数值计算方法matlab程序

合集下载

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。

Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。

本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。

一、数值积分数值积分是通过数值方法来近似计算函数的定积分。

在Matlab中,常用的数值积分函数是'quad'和'quadl'。

'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。

下面是一个使用'quad'函数计算定积分的例子。

假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。

我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。

二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。

在科学研究和工程应用中,常常需要求解微分方程的数值解。

在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。

'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。

下面是一个使用'ode45'函数求解常微分方程的例子。

假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。

我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。

三、非线性方程求解非线性方程是指方程中包含非线性项的方程。

在很多实际问题中,我们需要求解非线性方程的根。

Matlab中的数值计算方法简介

Matlab中的数值计算方法简介

Matlab中的数值计算方法简介引言:Matlab是一种强大的数值计算软件,广泛应用于工程、科学、金融等领域。

它拥有丰富的数值计算方法库,可以帮助研究者和工程师解决各种数值计算问题。

本文将简要介绍几种常见的数值计算方法,并说明它们在Matlab中的实现和应用。

一、插值法插值法是一种通过已知数据点之间的插值,估计未知数据点的数值的方法。

常见的插值方法包括线性插值、拉格朗日插值和样条插值。

在Matlab中,我们可以使用interp1函数进行插值计算。

该函数可以根据给定的数据点,计算出在指定位置的插值结果。

我们可以通过设置插值的方法和插值节点的数目来调整插值的精度与计算效率。

二、数值积分数值积分是一种通过近似求解定积分的方法。

在Matlab中,我们可以使用quad和quadl函数进行数值积分。

这些函数可以自动选择合适的数值积分方法,并提供了较高的精度和计算效率。

我们只需提供被积函数和积分区间,即可获得近似的积分结果。

对于一些特殊形式的积分,如复杂函数或无穷积分,Matlab还提供了相应的函数供我们使用。

三、线性方程组求解线性方程组的求解是数值计算中的一个重要问题。

在实际应用中,我们经常会遇到大规模线性方程组的求解问题。

在Matlab中,我们可以使用矩阵运算功能和线性方程组求解函数来解决这类问题。

Matlab提供了一系列的求解函数,包括直接法和迭代法。

其中,直接法适用于小规模线性方程组,迭代法则适用于大规模线性方程组。

我们可以根据具体情况选择合适的方法和函数来求解线性方程组。

四、微分方程求解微分方程是许多科学和工程问题的数学模型,求解微分方程是数值计算中的常见任务。

在Matlab中,我们可以使用ode45函数来求解常微分方程的初值问题。

该函数采用龙格-库塔方法,对微分方程进行数值积分,并给出近似的解析结果。

对于偏微分方程和其他更复杂的微分方程问题,Matlab还提供了更多的求解函数和工具箱供我们使用。

五、最优化问题求解最优化问题是指在特定约束条件下,求解给定目标函数的最大值或最小值的问题。

如何使用MATLAB进行数值计算

如何使用MATLAB进行数值计算

如何使用MATLAB进行数值计算使用MATLAB进行数值计算一、引言数值计算是现代科学与工程领域中不可或缺的一部分,它能够解决许多实际问题,包括求解方程、优化问题和模拟实验等。

而MATLAB作为一种功能强大的数值计算软件,被广泛应用于各个领域。

本文将介绍如何使用MATLAB进行数值计算,并结合实例进行说明。

二、MATLAB基础首先,我们需要了解MATLAB的基本操作和语法,以便能够熟练运用。

MATLAB使用矩阵和数组来存储和处理数据,因此,熟悉矩阵和数组操作是非常重要的。

MATLAB中的矩阵和数组是通过方括号来定义的,例如:A = [1 2 3; 4 5 6; 7 8 9]表示一个3x3的矩阵A,其中每个元素由空格或分号隔开。

我们可以使用括号或索引来访问矩阵中的元素。

例如,要访问矩阵A的第二行第三列的元素,可以使用A(2,3)。

MATLAB提供了大量内置的数学函数,包括算术运算、三角函数、指数和对数函数等。

这些函数可以直接应用于矩阵和数组,简化了数值计算的过程。

三、方程求解方程求解是数值计算中的一个重要任务,MATLAB提供了多种方法来求解方程,包括代数方法和数值方法。

1. 代数方法对于一些简单的方程,例如一元一次方程或二次方程,可以直接使用MATLAB内置的解方程函数进行求解。

例如,对于一元一次方程ax + b = 0,可以使用solve函数来求解。

代码示例:syms x;eqn = a*x + b == 0;sol = solve(eqn, x);其中,syms x;指定x为符号变量,eqn为方程表达式,sol为方程的解。

2. 数值方法对于一些复杂的方程,无法用解析方法求解。

这时,可以使用数值方法来近似求解。

MATLAB提供了多种数值求解方法,包括二分法、牛顿法和割线法等。

这些方法可以通过迭代逼近的方式求解方程的根。

代码示例:f = @(x) x^2 - 4;x0 = 2;x = fzero(f, x0);其中,f为方程的表达式,x0为初始猜测值,x为方程的根。

MATLAB中的数学计算方法详解

MATLAB中的数学计算方法详解

MATLAB中的数学计算方法详解在科学研究和工程领域中,数学计算方法的应用是不可避免的。

MATLAB作为一种强大的数学工具,提供了丰富的数学函数和算法,为用户提供了便捷的数学计算方式。

本文将详细介绍MATLAB中常用的数学计算方法,包括数值计算、符号计算以及优化算法等。

一、数值计算方法数值计算是MATLAB中应用最广泛的数学计算方法之一。

它通过将数值代入数学模型,利用数值逼近的方式求得近似解。

MATLAB提供了各种数值计算函数,如插值、积分、微分等。

下面我们将介绍其中几种常用的数值计算方法。

1. 插值方法插值是一种通过已知数据点来估计未知数据点的方法。

在MATLAB中,可以使用interp1函数实现一维数据的插值。

该函数支持多种插值方法,例如线性插值、样条插值等。

用户只需提供已知的数据点和插值点,即可得到插值结果。

2. 数值积分方法数值积分是计算定积分近似值的方法。

在MATLAB中,可以使用quad函数来进行一维定积分计算。

该函数采用自适应的数值积分算法,能够适应不同类型的函数。

用户只需提供被积函数和积分区间,即可得到积分结果。

3. 数值微分方法数值微分是计算函数导数的方法。

在MATLAB中,可以使用diff函数对函数进行数值微分。

该函数可以计算一阶和二阶导数,还支持多点数值微分和符号数值微分。

通过数值微分,可以方便地求得函数在给定点的导数近似值。

二、符号计算方法符号计算是指在计算过程中处理符号表达式而不是数值。

MATLAB的Symbolic Math Toolbox提供了强大的符号计算功能,可以进行代数操作、求解方程、求导、积分等。

下面我们将介绍几种常用的符号计算方法。

1. 代数操作在MATLAB中,可以使用符号计算功能进行代数操作,如多项式求解、多项式展开、多项式化简等。

通过定义符号变量和符号表达式,可以进行各种代数计算,方便用户进行复杂的代数操作。

2. 方程求解MATLAB的符号计算工具箱提供了solve函数用于求解方程。

matlab数值计算方法

matlab数值计算方法

Matlab提供了多种数值计算方法,以下是其中一些常用的方法:
1. 整数计算:Matlab中的计算方式和计算器类似,可以直接输入数值然后加上运算符进行运算。

2. 小数计算:小数计算的方式和整数相似。

3. 分数计算:Matlab可以切换至分数模式,这一点较计算器等具有较大优势。

4. 赋值运算:Matlab中除了和计算器一样直接运算,还能进行赋值运算,直接将其中一个值赋值后,带入运算即可。

5. 多重赋值运算:Matlab在数值计算的时候,还支持多重赋值计算。

这样可以很方便的求解列出的问题。

以上内容仅供参考,建议查阅Matlab官方文档获取更全面和准确的信息。

matlab龙格库塔法程序,给出实例

matlab龙格库塔法程序,给出实例

一、介绍龙格库塔法龙格库塔法(Runge-Kutta method)是一种数值计算方法,用于求解常微分方程的数值解。

它通过多步迭代的方式逼近微分方程的解,并且具有较高的精度和稳定性。

二、龙格库塔法的原理龙格库塔法采用迭代的方式来逼近微分方程的解。

在每一步迭代中,计算出当前时刻的斜率,然后根据这个斜率来求解下一个时刻的值。

通过多步迭代,可以得到微分方程的数值解。

三、龙格库塔法的公式龙格库塔法可以表示为以下形式:k1 = f(tn, yn)k2 = f(tn + h/2, yn + h/2 * k1)k3 = f(tn + h/2, yn + h/2 * k2)k4 = f(tn + h, yn + h * k3)yn+1 = yn + h/6 * (k1 + 2k2 + 2k3 + k4)其中,k1、k2、k3、k4为斜率,h为步长,tn为当前时刻,yn为当前时刻的解,yn+1为下一个时刻的解。

四、使用matlab实现龙格库塔法在MATLAB中,可以通过编写函数来实现龙格库塔法。

下面是一个用MATLAB实现龙格库塔法的简单例子:```matlabfunction [t, y] = runge_kutta(f, tspan, y0, h)t0 = tspan(1);tf = tspan(2);t = t0:h:tf;n = length(t);y = zeros(1, n);y(1) = y0;for i = 1:n-1k1 = f(t(i), y(i));k2 = f(t(i) + h/2, y(i) + h/2 * k1);k3 = f(t(i) + h/2, y(i) + h/2 * k2);k4 = f(t(i) + h, y(i) + h * k3);y(i+1) = y(i) + h/6 * (k1 + 2*k2 + 2*k3 + k4);endend```以上就是一个简单的MATLAB函数,可以利用该函数求解给定的微分方程。

