数值计算方法课程(运用Matlab)
《数值计算方法》教学中的MATLAB应用研究初探
教学和实验 , 要求学生既要对算法有充分的了解 , 又要熟练
掌握 这 两种语 言 的语 法和 编程 技巧 ,导致 学 生和 教师 将 大
量的时间和精力都花在烦琐的程序编写 以及对各种结果的 绘图上 , 学习效果往往令人不满意。 正 ̄ / I I F O R T R A N 和c 等高 级 语使 人们 摆脱 了需要 直接 对计算 机 硬件 资源 进行操 作 一 样, 被称为第四代计算机语 言的M A T L A B , 以其简洁 的、 更 符 合 人 们 思维 习惯 的代 码 以及 强 大 的绘 图能 力 备受 青 睐 。 《 数值计算方法》 课程内容多、 课 时少 , 如果运用传统教学方 法, 有些 内容得不到细致地讲解 , 易使学生产生厌学情绪 , 收不到 良好 的教学效果。利用M A T L A B 对数值计算方法中 涉及到的算法进行设计 , 不仅高效 、 准确 , 而且可以直观地 看出结果 , 便于对算法进行整体 的描述与分析 。 M A T L A B 可 将教学中复杂的概念以及难 以用文字表达清楚的内容 , 用 图形 、 动画等形式体现出来 。 这样 , 不仅可以活跃课堂气氛 , 增强学生的学习兴趣 , 而且可以节约讲解算法所需的时间, 让 学 生在 有 限的 时间 内接受 和掌 握更 多 的知识 。
的 形式 体 现 出来 , 活跃 了课 堂 气氛 , 增 大 了学生 学 * - 7 本 课 程 的兴 趣 。 关键词 : 《 数值计算方法》 ; MA T L A B; 教 学 中图 分 类号 : G6 4 2 . 0
一
文献 标 志码 : A
文章 编 号 : 1 6 7 4 — 9 3 2 4 ( 2 0 1 3 ) 3 7 — 0 0 5 0 — 0 2
二、 MA TL AB 软 件引 入 的必要 性
如何使用MATLAB进行数值计算
如何使用MATLAB进行数值计算使用MATLAB进行数值计算一、引言数值计算是现代科学与工程领域中不可或缺的一部分,它能够解决许多实际问题,包括求解方程、优化问题和模拟实验等。
而MATLAB作为一种功能强大的数值计算软件,被广泛应用于各个领域。
本文将介绍如何使用MATLAB进行数值计算,并结合实例进行说明。
二、MATLAB基础首先,我们需要了解MATLAB的基本操作和语法,以便能够熟练运用。
MATLAB使用矩阵和数组来存储和处理数据,因此,熟悉矩阵和数组操作是非常重要的。
MATLAB中的矩阵和数组是通过方括号来定义的,例如:A = [1 2 3; 4 5 6; 7 8 9]表示一个3x3的矩阵A,其中每个元素由空格或分号隔开。
我们可以使用括号或索引来访问矩阵中的元素。
例如,要访问矩阵A的第二行第三列的元素,可以使用A(2,3)。
MATLAB提供了大量内置的数学函数,包括算术运算、三角函数、指数和对数函数等。
这些函数可以直接应用于矩阵和数组,简化了数值计算的过程。
三、方程求解方程求解是数值计算中的一个重要任务,MATLAB提供了多种方法来求解方程,包括代数方法和数值方法。
1. 代数方法对于一些简单的方程,例如一元一次方程或二次方程,可以直接使用MATLAB内置的解方程函数进行求解。
例如,对于一元一次方程ax + b = 0,可以使用solve函数来求解。
代码示例:syms x;eqn = a*x + b == 0;sol = solve(eqn, x);其中,syms x;指定x为符号变量,eqn为方程表达式,sol为方程的解。
2. 数值方法对于一些复杂的方程,无法用解析方法求解。
这时,可以使用数值方法来近似求解。
MATLAB提供了多种数值求解方法,包括二分法、牛顿法和割线法等。
这些方法可以通过迭代逼近的方式求解方程的根。
代码示例:f = @(x) x^2 - 4;x0 = 2;x = fzero(f, x0);其中,f为方程的表达式,x0为初始猜测值,x为方程的根。
使用Matlab进行数值计算和数值方法
使用Matlab进行数值计算和数值方法近年来,数值计算和数值方法在科学研究和工程实践中的重要性日益凸显。
数值计算和数值方法作为一种通过计算机模拟和近似求解数学问题的手段,已经广泛应用于各个领域,如物理学、化学、工程学、经济学等。
而Matlab作为一种常用的科学计算软件,具有简单易学、功能强大、可扩展性强等优点,成为了数值计算和数值方法的首选工具。
一、Matlab的基本使用Matlab是一种基于矩阵运算的数学软件,它提供了丰富的数值计算函数库和直观的交互式编程环境,使得数值计算变得更加简单快捷。
在使用Matlab进行数值计算时,我们首先需要了解一些基本的概念和操作。
1. 数组和矩阵Matlab中最基本的数据结构是数组和矩阵。
数组是一种只有一个维度的数据结构,而矩阵则是二维的。
我们可以使用Matlab中的命令来创建和操作数组和矩阵,例如可以使用"zeros"来创建一个全零矩阵,使用"eye"来创建一个单位矩阵,使用"rand"来创建一个随机矩阵等。
2. 数值计算函数库Matlab提供了丰富的数值计算函数库,包括数值积分、微分方程求解、线性代数运算等。
这些函数库使得我们能够轻松地进行各种数值计算操作。
例如,我们可以使用"integral"来进行数值积分,使用"ode45"来求解常微分方程,使用"eig"来计算矩阵的特征值等。
3. 图形绘制除了数值计算,Matlab还提供了强大的图形绘制功能。
我们可以使用Matlab中的绘图函数来绘制各种图形,如曲线图、散点图、三维图等。
这样可以更直观地观察和分析数值计算的结果。
二、数值方法的应用数值方法是指通过数值计算的手段来近似求解数学问题的方法。
在实际科学研究和工程实践中,常常会遇到一些复杂的数学问题,无法直接通过解析的方式求出精确解。
这时候,数值方法便可以派上用场。
《数值计算方法》教学中的MATLAB应用的方法研究
一、引言数值计算方法又称数值分析,是研究适合计算机求解的各种数学问题的近似方法及其理论。
