共5小题,共40分)19.计算:(1)﹣++;(2).【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据零指数幂、负整数指数幂和平方差公式计算.【解答】解:(1)原式=2﹣++﹣1=﹣1;(2)原式=2﹣1﹣1++=.20.若a>0,b>0且(+)=3(+5),求的值.【分析】根据a>0,b>0且(+)=3(+5),可以求得a和b的关系,然后代入所求式子,即可解答本题.【解答】解:∵(+)=3(+5)∴a+=3+15b,∴a﹣2﹣15b=0,∴(﹣5)(+3)=0,∵a>0,b>0,∴﹣5=0,+3≠0,∴=5,∴a=25b,∴====2,即的值是2.21.已知x=+1,y=﹣1,求:(1)代数式xy的值;(2)代数式x3+x2y+xy2+y3的值.【分析】(1)将x、y的值代入后利用平方差公式计算即可;(2)先求出x2、y2的值,再代入到原式=x2(x+y)+y2(x+y)=(x2+y2)(x+y)计算可得.【解答】解:(1)xy=()()=;(2)∵x=,y=,∴x2=()2=4+2,y2=()2=4﹣2,则原式=x2(x+y)+y2(x+y)=(x2+y2)(x+y)=(4+2+4﹣2)(+)=8×2=16.22.计算:﹣4+(﹣)÷.【分析】直接利用二次根式的混合运算法则化简,进而计算得出答案.【解答】解:原式=2+﹣2+÷﹣÷=2+﹣2+2﹣2=.23.阅读材料,并解答问题我们知道,如果a,b都是整数,并且有整数c.使得a=bc,①那么就称b为a的约数.通常我们只讨论正整数的正约数,即①中的a,b,c都是正整数,以下如不特别申明,所有的字母都表示正整数.72有多少个约数?不难一一列举,72的约数有12个,它们是1,2,3,4,6,8,9,12,18,24,36,72.请注意其中包含1及72本身.有没有一个公式,可以帮助我们算出一个数的约数的个数呢?有的.如果将72分解为质因数的乘积,即72=23×32②那么72的所有约数都是2×3③的形式,其中k1可取4个值:0,1,2,3;k2可取3个值:0,1,2;(例如:在k1=0,k2=0时,③是1;在k1=3,k2=2时,③是72).因此,72的约数共有4×3=12(个).一般地,设有自然数即可以分解为n=p1p2……p m,其中p1,p2……p m是不同的质数,k1,k2,……k m是正整数,其中k1可取k1+1个值:0,1,2,3,……k1;k2可取k2+1个值,0,1,2,3,……,k2,k m可取k m+1个值,0,1,2,3……k m;所以n的约数共有(k1+1)(k2+1)……(k m+1)个.根据上述材料请解答以下题目:(1)试求6000的约数个数.(2)恰有10个约数的数最小是多少?(3)求72的所有的约数和.【分析】(1)由6000=1000×6=24×3×53即可求;(2)因为10=2×5,则有24×3=48最小;(3)由已知将72的所有约数相加即可.【解答】解:(1)6000=24×3×53,∵(4+1)(1+1)(3+1)=40,∴6000有40个约数;(2)∵10=2×5,∴这个数最小是48;(3)∵72的约数有1,2,3,4,6,8,9,12,18,24,36,72,∴1+2+3+4+6+8+9+12+18+24+36+72=195,∴72的所有的约数和是195.1、三人行,必有我师。
浙教版数学八下《二次根式》单元测试题附答案
浙教版数学八下《二次根式》单元测试题附答案考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列计算正确的是()A. B.C. D.2.下列各实数中最大的一个是()A. 5×B. C. D. +3.已知x为实数,化简的结果为()A. B. C. D.4.函数的自变量x的取值范围是( )A. x≥1B. x≥1且x≠3 C. x≠3 D. 1≤x≤35.已知是正整数,则实数n的最大值为()A. 12B. 11C. 8D. 36.对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A. 2﹣4 B. 2 C. 2D. 207.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a 的值等于()A. ﹣5B. 5C. ﹣9 D. 98.已知a是1997的算术平方根的整数部分,b是1991的算术平方根的小数部分,则化简的结果为()A. B. C.D.9.若,则的值为( )A. 2B. -2 C. D. 210.已知:m, n是两个连续自然数(m<n),且q=mn,设,则p( )。
A. 总是奇数B. 总是偶数C. 有时奇数,有时偶数 D. 有时有理数,有时无理数二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.化简二次根式的结果是________.12.已知x1= + ,x2= ﹣,则x12+x22=________.13.观察下列各式:┉┉请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是________.14.若实数x,y,m满足等式,则m+4的算术平方根为________.15.已知为有理数,分别表示的整数部分和小数部分,且,则________.16.如果(x﹣)(y﹣)=2008,求3x2﹣2y2+3x﹣3y﹣2007=________.三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(6分)已知,求的值.18.(8分)解答下列问题:(1)试比较与的大小;(2)你能比较与的大小吗?其中k为正整数.19.(10分)已知x= ( +),y= ( -),求下列各式的值:(1)x2-xy+y2;(2)+.20.(10分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)(二)(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(四)(1)请用不同的方法化简参照(三)式得=________;参照(四)式得=________.(2)化简:.21.(10分)观察下列各式及其验算过程:=2 ,验证: = = =2 ;=3 ,验证: = = =3(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证.22.(10分)观察下列各式:=1+﹣=1=1+﹣=1=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=________(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:________(3)利用上述规律计算:(仿照上式写出过程)23.(12分)在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:.善于动脑的小明继续探究:当为正整数时,若,则有,所以,.请模仿小明的方法探索并解决下列问题:(1)当为正整数时,若,请用含有的式子分别表示,得:________,________;(2)(3)若,且为正整数,求的值。
八年级数学下册第一单元《二次根式》测试(含答案解析)