MATLAB的数值计算

MATLAB的数值计算
表示为:p=[1 -12 0 25 116],使用函数roots可以求出多项式等于0的根,根用列向量表示。若已知多项式等于0的根,函数poly可以求出相应多项式。
例:a=[1 2 3;4 5 6;7 8 0]; p=poly(a) p =1.00 -6.00 -72.00 -27.00 p是多项式p(x)=x3-6x2-72x-27的matlab描述方法,我们可用: p1=poly2str(p,‘x’) — 函数文件,显示 数学多项式的形式 p1 =x^3 - 6 x^2 - 72 x - 27
a./b=b.\a a.\b=b./a a./b=b.\a — 都是a的元素被b的对应元 素除 a.\b=b./a — 都是a的元素被b的对应元 素除 例: a=[1 2 3];b=[4 5 6]; c1=a.\b; c2=b./a c1 = 4.0000 2.5000 2.0000 c2 = 4.0000 2.5000 2.0000
—— 给出a,b对应元素间的商.
3. 数组乘方(.^) — 元素对元素的幂 例: a=[1 2 3];b=[4 5 6]; z=a.^2 z = 1.00 4.00 9.00 z=a.^b z = 1.00 32.00 729.00
对于p的其它值,计算将涉及特征值 和特征向量,如果p是矩阵,a是标量 a^p使用特征值和特征向量自乘到p次 幂;如a,p都是矩阵,a^p则无意义。
a=[1,2,3;4,5,6;7,8,9];a^2 ans =30 36 42 66 81 96 102 126 150
2. 数组乘除(,./,.\) ab —— a,b两数组必须有相同的行 和列两数组相应元素相乘。 a=[1 2 3;4 5 6;7 8 9]; b=[2 4 6;1 3 5;7 9 10]; a.*b ans = 2 8 18 4 15 30 49 72 90

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算在科学计算领域,MATLAB被广泛应用于数值计算,它提供了强大而简便的工具和函数,可以帮助科学家们进行复杂的数学计算和数据分析。

本文将介绍如何在MATLAB中进行数值计算,并探讨一些常用的技巧和技术。

MATLAB中的数值计算是通过矩阵和向量运算来实现的,因此熟悉矩阵运算和向量操作是使用MATLAB进行数值计算的关键。

首先,让我们来看看如何定义和操作矩阵和向量。

在MATLAB中,可以使用矩阵和向量来存储和操作多个数值。

矩阵是一个二维数组,而向量是一个一维数组。

通过使用方括号和逗号来定义矩阵和向量。

例如,以下是一个3x3的矩阵的定义:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];可以通过使用A(i, j)的形式来访问矩阵中的元素,其中i和j分别表示行和列的索引。

例如,要访问第二行第三列的元素,可以使用A(2, 3)。

向量可以通过类似的方式定义,只需要使用一个维度。

例如,以下是一个包含5个元素的行向量的定义:v = [1, 2, 3, 4, 5];可以使用v(i)的形式来访问向量中的元素,其中i表示索引。

例如,要访问第四个元素,可以使用v(4)。

在进行数值计算时,通常需要进行一些基本的运算,如加法、减法、乘法和除法。

在MATLAB中,这些运算可以直接应用于矩阵和向量。

加法运算可以使用加号来实现。

例如,要将两个矩阵A和B相加,可以使用以下代码:C = A + B;减法运算可以使用减号来实现。

例如,要将矩阵A减去矩阵B,可以使用以下代码:D = A - B;乘法运算可以使用乘号来实现。

例如,要将矩阵A乘以矩阵B,可以使用以下代码:E = A * B;除法运算可以使用除号来实现。

例如,要将矩阵A除以矩阵B,可以使用以下代码:F = A / B;除了基本的运算,MATLAB还提供了很多其他的函数和工具箱,可以帮助进行更复杂的数值计算和数据分析。

例如,MATLAB提供了一些常用的数学函数,如幂函数、指数函数、对数函数、三角函数等等。

数值计算方法matlab程序

数值计算方法matlab程序

数值计算方法matlab程序嘿,朋友们!今天咱就来聊聊数值计算方法和那厉害的 Matlab 程序呀!你说数值计算方法像不像一个神奇的魔法盒子呀,里面装满了各种奇妙的技巧和算法。

它能帮我们解决好多好多复杂的数学问题呢!不管是求解方程,还是处理数据,它都能大显身手。

而 Matlab 程序呢,就像是这个魔法盒子的钥匙!有了它,我们就能轻松地打开这个盒子,尽情地利用里面的宝贝。

你想想看呀,当我们面对那些让人头疼的数学式子,自己手动去算得算到啥时候呀。

但有了 Matlab,那可就不一样啦!它能快速又准确地给出结果,就像有个超级聪明的小助手在帮我们干活。

比如说,我们要算一个很复杂的函数的积分。

要是自己去慢慢算,可能头发都要掉光啦!可 Matlab 呢,几下子就给我们搞定了,这多厉害呀!它还能绘制各种漂亮的图形呢!我们可以用它把那些抽象的数据变成直观的图像,一下子就能看出数据的规律和特点。

这就好比把一堆乱麻整理得清清楚楚,明明白白。

而且呀,Matlab 学起来也不难哦!只要我们用心去学,多练习练习,很快就能掌握它的基本用法啦。

到时候呀,我们就可以像个小魔法师一样,轻松地运用数值计算方法和 Matlab 程序解决各种难题。

咱再说说它的实用性吧。

在很多领域,比如工程、科学研究、金融等等,都离不开数值计算方法和 Matlab 呀。

工程师们用它来设计新产品,科学家们用它来分析实验数据,金融分析师们用它来预测市场趋势。

这可不是一般的厉害呀!你难道不想拥有这样一个强大的工具吗?让它帮你在学习和工作中更加得心应手。

总之呢,数值计算方法和 Matlab 程序就像是一对好搭档,它们能让我们的数学之旅变得轻松又有趣。

别再犹豫啦,赶紧去探索这个神奇的世界吧!相信你一定会爱上它们的!怎么样,还不赶紧去试试?。

MATLAB数值计算教程

MATLAB数值计算教程

MATLAB数值计算教程第一章:MATLAB入门1.1 MATLAB简介MATLAB(Matrix Laboratory)是一款强大的数值计算软件,广泛用于工程、科学和金融领域。

它的特点是简单易用、高效快速,并且拥有丰富的工具箱和函数库。

1.2 MATLAB环境搭建要使用MATLAB进行数值计算,首先需要安装MATLAB软件,并进行必要的配置。

通过官方网站下载安装程序,根据提示进行安装即可。

安装完成后,打开MATLAB环境,即可开始使用。

1.3 MATLAB基本操作在MATLAB环境中,可以通过命令行窗口输入和执行命令,也可以使用脚本文件进行批量处理。

常用的基本操作包括变量赋值、算术运算、函数调用等。

例如,使用"="符号赋值变量,使用"+"、"-"、"*"、"/"等符号进行算术运算。

第二章:向量和矩阵操作2.1 向量操作在MATLAB中,向量是一种特殊的矩阵,可以通过一组有序的元素构成。

向量可以进行基本的算术运算,如加法、减法、乘法、除法,还可以进行向量的点积、叉积等操作。

可以使用内置函数和运算符来实现。

2.2 矩阵操作矩阵是MATLAB中最常用的数据结构之一,使用矩阵可以进行多个向量的组合和运算。

可以进行矩阵的加法、减法、乘法、除法等操作,也可以进行矩阵的转置、求逆、求特征值等操作。

MATLAB提供了大量的函数和工具箱来支持矩阵的操作。

第三章:数值计算方法3.1 数值积分数值积分是一种用数值方法计算定积分的方法。

在MATLAB 中,可以使用内置函数来进行数值积分,如trapz函数和quad函数。

也可以使用Simpson法则、复合辛普森法等方法实现数值积分。

3.2 数值微分数值微分是一种用数值方法计算导数的方法。

在MATLAB中,可以使用内置函数进行数值微分,如diff函数和gradient函数。

metlab用数值计算和符号计算两种方法求定积分

metlab用数值计算和符号计算两种方法求定积分

metlab用数值计算和符号计算两种方
法求定积分
在MATLAB中,你可以使用数值计算方法和符号计算方法来求解定积分。

1. 数值计算方法:数值计算方法通过将积分区间划分为小的子区间,并使用数值逼近技术来计算近似的积分值。

MATLAB中常用的数值计算函数是 integral 和 quad。

示例代码:
% 使用 integral 函数计算定积分
f = @(x) x^2 + 2*x + 1; % 定义被积函数
a = 0; % 积分下限
b = 1; % 积分上限
result = integral(f, a, b); % 计算定积分值
% 使用 quad 函数计算定积分
result = quad(f, a, b); % 计算定积分值
2. 符号计算方法:符号计算方法使用符号表达式来表示积分函数,然后对符号表达式进行符号化求解。

MATLAB中的符号计算工具箱提供了符号积分的功能,可以进行精确的符号计算。

示例代码:
% 使用符号计算方法求定积分
syms x; % 声明符号变量
f = x^2 + 2*x + 1; % 定义被积函数
a = 0; % 积分下限
b = 1; % 积分上限
result = int(f, x, a, b); % 符号化求解定积分
% 将符号表达式转换为数值结果
result = double(result);
无论使用数值计算方法还是符号计算方法,你都可以根据具体的情况选择适合的方法来求解定积分。