它的内容包括函数逼近、数值微分与积分、非线性方程(组)的数值解、数值代数、常微分与偏微分方程数值解等。
这门课程起着承上启下的作用,承上是使线性代数、高等数学中的原理得以应用,方法得以实现,启下是为后续课程中数学问题的建模和求解提供方法,是高等理工科院校的重要基础课程。
如今,数值计算、理论研究及物理实验并列成为当今世界科学活动的三种主要方式。
为众多的科学与工程问题提供计算方法,提高计算的可靠性、有效性和精确性,是《数值计算方法》这门课程研究的主要内容。
在长期的教学实践中体会到在《数值计算方法》课程中做好理论内容的传授和学生实践能力的培养这两个环节非常重要。
如何合理的利用计算机软件进行有效地教与学是值得探讨的一个课题。
本文以具体教学为例,介绍了MATLAB软件在提高《数值计算方法》课堂教学质量中的具体使用。
二、MATLAB软件引入的必要性MATLAB是美国MathWorks公司自上世纪80年代中期推出的数学软件,其优秀的数值计算能力和卓越的数据可视化能力使其很快在数学软件中脱颖而出。
在欧美等高校,MATLAB已经成为线性代数、自动控制理论、数理统计、数值计算方法、动态系统仿真等高级课程的基本教学工具。
以前的《数值计算方法》课程常采用FORTRAN或者C语言进行教学和实验,要求学生既要对算法有充分的了解,又要熟练掌握这两种语言的语法和编程技巧,导致学生和教师将大量的时间和精力都花在烦琐的程序编写以及对各种结果的绘图上,学习效果往往令人不满意。
正如FORTRAN和C等高级语使人们摆脱了需要直接对计算机硬件资源进行操作一样,被称为第四代计算机语言的MATLAB,以其简洁的、更符合人们思维习惯的代码以及强大的绘图能力备受青睐。
《数值计算方法》课程内容多、课时少,如果运用传统教学方法,有些内容得不到细致地讲解,易使学生产生厌学情绪,收不到良好的教学效果。
学习使用MATLAB进行数值计算和数据分析
学习使用MATLAB进行数值计算和数据分析---第一章:MATLAB的基本介绍MATLAB是一种强大的数值计算和数据分析软件,广泛应用于科学研究、工程设计等领域。
它的主要特点是简洁直观的用户界面和丰富的数学函数库。
在本章中,我们将介绍MATLAB的基本特性和使用方法。
1.1 MATLAB的历史与发展MATLAB是由MathWorks公司于1984年首次推出的。
起初,它作为一个用于矩阵计算的工具被广泛使用。
随着时间的推移,MATLAB逐渐拓展了功能,加入了许多其他数学和工程计算的功能,如符号计算、数据统计和可视化。
如今,MATLAB已经成为一种非常受欢迎的工具。
1.2 MATLAB的安装和环境设置要开始使用MATLAB,首先需要从MathWorks官网下载并安装MATLAB软件。
安装完成后,打开MATLAB并设置工作目录和默认工作文件夹。
工作目录是指存储MATLAB代码和数据文件的文件夹,而默认工作文件夹是指MATLAB打开时默认选择的文件夹。
1.3 MATLAB的基本语法和命令MATLAB的基本语法和命令非常简单易懂。
它采用类似于其他编程语言的命令行交互方式,用户可以直接在命令行输入MATLAB语句并执行。
例如,可以输入"2+2"并按回车键得到结果4。
此外,MATLAB还具有许多内置的数学函数和运算符,可以进行各种数值计算和数据分析。
1.4 MATLAB脚本和函数在MATLAB中,可以使用脚本和函数来组织和执行一系列MATLAB命令。
脚本是一系列命令的集合,可以一次性运行。
函数是一段可以重复使用的代码,可以接受输入参数并返回输出结果。
通过编写脚本和函数,可以提高MATLAB代码的可重复性和可维护性。
第二章:数值计算MATLAB作为一种数值计算工具,提供了丰富的数学函数和算法,可以用于解决各种数值计算问题。
在本章中,我们将介绍MATLAB在数值计算方面的一些常用功能和技巧。
2.1 数值计算方法MATLAB中包含了许多数值计算方法,如数值积分、数值微分、线性代数求解等。
MATLAB数值计算教程
MATLAB数值计算教程第一章:MATLAB入门1.1 MATLAB简介MATLAB(Matrix Laboratory)是一款强大的数值计算软件,广泛用于工程、科学和金融领域。
它的特点是简单易用、高效快速,并且拥有丰富的工具箱和函数库。
1.2 MATLAB环境搭建要使用MATLAB进行数值计算,首先需要安装MATLAB软件,并进行必要的配置。
通过官方网站下载安装程序,根据提示进行安装即可。
安装完成后,打开MATLAB环境,即可开始使用。
1.3 MATLAB基本操作在MATLAB环境中,可以通过命令行窗口输入和执行命令,也可以使用脚本文件进行批量处理。
常用的基本操作包括变量赋值、算术运算、函数调用等。
例如,使用"="符号赋值变量,使用"+"、"-"、"*"、"/"等符号进行算术运算。
第二章:向量和矩阵操作2.1 向量操作在MATLAB中,向量是一种特殊的矩阵,可以通过一组有序的元素构成。
向量可以进行基本的算术运算,如加法、减法、乘法、除法,还可以进行向量的点积、叉积等操作。
可以使用内置函数和运算符来实现。
2.2 矩阵操作矩阵是MATLAB中最常用的数据结构之一,使用矩阵可以进行多个向量的组合和运算。
可以进行矩阵的加法、减法、乘法、除法等操作,也可以进行矩阵的转置、求逆、求特征值等操作。
MATLAB提供了大量的函数和工具箱来支持矩阵的操作。
第三章:数值计算方法3.1 数值积分数值积分是一种用数值方法计算定积分的方法。
在MATLAB 中,可以使用内置函数来进行数值积分,如trapz函数和quad函数。
也可以使用Simpson法则、复合辛普森法等方法实现数值积分。
3.2 数值微分数值微分是一种用数值方法计算导数的方法。
在MATLAB中,可以使用内置函数进行数值微分,如diff函数和gradient函数。
数值计算方法课程PPT(运用Matlab)
数与数组的点幂
例:x=[1 2 3]; y=[4 5 6];
x.^y =[1^4,2^5,3^6]=[1,32,729]
x.^2 =[1^2,2^ห้องสมุดไป่ตู้,3^2]=[1,4,9] 2.^x = ?