一、选择题1.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .12. )A .1B .2C .3D .43. )A B C D 4.下列式子中是二次根式的是( )A B C D 5.下列运算正确的是 ( )A B C .1)2=3-1 D 6.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .7.下列计算正确的是( )A 7=±B 7=-C 112=D 2=8.合并的是( )A B C D 9.下列计算正确的是( )A =B =C .216=D 1=10.若0<x<1,则 )A .2xB .- 2xC .-2xD .2x11.=x 可取的整数值有( ). A .1个 B .2个C .3个D .4个12. )A .1个B .2个C .3个D .4个二、填空题13.x 的取值范围是______________. 14._____. 15.2=__________.16.已知+3,则x-y=_____________.17.已知a 、b 为有理数,m 、n分别表示521amn bn +=,则3a b +=_________.18.19.===…(a 、b 均为实数)则=a __________,=b __________.20.)0a >=______.三、解答题21.(1(2)解不等式组:2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩ 22.先化简再求值:2211,211a a a a a ----+-其中a = 23.(1)计算2011(20181978)|22-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 24.先化简,再求值:21133x x x x xx ,其中1x =25.计算:(12(5)-; (2)(x ﹣2y+3)(x+2y+3).26.计算(1)22018112-⎛⎫-+ ⎪⎝⎭;(20|1-;(3)2(1)16x -=;(4)321x +=【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A+1+1)=0,故本选项不合题意;B、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意; C﹣2)=3,故本选项不合题意;D)(12,故本选项不合题意.故选:B .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b )(a-b )=a 2-b 2.2.C解析:C【分析】为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.3.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===, 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.4.C解析:C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B 1x <-时,不是二次根式,故此选项不符合题意;C =()2 10x +≥恒成立,因此该式是二次根式,故此选项符合题意;D 20-<,不是二次根式,故此选项不符合题意;故选:C .【点睛】(0a ≥)的式子叫做二次根式. 5.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A A 错误;B ,故选项B 正确;C 、21)313=-=-,故选项C 错误;D 53=≠+,故选项D 错误;故选:B .【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的法则. 6.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 7.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A 77=-=,故该选项错误;B 77=-=,故该选项错误;C ==D == 故选:D .【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键. 8.D解析:D【分析】先化简选项中各二次根式,然后找出被开方数为2的二次根式即可.【详解】的同类二次根式.A63无法合并,故A错误;B43无法合并,故B错误;C25无法合并,故C错误;D32可以合并,故D正确.故选D.【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.9.B解析:B【分析】根据二次根式加减法、乘除法的法则分别计算即可得到答案.【详解】A A错误;B==B正确;C、28=,故选项C错误;D==D错误;故选:B.【点睛】本题主要考查了二次根式的加减乘除运算,熟练掌握运算方法是解题的关键.10.D解析:D【分析】利用完全平方公式以及二次根式的性质,结合0<x<1,进行化简,即可得到答案.【详解】∵0<x<1,∴1+xx >0,1-xx<0,∴=11|+||-|x x x x- =1+x x +1-x x=2x ,故选D【点睛】||a =,是解题的关键. 11.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.12.B解析:B【分析】先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数不同,故不是同类二次根式;被开方数不同,故不是同类二次根式;被开方数相同,故是同类二次根式;2被开方数相同,故是同类二次根式.2个,故选:B .【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.二、填空题13.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.14.【分析】先分母有理化然后化简后合并即可【详解】解:=2﹣=故答案为:【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可在二次根式的混合运算中如能结合题目特点灵.【分析】先分母有理化,然后化简后合并即可.【详解】=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.1【分析】由题可得即可得出再根据二次根式的性质化简即可【详解】由题可得∴∴∴故答案为:【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简掌握二次根式的性质是解决问题的关键解析:1【分析】由题可得,30x -≥,即可得出20x -≤,再根据二次根式的性质化简即可.【详解】由题可得,30x -≥,∴3x ≥,∴20x -≤,∴2()()23x x =----23x x =-+-+1=.故答案为:1.【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键.16.﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】解:由题意得:所以x=2当x=2时y=3所以x -y=2-3=﹣1故答案为:﹣1【点睛】解析:﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以x -y=2-3=﹣1.故答案为:﹣1.