数值计算方法适用于数值近似解,而符号计算方法适用于精确的符号解析。

数值计算方法matlab程序

数值计算方法matlab程序

数值计算⽅法matlab程序function [x0,k]=bisect1(fun1,a,b,ep)if nargin<4ep=1e-5;endfa=feval(fun1,a);fb=feval(fun1,b);if fa*fb>0x0=[fa,fb];k=0;return;endk=1;while abs(b-a)/2>epx=(a+b)/2;fx=feval(fun1,x);if fx*fa<0b=x;fb=fx;elsea=x;fa=fx;k=k+1;endendx0=(a+b)/2;>> fun1=inline('x^3-x-1');>> [x0,k]=bisect1(fun1,1.3,1.4,1e-4)x0 =1.3247k =7>>N=500;endif nargin<3ep=1e-5;endx=x0;x0=x+2*ep;while abs(x-x0)>ep & kx0=x;x=feval(fun1,x0);k=k+1;endx0=x;if k==Nwarning('已达最⼤迭代次数')end>> fun1=inline('(x+1)^(1/3)');>> [x0,k]=iterate1(fun1,1.5)x0 =1.3247k =7>> fun1=inline('x^3-1');>> [x0,k]=iterate1(fun1,1.5)x0 =Infk =9>>Steffesen加速迭代(简单迭代法的加速)function [x0,k]=steffesen1(fun1,x0,ep,N) if nargin<4N=500;endx=x0;x0=x+2*ep;k=0;while abs(x-x0)>ep & kx0=x;y=feval(fun1,x0);z=feval(fun1,y);x=x0-(y-x0)^2/(z-2*y+x0);k=k+1;endx0=x;if k==Nwarning('已达最⼤迭代次数')end>> fun1=inline('(x+1)^(1/3)');>> [x0,k]=steffesen1(fun1,1.5)x0 =1.3247k =3>> fun1=inline('x^3-1');>> [x0,k]=steffesen1(fun1,1.5)x0 =1.3247k =6Newton迭代function [x0,k]=Newton7(fname,dfname,x0,ep,N) if nargin<5N=500;endendx=x0;x0=x+2*ep;k=0;while abs(x-x0)>ep & kx0=x;x=x0-feval(fname,x0)/feval(dfname,x0);k=k+1;endx0=x;if k==Nwarning('已达最⼤迭代次数')end>> fname=inline('x-cos(x)');>> dfname=inline('1+sin(x)');>> [x0,k]=Newton7(fname,dfname,pi/4,1e-8) x0 =0.7391k =4⾮线性⽅程求根的Matlab函数调⽤举例:1.求多项式的根:求f(x)=x^3-x-1=0的根:>> roots([1 0 -1 -1])ans =1.3247-0.6624 + 0.5623i-0.6624 - 0.5623i2.求⼀般函数的根>> fun=inline('x*sin(x^2-x-1)','x')fun =Inline function:fun(x) = x*sin(x^2-x-1)>> fplot(fun,[-2 0.1]);grid on-1.5956>> x=fzero(fun,[-1 -0.1])x =-0.6180[x,f,h]=fsolve(fun,-1.6)x =-1.5956f =1.4909e-009h =1(h>0表⽰收敛,h<0表⽰发散,h=0表⽰已达到设定的计算函数值的最⼤次数)第三章:线性⽅程组的数值解法1. ⾼斯消元法function [A,x]=gauss3(A,b)%本算法⽤顺序⾼斯消元法求解线性⽅程组n=length(b);A=[A,b];for k=1:n-1A((k+1):n,(k+1):(n+1))=A((k+1):n,(k+1):(n+1))-A((k+1):n,k)/A(k,k)*A(k,(k+1):(n+1)); A((k+1):n,k)=zeros(n-k,1);A;endx=zeros(n,1);%上⾯为消元过程x(n)=A(n,n+1)/A(n,n);for k=n-1:-1:1x(k)=(A(k,n+1)-A(k,(k+1):n)*x((k+1:n)))/A(k,k);end%上⾯为回代过程>> A=[2 3 4;3 5 2;4 3 30];>> b=[6,5,32]'b =>> [A,x]=gauss3(A,b)A =2.00003.00004.0000 6.00000 0.5000 -4.0000 -4.00000 0 -2.0000 -4.0000x =-1382列选主元的⾼斯消元法:function [A,x]=gauss5(A,b)%本算法⽤列选主元的⾼斯消元法求解线性⽅程组n=length(b);A=[A,b];for k=1:n-1%选主元[ap,p]=max(abs(A(k:n,k)));p=p+k-1;if p>kt=A(k,:);A(k,:)=A(p,:);A(p,:)=t;end%消元A((k+1):n,(k+1):(n+1))=A((k+1):n,(k+1):(n+1))-A((k+1):n,k)/A(k,k)*A(k,(k+1):(n+1)); A((k+1):n,k)=zeros(n-k,1);end%回代x=zeros(n,1);x(n)=A(n,n+1)/A(n,n);>> A=[2 3 4;3 5 2;4 3 30]; b=[6,5,32]';>> [A,x]=gauss5(A,b)A =4.0000 3.0000 30.0000 32.00000 2.7500 -20.5000 -19.00000 0 0.1818 0.3636x =-1382三⾓分解法:Doolittle 分解function [L,U]=doolittle1(A)n=length(A);U=zeros(n);L=eye(n);U(1,:)=A(1,:);L(2:n,1)=A(2:n,1)/U(1,1);for k=2:nU(k,k:n)=A(k,k:n)-L(k,1:k-1)*U(1:k-1,k:n);L(k+1:n,k)=A(k+1:n,k)-L(k+1:n,1:k-1)*U(1:k-1,n)/U(k,k); End y=zeros(n,1);x=y;y(1)=b(1);for i=2:ny(i)=b(i)-L(i,1:i-1)*y(1:i-1);endx(n)=y(n)/U(n,n);for i=n-1:-1:1x(i)=(y(i)-U(i,i+1:n)*x(i+1:n))/U(i,i);end>> A=[1 2 3;2 5 2 ;3 1 5];b=[14 18 20]';>> [L,U,x]=doolittle1(A,b)3 -8 1U =1 2 30 1 -40 0 -36x =2.83331.33332.8333平⽅根法:function [L,x]=choesky3(A,b)n=length(A);L=zeros(n);L(:,1)=A(:,1)/sqrt(A(1,1));for k=2:nL(k,k)=A(k,k)-L(k,1:k-1)*L(k,1:k-1)';L(k,k)=sqrt(L(k,k));for i=k+1:nL(i,k)=(A(i,k)-L(i,1:k-1)*L(k,1:k-1)')/L(k,k); endendy=zeros(n,1);x=y;y(1)=b(1)/L(1,1);for i=2:ny(i)=(b(i)-L(i,1:i-1)*y(1:i-1))/L(i,i);endx(n)=y(n)/L(n,n);for i=n-1:-1:1x(i)=(y(i)-L(i+1:n,i)'*x(i+1:n))/L(i,i);end>> A=[4 -1 1;-1 4.25 2.75;1 2.75 3.5]-1.0000 4.2500 2.75001.00002.75003.5000>> b=[4 6 7.25]'b =4.00006.00007.2500[L,x]=choesky3(A,b)L =2.0000 0 0-0.5000 2.0000 00.5000 1.5000 1.0000x =111>>迭代法求⽅程组的解Jacobi迭代法:function [x,k]=jacobi2(a,b,x0,ep,N)%本算法⽤Jacobi迭代求解ax=b,⽤分量形式n=length(b); k=0;if nargin<5N=500;endif nargin<4ep=1e-5;endif nargin<3x0=zeros(n,1);y=zeros(n,1);while norm(x-x0,inf)>ep & kk=k+1;x0=x;for i=1:ny(i)=b(i);for j=1:nif j~=iy(i)=y(i)-a(i,j)*x0(j);endendif abs(a(i,i))<1e-10|k==Nwarning('a(i,i) is too small');returnendy(i)=y(i)/a(i,i);endx=y;enda=[4 3 0;3 4 -1; 0 -1 4];b=[24 30 -24]';[x,k]=jacobi2(a,b)x =3.00004.0000-5.0000k =59Gauss-seidel迭代法:function [x,k]=gaussseide2(a,b,x0,ep,N)%本算法⽤Gauss-seidel迭代求解ax=b,⽤分量形式n=length(b); k=0;if nargin<5N=500;endendif nargin<3x0=zeros(n,1);y=zeros(n,1);endx=x0;x0=x+2*ep;while norm(x-x0,inf)>ep & kk=k+1;x0=x;y=x;for i=1:nz(i)=b(i);for j=1:nif j~=iz(i)=z(i)-a(i,j)*x(j);endendif abs(a(i,i))<1e-10|k==Nwarning('a(i,i) is too small');returnendz(i)=z(i)/a(i,i);x(i)=z(i);endend[x,k]=gaussseide2(a,b)x =3.00004.0000-5.0000k =25最速下降法function [x,k]=zuisuxiajiang(A,b,x0,ep,N)N=500;endif nargin<4ep=1e-8;endif nargin<3x0=ones(n,1);endx=x0;x0=x+2*ep;r=b-A*x;d=r;k=0;while norm(x-x0,inf)>ep & kk=k+1;x0=x;lamda=(d'*d)/(d'*A*d);x=x0+lamda*d;r=b-A*x;d=r;endif k==Nwarning('已达最⼤迭代次数')end共轭梯度算法function [x,k]=gongertidufa(A,b,x0,ep,N) %本算法⽤共轭梯度算法求解正定⽅程组Ax=b,,n=length(b);if nargin<5N=500;endif nargin<4ep=1e-8;x0=x+2*ep;r=b-A*x;d=r;k=0;while norm(x-x0,inf)>ep & kx0=x;lamda=(r'*r)/(d'*A*d);r1=r;x=x0+lamda*d;r=b-A*x;beta=(r'*r)/(r1'*r1);d=r+beta*d;endif k==Nwarning('已达最⼤迭代次数') end常微分⽅程数值解function [x,y]=Euler1(fun,xspan,y0,h)%本算法⽤欧拉格式计算微分⽅程y'=f(x,y)的解。

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算1.基本数学操作:-加法、减法、乘法、除法:使用+、-、*、/操作符进行基本算术运算。