矩阵的“除法”
矩阵的除法:/、\ 右除和左除
若 A 可逆方阵,则
B/A <==> A 的逆右乘 B <==> B*inv(A) A\B <==> A 的逆左乘 B <==> inv(A)*B 通常,矩阵除法可以理解为
X=A\B <==> A*X=B X=B/A <==> X*A=B
当 A 和 B 行数相等时即可进行左除 当 A 和 B 列数相等时即可进行右除
例:设A、B满足关系式:AB=2B+A,求B。
其中A=[3 0 1; 1 1 0; 0 1 4]。
向量特殊运算介绍
min max mean 最小值 最大值 平均值 sum prod std 总和 总乘积 标准差
format 只改变变量的输出格式,但不会影响变量的值!
几个小技巧
Matlab 的命令记忆功能:上下箭头键
可以先输入命令的前几个字符,再按上下键缩小搜索范围
, then f (2) ?
矩阵
Matlab 的操作对象是 矩阵 矩阵的直接输入
例:>> A = [1 2 3; 4 5 6; 7 8 9]
矩阵用方括号“[ ]”括起 矩阵同一行中的元素之间用空格或逗号分隔 矩阵行与行之间用 分号分开 直接输入法中,分号可以用回车代替
清除当前工作空间中的变量
clear
数值计算方法matlab 第一章 误差分析
1 第一章作业1.对一个数求和100000次。
对数1以单精度方式求和,对数0.00001分别以单精度和双精度方式求和。
问题分析:单精度方式使用函数single(),双精度求和为matlab自动调整,不需要特别说明。
程序编写如下:运行结果:实验结果分析:不难看出,对于1进行单精度求和得到的结果和期望值一致,但是对0.00001进行单精度求和的结果却存在误差,对0.00001进行双进度求和,误差得到减小。
这是由于量化误差造成的,0.00001在计算机中并不能准确表示,只能对其进行量化处理,得到一个和真值有一点区别的量化值,小量计算中可以忽略,但在计算了100000后误差积累,导致了最后的结果误差较大。
双精度的情况下,该误差小得多。
当x=0.1时,从1x -开始,然后每次加入一项来分别计算。
在每加入一个新项后,计算近似百分比相对误差,直到近似误差估计值的绝对值小于与五位有效数字一致的误差准则时停止计算。
问题分析:本例中,要保证5位有效数字,因此容限误差为:256s (0.510)%510--ε=⨯=⨯近似百分比误差为: -100%a ε=⨯当前近似值前一近似值当前近似值真误差为:-100%ε=⨯真值近似值真值跳出循环的标准为:a |s |ε<ε程序编写如下:运行结果如下:3实验结果分析:实验结果表明,当计算到第6次时,近似误差就已经小于了容限值,循环结束。
随着添加多的项数,实际误差和近似误差都减小了,说明了计算精度在逐步提高。
我们可以通过改的值来调节所需要的计算精度。
变s。
如何使用Matlab技术进行数值计算
如何使用Matlab技术进行数值计算概述:Matlab是一种强大的数值计算和数据分析工具,广泛应用于科学、工程和金融等领域。
本文将介绍一些基本的Matlab技术,以帮助读者了解如何使用Matlab进行数值计算。
一、矩阵运算Matlab最大的优势之一是其强大的矩阵运算功能。
通过建立和操作矩阵,可以进行向量运算、线性方程组求解、特征值和特征向量计算等。
例如,假设我们需要解决一个线性方程组Ax=b,其中A是一个3x3的已知系数矩阵,b是一个已知向量,x是未知向量。
我们可以使用Matlab的“\”运算符来求解:x = A \ b;除此之外,Matlab还提供了许多其他的矩阵运算函数,如矩阵乘法(*)、矩阵转置(')、求逆矩阵(inv(A))等。
二、绘图和数据可视化Matlab提供了丰富的绘图函数,可以帮助我们对数据进行可视化分析。
通过绘制线图、散点图、柱状图、等高线图等,我们可以更直观地理解数据的规律和趋势。
例如,我们可以使用Matlab的“plot”函数来绘制一个简单的二维线图:x = linspace(0, 2*pi, 100);y = sin(x);plot(x, y);此外,Matlab还支持自定义图形的样式、添加标题、轴标签和图例等。
通过适当的数据可视化,我们可以更好地理解和解释数据。
三、数值积分和微分在数学和工程领域,积分和微分是常见的数值计算问题。
Matlab提供了许多函数来计算数值积分和微分,如“quad”和“diff”。
例如,我们可以使用Matlab的“quad”函数来计算一个函数在给定区间上的数值积分:f = @(x) x^2 + 2*x + 1;integral = quad(f, 0, 1);类似地,我们可以使用“diff”函数来计算一个函数在给定点上的数值导数:f = @(x) exp(x);x = linspace(0, 1, 100);dx = diff(f(x))./diff(x);四、非线性方程求解非线性方程的求解在科学和工程中经常遇到。
第6讲MATLAB的数值计算
第6讲MATLAB的数值计算MATLAB(Matrix Laboratory)是一种使用高级编程语言和环境的数值计算软件。
它的设计初衷是为了简化科学和工程的数值计算过程,提供了许多功能强大的工具和函数,可以用于解决各种数学问题。
在本讲中,我们将介绍MATLAB的数值计算功能以及如何使用它进行数据分析和数值模拟。
首先,MATLAB提供了丰富的数学函数,可以用于计算各种数学运算,如基本的加减乘除、三角函数、指数函数等。
这些函数可以直接调用,无需编写复杂的程序来实现。
例如,计算一个数的平方可以使用`sqrt(`函数,计算两个数的和可以使用`sum(`函数,计算一个矩阵的逆可以使用`inv(`函数。
此外,MATLAB还提供了一些特殊的数学函数,如贝塞尔函数、Gamma函数等,可以用于更复杂的数学计算。
其次,MATLAB提供了强大的矩阵和向量计算功能。
在MATLAB中,矩阵和向量是一种基本的数据类型,可以进行各种矩阵运算。
MATLAB提供了许多矩阵运算的函数,如矩阵乘法`*`、矩阵加法`+`、矩阵转置`'`等。
此外,MATLAB还提供了一些专门用于矩阵和向量计算的函数,如求矩阵的行列式`det(`、求矩阵的特征值`eig(`、求矩阵的秩`rank(`等。
这些函数可以帮助我们进行复杂的矩阵运算,如矩阵的特征分解、矩阵的奇异值分解等。
再次,MATLAB提供了丰富的数据分析和统计工具。
在MATLAB中,我们可以使用各种函数来对数据进行处理和分析。
例如,我们可以使用`mean(`函数来计算数据的平均值,使用`std(`函数来计算数据的标准差,使用`histogram(`函数来绘制数据的直方图等。
此外,MATLAB还提供了一些专门用于数据分析和统计的工具箱,如统计工具箱、数据拟合工具箱等。
这些工具箱提供了许多高级的数据分析方法和算法,可以帮助我们进行更深入的数据分析。
最后,MATLAB还可以用于数值模拟和求解各种数学模型。
计算方法matlab实验报告
计算方法matlab实验报告计算方法MATLAB实验报告引言:计算方法是一门研究如何用计算机来解决数学问题的学科。
在计算方法的学习过程中,MATLAB作为一种强大的数值计算软件,被广泛应用于科学计算、工程计算、数据分析等领域。
本实验报告将介绍在计算方法课程中使用MATLAB 进行的实验内容和实验结果。
一、二分法求方程根在数值计算中,求解非线性方程是一个常见的问题。
二分法是一种简单而有效的求解非线性方程根的方法。
在MATLAB中,可以通过编写函数和使用循环结构来实现二分法求解方程根。
实验步骤:1. 编写函数f(x),表示待求解的非线性方程。
2. 设定初始区间[a, b],满足f(a) * f(b) < 0。
3. 利用二分法迭代求解方程根,直到满足精度要求或迭代次数达到预设值。
实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个非线性方程的根。
例如,对于方程f(x) = x^3 - 2x - 5,我们通过二分法迭代了5次,得到了方程的一个根x ≈ 2.0946。
二、高斯消元法解线性方程组线性方程组的求解是计算方法中的重要内容之一。
高斯消元法是一种常用的求解线性方程组的方法,它通过矩阵变换将线性方程组化为上三角矩阵,从而简化求解过程。