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.17.4【分析】只需先对估算出大小从而求出其整数部分a 其小数部分用表示再分别代入进行计算;【详解】∵2<<3∴2<<3∴m=2n==把m=2n=代入∴化简得:∴且解得:∴故答案为:4【点睛】本题考查了无理解析:4【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52=3,把m=2,n=3代入21amn bn +=∴ ((22331a b -+-=,化简得:())616261a b a b ++= ,∴ 6161a b +=且260a b +=,解得: 1.5a =,0.5b =-∴331.50.54a b +=⨯-=,故答案为:4.【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;18.<【分析】直接利用二次根式的性质分别变形进而比较得出答案【详解】解:==∵>∴∴<故答案为:<【点睛】此题主要考查了二次根式的分母有理化正确化简二次根式是解题关键解析:<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.【详解】===== ∵+∴< ∴故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.19.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.20.-b 【分析】先确定b 的取值范围再利用二次根式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b 的取值范围及理解被开平方数具有非负性.三、解答题21.(1)2)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=,=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.22.()()211a a -+,1. 【分析】分母先分解因式化简,两个异分母分式通分后相减,再把a 值代入求解即可.【详解】2211211a a a a a ----+- =211(1)(1)(1)a a a a a ----+- =1111a a --+ =()()(1)(1)11a a a a +---+=()()211a a -+,当a =原式231=-=1【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.(1)12)12x -,12- 【分析】(1)由二次根式的性质、负整数指数幂、零指数幂、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)先去括号,把分式进行化简,然后结合分式有意义的条件,取到合适的值,再代入计算,即可得到答案. 【详解】解:(1)原式(141241212⎛=-⨯--=--+= ⎝⎭; (2)原式12(2)(3)3111111(2)(3)2x x x x x x x x x x x x -----⎛⎫=-÷=⋅= ⎪-------⎝⎭; ∵10x -≠,20x -≠,30x -≠,∴1,2,3x ≠,x 只能取0,当0x =时,原式11122==--. 【点睛】 本题考查了分式的混合运算,分式的化简求值,二次根式的性质、负整数指数幂、零指数幂、绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行化简.24.2x x -;2+.【分析】先把括号内通分化简,然后利用除法运算化为乘法运算,将算式化简,再将1x =代入计算原式的值即可.【详解】 解:21133x x x x x x 2311=333x x x x x x x x2131=33x x x x x x x 213=31x x x x x1x x2x x =-当1x =时,原式2212122.【点睛】本题考查了分式的化简求值,熟悉相关运算法则是解题的关键.25.(1)345;(2)x 2+6x+9﹣4y 2 【分析】(1)首先计算开方,然后从左向右依次计算;求出算式的值是多少即可.(2)将各多项式分组,利用平方差公式和完全平方公式计算即可.【详解】解:(1)原式=2+(﹣1)+45+5 =6+45 =345; (2)原式=(x+3﹣2y )(x+3+2y )=(x+3)2﹣4y 2=x 2+6x+9﹣4y 2. 【点睛】本题主要考查实数的运算,平方差公式和完全平方公式,解决此类问题,要熟练掌握运算顺序和运算方法.26.(1)-5;(2;(3)5x =或3x =-;(4)-1【分析】(1)分别利用乘方、负整数指数幂、算术平方根和立方根计算,再将结果相加减;(2)分别利用二次根式的性质、绝对值的性质和零指数幂化简(或计算),再将结果相加减;(3)两边直接开平方后,解一元一次方程即可;(4)移项合并后开立方即可.【详解】解:(1)原式=145(3)-+-+-=94-+=5-;(2)原式=211-;(3)2(1)16x -=两边同时开平方得:14x -=±,即14x =±,即5x =或3x =-;(4)321x +=移项后合并得:31x =-两边同时开立方得:1x =-.【点睛】本题考查实数的混合运算,利用平方根和立方根解方程.涉及的知识点有二次根式的性质、零指数幂和负整数指数幂、化简绝对值、平方根和立方根等.(1)(2)中能利用相关定义分别计算是解题关键;(3)(4)中主要用到的思想是降次.。
鲁教版数学八年级下《第七章二次根式》单元测试卷含答案
第七章二次根式单元测试卷题号——一二三总分得分、选择题(每题3分,共30分)1.要使二次根式:丁[有意义,x必须满足()A.x < 2B.x > 2C.x>2D.x<2A「]+「=「 B.4 「-3「=1C2 - 3二厂D. H=35.下列各式中,一定成立的是()5护黒厂=甘 D.2.下列二次根式中,不能与:「合并的是(3.下列二次根式中,最简二次根式是(4.下列各式计算正确的是()6. 已知a=+,b「_ ,则a与b的关系为(A.a=bB.ab=1C.a=-bD.ab=-18. 已知a,b,c为厶ABC的三边长,且• 一;+|b-c|=O,贝仏ABC勺形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9. 已知a-b=2「-1,ab=「,则(a+1)(b-1)的值为()A.-「B.3「C.3「-2D.「-110. 实数a、b在数轴上对应点的位置如图所示,那么化简|a-b|-的结果是()■II ■■□0 6A.2a+bB.bC.2a-bD.-b二、填空题(每题3分,共24分)11-计算::一一3 7= ------------12. 若最简二次根式 ", /.i-7 与「可以合并,则m的值为13. 已知x_、&,贝y x2+g= ________ .14. 有一个密码系统,其原理如图所示,当输出的值为:J时,则输入的x=输入x T输出15. __________________________________________________ 若整数x满足|x| < 3,则使为整数的x的值是__________________________ (只需填一个).16. 已知a,b为两个连续的整数,且a<倔<b,则a+b ___________17. 若xy>0,则二次根式x化简的结果为__________18. 已知x,y为实数,且y彳心9彳9M+4,则x-y的值为____________ .