-幂运算:使用^或.^(点乘)操作符进行幂运算。

- 开平方/立方:可以使用sqrt(或power(函数进行开平方和立方运算。

2.矩阵操作:- 创建矩阵:可以使用矩阵构造函数如zeros(、ones(、rand(等创建矩阵。

- 矩阵运算:使用*操作符进行矩阵相乘,使用transpose(函数进行矩阵转置。

- 矩阵求逆和求解线性方程组:使用inv(函数求矩阵的逆,使用\操作符求解线性方程组。

3.数值积分和微分:- 数值积分:使用integral(函数进行数值积分。

可以指定积分函数、积分上下限和积分方法。

- 数值微分:使用diff(函数进行数值微分。

可以指定微分函数和微分变量。

4.解方程:- 一元方程:使用solve(函数可以解一元方程。

该函数会尝试找到方程的精确解。

- 非线性方程组:使用fsolve(函数可以求解非线性方程组。

需要提供初始值来开始求解过程。

-数值方法:可以使用牛顿法、二分法等数学方法来求解方程。

可以自定义函数来实现这些方法。

5.统计分析:- 统计函数:MATLAB提供了丰富的统计分析函数,如mean(、std(、var(等用于计算均值、标准差、方差等统计量。

- 直方图和密度估计:使用histogram(函数可以绘制直方图,并使用ksdensity(函数进行核密度估计。

- 假设检验:使用ttest(或anova(函数可以进行假设检验,用于比较多组数据之间的差异。

6.数值优化:- 非线性最小化:使用fminunc(函数可以进行非线性最小化。

需要提供目标函数和初始点。

- 线性规划:使用linprog(函数可以进行线性规划。

需要提供目标函数和限制条件。

- 整数规划:使用intlinprog(函数可以进行整数规划。

需要提供目标函数和整数约束。

7.拟合曲线:- 线性拟合:使用polyfit(函数进行线性拟合。

matlab的数值运算

matlab的数值运算

matlab的数值运算Matlab的数值运算Matlab是一种强大的数值计算软件,它可以进行各种数值运算,包括基本的算术运算、矩阵运算、微积分、常微分方程求解、统计分析等。

在本文中,我们将介绍Matlab的数值运算功能,并且通过实例来说明如何使用Matlab进行数值计算。

基本的算术运算Matlab可以进行基本的算术运算,包括加、减、乘、除、幂等运算。

例如,我们可以使用Matlab计算以下表达式:a = 2 + 3; % 加法运算b = 5 - 2; % 减法运算c = 4 * 6; % 乘法运算d = 8 / 4; % 除法运算e = 2 ^ 3; % 幂运算在上面的代码中,我们使用了加、减、乘、除、幂等运算符来进行基本的算术运算。

在Matlab中,加、减、乘、除、幂等运算符分别为“+”、“-”、“*”、“/”、“^”。

矩阵运算Matlab是一种强大的矩阵计算软件,它可以进行各种矩阵运算,包括矩阵加、矩阵减、矩阵乘、矩阵转置、矩阵求逆等。

例如,我们可以使用Matlab计算以下矩阵运算:A = [1 2 3; 4 5 6; 7 8 9]; % 定义一个3x3的矩阵B = [2 3 4; 5 6 7; 8 9 10]; % 定义一个3x3的矩阵C = A + B; % 矩阵加法D = A - B; % 矩阵减法E = A * B; % 矩阵乘法F = A'; % 矩阵转置G = inv(A); % 矩阵求逆在上面的代码中,我们使用了矩阵加、矩阵减、矩阵乘、矩阵转置、矩阵求逆等运算符来进行矩阵运算。

在Matlab中,矩阵加、矩阵减、矩阵乘、矩阵转置、矩阵求逆等运算符分别为“+”、“-”、“*”、“'”、“inv”。

微积分Matlab可以进行微积分运算,包括求导、积分等。

例如,我们可以使用Matlab计算以下微积分运算:syms x; % 定义符号变量xf = x^2 + 2*x + 1; % 定义函数f(x)df = diff(f, x); % 求导intf = int(f, x); % 积分在上面的代码中,我们使用了符号变量x来定义函数f(x),然后使用diff函数来求导,使用int函数来积分。

matlab的数值运算

matlab的数值运算

matlab的数值运算Matlab是一种强大的数值计算和科学计算软件,它提供了丰富的数值运算功能,包括基本的数学运算、矩阵运算、符号计算以及常见的数值方法等。

在本文中,我们将讨论一些常见的数值运算方法和函数,并介绍它们的使用方法。

1. 基本的数学运算在Matlab中,可以使用基本的算术运算符进行数学运算,例如加法(+)、减法(-)、乘法(*)、除法(/)等。

例如,可以使用以下代码计算两个数的和:```a = 3;b = 4;c = a + b;disp(c);```这将输出结果为7。

此外,Matlab还提供了许多数学函数,可以进行各种复杂的数学运算。

例如,可以使用`sin`函数计算一个角度的正弦值,如下所示:```angle = pi/6;sin_value = sin(angle);disp(sin_value);```这将输出结果为0.5,表示30度的正弦值为0.5。

2. 矩阵运算Matlab中的矩阵运算非常方便,可以对矩阵进行加法、减法、乘法、转置等操作。

例如,可以使用以下代码计算两个矩阵的乘法:```A = [1 2; 3 4];B = [5 6; 7 8];C = A * B;disp(C);```这将输出结果为:```19 2243 50```表示两个2x2矩阵的乘积。

此外,Matlab还提供了许多专门用于矩阵运算的函数,例如`inv`函数可以计算一个矩阵的逆矩阵,`eig`函数可以计算一个矩阵的特征值和特征向量等。

3. 符号计算Matlab还提供了符号计算的功能,可以进行代数运算、求解方程、微积分等。

通过使用符号变量,并调用Matlab中的符号计算函数,可以进行复杂的数值计算。

例如,以下代码演示了如何计算方程的解:```syms x;eqn = x^2 - 3*x + 2 == 0;sol = solve(eqn, x);disp(sol);```这将输出结果为2和1,表示方程的两个解分别为2和1。

数值计算方法与matlab程序设计

数值计算方法与matlab程序设计

数值计算方法与matlab程序设计数值计算方法与Matlab程序设计导言:数值计算方法是一种通过数值逼近和数值计算的方式解决数学问题的方法。

而Matlab是一种功能强大的数值计算软件,可以用于快速、准确地进行数值计算和数据分析。

本文将介绍数值计算方法在Matlab中的应用,并探讨如何进行有效的程序设计。

一、数值计算方法的基本原理数值计算方法是一种通过数值逼近和数值计算的方式解决数学问题的方法。

它通过将连续的数学模型离散化为离散的数值模型,然后利用数值逼近的方法求解离散模型的解,从而近似求解原问题。

常见的数值计算方法包括数值积分、数值微分、插值法、数值解常微分方程等。

二、Matlab在数值计算中的应用Matlab是一种功能强大的数值计算软件,它提供了丰富的数值计算函数和工具箱,可以用于解决各种数学问题。

下面以几个常见的数值计算方法为例,介绍Matlab在数值计算中的应用。

1. 数值积分数值积分是一种通过数值近似求解定积分的方法。

在Matlab中,可以使用quad函数进行数值积分的计算。

例如,对于函数f(x)=x^2在区间[0,1]上的定积分,可以使用以下代码进行计算:```f = @(x) x.^2;integral = quad(f, 0, 1);disp(integral);```2. 数值微分数值微分是一种通过数值逼近求解导数的方法。

在Matlab中,可以使用diff函数进行数值微分的计算。

例如,对于函数f(x)=sin(x)在x=0处的导数,可以使用以下代码进行计算:```syms x;f = sin(x);df = diff(f, x);disp(df);```3. 插值法插值法是一种通过已知的离散数据点来近似求解其他点的值的方法。

在Matlab中,可以使用interp1函数进行插值的计算。

例如,对于已知的离散数据点(x,y),可以使用以下代码进行线性插值:```x = [0, 1, 2, 3, 4];y = [0, 1, 4, 9, 16];xi = 2.5;yi = interp1(x, y, xi, 'linear');disp(yi);```4. 数值解常微分方程数值解常微分方程是一种通过数值逼近求解常微分方程的解的方法。

matlab数值计算代码

matlab数值计算代码

matlab数值计算代码Matlab是一种强大的数值计算软件,广泛应用于科学研究、工程设计等领域。

在Matlab中,我们可以使用代码来进行各种数值计算,包括数值积分、数值求解方程、数值解微分方程等。

本文将介绍一些常见的数值计算代码,并说明其原理和应用。

一、数值积分数值积分是利用数值方法求解定积分的过程。

在Matlab中,我们可以使用simpson函数或trapz函数进行数值积分计算。

这两个函数分别采用辛普森公式和梯形公式进行数值积分近似。

例如,下面的代码使用simpson函数计算函数f(x)在区间[a,b]上的定积分:```matlaba = 0;b = 1;n = 100;x = linspace(a, b, n);y = f(x);integral = simpson(y, x);```其中,a和b分别是积分区间的上下限,n是划分区间的个数,x是划分后的区间点,y是函数在各个区间点处的函数值,integral是计算得到的定积分值。

二、数值求解方程数值求解方程是指利用数值方法求解方程的近似解。

在Matlab中,我们可以使用fzero函数或fsolve函数进行数值求解方程。

这两个函数采用不同的求解算法,可以用于求解单变量方程或多变量方程。

例如,下面的代码使用fzero函数求解方程f(x)=0:```matlabx0 = 0;x = fzero(@f, x0);```其中,x0是求解初始值,@f是函数句柄,表示要求解的方程。

x 是求解得到的近似解。

三、数值解微分方程数值解微分方程是指利用数值方法求解微分方程的近似解。

在Matlab中,我们可以使用ode45函数或ode23函数进行数值解微分方程。

这两个函数采用不同的数值方法,可以用于求解常微分方程或偏微分方程。

例如,下面的代码使用ode45函数求解常微分方程dy/dx=f(x,y):```matlabx0 = 0;y0 = 1;xspan = [0, 1];[t, y] = ode45(@f, xspan, y0);```其中,x0和y0分别是初始条件,xspan是求解区间,@f是函数句柄,表示要求解的微分方程。