在MATLAB中,可以利用矩阵运算和循环结构来实现高斯消元法。
实验步骤:1. 构建线性方程组的系数矩阵A和常数向量b。
2. 利用高斯消元法将系数矩阵A化为上三角矩阵U,并相应地对常数向量b进行变换。
3. 利用回代法求解上三角矩阵U,得到线性方程组的解向量x。
实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个线性方程组。
例如,对于线性方程组:2x + 3y - z = 13x - 2y + 2z = -3-x + y + 3z = 7经过高斯消元法的计算,我们得到了方程组的解x = 1,y = -2,z = 3。
三、数值积分方法数值积分是计算方法中的重要内容之一,它用于计算函数在给定区间上的定积分。
数值方法matlab版
数值方法matlab版数值方法(Numerical methods)是一种利用计算机数值计算的方法来求解数学问题的方法。
Matlab是一种常用的数值计算软件,具有强大的数值计算能力,提供了众多的数值计算函数和工具箱。
数值方法可以应用于各种数学问题的求解,如求根问题、线性方程组求解、数值积分、数值微分等。
其中最常见的数值方法有二分法、牛顿法、高斯消元法、梯度下降法、龙格-库塔法等。
以求解非线性方程为例,非线性方程的一般形式为f(x)=0。
可以使用数值方法来求解非线性方程的根。
常用的数值方法有二分法和牛顿法。
二分法是一种简单但有效的数值方法。
它通过不断将区间一分为二,找到根所在的区间,并缩小区间范围,最终求得根的近似值。
具体步骤如下:1. 输入初始区间[a, b],使得f(a)和f(b)异号,即f(a)f(b)<0。
2. 根据区间中点c=(a+b)/2,计算f(c)的值。
3. 如果f(c)≈0,则c为所求根的近似值。
4. 如果f(c)≠0,则根据f(a)f(c)的符号确定新的区间[a, c]或[c, b]。
重复步骤2-4,直到达到停止条件(如误差小于给定阈值)。
牛顿法是一种迭代法,通过不断逼近根的位置求得根的近似值。
具体步骤如下:1. 输入初始估计值x0。
2. 计算函数f(x)在x0处的导数f'(x0)。
3. 根据泰勒级数展开得到迭代公式:x1 = x0 - f(x0)/f'(x0)。
4. 判断x1与x0之间的误差是否小于给定阈值。
5. 如果误差小于给定阈值,则x1为所求根的近似值。
6. 如果误差大于给定阈值,则将x1作为新的估计值,重复步骤2-5。
Matlab中有相关的数值计算函数可以直接使用,如使用fzero函数可以直接求解非线性方程的根。
如果使用二分法求解非线性方程的根,可以编写如下的Matlab代码:Matlabfunction root = bisection(f, a, b, tol)fa = f(a);fb = f(b);% 判断初始区间是否满足条件if sign(fa) * sign(fb) >= 0error('初始区间不满足条件!');endwhile (b - a) > tolc = (a + b)/2;fc = f(c);if (fc == 0)break;elseif (sign(fa) * sign(fc) < 0)b = c;fb = fc;elsea = c;fa = fc;endendroot = (a + b)/2;end调用该函数可以求解非线性方程f(x)=x^2-2的根:Matlabf = @(x) x^2 - 2;a = 0;b = 2;tol = 1e-6;root = bisection(f, a, b, tol);disp(root);以上是关于数值方法的简单介绍以及使用Matlab求解非线性方程的示例代码。
现代数值计算方法MATLAB版教学设计
现代数值计算方法MATLAB版教学设计一、教学目标本教学设计旨在使学生能够掌握现代数值计算方法,并使用MATLAB软件进行数值计算。
具体目标如下:1.熟练掌握现代数值计算方法的理论基础;2.学会使用MATLAB软件进行数值计算,并能够利用各类数学工具箱解决实际问题;3.能够应用数值计算方法并进行分析和评估,使得数值结果更加准确可靠。
二、教学内容和教学方法1. 教学内容本课程主要包括以下部分:1.现代数值计算方法的基础知识:数值误差分析,舍入误差分析,插值与拟合问题;2.常微分方程数值解法:欧拉法、改进欧拉法、梯形法、四阶龙格库塔法等;3.偏微分方程数值解法:有限差分法、有限体积法、有限元法等;4.MATLAB数学工具箱的使用:ODE工具箱、PDE工具箱、优化工具箱等。
2. 教学方法本课程采用轮廓课程、普通课程和实验课的教学方法相结合,使得学生既能了解数值计算方法的理论基础,又能亲自动手进行数值计算并对结果进行分析和评估。
具体安排如下:1.轮廓课程:讲授现代数值计算方法的基本概念和理论知识。
2.普通课程:讲解具体的数值计算方法,并进行案例分析。
3.实验课:学生根据教材中的案例自主使用MATLAB软件进行数值计算,并对结果进行分析和评估。
三、教学评价本课程的教学评价主要包括以下方面:1.知识掌握水平:考查学生对现代数值计算方法和MATLAB软件的掌握水平。
2.分析能力:考查学生对数值计算结果的分析和评估能力。
3.实践能力:考查学生对数值计算方法的应用能力,是否能够利用相应的数学工具箱解决实际问题。
四、教学建议为了使得本课程的教学效果更好,教师可以考虑以下建议:1.建立深入浅出的教学体系,以更好地帮助学生理解数值计算方法的基本概念和理论知识。
2.加强实验课的教学质量,提高学生的实践能力。
3.增加实际应用案例,加深学生对数值计算方法和MATLAB软件的认识和理解。
4.不断更新教材和案例,以确保课程内容的科学性和实用性。
用matlab求数值问题课程设计
用matlab求数值问题课程设计一、教学目标本课程的目标是让学生掌握使用MATLAB软件解决数值问题的基本方法和技巧。
通过本课程的学习,学生应能理解数值问题的概念,熟练使用MATLAB进行数值计算,掌握常见的数值算法,并能够对计算结果进行分析和评估。
具体来说,知识目标包括:了解数值问题的基本概念和特点,掌握MATLAB的基本操作和功能,熟悉常用的数值算法。
技能目标包括:能够使用MATLAB解决常见的数值问题,能够编写简单的MATLAB程序,能够对计算结果进行分析和评估。
情感态度价值观目标包括:培养学生的科学素养,提高学生解决实际问题的能力,培养学生的创新意识和团队协作精神。
二、教学内容本课程的教学内容主要包括数值问题的基本概念和方法,MATLAB的基本操作和功能,以及常用的数值算法。
具体包括以下几个方面:1.数值问题的基本概念和方法:包括数值逼近、数值积分、数值解方程等基本概念和方法。
2.MATLAB的基本操作和功能:包括MATLAB的数据类型、运算符、矩阵操作、函数等基本操作和功能。
3.常用的数值算法:包括线性代数算法、优化算法、插值算法、数值积分算法等。
三、教学方法本课程的教学方法主要包括讲授法、案例分析法和实验法。
1.讲授法:通过教师的讲解,让学生了解和掌握数值问题的基本概念和方法,MATLAB的基本操作和功能,以及常用的数值算法。
2.案例分析法:通过分析具体的数值问题案例,让学生了解和掌握数值算法的应用和效果。
3.实验法:通过实验操作,让学生亲手实践,加深对数值问题和数值算法的理解和掌握。
四、教学资源本课程的教学资源主要包括教材、多媒体资料和实验设备。
1.教材:教材是学生学习的主要资源,应选择内容全面、难易适中的教材。
2.多媒体资料:包括PPT、视频、动画等,可以用于辅助教学,提高学生的学习兴趣和效果。
3.实验设备:包括计算机、MATLAB软件等,用于实验教学,让学生亲手实践,加深对数值问题和数值算法的理解和掌握。
MATLAB数值计算入门教程
MATLAB数值计算入门教程第一章:MATLAB基础知识1.1 MATLAB简介MATLAB是一种用于解决科学与工程问题的高级技术计算环境。
它结合了数值分析、可视化和编程,提供了强大而灵活的工具来处理各种计算任务。
本章将介绍MATLAB的基本操作和界面。
1.2 MATLAB的安装和配置首先,我们需要下载和安装MATLAB软件。
在安装过程中,可以选择安装附带的工具箱,如统计工具箱和优化工具箱,以扩展MATLAB的功能。