三、解答题(19题12分,24,25题每题11分,其余每题8分,共66分)19. 计算:21. 已知a,b,c 是厶ABC 的三边长,化 简:「. 一 「—「n +「一乩 +「.二_.22. 已知 a+b=-2,ab 二二,求]=+ :-的值.23. 已知长方形的长a —,宽b= '23(1) 求长方形的周长;(2) 求与长方形等面积的正方形的周长,并比较与长方形周长的大小关 系.24. 全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种 低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔 藓的直径和冰川消失的时间近似地满足如下的关系式:d=7> 12).其中d 代表苔藓的直径,单位是厘米;t 代表冰川消失的时间,单20.先化简,再求值:a 2-b 2,b=2-位是年.(1)计算冰川消失16年后苔藓的直径;⑵如果测得一些苔藓的直径是 35厘米,问冰川约是多少年前消失的?25. 阅读下面的材料,解答后面给出的问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们 就说这两个代数式互为有理化因式,例如-与- < +1与-「-1. (1)请你再写出两个含有二次根式的代数式 ,使它们互为有理化因式: __________________ ;母的有理化因式的方法就可以了 ,例 上 近朋V 如:二=- 6 返乱匝十薦 3,2-^2(3-^3)(3+5/1) 9-3(2)请仿照上面给出的方法化简:.;111 1⑶计算:「++=^・参考答案、1.【答案】B 2.[答案】C 3.【答案】D 4.【答案】D 5.[答案】A这样,化简一个分母含有二次根式的式子时 米用分子、分母同乘以分6.【答案】A 解:原等式可化为 |a-b|+|b-c|=O, 二 a-b=O 且 b-c=O,二 a=b=c,即厶 ABC 是等边三角形. 9. 【答案】A解:(a+1)(b-1)=ab-(a-b)-1. 将 a-b=2-「-1,ab=「整体代入上式,得 原式=一-(2 , _-1)-1=- 10. 【答案】B解:本题利用了数形结合的解题思想,由数轴上点的位置知a<0,a-b<0, 所以|a-b|-=b-a+a=b.二、11.【答案】 12. 【答案】3解: T 最简二次根式』啟彳与和―可以合并,二它们的被开方数相解: =J +1=a,故选 A. ,22X^+1b= = _-丽-1 [V5 2乱届1 [V5}z -i7.【答案】B 解:8.【答案】B同,即5m-4=2m+5解得m=3.13. 【答案】8解:x2+^=x2r-2+2二:+2=(- )2+2=6+2=8.14. [答案】2-;15. [答案】-2(答案不唯一)解:T |x| < 3,二-3 < x < 3.当x=-2时, =3;当x=3 时, i^^-3=2,使/n为整数的x的值是-2或3(填写一个即可).16. [答案】11 解:因为5< _-;<6,所以a=5,b=6,所以a+b=11.17. [答案】-「解:由题意知x<0,y<0,所以X ,;—=r,『爭.解此类题要注意二次根式的隐含条件:被开方数是非负数.18. [答案】-1或-7(x2-9>0, 2解:由二次根式有意义,得b ?介解得x =9,19 > 0,二x=± 3,y=4, x-y=-1 或-7.19.解:(1)原式=3X 2 -2 x三、=-2「+2一 ]. ⑵原式=「丫宀一 x-- = 1+9 = 10.=8-;'小 h 亠 fa+M(a-M (i 2-2ab+t 2 fa+b)fa-6Ja a+b .20.解:原式=宁=•——=,当 aaa 〔讥! a-b21. 解:v a,b,c 是厶ABC 的三边长, 二 a+b+c>0,b+c-a>0,c-b-a<0,二原式二a+b+c-(b+c-a)+(a+b-c)=3a+b-c.22. 解:由题意,知a<0,b<0,所以原式ab 血S 中乐 Vah la^b'yab 卜可冥g2 J 护爲豆讥弄-a ・b ab-于忽视了隐含条件,进而导致在解答过程中进行了非等价变形.事实上,古亠2^+2-^ 4 2需,原式==L.ab一+ =2】分析:此题易出现以下错误:原式=+ =帀=珞V5住袖-2 /A二近=-2讹 出错的原因⑶原式=-3 -+8a=,b=2-由a+b=-2,ab=-,可知a<0,b<0,所以将:-+ 变形成=+是不成立的.23. 解:(1)2(a+b)=2 X [「豆-丄,;£j =2X(2广 _)=6 _⑵在d=7X 拆币中,当 d=35时,有 35=7X (口2, A ^f42 即苔藓的直径是35厘米时,冰川约是37年前消失的. 25.解:(1) (答案不唯一)=__=「=17-123+2^2 [3+2^21(3-2^2] 32-[ZV2j⑶原式=(一匸1)+([二])+([ 一「)+ … +(师丽)=-1+矗电殆殆也+… -「+竹02=-1+『1〕;=-1 + 10=9.的周长为=4X 2=8.因为 (2)4形的周长大.24.解:(1)d=7 X年后苔藓的直径为14厘米.,当 t=16 时,d=7X {16J2& >8,所以长方= 14.即冰川消失16.故长方形=5,二 t=37.「-与精品文档欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求11欢迎下载。
河南省实验中学八年级数学下册第一单元《二次根式》测试题(包含答案解析)
一、选择题1. )A .1B .2C .3D .4 2.下列计算中,正确的是( )A +=B =C .2=12D =3.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+64.2a =-,那么下列叙述正确的是( )A .2aB .2a <C .2a >D .2a5.下列二次根式的运算:==5=,2=-;其中运算正确的有( ).A .1个B .2个C .3个D .4个6. ) A .1个B .2个C .3个D .4个7.n 为( ).A .2B .3C .4D .58x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x =9.下列二次根式中,最简二次根式是( )A B C D 10.下列计算正确的是( )A =B =C .216=D 1=11.下列二次根式能与 )A B C D 12.函数y =x 的取值范围是( ). A .2x > B .2x ≠ C .2x < D .0x ≠二、填空题13a b ,那么2(2)b a +-的值是________.14.若4y =,则y x 的平方根是__________.15.已知a 、b 为有理数,m 、n 分别表示521amn bn +=,则3a b +=_________.16.===…(a 、b 均为实数)则=a __________,=b __________.17.若1<x <4=___________18.比较大小:“>”、“<”或“=”).19.)0a >=______.20.己知0a ≥a =.请你根据这个结论直接填空:(1=______;(2)若22120202021x +=+______三、解答题21.在数轴上点A 为原点,点B 表示的数为b ,点C 表示的数c ,且已知b 、c 满足b 1+=0,(1)直接写出b 、c 的值:b=______,c=_______;(2)若BC 的中点为D ,则点D 表示的数为________;(3)若B 、C 两点同时以每秒1个单位长度的速度向左移动,则运动几秒时,恰好有AB=AC ?22.