数值计算方法实验指导(Matlab版)

数值计算方法实验指导(Matlab版)

《数值计算方法》实验指导(Matlab版)学院数学与统计学学院计算方法课程组《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目(1) 取1610=z ,计算z z -+1和)1/(1z z ++,验证两个相近的数相减会造成有效数字的损失.(2) 按不同顺序求一个较大的数(123)与1000个较小的数(15310-⨯)的和,验证大数吃小数的现象.(3) 分别用直接法和九韶算法计算多项式n n n n a x a x a x a x P ++++=--1110)(在x =1.00037处的值.验证简化计算步骤能减少运算时间.对于第(3)题中的多项式P (x ),直接逐项计算需要2112)1(+=+++-+n n n 次乘法和n 次加法,使用九韶算法n n a x a x a x a x a x P ++++=-)))((()(1210则只需要n 次乘法和n 次加法. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算次数以减少运算时间并降低舍入误差的积累.两相近的数相减会损失有效数字的个数,用一个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程(1) 直接计算并比较;(2) 法1:大数逐个加1000个小数,法2:先把1000个小数相加再与大数加; (3) 将由高次项到低次项的系数保存到数组A[n]中,其中n 为多项式次数.7. 结果与分析 (1) 计算的z z -+1= ,)1/(1z z ++.分析:(2) 123逐次加1000个6310-⨯的和是 ,先将1000个6310-⨯相加,再用这个和与123相加得.分析:(3) 计算次的多项式:直接计算的结果是,用时;用九韶算法计算的结果是,用时.分析:8. 附录:程序清单(1) 两个相近的数相减.%*************************************************************%* 程序名:ex1_1.m *%* 程序功能:验证两个相近的数相减会损失有效数字个数 *%*************************************************************z=1e16;x,y======================================================================(2) 大数吃小数%*************************************************************%* 程序名:ex1_2.m *%* 程序功能:验证大数吃小数的现象. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数z=123; % 大数t=3e-15; % 小数x=z; % 大数依次加小数% 重复1000次给x中加上ty=0; % 先累加小数% 重复1000次给y中加上ty=z + y; % 再加到大数x,y======================================================================(3) 九韶算法%*************************************************************%* 程序名:ex1_3.m *%* 程序功能:验证九韶算法可节省运行时间. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数A=[8,4,-1,-3,6,5,3,2,1,3,2,-1,4,3,1,-2,4,6,8,9,50,-80,12,35,7,-6,42,5,6,23,74,6 5,55,80,78,77,98,56];A(10001)=0; % 扩展到10001项,后面的都是分量0% A为多项式系数,从高次项到低次项x=1.00037;n=9000; % n为多项式次数% 直接计算begintime=clock; % 开始执行的时间 % 求x的i次幂% 累加多项式的i次项endtime=clock; % 完毕执行的时间time1=etime(endtime,begintime); % 运行时间disp('直接计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time1),'秒']);% 九韶算法计算begintime=clock; % 开始执行的时间% 累加九韶算法中的一项endtime=clock; % 完毕执行的时间time2=etime(endtime,begintime); % 运行时间disp(' ');disp('九韶算法计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time2),'秒']);《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之数值稳定性) 2. 实验题目 计算定积分⎰==-1110,1,0,d n x e xI x nn ,分别用教材例1-7推导出的算法A 和B ,其中:算法A :⎩⎨⎧≈-=-6321.0101I nI I n n 算法B :⎪⎩⎪⎨⎧≈-=-0)1(1101I I nI n n 验证算法不稳定时误差会扩大.3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应采用数值稳定性好的算法.数值稳定的算法,误差不会放大,甚至会缩小;而数值不稳定的算法会放大误差. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程分别用数组IA[ ]和IB[ ]保存两种算法计算的结果. 7. 结果与分析 运行结果:(或拷屏)8. 附录:程序清单%*************************************************************%* 程序名:ex1_4.m *%* 程序功能:验证数值稳定性算法可控制误差. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数I=[0.856, 0.144, 0.712, 0.865, ...0.538, 0.308, 0.154, 0.938, ...0.492, 0.662, 0.843];% 保留14位小数的精确值, …是Matlab中的续行符% 算法AIA(1) = 0.6321; % Matlab下标从1开始,所以要用IA(n+1)表示原问题中的I(n)% 算法Bdisp('n 算法A 算法B 精确值');for n=1:11fprintf('%2d %14.6f %14.6f %14.6f\n',n-1,IA(n),IB(n),I(n));end% n显示为2位整数, 其它显示为14位其中小数点后显示6位的小数《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则(除数绝对值不能太小) 2. 实验题目将线性方程组增广矩阵利用初等行变换可化为⎪⎪⎭⎫⎝⎛→-⎪⎪⎭⎫ ⎝⎛→-⎪⎪⎭⎫ ⎝⎛''0'0''02221112'12221121112222211121122121121b a b a r r b a b a a r r b a a b a a a a a a由此可解得'/',/'22221111a b x a b x ==.分别解增广矩阵为161011212-⎛⎫ ⎪⎝⎭和162121011-⎛⎫⎪⎝⎭的方程组,验证除数绝对值远小于被除数绝对值的除法会导致结果失真. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免除数绝对值远小于被除数绝对值的除法,否则绝对误差会被放大,使结果失真. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程用二维数组A 和B 存放方程组的增广矩阵,利用题目所给初等行变换求解方程组. 7. 结果与分析第1种顺序的方程组的解为x =,y =;第2种顺序的方程组的解为x =,y =. 分析:8. 附录:程序清单%************************************************************* %* 程 序 名:ex1_5.m * %* 程序功能:验证除数的绝对值太小可能会放大误差. * %*************************************************************clc;A=[1e-16, 1, 1; 2, 1, 2];B=[2, 1, 2; 1e-16, 1, 1]; % 增广矩阵% 方程组A% m = - a_{21}/a_{11} 是第2行加第1行的倍数% 消去a_{21}% m = - a_{12}/a_{22} 是第1行加第2行的倍数% 消去a_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组A的解: x1=',num2str(A(1,3)),', x2=',num2str(A(2,3))]); disp(' ');% 方程组B% m = - b_{21}/b_{11} 是第2行加第1行的倍数% 消去b_{21}% m = - b_{12}/b_{22} 是第1行加第2行的倍数% 消去b_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组B的解: x1=',num2str(B(1,3)),', x2=',num2str(B(2,3))]);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之简单迭代法) 2. 实验题目用简单迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握非线性方程的简单迭代法. 4. 基础理论简单迭代法:将方程0)(=x f 改写成等价形式)(x x ϕ=,从初值0x 开始,使用迭代公式)(1k k x x ϕ=+可以得到一个数列,若该数列收敛,则其极限即为原方程的解.取数列中适当的项可作为近似解. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 迭代法) 2. 实验题目用Newton 迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握求解非线性方程的Newton 迭代法. 4. 基础理论Newton 迭代法:解方程0)(=x f 的Newton 迭代公式为)(')(1k k k k x f x f x x -=+.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之对分区间法) 2. 实验题目用对分区间法求方程310x x --=在区间[1, 1.5]的一个实根,取绝对误差限为410-. 3. 实验目的掌握求解非线性方程的对分区间法. 4. 基础理论对分区间法:取[a ,b ]的中点p ,若f (p ) ≈ 0或b – a < ε,则p 为方程0)(=x f 的近似解;若f (a ) f (p ) < 0,则说明根在区间取[a ,p ]中;否则,根在区间取[p ,b ]中.将新的有根区间记为 [a 1,b 1],对该区间不断重复上述步骤,即可得到方程的近似根. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程用宏定义函数f (x );为了循环方便,得到的新的有根区间始终用[a ,b ]表示;由于新的有根区间可能仍以a 为左端点,这样会反复使用函数值f (a ),为减少运算次数,将这个函数值保存在一个变量fa 中;同样在判断新的有根区间时用到函数值f (p ),若新的有根区间以p 为左端点,则下一次用到的f (a )实际上就是现在的f (p ),为减少运算次数,将这个函数值保存在一个变量fp 中.算法的伪代码描述:Input :区间端点a ,b ;精度要求(即误差限)ε;函数f (x );最大对分次数N Output :近似解或失败信息7. 结果与分析8. 附录:程序清单说明: 源程序中带有数字的空行,对应着算法描述中的行号%**********************************************************%* 程序名:Bisection.m *%* 程序功能:使用二分法求解非线性方程. *%**********************************************************f=inline('x^3-x-1'); % 定义函数f(x)a=input('有根区间左端点: a=');b=input('右端点:b=');epsilon=input('误差限:epsilona=');N=input('最大对分次数: N=');1 % 对分次数计数器n置12 % 左端点的函数值给变量fafprintf('\n k p f(p) a(k) f(a(k))'); fprintf(' b(k) b-a\n');% 显示表头fprintf('%2d%36.6f%12.6f%12.6f%12.6f\n',0,a,fa,b,b-a);% 占2位其中0位小数显示步数0, 共12位其中小数6位显示各值3% while n≤ N 4 % 取区间中点p5% 求p 点函数值给变量fpfprintf('%2d%12.6f%12.6f',n,p,fp); % 输出迭代过程中的中点信息p 和f(p)6 % 如果f(p)=0或b-a 的一半小于误差限εfprintf('\n\n 近似解为:%f\n',p);% 则输出近似根p (7)return;% 并完毕程序 (7)89 % 计数器加110% 若f(a)与f(p)同号11% 则取右半区间为新的求根区间, 即a 取作p 12 % 保存新区间左端点的函数值 13% 否则14 % 左半区间为新的求根区间, 即b 取作p 15fprintf('%12.6f%12.6f%12.6f%12.6f\n',a,fa,b,b-a); %显示新区间端点与左端函数值、区间长度 16fprintf('\n\n 经过%d 次迭代后未达到精度要求.\n',N); % 输出错误信息(行17)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Aitken-Steffensen 加速法) 2. 实验题目用Aitken-Steffensen 加速法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉求解非线性方程的Aitken-Steffensen 加速法. 4. 基础理论将方程0)(=x f 改写成等价形式)(x x ϕ=,得到从初值0x 开始的迭代公式)(1k k x x ϕ=+后,基于迭代公式)(1k k x x ϕ=+的Aitken-Steffensen 加速法是通过“迭代-再迭代-加速”完成迭代的,具体过程为kk k k k k k k k k k x y z z y x x y z x y +---===+2)(),(),(21ϕϕ. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程为了验证Aitken-Steffensen 加速法可以把一些不收敛的迭代加速成迭代收敛,我们使用将方程组变形为31021x x -=,取迭代函数31021)(x x -=ϕ,并利用宏定义出迭代函数.由于不用保存迭代过程,所以用x0表示初值同时也存放前一步迭代的值,y 和z 是迭代过程中产生的y k 和z k ,x 存放新迭代的结果.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;迭代函数φ(x );最大迭代次数N7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Aitken_Steffensen.m * %* 程序功能:用Aitken-Steffensen 加速法求方程. * %************************************************************* clc;clear all;phi=inline('0.5 * sqrt( 10 - x^3)'); % 迭代函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon='); N=input('最大迭代次数: N=');disp(' n 迭代中间值y(n-1) 再迭代结构z(n-1) 加速后的近似值x(n)'); fprintf('%2d%54.6f\n',0,x0);% 占2位整数显示步数0, 为了对齐, 占54位小数6位显示x01 % n 是计数器2 % while n<=Ny= 3 ; % 迭代 z= 3 ; % 再迭代 x= 3 ; % 加速% x0初值与前一步的近似值, y 和z 是中间变量, x 是下一步的近似值fprintf('%2d%18.6f%18.6f%18.6f\n',n,y,z,x);%显示中间值和迭代近似值6 % 如果与上一步近似解差的绝对值不超过误差限 fprintf('\n\n 近似解 x≈x(%d)≈%f \n',n,x);% 则输出近似根 (7), 可简略为: fprintf('\n\n 近似解 x=%f',x); return; % 并完毕程序(7) 8 % 相当于endif9 % 计数器加110 % 新近似值x 作为下一次迭代的初值 11fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N); %输出错误信息(12)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 下山法) 2. 实验题目用Newton 下山法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉非线性方程的Newton 下山法. 4. 基础理论Newton 下山法:Newton 下山法公式为)(')(1k k kk k x f x f x x λ-=+,使|)(||)(|1k k x f x f <+,其中10≤<k λ.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程定义函数f(x)和df(x),其中df(x)是f(x)的导函数.每步迭代时先取下山因子为1,尝试迭代,判断尝试结果是否满足下山因子,若满足则作为这步的迭代结果;否则将下山因子减半,然后再尝试.为防止当前的x k 是极小值点,附近不会有满足下述条件的其它点,使尝试陷入死循环,同时计算机中能表示出的浮点数也有下界,因此我们设置了最大尝试次数.当超过最大尝试次数时,不再进行下山尝试.由于反复尝试迭代且要判断下山条件,所以f (x 0)和f ‘(x 0)会反复使用,为避免重复计算浪费运行时间,将这两个值分别保存在变量fx0和dfx0.而尝试产生的节点,判断下山条件时要用到它的函数值,若尝试成功,这个点会作为下一步的初值再使用,所以把该点的函数值也保存在变量fx 中.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;函数与其导函数f (x )和f’(x);最大迭代次数N ;K 下山尝试最大次数Output :近似解或失败信息7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:NewtonDownhill.m *%* 程序功能:用Newton下山法求解非线性方程. *%*************************************************************clc;clear all;f=inline('x^3-x-1'); % 函数f(x)df=inline('3*x^2-1'); % 函数f(x)的导函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');K=input('最大下山尝试次数: K=');1 % 迭代次数计数器2 % 存x0点函数值fprintf('\n\n n x(n) f(x(n))\n'); % 显示表头fprintf('%2d%14.6f%14.6f\n',0,x0,fx0); % 2位整数显示0, 共14位小数6位显示x0和fx03 % while n≤ Ndisp(''); % 换行显示下山尝试过程的表头disp(' 下山因子尝试x(n) 对应f(x(n)) 满足下山条件');disp('');4 % 存x0点导数值, 每次下山尝试不用重新计算ifdfx0==0 % 导数为0不能迭代disp(‘无法进行Newton迭代’);return;endlambda=1.0; % 下山因子从1开始尝试k=1; % k下山尝试次数计数器while k<=K % 下山最多尝试K次% 下山公式fx=f(x); % 函数值fprintf('%22.6f%14.6f%14.6f',lambda,x,fx); % 显示尝试结果if (abs(fx)<abs(fx0)) % 判断是否满足下山条件fprintf(' 满足\n');break; % 是, 则退出下山尝试的循环elsefprintf(' 不满足\n');endlambda=lambda/2; % 不是, 则下山因子减半k=k+1; % 计数器加1endif k>Kfprintf('\n 下山条件无法满足, 迭代失败.