安装完成后,还需进行基本配置,如设置工作目录和界面外观。
1.3 MATLAB的基本语法MATLAB使用面向向量和矩阵的语言,具有简洁而强大的语法。
本节将介绍MATLAB的基本数据类型、运算符、控制结构等。
例如,MATLAB中的向量和矩阵可以通过简单的行列运算实现。
第二章:MATLAB数值计算2.1 常用数值计算函数MATLAB提供了许多常用的数值计算函数,如求解线性方程组、插值、数值积分和微分等。
本章将介绍这些函数的使用方法,并给出实例演示。
2.2 数值计算方法数值计算方法是解决数值计算问题的核心。
本节将介绍常用的数值计算方法,如迭代法、数值求解微分方程和数值优化等。
同时,我们还会介绍MATLAB中对应的函数和工具箱。
第三章:MATLAB数据可视化3.1 绘图函数数据可视化是MATLAB的一个重要功能。
MATLAB提供了丰富的绘图函数,可以绘制二维曲线、三维曲面、散点图等。
本节将介绍这些绘图函数的使用方法,并给出实例演示。
3.2 图形操作与修改除了绘制基本图形外,MATLAB还提供了对图形进行操作与修改的函数。
例如,我们可以修改坐标轴范围、添加图例和标签,以便更好地展示和解读数据。
本节将详细介绍这些图形操作的方法。
第四章:MATLAB编程与应用4.1 MATLAB脚本和函数编写MATLAB不仅是一个交互式环境,还可以编写脚本和函数来实现更复杂的计算任务。
本节将介绍MATLAB脚本和函数的编写方法,并给出实例演示。
数值计算方法实验指导(Matlab版)
《数值计算方法》实验指导(Matlab版)学院数学与统计学学院计算方法课程组《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目(1) 取1610=z ,计算z z -+1和)1/(1z z ++,验证两个相近的数相减会造成有效数字的损失.(2) 按不同顺序求一个较大的数(123)与1000个较小的数(15310-⨯)的和,验证大数吃小数的现象.(3) 分别用直接法和九韶算法计算多项式n n n n a x a x a x a x P ++++=--1110)(在x =1.00037处的值.验证简化计算步骤能减少运算时间.对于第(3)题中的多项式P (x ),直接逐项计算需要2112)1(+=+++-+n n n 次乘法和n 次加法,使用九韶算法n n a x a x a x a x a x P ++++=-)))((()(1210则只需要n 次乘法和n 次加法. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算次数以减少运算时间并降低舍入误差的积累.两相近的数相减会损失有效数字的个数,用一个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程(1) 直接计算并比较;(2) 法1:大数逐个加1000个小数,法2:先把1000个小数相加再与大数加; (3) 将由高次项到低次项的系数保存到数组A[n]中,其中n 为多项式次数.7. 结果与分析 (1) 计算的z z -+1= ,)1/(1z z ++.分析:(2) 123逐次加1000个6310-⨯的和是 ,先将1000个6310-⨯相加,再用这个和与123相加得.分析:(3) 计算次的多项式:直接计算的结果是,用时;用九韶算法计算的结果是,用时.分析:8. 附录:程序清单(1) 两个相近的数相减.%*************************************************************%* 程序名:ex1_1.m *%* 程序功能:验证两个相近的数相减会损失有效数字个数 *%*************************************************************z=1e16;x,y======================================================================(2) 大数吃小数%*************************************************************%* 程序名:ex1_2.m *%* 程序功能:验证大数吃小数的现象. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数z=123; % 大数t=3e-15; % 小数x=z; % 大数依次加小数% 重复1000次给x中加上ty=0; % 先累加小数% 重复1000次给y中加上ty=z + y; % 再加到大数x,y======================================================================(3) 九韶算法%*************************************************************%* 程序名:ex1_3.m *%* 程序功能:验证九韶算法可节省运行时间. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数A=[8,4,-1,-3,6,5,3,2,1,3,2,-1,4,3,1,-2,4,6,8,9,50,-80,12,35,7,-6,42,5,6,23,74,6 5,55,80,78,77,98,56];A(10001)=0; % 扩展到10001项,后面的都是分量0% A为多项式系数,从高次项到低次项x=1.00037;n=9000; % n为多项式次数% 直接计算begintime=clock; % 开始执行的时间 % 求x的i次幂% 累加多项式的i次项endtime=clock; % 完毕执行的时间time1=etime(endtime,begintime); % 运行时间disp('直接计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time1),'秒']);% 九韶算法计算begintime=clock; % 开始执行的时间% 累加九韶算法中的一项endtime=clock; % 完毕执行的时间time2=etime(endtime,begintime); % 运行时间disp(' ');disp('九韶算法计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time2),'秒']);《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之数值稳定性) 2. 实验题目 计算定积分⎰==-1110,1,0,d n x e xI x nn ,分别用教材例1-7推导出的算法A 和B ,其中:算法A :⎩⎨⎧≈-=-6321.0101I nI I n n 算法B :⎪⎩⎪⎨⎧≈-=-0)1(1101I I nI n n 验证算法不稳定时误差会扩大.3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应采用数值稳定性好的算法.数值稳定的算法,误差不会放大,甚至会缩小;而数值不稳定的算法会放大误差. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程分别用数组IA[ ]和IB[ ]保存两种算法计算的结果. 7. 结果与分析 运行结果:(或拷屏)8. 附录:程序清单%*************************************************************%* 程序名:ex1_4.m *%* 程序功能:验证数值稳定性算法可控制误差. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数I=[0.856, 0.144, 0.712, 0.865, ...0.538, 0.308, 0.154, 0.938, ...0.492, 0.662, 0.843];% 保留14位小数的精确值, …是Matlab中的续行符% 算法AIA(1) = 0.6321; % Matlab下标从1开始,所以要用IA(n+1)表示原问题中的I(n)% 算法Bdisp('n 算法A 算法B 精确值');for n=1:11fprintf('%2d %14.6f %14.6f %14.6f\n',n-1,IA(n),IB(n),I(n));end% n显示为2位整数, 其它显示为14位其中小数点后显示6位的小数《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则(除数绝对值不能太小) 2. 实验题目将线性方程组增广矩阵利用初等行变换可化为⎪⎪⎭⎫⎝⎛→-⎪⎪⎭⎫ ⎝⎛→-⎪⎪⎭⎫ ⎝⎛''0'0''02221112'12221121112222211121122121121b a b a r r b a b a a r r b a a b a a a a a a由此可解得'/',/'22221111a b x a b x ==.分别解增广矩阵为161011212-⎛⎫ ⎪⎝⎭和162121011-⎛⎫⎪⎝⎭的方程组,验证除数绝对值远小于被除数绝对值的除法会导致结果失真. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免除数绝对值远小于被除数绝对值的除法,否则绝对误差会被放大,使结果失真. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程用二维数组A 和B 存放方程组的增广矩阵,利用题目所给初等行变换求解方程组. 7. 结果与分析第1种顺序的方程组的解为x =,y =;第2种顺序的方程组的解为x =,y =. 分析:8. 附录:程序清单%************************************************************* %* 程 序 名:ex1_5.m * %* 程序功能:验证除数的绝对值太小可能会放大误差. * %*************************************************************clc;A=[1e-16, 1, 1; 2, 1, 2];B=[2, 1, 2; 1e-16, 1, 1]; % 增广矩阵% 方程组A% m = - a_{21}/a_{11} 是第2行加第1行的倍数% 消去a_{21}% m = - a_{12}/a_{22} 是第1行加第2行的倍数% 消去a_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组A的解: x1=',num2str(A(1,3)),', x2=',num2str(A(2,3))]); disp(' ');% 方程组B% m = - b_{21}/b_{11} 是第2行加第1行的倍数% 消去b_{21}% m = - b_{12}/b_{22} 是第1行加第2行的倍数% 消去b_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组B的解: x1=',num2str(B(1,3)),', x2=',num2str(B(2,3))]);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之简单迭代法) 2. 实验题目用简单迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握非线性方程的简单迭代法. 4. 基础理论简单迭代法:将方程0)(=x f 改写成等价形式)(x x ϕ=,从初值0x 开始,使用迭代公式)(1k k x x ϕ=+可以得到一个数列,若该数列收敛,则其极限即为原方程的解.取数列中适当的项可作为近似解. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 迭代法) 2. 实验题目用Newton 迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握求解非线性方程的Newton 迭代法. 4. 基础理论Newton 迭代法:解方程0)(=x f 的Newton 迭代公式为)(')(1k k k k x f x f x x -=+.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之对分区间法) 2. 实验题目用对分区间法求方程310x x --=在区间[1, 1.5]的一个实根,取绝对误差限为410-. 3. 实验目的掌握求解非线性方程的对分区间法. 4. 基础理论对分区间法:取[a ,b ]的中点p ,若f (p ) ≈ 0或b – a < ε,则p 为方程0)(=x f 的近似解;若f (a ) f (p ) < 0,则说明根在区间取[a ,p ]中;否则,根在区间取[p ,b ]中.将新的有根区间记为 [a 1,b 1],对该区间不断重复上述步骤,即可得到方程的近似根. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程用宏定义函数f (x );为了循环方便,得到的新的有根区间始终用[a ,b ]表示;由于新的有根区间可能仍以a 为左端点,这样会反复使用函数值f (a ),为减少运算次数,将这个函数值保存在一个变量fa 中;同样在判断新的有根区间时用到函数值f (p ),若新的有根区间以p 为左端点,则下一次用到的f (a )实际上就是现在的f (p ),为减少运算次数,将这个函数值保存在一个变量fp 中.算法的伪代码描述:Input :区间端点a ,b ;精度要求(即误差限)ε;函数f (x );最大对分次数N Output :近似解或失败信息7. 结果与分析8. 附录:程序清单说明: 源程序中带有数字的空行,对应着算法描述中的行号%**********************************************************%* 程序名:Bisection.m *%* 程序功能:使用二分法求解非线性方程. *%**********************************************************f=inline('x^3-x-1'); % 定义函数f(x)a=input('有根区间左端点: a=');b=input('右端点:b=');epsilon=input('误差限:epsilona=');N=input('最大对分次数: N=');1 % 对分次数计数器n置12 % 左端点的函数值给变量fafprintf('\n k p f(p) a(k) f(a(k))'); fprintf(' b(k) b-a\n');% 显示表头fprintf('%2d%36.6f%12.6f%12.6f%12.6f\n',0,a,fa,b,b-a);% 占2位其中0位小数显示步数0, 共12位其中小数6位显示各值3% while n≤ N 4 % 取区间中点p5% 求p 点函数值给变量fpfprintf('%2d%12.6f%12.6f',n,p,fp); % 输出迭代过程中的中点信息p 和f(p)6 % 如果f(p)=0或b-a 的一半小于误差限εfprintf('\n\n 近似解为:%f\n',p);% 则输出近似根p (7)return;% 并完毕程序 (7)89 % 计数器加110% 若f(a)与f(p)同号11% 则取右半区间为新的求根区间, 即a 取作p 12 % 保存新区间左端点的函数值 13% 否则14 % 左半区间为新的求根区间, 即b 取作p 15fprintf('%12.6f%12.6f%12.6f%12.6f\n',a,fa,b,b-a); %显示新区间端点与左端函数值、区间长度 16fprintf('\n\n 经过%d 次迭代后未达到精度要求.\n',N); % 输出错误信息(行17)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Aitken-Steffensen 加速法) 2. 实验题目用Aitken-Steffensen 加速法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉求解非线性方程的Aitken-Steffensen 加速法. 4. 