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭ (2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 23.计算:(11-+(2)3)(3--24()201220202π-⎛⎫+-- ⎪⎝⎭25.先化简,再求值:22121211x x x x x ÷---++,其中x =26.先化简,再求值:22111121x x x x x x --÷+--+,其中x .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.2.C解析:C【分析】根据二次根式加法法则、乘法法则、除法法则依次计算得到结果,即可作出判断.【详解】A 、原式不能合并,不符合题意;B、原式==C 、原式12=,符合题意;D、原式.故选:C.【点评】 此题考查了二次根式的乘除法,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.3.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.【详解】解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A .【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.4.A解析:A【分析】根据二次根式的性质可得a-2≤0,求出a 的取值范围,即可得出答案.【详解】解:|2|2=-=-a a ,20a ∴-,2a ∴,故选:A .【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.5.C解析:C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】=,故①正确;==②正确;5=,故③正确;2,故④错误;∴正确的3个;故选:C .【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.6.B解析:B【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分母),判断即可.【详解】解:∵2==|x =,∴、,共2个,故选:B .【点睛】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键. 7.B解析:B【分析】27n 一定是一个完全平方数,把27分解因数即可确定.【详解】27n 一定是一个完全平方数,把27分解因数即可确定.∵22733=⨯,∴n 的最小值是3.故选B .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非==.解题关键是分解成一个完全平方数和一个代数式的积的形式.8.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A .【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.9.A解析:A【分析】根据最简二次根式的定义逐项判断即可得.【详解】A是最简二次根式,此项符合题意;B===C a==不是最简二次根式,此项不符题意;D2故选:A.【点睛】本题考查了最简二次根式,熟记定义是解题关键.10.B解析:B【分析】根据二次根式加减法、乘除法的法则分别计算即可得到答案.【详解】A A错误;B==B正确;=,故选项C错误;C、28==D错误;D故选:B.【点睛】本题主要考查了二次根式的加减乘除运算,熟练掌握运算方法是解题的关键.11.C解析:C【分析】根据同类二次根式的定义可得答案.【详解】A=,不能与B=合并,故本选项不符合题意;C=合并,故本选项符合题意;D,不能与合并,故本选项不符合题意.故选:C .【点睛】本题主要考查了同类二次根式的定义,即二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.二、填空题13.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案.【详解】 解:3134<<,3a ∴=,3b ∴=-,()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.14.【分析】根据二次根式的有意义的条件得出x 值进而求出y 代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零 解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =,∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零. 15.4【分析】只需先对估算出大小从而求出其整数部分a 其小数部分用表示再分别代入进行计算;【详解】∵2<<3∴2<<3∴m=2n==把m=2n=代入∴化简得:∴且解得:∴故答案为:4【点睛】本题考查了无理解析:4【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52=3,把m=2,n=3代入21amn bn +=∴ ((22331a b -+-=,化简得:())616261a b a b ++= ,∴ 6161a b +=且260a b +=,解得: 1.5a =,0.5b =-∴331.50.54a b +=⨯-=,故答案为:4.【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;16.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.17.【分析】原式利用二次根式的性质得到然后利用的范围去绝对值后合并即可【详解】∵原式故答案为:【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键解析:52x -【分析】 原式利用二次根式的性质得到41x x ---,然后利用x 的范围去绝对值后合并即可.【详解】∵14x <<, 原式41x x =---()()41x x =----4152x x x =-+-+=-.故答案为:52x -.【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键. 18.<【分析】先把根号的外的因式移入根号内再比较大小即可【详解】∵==<∴<故答案为:<【点睛】本题考查了比较二次根式的大小能选择适当的方法比较两个实数的大小是解此题的关键解析:<【分析】先把根号的外的因式移入根号内,再比较大小即可.【详解】 ∵, ∴故答案为:<【点睛】本题考查了比较二次根式的大小,能选择适当的方法比较两个实数的大小是解此题的关键.19.-b 【分析】先确定b 的取值范围再利用二次根式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b的取值范围及理解被开平方数具有非负性.20.4041【分析】(1)直接利用二次根式的性质化简即可;(2)先利用平方差公式得到x=2020×4042再利用平方差公式可计算出2x+1=40412然后根据二次根式的性质计算【详解】(1);故答案为:解析:4041【分析】(1)直接利用二次根式的性质化简即可;(2)先利用平方差公式得到x=2020×4042,再利用平方差公式可计算出2x+1=40412,然后根据二次根式的性质计算.