\n\n');return;endfprintf('%2d%14.6f%14.6f\n',n,x,fx);% 2位整数显示步数n, 共14位小数6位显示下步迭代结果22 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n',x); % (23)return; % 达到, 则显示结果并完毕程序(23) end % (24)% 用x0,fx0存放前一步的近似值和它的函数值, 进行循环迭代25262728fprintf('\n 迭代%d次还不满足误差要求.\n\n',N);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之弦截法) 2. 实验题目用弦截法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-. 3. 实验目的熟悉非线性方程的弦截法. 4. 基础理论将Newton 迭代法中的导数用差商代替,得到弦截法(或叫正割法)公式)()()(111k k k k k k k x f x f x f x x x x --+---=.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程不保存迭代过程,所以始终以x 0和x 1分别存放x k -1和x k ,而x 存放新产生的迭代值x k +1,这样,下一次迭代时需要把上一步的x 1(即x k )赋值于x 0(做新的x k -1).这些点的函数值会重复用到,在迭代公式中也要用到,上一步的x 1作为下一步的x 0也会再一次用它的函数值,为减少重新计算该点函数值的运行时间,将x 1点的函数值保存在变量fx1中.算法的伪代码描述:Input :初值x 0,x 1;精度要求(即误差限)ε;函数f (x );最大迭代次数N7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:SecantMethod.m *%* 程序功能:用弦截法求解非线性方程. *%*************************************************************clc;clear all;f=inline('2*x^3-5*x-1'); % 函数f(x)x0=input('第一初值: x0 = ');x1=input('第二初值: x1 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');fprintf('\n n x(n)\n'); % 显示表头fprintf('%2d%14.6f\n', 0, x0); % 占2位显示步数0, 共14位其中小数6位显示x0fprintf('%2d%14.6f\n', 1, x1); % 占2位显示步数1, 共14位其中小数6位显示x11 % 存x0点函数值2 % 存x1点函数值3 % 迭代计数器4 % while n≤ N% 弦截法公式fprintf('%2d%14.6f\n', n, x); %显示迭代过程6 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n', x);return; % 达到, 则显示结果并完毕程序89 % 原x1做x0为前两步的近似值10 % 现x做x1为一两步的近似值11 % x0点函数值12 % 计算x1点函数值, 为下一次循环13 % 计数器加1 14fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N);《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 消去法) 2. 实验题目用Gauss 消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 消去法. 4. 基础理论Gauss 消去法是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 消去法的第k 步(1≤k≤n -1)消元:若0≠kk a ,则依次将增广矩阵第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 列主元消去法) 2. 实验题目用Gauss 列主元消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 列主元消去法. 4. 基础理论Gauss 列主元消去法也是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 列主元消去法的第k 步(1≤k≤n -1)消元:先在nk k k kk a a a ,,,,1 +中找绝对值最大的,将它所在的行与第k 行交换,然后将第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Doolittle 分解) 2. 实验题目对矩阵A 进行Doolittle 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的掌握矩阵的Doolittle 分解. 4. 基础理论矩阵的Doolittle 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵和一个上三角矩阵的乘积.若设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n u u u u u u u u u u U l l ll l l L000000,1010010001333223221131211321323121则可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=+=-=∑∑-=-=1111,,2,1,/)(,,1,,k t kk tk it ik ik k r rj kr kj kj nk k i u u l a l nk k j u l a u其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)按计算公式依次计算一行u 同时计算一列l ;(2)因为计算完u ij (或l ij )后,a ij 就不再使用,为节省存储空间,将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(3)使用L 矩阵和U 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线上的元素为1,上三角部分为0,下三角部分为A 中对应的元素;U 的下三角部分为0,上三角部分为A 中对应的元素.算法的伪代码描述: Input :阶数n ;矩阵A7. 结果与分析8. 附录:程序清单%****************************************************% 程序名: Doolittle.m *% 程序功能: 矩阵LU分解中的Doolittle分解. *%****************************************************clc;clear all;n=4; % 矩阵阶数A=[6 2 1 -1;2 4 1 0; 1 1 4 -1; -1 0 -1 3]disp('A=');disp(A);% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L 在A 下三角, U 在上三角(对角线为1) enddisp('分解结果:'); disp('L='); for i=1:n for j=1:nif i>j % 在下三角部分, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));elseif i==j % 在对角线上, 则显示1 fprintf(' %8d',1);else % 在上三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 enddisp('U='); for i=1:n for j=1:nif i<=j % 在上三角部分或对角线上, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));else % 在下三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之LU 分解法) 2. 实验题目用LU 分解(Doolittle 分解)法求解线性方程组⎪⎩⎪⎨⎧=++=++=++104615631552162321321321x x x x x x x x x 3. 实验目的熟悉解线性方程组LU 分解法.4. 基础理论若将矩阵A 进行了Doolittle 分解,A = LU ,则解方程组b x A=可以分解求解两个三角方程组b y L=和y x U =.它们都可直接代入求解,其中b y L=的代入公式为∑-==-=11,,2,1,k j j kj k k n k y l b y而y x U=的代入公式为∑+=-=-=nk j kk j kjk k n n k u x uy x 11,,1,,/)( .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)Doolittle 分解过程依次计算一行u 同时计算一列l 完成,并将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(2)求解方程组的代入公式中用到的u ij 和l ij 都直接在A 的相应位置取值即可. 算法的伪代码描述:Input :阶数n ;矩阵A ;常数项向量b7. 结果与分析8. 附录:程序清单%**************************************************** % 程序名: LinearSystemByLU.m *% 程序功能: 利用LU分解(Doolittle分解)解方程组. *%****************************************************clc;clear all;n=3; % 矩阵阶数A=[1 2 6; 2 5 15; 6 15 46];b=[1;3;10];% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L在A下三角, U在上三角(对角线为1) endfor k=1:n % 用代入法求解下三角方程组Ly=by(k)=b(k);3 %∑-==-=11,,2,1,kjj kjk knkylby33enddisp('方程组Ly=b的解:y=');disp(y');for k=n:-1:1 % 回代求解上三角方程组Ux=y x(k)=y(k);6 %∑+=-=-=nkjj kjk knnkxuyx11,,1,,666 enddisp('原方程组的解:x='); disp(x');《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之Cholesky 分解) 2. 实验题目对矩阵A 进行Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A . 3. 实验目的理解矩阵的Cholesky 分解. 4. 基础理论矩阵的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个下三角矩阵L 和L 转置的乘积,即A =LL T,其中L 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t kktk it ik ik k r kr kk kk nk k i l l l a l l a l其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算一列对角线上的元素l kk ,再计算这列其他元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完l ij 后,a ij 就不再使用,为节省存储空间,将计算的l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 上三角部分为0,对角线和下三角部分为A 中对应的元素.算法的伪代码描述:Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)行号 伪代码注释1 for k ← 1 to n2∑-=-=112k r krkk kk l a l3 for i ← k to n4 ∑-=-=11/)(k t kk tk it ik ik l l l a l计算结果存放在a ij5 endfor6 endfor7return L输出L7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Cholesky.m * %* 程序功能:对称正定矩阵的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数 A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A ='); for i=1:n for j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n');% 一行完毕换行end% Cholesky 分解 for k=1:n % 计算对角线上的l _{kk}% 计算其他的l _{ik} % 和l _{ki}end % L 在A 下三角, L^T 在上三角disp('分解结果:'); disp('L='); for i=1:n for j=1:n if i>=j % 在下三角部分或对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 在上三角部分, 则显示0 fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之改进的Cholesky 分解) 2. 实验题目对矩阵A 进行改进的Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的理解矩阵改进的Cholesky 分解. 4. 基础理论矩阵的改进的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵L 和对角矩阵D 与L 转置的乘积,即A =LDL T,其中L 和D 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t k kt it t ik ik k r kr r kk k nk k i d l l d a l l d a d其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算D 的一个元素d k ,再计算L 中这列的元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完d k 和l ij 后,a kk 或a ij 就不再使用,为节省存储空间,将计算的a kk 或l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线和上三角部分为0,下三角部分为A 中对应的元素;D 对角线为A 中对应的元素,其余都是0.算法的伪代码描述: Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:ImprovedCholesky.m * %* 程序功能:对称正定矩阵的改进的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A =');for i=1:nfor j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n'); % 一行完毕换行end% Cholesky分解for k=1:n% 计算D对角线上的u_{kk}% 计算L的元素l_{ik}% 和L转置的元素l_{ki} end % L在A下三角, D在对角线disp('分解结果:');disp('L=');for i=1:nfor j=1:nif i>j % 在下三角部分, 则取A对于的元素显示fprintf('%10.4f',A(i,j));elseif i==j % 在对角线上, 则显示1fprintf('%10d',1);else % 在上三角部分, 则显示0fprintf('%10d',0);endendfprintf('\n'); % 换行enddisp('D='); for i=1:n for j=1:n if i==j % 在对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 其余显示0fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之追赶法) 2. 实验题目用追赶法求解线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----101053001210023100124321x x x x 3. 实验目的熟悉解线性方程组的追赶法. 4. 基础理论对于系数矩阵为三对角矩阵的方程组,其Crout 分解可分解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11111211122111122211n n nn n n nn n n t t t s a s a s a s b a c b a c b a c b A这样,解方程组可以由如下2步完成:“追”:,,,3,2,/)(,,/,/,1111111111n i s y a f y t a b s s c t s f y b s i i i i i i i i i i i i =-=-====-----其中:Tn f f ),,(1 为方程组的常数项,n t 没用;“赶”:.1,,2,1,,1 --=-==+n n i x t y x y x i i i i n n5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程在“追”的过程中,向量s 和y 都有n 个元素,t 只有n -1个元素,又1s 和1y 的计算公式与其它i s 和i y 不同,所以先单独计算1s 和1y ,然后在一个n -1次循环中,求其它i s 和i y 以与i t .由于在“追”的过程中,i b ,i c 和i f 在分别计算完对应的i s ,i t 和i y 后就不再使用,所以借用数组b ,c 和f 存储向量s ,t 和y ;同样在“赶”的过程中,i y 在计算完对应的i x 后就不再使用,所以再一次借用数组f 存储向量x .追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x改进的追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"s(1) = b(1);y(1) = f(1); % 先单独求s_1和y_1 for k = 1 : n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"x(n) = y(n); % 先单独求x_nfor k = n-1 : -1 : 1% 再求x_i(i=n-1,n-2, (1)endx=x' % 输出解向量-------------------------------------------------------------------------------------------------------------------改进的程序:%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"% b(1)=b(1); % s_1仍在b_1中,不用重新计算y(1)=f(1)/b(1); % 先单独y_1for k=1:n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"% f(n)=f(n); % x_n等于y_n仍在f_n中for k=n-1:-1:1% 再求x_i(i=n-1,n-2, (1)endx=f' % 输出解向量《数值计算方法》实验4报告班级:20##级####x班学号:20##2409####:##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Jacobi迭代)2. 实验题目用Jacobi迭代法求解线性方程组1231231232251223x x x x x x x x x +-=⎧⎪++=⎪⎨++=⎪⎪⎩任取3. 实验目的掌握解线性方程组的Jacobi 迭代法. 4. 基础理论将第i (n i ≤≤1)个方程i n in i i b x a x a x a =+++ 2211移项后得到等价方程ii n in i i i i i i i i i a x a x a x a x a b x /)(11,11,11------=++--便可构造出Jacobi 迭代公式,1,0,/)()()(11,)(11,)(11)1(=------=++--+k a x a x a x a x a b x ii k n in k i i i k i i i k i i k i . 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验4报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Gauss-Seidel 迭代) 2. 实验题目用Gauss-Seidel 迭代法求解线性方程组。