基础理论将方程0)(=x f 改写成等价形式)(x x ϕ=,得到从初值0x 开始的迭代公式)(1k k x x ϕ=+后,基于迭代公式)(1k k x x ϕ=+的Aitken-Steffensen 加速法是通过“迭代-再迭代-加速”完成迭代的,具体过程为kk k k k k k k k k k x y z z y x x y z x y +---===+2)(),(),(21ϕϕ. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程为了验证Aitken-Steffensen 加速法可以把一些不收敛的迭代加速成迭代收敛,我们使用将方程组变形为31021x x -=,取迭代函数31021)(x x -=ϕ,并利用宏定义出迭代函数.由于不用保存迭代过程,所以用x0表示初值同时也存放前一步迭代的值,y 和z 是迭代过程中产生的y k 和z k ,x 存放新迭代的结果.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;迭代函数φ(x );最大迭代次数N7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Aitken_Steffensen.m * %* 程序功能:用Aitken-Steffensen 加速法求方程. * %************************************************************* clc;clear all;phi=inline('0.5 * sqrt( 10 - x^3)'); % 迭代函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon='); N=input('最大迭代次数: N=');disp(' n 迭代中间值y(n-1) 再迭代结构z(n-1) 加速后的近似值x(n)'); fprintf('%2d%54.6f\n',0,x0);% 占2位整数显示步数0, 为了对齐, 占54位小数6位显示x01 % n 是计数器2 % while n<=Ny= 3 ; % 迭代 z= 3 ; % 再迭代 x= 3 ; % 加速% x0初值与前一步的近似值, y 和z 是中间变量, x 是下一步的近似值fprintf('%2d%18.6f%18.6f%18.6f\n',n,y,z,x);%显示中间值和迭代近似值6 % 如果与上一步近似解差的绝对值不超过误差限 fprintf('\n\n 近似解 x≈x(%d)≈%f \n',n,x);% 则输出近似根 (7), 可简略为: fprintf('\n\n 近似解 x=%f',x); return; % 并完毕程序(7) 8 % 相当于endif9 % 计数器加110 % 新近似值x 作为下一次迭代的初值 11fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N); %输出错误信息(12)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 下山法) 2. 实验题目用Newton 下山法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉非线性方程的Newton 下山法. 4. 基础理论Newton 下山法:Newton 下山法公式为)(')(1k k kk k x f x f x x λ-=+,使|)(||)(|1k k x f x f <+,其中10≤<k λ.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程定义函数f(x)和df(x),其中df(x)是f(x)的导函数.每步迭代时先取下山因子为1,尝试迭代,判断尝试结果是否满足下山因子,若满足则作为这步的迭代结果;否则将下山因子减半,然后再尝试.为防止当前的x k 是极小值点,附近不会有满足下述条件的其它点,使尝试陷入死循环,同时计算机中能表示出的浮点数也有下界,因此我们设置了最大尝试次数.当超过最大尝试次数时,不再进行下山尝试.由于反复尝试迭代且要判断下山条件,所以f (x 0)和f ‘(x 0)会反复使用,为避免重复计算浪费运行时间,将这两个值分别保存在变量fx0和dfx0.而尝试产生的节点,判断下山条件时要用到它的函数值,若尝试成功,这个点会作为下一步的初值再使用,所以把该点的函数值也保存在变量fx 中.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;函数与其导函数f (x )和f’(x);最大迭代次数N ;K 下山尝试最大次数Output :近似解或失败信息7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:NewtonDownhill.m *%* 程序功能:用Newton下山法求解非线性方程. *%*************************************************************clc;clear all;f=inline('x^3-x-1'); % 函数f(x)df=inline('3*x^2-1'); % 函数f(x)的导函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');K=input('最大下山尝试次数: K=');1 % 迭代次数计数器2 % 存x0点函数值fprintf('\n\n n x(n) f(x(n))\n'); % 显示表头fprintf('%2d%14.6f%14.6f\n',0,x0,fx0); % 2位整数显示0, 共14位小数6位显示x0和fx03 % while n≤ Ndisp(''); % 换行显示下山尝试过程的表头disp(' 下山因子尝试x(n) 对应f(x(n)) 满足下山条件');disp('');4 % 存x0点导数值, 每次下山尝试不用重新计算ifdfx0==0 % 导数为0不能迭代disp(‘无法进行Newton迭代’);return;endlambda=1.0; % 下山因子从1开始尝试k=1; % k下山尝试次数计数器while k<=K % 下山最多尝试K次% 下山公式fx=f(x); % 函数值fprintf('%22.6f%14.6f%14.6f',lambda,x,fx); % 显示尝试结果if (abs(fx)<abs(fx0)) % 判断是否满足下山条件fprintf(' 满足\n');break; % 是, 则退出下山尝试的循环elsefprintf(' 不满足\n');endlambda=lambda/2; % 不是, 则下山因子减半k=k+1; % 计数器加1endif k>Kfprintf('\n 下山条件无法满足, 迭代失败.\n\n');return;endfprintf('%2d%14.6f%14.6f\n',n,x,fx);% 2位整数显示步数n, 共14位小数6位显示下步迭代结果22 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n',x); % (23)return; % 达到, 则显示结果并完毕程序(23) end % (24)% 用x0,fx0存放前一步的近似值和它的函数值, 进行循环迭代25262728fprintf('\n 迭代%d次还不满足误差要求.\n\n',N);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之弦截法) 2. 实验题目用弦截法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-. 3. 实验目的熟悉非线性方程的弦截法. 4. 基础理论将Newton 迭代法中的导数用差商代替,得到弦截法(或叫正割法)公式)()()(111k k k k k k k x f x f x f x x x x --+---=.