【详解】(1=3=;故答案为:3;(2)∵x+1=20202+20212,∴x=20202+20212−1=20202+(2021+1)(2021−1)=2020×(2020+2022)=2020×4042,∴2x+1=2×2020×4042+1=4040×4042+1=(4041−1)(4041+1)+1=40412−1+1=40412,∴4041=.故答案为:4041.【点睛】本题考查了二次根式的性质与化简:利用二次根式的基本性质进行化简;利用积的算术平方根的性质和商的算术平方根的性质进行化简.三、解答题21.(1)-1;7;(2)3;(3)运动3秒时,恰好有AB=AC.【分析】(1)根据非负数的和为零,可知绝对值和根号下的式子同时为零,可得答案;(2)根据中点坐标公式,可得答案;(3)设第x秒时,AB=AC,可得关于x的方程,解方程,可得答案.【详解】解:(1)b1+=0,∴b+1=0,c−7=0,∴b=−1,c=7,故答案为:−1,7.(2)由中点坐标公式,得173 2-+=,∴D 点表示的数为3,故答案为:3.(3)设第x 秒时,AB=AC ,由题意,得x+1=7−x ,解得x=3,∴第3秒时,恰好有AB=AC .【点睛】本题主要考查实数与数轴,难度一般,熟练掌握绝对值和二次根式的非负性以及数轴的基础知识是解题的关键.22.(1)12)12x -,12- 【分析】(1)由二次根式的性质、负整数指数幂、零指数幂、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)先去括号,把分式进行化简,然后结合分式有意义的条件,取到合适的值,再代入计算,即可得到答案.【详解】解:(1)原式(14124121⎛=⨯--=--+= ⎝⎭;(2)原式12(2)(3)3111111(2)(3)2x x x x x x x x x x x x -----⎛⎫=-÷=⋅= ⎪-------⎝⎭; ∵10x -≠,20x -≠,30x -≠,∴1,2,3x ≠, x 只能取0,当0x =时, 原式11122==--. 【点睛】 本题考查了分式的混合运算,分式的化简求值,二次根式的性质、负整数指数幂、零指数幂、绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1);(2)-15.【分析】(1)利用二次根式的加减运算法则计算即可;(2)根据平方差公式计算.【详解】(1)原式=6-(2)原式=22(33(3)92415-+--=--=-=-【点睛】本题考查了二次根式的加减法及平方差公式,掌握二次根式的加减法的运算法则是解题的关键.24.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.25.1x -,【分析】 首先将原式分子分母因式分解,先算除法,再算减法,最后把x 的值代入进行计算即可.进而化简求出答案.【详解】解:原式=22121211x x x x x -+⋅--+ =()()()2112111x x x x x -⋅-+-+ =()1211x x x x --++ =()()1211x x x x x x --++ =1x-当x ==3- 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.11x x -+,3. 【分析】 先根据分式的混合运算法则化简原式,然后再将x 的值代入计算即可.【详解】 解:22111121x x x x x x --÷+--+ 21(1)1(1)(1)1x x x x x x -=-++--111x x x =-++ 11x x -=+,当1x =时,原式==3=.【点睛】本题主要考查分式的混合运算和化简求值,分母有理化,灵活运用分式的混合运算顺序和运算法则是解答本题的关键.。
人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)
第16章《二次根式》单元培优测试卷、选择题工.下列各式成立的是正=a D J(-3)〜=3A.7H F=-2【1题答案】【答案】D【解析】【分析】根据二次根式的性质化简即可.【详解】A.J(_2)2 =2,故本选项错误;B.(") =4,故本选项错误;C.J后=同,故本选项错误;D.J(-3『=3,故本选项正确.故选D.【点睛】本题考查了二次根式的基本性质:①〃K); V^>()(双重非负性).②(&)2%(生0)(任何一个非负数都可以写成一个数的平方的形式).③日=a(。
加)(算术平方根的意义).2.下列二次根式中,是最简二次根式的是()2B.耳【2题答案】【答案】A【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】A.且是最简二次根式,故此选项正确;2D ・ 阮二xH ,故此选项错误•故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.3 .若二次根式:7有意义,则x 的取值范围是()A. x> —B. —C. —D. xW5 5 5 5【3题答案】【答案】B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x- 1>0,解得,[,故选人【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键. 4.如图,从一个大正方形中裁去面积为30cm2和48 cm2的两个小正方形,则余下部分的面积为()A. 78 cm 2B. + \/30) cm 2C. 12M cm 2 【4题答案】【答案】P【解析】 【分析】根据两小正方形的面积求出大正方形的边长及面积,然后减去两个小正方形的面积,即可求出阴影 c.D. 24M cm 2故此选项错误;部分的面积进而得出答案.【详解】解:从一个大正方形中裁去面积为300层和48cm2的两个小正方形,大正方形的边长是同+ A =同+ ,留下部分(即阴影部分)的面积是:2(46 +而)-30-48 = 24V10(c/722)故选:D.【点睛】此题主要考查了二次根式的应用,正确求出大正方形的面积是关键.5.已知百砺是正整数,则满足条件的最大负整数m为()A. -10B. -40C. -90D. -160 【5题答案】【答案】A【解析】【详解】依题意可得,T0m>0且是完全平方数,因此可求得mVO,所以满足条件的m的值为TO.故选A.6.已知X=g + 1, —则/+个+)2的值为( )A 4 B. 6 C. 8 D. 1() 【6题答案】【答案】P【解析】【分析】根据f +盯+),2=(工2+2个,+,2)_孙=。
八年级下册数学《二次根式》单元测试卷有答案