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算MATLAB是一种用于数值计算和科学计算的程序设计语言和环境。

它提供了各种函数和工具箱,用于处理数值计算问题,包括线性代数、数值积分、数值微分、常微分方程求解、优化、插值等。

下面将介绍如何在MATLAB中进行数值计算的基本步骤和常用函数。

首先,启动MATLAB软件,创建一个新的脚本文件(.m文件),用于编写和保存MATLAB代码。

1.数值计算基础在MATLAB中进行数值计算的基本单位是矩阵和向量。

可以使用MATLAB提供的各种函数来创建和操作矩阵和向量。

例如,可以使用"zeros"函数创建一个全零的矩阵,使用"ones"函数创建一个全一的矩阵,使用"rand"函数生成一个随机矩阵。

2.线性代数计算MATLAB提供了丰富的线性代数函数,用于处理线性方程组、矩阵运算和特征值计算等问题。

例如,可以使用"inv"函数计算矩阵的逆,使用"det"函数计算矩阵的行列式,使用"eig"函数计算矩阵的特征值和特征向量。

3.数值积分MATLAB提供了多种数值积分方法,用于计算函数的定积分。

可以使用"quad"函数进行一维数值积分,使用"quad2d"函数进行二维数值积分,使用"quad3d"函数进行三维数值积分。

4.数值微分MATLAB提供了多种数值微分方法,用于计算函数的导数和偏导数。

可以使用"diff"函数计算函数的导数,使用"gradient"函数计算函数的梯度,使用"hessian"函数计算函数的Hessian矩阵。

5.常微分方程求解MATLAB提供了多种数值方法,用于求解常微分方程组。

可以使用"ode45"函数求解一阶常微分方程,使用"ode15s"函数求解刚性常微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