八年级下册数学《二次根式》单元测试卷一、单选题x的取值范围是()1A.x≠7B.x<7 C.x>7 D.x≥72的相反数是()A.﹣2 B.2 C.﹣4 D.4 3.下列各式属于最简二次根式的有()AB C D4.下列计算正确的是()A=B.3=C2=D=5是同类二次根式的是()A B C D6n的最小值是()A.4 B.6 C.8 D.12 7.估计√13的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.下列各式中计算正确的是()A=⨯2)×(﹣4)=8B=4a(a>0)C3+4=7D 3=9.已知1a a +=1a a-=( )AB C .D .10.若1a b -=,2213a b +=,则ab 的值为( ) A .6 B .7 C .8 D .9二、填空题11_____.12.已知a 、b 满足(a ﹣1)2,则a+b=_____.13_____.14=______. 15.比较大小:58_____√5−12.(填“>”、“<”或“=”)16a =_____.17_____.18=_____.三、解答题19.化简:20.已知a,求293a a ---21.先化简代数式1﹣1x x -÷2212x x x-+,并从﹣1,0,1,3中选取一个合适的代入求值.22.若实数a 、b 满足2(2)0a b +-+=,求2b +a ﹣1的值.23.若x ,y 都是实数,且y +1y 的值.24.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:;1==等运算都是分母有理化.根据上述材料, (1(210+++(3n +++参考答案1.D【解析】【分析】直接利用二次函数有意义的条件分析得出答案.【详解】在实数范围内有意义,∴x-7≥0,解得:x≥7.故选:D.【点睛】本题考查了二次根式有意义的条件,正确把握二次根式的定义是解题的关键.2.B【解析】【分析】,再求其相反数即可.【详解】故选B.3.B【解析】【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A=A选项错误;B是最简二次根式,故B选项正确;C=D=D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.4.D【解析】【分析】根据二次根式的运算法则逐项计算即可判断.【详解】解:A不是同类二次根式,不能合并,故错误;B、,故错误;C2÷=,故错误;2D.故选D.【点睛】本题考查了二次根式的四则运算.5.C【解析】【分析】同类二次根式定义为几个二次根式化简成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【详解】符合定义的只有C项,所以答案选择C项.【点睛】本题考查了同类二次根式的定义,熟练掌握定义是解答本题的关键.6.B【解析】【分析】=则6n是完全平方数,满足条件的最小正整数n为6.【详解】∵=∴6n是完全平方数,∴n的最小正整数值为6.故选B.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.7.C【解析】解:∵√9<√13<√16,∴3<√13<4,故选C.8.D【解析】【分析】根据二次根式的意义、性质逐一判断即可得.【详解】A ,此选项错误;B =(a >0),此选项错误;C =5,此选项错误;D =,此选项正确. 故选D . 【点睛】本题考查了二次根式的性质与化简,解题的关键是熟练掌握二次根式的定义和性质. 9.C 【解析】分析:本题只要根据1a a -=详解:1a a -===C .点睛:本题考查的是完全平方公式的应用,属于中等难度的题型.()()224a b a b ab +=-+,()()224a b a b ab -=+-,a b -= 10.A 【解析】 【分析】将a ﹣b =1两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab 的值. 【详解】解:将a ﹣b =1两边平方得:(a ﹣b )2=a 2+b 2﹣2ab =1, 把a 2+b 2=13代入得:13﹣2ab =1, 解得:ab =6. 故选A . 【点睛】本题考查完全平方公式,熟练掌握公式是解题关键. 11.﹣6.【解析】【分析】直接利用立方根以及算术平方根化简得出答案.【详解】解:原式=4﹣10=﹣6.故答案为﹣6.【点睛】本题考查实数运算,正确利用立方根以及算术平方根化简各数是解题关键.12.﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵(a﹣1)2,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.13.4 3【解析】【分析】根据算术平方根的定义求解可得.【详解】解:=4 3故答案为:4 3【点睛】本题考查算术平方根,解题关键是熟练掌握算术平方根的定义.14【解析】 【分析】先进行二次根式的化简,然后合并. 【详解】解:原式3==. 【点睛】本题考查了二次根式的加减法,正确化简二次根式是解题的关键. 15.> 【解析】 【分析】利用作差法即可比较出大小. 【详解】解:∵58−√5−12=5−4√5+48=9−4√58=√81−√808>0,∴58>√5−12.故答案为>. 16.1 【解析】 【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案. 【详解】=a +1=2.解得a=1.故答案是:1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.17.【解析】【分析】一般二次根式的有理化因式是符合平方差公式的特点的式子.据此作答.【详解】.解.【点睛】本题考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.18.2【解析】【分析】根据二次根式乘法的运算法则进行求解即可得.【详解】=2,故答案为:2.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法的运算法则是解题的关键.19.【解析】【分析】根据二次根式的乘法法则运算.【详解】解:原式=6-=6-7【点睛】本题考查的知识点是二次根式化简,解题的关键是熟练的掌握二次根式.20.7.【解析】【分析】先将a的值分母有理化,从而判断出a﹣2<0,再根据二次根式的混合运算顺序和运算法则化简原式,继而将a的值代入计算可得.【详解】解:∵a2∴a﹣2=220,则原式=3323(2) a a aa a a+-----()()=a+3+1 a=2=7.【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.21.-11x +,-14. 【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x 的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x x x x x x +-+- =1﹣21x x ++ =121x x x +--+=-11x +, 当x=3时,原式=﹣131+ =-14 . 22.43. 【解析】【分析】由于平方和二次根式都具有非负性,根据非负数的性质列出二元一次方程组求出a 、b 的值,再代入代数式求解即可.【详解】解:由题意,得20230a b b a +-=⎧⎨-+=⎩ , 解得5313a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴2b +a ﹣1=2×13+53﹣1=43. 【点睛】本题考查非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.23.5【解析】【分析】首先根据二次根式有意义的条件可得:4040x x -≥⎧⎨-≥⎩,解不等式组可得x=4,然后再代入y=1可得y +3y 的值.【详解】解:由题意得:, 解得:x =4,则y =1,+3y =2+3=5.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.24.(1;(2﹣1;(3﹣1.【解析】【分析】(1,即可得出答案;(2)根据分母有理化,可得实数的减法,根据实数的减法运算,可得答案.【详解】(1)==; (2+⋯1...-1=(3⋯1...+﹣1【点睛】运用了二次根式的分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相等.找出分母的有理化因式是解本题的关键.。