function [x0,k]=bisect1(fun1,a,b,ep)if nargin<4ep=1e-5;endfa=feval(fun1,a);fb=feval(fun1,b);if fa*fb>0x0=[fa,fb];k=0;return;endk=1;while abs(b-a)/2>epx=(a+b)/2;fx=feval(fun1,x);if fx*fa<0b=x;fb=fx;elsea=x;fa=fx;k=k+1;endendx0=(a+b)/2;>> fun1=inline('x^3-x-1');>> [x0,k]=bisect1(fun1,1.3,1.4,1e-4)x0 =1.3247k =7>>简单迭代法function [x0,k]=iterate1(fun1,x0,ep,N)if nargin<4N=500;endif nargin<3ep=1e-5;endx=x0;x0=x+2*ep;while abs(x-x0)>ep & k<Nx0=x;x=feval(fun1,x0);k=k+1;endx0=x;if k==Nwarning('已达最大迭代次数')end>> fun1=inline('(x+1)^(1/3)');>> [x0,k]=iterate1(fun1,1.5)x0 =1.3247k =7>> fun1=inline('x^3-1');>> [x0,k]=iterate1(fun1,1.5)x0 =Infk =9>>Steffesen加速迭代(简单迭代法的加速)function [x0,k]=steffesen1(fun1,x0,ep,N)if nargin<4N=500;endif nargin<3ep=1e-5;endx=x0;x0=x+2*ep;k=0;while abs(x-x0)>ep & k<Nx0=x;y=feval(fun1,x0);z=feval(fun1,y);x=x0-(y-x0)^2/(z-2*y+x0);k=k+1;endx0=x;if k==Nwarning('已达最大迭代次数')end>> fun1=inline('(x+1)^(1/3)');>> [x0,k]=steffesen1(fun1,1.5)x0 =1.3247k =3>> fun1=inline('x^3-1');>> [x0,k]=steffesen1(fun1,1.5)x0 =1.3247k =6Newton迭代function [x0,k]=Newton7(fname,dfname,x0,ep,N)if nargin<5N=500;endif nargin<4ep=1e-5;endx=x0;x0=x+2*ep;k=0;while abs(x-x0)>ep & k<Nx0=x;x=x0-feval(fname,x0)/feval(dfname,x0);k=k+1;endx0=x;if k==Nwarning('已达最大迭代次数')end>> fname=inline('x-cos(x)');>> dfname=inline('1+sin(x)');>> [x0,k]=Newton7(fname,dfname,pi/4,1e-8)x0 =0.7391k =4非线性方程求根的Matlab函数调用举例:1.求多项式的根:求f(x)=x^3-x-1=0的根:>> roots([1 0 -1 -1])ans =1.3247-0.6624 + 0.5623i-0.6624 - 0.5623i2.求一般函数的根>> fun=inline('x*sin(x^2-x-1)','x')fun =Inline function:fun(x) = x*sin(x^2-x-1)>> fplot(fun,[-2 0.1]);grid on>> x=fzero(fun,[-2,-1])x =-1.5956>> x=fzero(fun,[-1 -0.1])x =-0.6180[x,f,h]=fsolve(fun,-1.6)x =-1.5956f =1.4909e-009h =1(h>0表示收敛,h<0表示发散,h=0表示已达到设定的计算函数值的最大次数)第三章:线性方程组的数值解法1. 高斯消元法function [A,x]=gauss3(A,b)%本算法用顺序高斯消元法求解线性方程组n=length(b);A=[A,b];for k=1:n-1A((k+1):n,(k+1):(n+1))=A((k+1):n,(k+1):(n+1))-A((k+1):n,k)/A(k,k)*A(k,(k+1):(n+1));A((k+1):n,k)=zeros(n-k,1);A;endx=zeros(n,1);%上面为消元过程x(n)=A(n,n+1)/A(n,n);for k=n-1:-1:1x(k)=(A(k,n+1)-A(k,(k+1):n)*x((k+1:n)))/A(k,k);end%上面为回代过程>> A=[2 3 4;3 5 2;4 3 30];>> b=[6,5,32]'b =6532>> [A,x]=gauss3(A,b)A =2.00003.00004.0000 6.00000 0.5000 -4.0000 -4.00000 0 -2.0000 -4.0000x =-1382列选主元的高斯消元法:function [A,x]=gauss5(A,b)%本算法用列选主元的高斯消元法求解线性方程组n=length(b);A=[A,b];for k=1:n-1%选主元[ap,p]=max(abs(A(k:n,k)));p=p+k-1;if p>kt=A(k,:);A(k,:)=A(p,:);A(p,:)=t;end%消元A((k+1):n,(k+1):(n+1))=A((k+1):n,(k+1):(n+1))-A((k+1):n,k)/A(k,k)*A(k,(k+1):(n+1));A((k+1):n,k)=zeros(n-k,1);end%回代x=zeros(n,1);x(n)=A(n,n+1)/A(n,n);for k=n-1:-1:1x(k)=(A(k,n+1)-A(k,(k+1):n)*x((sk+1:n)))/A(k,k);end>> A=[2 3 4;3 5 2;4 3 30]; b=[6,5,32]';>> [A,x]=gauss5(A,b)A =4.0000 3.0000 30.0000 32.00000 2.7500 -20.5000 -19.00000 0 0.1818 0.3636x =-1382三角分解法:Doolittle 分解function [L,U]=doolittle1(A)n=length(A);U=zeros(n);L=eye(n);U(1,:)=A(1,:);L(2:n,1)=A(2:n,1)/U(1,1);for k=2:nU(k,k:n)=A(k,k:n)-L(k,1:k-1)*U(1:k-1,k:n);L(k+1:n,k)=A(k+1:n,k)-L(k+1:n,1:k-1)*U(1:k-1,n)/U(k,k); Endy=zeros(n,1);x=y;y(1)=b(1);for i=2:ny(i)=b(i)-L(i,1:i-1)*y(1:i-1);endx(n)=y(n)/U(n,n);for i=n-1:-1:1x(i)=(y(i)-U(i,i+1:n)*x(i+1:n))/U(i,i);end>> A=[1 2 3;2 5 2 ;3 1 5];b=[14 18 20]';>> [L,U,x]=doolittle1(A,b)L =1 0 02 1 03 -8 1U =1 2 30 1 -40 0 -36x =2.83331.33332.8333平方根法:function [L,x]=choesky3(A,b)n=length(A);L=zeros(n);L(:,1)=A(:,1)/sqrt(A(1,1));for k=2:nL(k,k)=A(k,k)-L(k,1:k-1)*L(k,1:k-1)';L(k,k)=sqrt(L(k,k));for i=k+1:nL(i,k)=(A(i,k)-L(i,1:k-1)*L(k,1:k-1)')/L(k,k);endendy=zeros(n,1);x=y;y(1)=b(1)/L(1,1);for i=2:ny(i)=(b(i)-L(i,1:i-1)*y(1:i-1))/L(i,i);endx(n)=y(n)/L(n,n);for i=n-1:-1:1x(i)=(y(i)-L(i+1:n,i)'*x(i+1:n))/L(i,i);end>> A=[4 -1 1;-1 4.25 2.75;1 2.75 3.5]A =4.0000 -1.0000 1.0000-1.0000 4.2500 2.75001.00002.75003.5000>> b=[4 6 7.25]'b =4.00006.00007.2500[L,x]=choesky3(A,b)L =2.0000 0 0-0.5000 2.0000 00.5000 1.5000 1.0000x =111>>迭代法求方程组的解Jacobi迭代法:function [x,k]=jacobi2(a,b,x0,ep,N)%本算法用Jacobi迭代求解ax=b,用分量形式n=length(b);k=0;if nargin<5N=500;endif nargin<4ep=1e-5;endif nargin<3x0=zeros(n,1);y=zeros(n,1);endx=x0;x0=x+2*ep;while norm(x-x0,inf)>ep & k<Nk=k+1;x0=x;for i=1:ny(i)=b(i);for j=1:nif j~=iy(i)=y(i)-a(i,j)*x0(j);endendif abs(a(i,i))<1e-10|k==Nwarning('a(i,i) is too small');returnendy(i)=y(i)/a(i,i);endx=y;enda=[4 3 0;3 4 -1; 0 -1 4];b=[24 30 -24]';[x,k]=jacobi2(a,b)x =3.00004.0000-5.0000k =59Gauss-seidel迭代法:function [x,k]=gaussseide2(a,b,x0,ep,N)%本算法用Gauss-seidel迭代求解ax=b,用分量形式n=length(b);k=0;if nargin<5N=500;endif nargin<4ep=1e-5;endif nargin<3x0=zeros(n,1);y=zeros(n,1);endx=x0;x0=x+2*ep;while norm(x-x0,inf)>ep & k<Nk=k+1;x0=x;y=x;for i=1:nz(i)=b(i);for j=1:nif j~=iz(i)=z(i)-a(i,j)*x(j);endendif abs(a(i,i))<1e-10|k==Nwarning('a(i,i) is too small');returnendz(i)=z(i)/a(i,i);x(i)=z(i);endend[x,k]=gaussseide2(a,b)x =3.00004.0000-5.0000k =25最速下降法function [x,k]=zuisuxiajiang(A,b,x0,ep,N)%本算法用最速下降算法求解正定方程组Ax=b,n=length(b);if nargin<5N=500;endif nargin<4ep=1e-8;endif nargin<3x0=ones(n,1);endx=x0;x0=x+2*ep;r=b-A*x;d=r;k=0;while norm(x-x0,inf)>ep & k<Nk=k+1;x0=x;lamda=(d'*d)/(d'*A*d);x=x0+lamda*d;r=b-A*x;d=r;endif k==Nwarning('已达最大迭代次数')end共轭梯度算法function [x,k]=gongertidufa(A,b,x0,ep,N)%本算法用共轭梯度算法求解正定方程组Ax=b,,n=length(b);if nargin<5N=500;endif nargin<4ep=1e-8;endif nargin<3x0=ones(n,1);endx=x0;x0=x+2*ep;r=b-A*x;d=r;k=0;while norm(x-x0,inf)>ep & k<N k=k+1;x0=x;lamda=(r'*r)/(d'*A*d);r1=r;x=x0+lamda*d;r=b-A*x;beta=(r'*r)/(r1'*r1);d=r+beta*d;endif k==Nwarning('已达最大迭代次数') end常微分方程数值解function [x,y]=Euler1(fun,xspan,y0,h)%本算法用欧拉格式计算微分方程y'=f(x,y)的解。

相关文档
最新文档