八年级下《二次根式》单元测试卷含答案 (2).doc
2八年级下《二次根式》单元测试卷含答案一、选择题1.下列根式中,与 3 是同类二次根式的是()A 、24B 、 12C 、3D、18 22. 在式子x( x 0) , 2 ,y 1( y 2) ,2x (x 0) ,x2 2二次根式有()A、2个 B 、3个 C 、4个 D 、 5 个3.与a3b 不是同类二次根式的是()A 、abB 、bC 、1D 、b 2 a ab a34.若 x<0,则x x2的结果是()xA. 0 B .— 2 C.0或—2 D.25.下列二次根式中属于最简二次根式的是()A.14 B .48 C .aD .4a 4 b6.如果x x 6 x( x 6) ,那么()A.x≥0 B .x≥6 C .0≤x≤6 D .x 为一切实数7.小明的作业本上有以下四题:①16a 4 4a2 ;②5a 10a 5 2a ;③ a 1a ④ 3a 2a a 。
做错的题是()A.① B .② C .③ D .④8.化简 1 1的结果为()5 6A.11 B . 30 330 C .330 D .30 1130309.若a 1 ,则 1 a 3化简后为()1 ,x y ,33中,a 21 a ; aA、 a 1 a 1B、1a 1 a C 、a 1 1 a D 、1 a a 110.能使等式xx 成立的 x 的取值范围是( )x2x2A 、 x 2B 、 x 0C 、 x2 D 、 x 2二、填空题11.当 __________ 时, x 2 1 2x 有意义。
12.若最简二次根式3 4a 2 1与 2 6a 21 是同类二次根式,则 a ______ 。
2313.已知 x 32, y 32 ,则 x3 y xy 3 _________。
14. x 1 x 1 x 2 1 成立的条件是。
15.比较大小: 2 313 。
16. 2xy8y, 1227。
17.计算 a39a3 a =。
a31 与 32 的关系是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题 1.下列根式中,与 3 是同类二次根式的是( A、 24 B、 12 C、 )
3 2
D、 18
2.在式子
x ( x 0) , 2 , y 1( y 2) , 2 x ( x 0) , x 2 1 , x y , 3 3 中, 2
3 2 4a 2 1 与 6a 2 1 是同类二次根式,则 a ______ 。 2 3
3 2, y 3 2 ,则 x 3 y xy 3 _________ 。 x 2 1 成立的条件是 13 。
, 12 27 。 。
x 1 x 1
15.比较大小: 2 3 16. 2 xy 8 y 17.计算 a
2a a 。做错的题是( )
B.② C.③ D.④
1 1 的结果为( ) 5 6
B. 30 330 C.
A.
11 30
330 30
)
D. 30 11
9.若 a 1 ,则
1 a
3
化简后为(
A、 a 1 a 1
B、 1 a 1 a
C、 a 1 1 a
3 3 a = 9a a 3 与 3 2 的关系是
。
18.
1 3 2
。
19.若 x
5 3 ,则 x 2 6 x 5 的值为 1 的结果是 45 1 108 3
。 。
20.化简 15
三、解答题 21.求使下列各式有意义的字母的取值范围: (1) 3 x 4 (2)
(2)原式= (4)原式= 3 m 2n 3m 2n 。 23.解:(1)原式=49×
2 2
3 24 1 21 ;(2)原式= 1 ; 14 25 25
(3)原式=
2 15 15 (27 5 ) 27 5 45 3 ; 3 4 3 7 14 4 72 2 7 2; 4 2
a b
D. 4a 4
x x6
x( x 6) ,那么( )
D.x 为一切实数
A.x≥0 B.x≥6 C.0≤x≤6 7.小明的作业本上有以下四题: ①
16a 4 4a 2 ; ②
5a 10a 5 2a ; ③ a
1 1 a2 a a a
;
④ 3a A.① 8.化简
2
(3)
2 3 3 (9 45 ) 3 4
(4) 7
1 1 126 28 3
(5) 4 5
45 8 4 2
(6) 6 2
3 3 3 2 2
四、综合题 24.若代数式
2x 1 有意义,则 x 的取值范围是什么? 1 | x |
28.已知
x 3y x2 9
x 3
2
0,求
x 1 的值。 y 1
参考答案 一、选择题 1.B 2.C 二、填空题 3.A 4.D 5.A 6.B 7.D 8.C 9.B 10.C
11、 2 x 16. 4 y x 三、解答题 21.(1) x
1 ; 2
18
49 126 (4)原式= 28 9
(5)原式= 4 5 3 5 2 2 4 2 8 5 2 2 ; (6)原式= 6 6
3 6 5 6 6 。 2 2
2x+1≥0, 1—|x|≠0, 解得, x
24.解:由题意可知:
1 且x 1 。 2
25.解:∵x—1≥0, 1—x≥0,∴x=1,∴y<
) B、 3 个 C、 4 个 ) D、 5 个
二次根式有( A、 2 个
3
3.与 a b 不是同类二次根式的是( A、
ab 2
B、
b a
C、
1 ab
D、
b a3
4.若 x<0,则
x x2 的结果是( ) x
A.0 B.—2 C.0 或—2 D.2 5.下列二次根式中属于最简二次根式的是( ) A. 14 6.如果 B. 48 C.
D、 1 a a 1
10.能使等式 A、 x 2 二、填空题
x x2
x x2
成立的 x 的取值范围是( C、 x 2 D、 x 2
)
B、 x 0
11.当 __________ 时, 12.若最简二次根式 13.已知 x 14.
x 2 1 2 x 有意义。
12、1; 13、10; 17. 3 a
14.x≥1
15.< 20. 15 3 5
18.相等
19.1
16 3 3
4 3
(2) a
1 24
(3)全体实数ຫໍສະໝຸດ (4) x 022.解:(1)原式= 144 169 144 169 12 13 156 ;
1 15 5 ; 3 1 1 32 2 5 32 5 16 5 ; (3)原式= 2 2
25.若 x,y 是实数,且 y
x 1 1 x
1 |1 y | ,求 的值。 2 y 1
26.已知 x 3x 1 0 ,求
2
x2
1 2 的值。 x2
27.已知 a, b 为实数,且 1 a b 1 1 b 0 ,求 a
2005
b 2006 的值。
1 |1 y | 1 y .∴ = 1 . 2 y 1 y 1
26. 5 ;27. -2
28.
2;
1 8a 3
(3) m 4
2
(4)
1 x
22.化简: (1) ( 144) ( 169) (2)
1 225 3
(3)
1 1024 5 2
(4) 18m n
2
23.计算:
3 (1) 7 14
2
24 (2) 1 25