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程不保存迭代过程,所以始终以x 0和x 1分别存放x k -1和x k ,而x 存放新产生的迭代值x k +1,这样,下一次迭代时需要把上一步的x 1(即x k )赋值于x 0(做新的x k -1).这些点的函数值会重复用到,在迭代公式中也要用到,上一步的x 1作为下一步的x 0也会再一次用它的函数值,为减少重新计算该点函数值的运行时间,将x 1点的函数值保存在变量fx1中.算法的伪代码描述:Input :初值x 0,x 1;精度要求(即误差限)ε;函数f (x );最大迭代次数N7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:SecantMethod.m *%* 程序功能:用弦截法求解非线性方程. *%*************************************************************clc;clear all;f=inline('2*x^3-5*x-1'); % 函数f(x)x0=input('第一初值: x0 = ');x1=input('第二初值: x1 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');fprintf('\n n x(n)\n'); % 显示表头fprintf('%2d%14.6f\n', 0, x0); % 占2位显示步数0, 共14位其中小数6位显示x0fprintf('%2d%14.6f\n', 1, x1); % 占2位显示步数1, 共14位其中小数6位显示x11 % 存x0点函数值2 % 存x1点函数值3 % 迭代计数器4 % while n≤ N% 弦截法公式fprintf('%2d%14.6f\n', n, x); %显示迭代过程6 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n', x);return; % 达到, 则显示结果并完毕程序89 % 原x1做x0为前两步的近似值10 % 现x做x1为一两步的近似值11 % x0点函数值12 % 计算x1点函数值, 为下一次循环13 % 计数器加1 14fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N);《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 消去法) 2. 实验题目用Gauss 消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 消去法. 4. 基础理论Gauss 消去法是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 消去法的第k 步(1≤k≤n -1)消元:若0≠kk a ,则依次将增广矩阵第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 列主元消去法) 2. 实验题目用Gauss 列主元消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 列主元消去法. 4. 基础理论Gauss 列主元消去法也是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 列主元消去法的第k 步(1≤k≤n -1)消元:先在nk k k kk a a a ,,,,1 +中找绝对值最大的,将它所在的行与第k 行交换,然后将第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Doolittle 分解) 2. 实验题目对矩阵A 进行Doolittle 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的掌握矩阵的Doolittle 分解. 4. 基础理论矩阵的Doolittle 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵和一个上三角矩阵的乘积.若设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n u u u u u u u u u u U l l ll l l L000000,1010010001333223221131211321323121则可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=+=-=∑∑-=-=1111,,2,1,/)(,,1,,k t kk tk it ik ik k r rj kr kj kj nk k i u u l a l nk k j u l a u其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)按计算公式依次计算一行u 同时计算一列l ;(2)因为计算完u ij (或l ij )后,a ij 就不再使用,为节省存储空间,将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(3)使用L 矩阵和U 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线上的元素为1,上三角部分为0,下三角部分为A 中对应的元素;U 的下三角部分为0,上三角部分为A 中对应的元素.算法的伪代码描述: Input :阶数n ;矩阵A7. 结果与分析8. 附录:程序清单%****************************************************% 程序名: Doolittle.m *% 程序功能: 矩阵LU分解中的Doolittle分解. *%****************************************************clc;clear all;n=4; % 矩阵阶数A=[6 2 1 -1;2 4 1 0; 1 1 4 -1; -1 0 -1 3]disp('A=');disp(A);% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L 在A 下三角, U 在上三角(对角线为1) enddisp('分解结果:'); disp('L='); for i=1:n for j=1:nif i>j % 在下三角部分, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));elseif i==j % 在对角线上, 则显示1 fprintf(' %8d',1);else % 在上三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 enddisp('U='); for i=1:n for j=1:nif i<=j % 在上三角部分或对角线上, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));else % 在下三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之LU 分解法) 2. 实验题目用LU 分解(Doolittle 分解)法求解线性方程组⎪⎩⎪⎨⎧=++=++=++104615631552162321321321x x x x x x x x x 3. 实验目的熟悉解线性方程组LU 分解法.4. 基础理论若将矩阵A 进行了Doolittle 分解,A = LU ,则解方程组b x A=可以分解求解两个三角方程组b y L=和y x U =.它们都可直接代入求解,其中b y L=的代入公式为∑-==-=11,,2,1,k j j kj k k n k y l b y而y x U=的代入公式为∑+=-=-=nk j kk j kjk k n n k u x uy x 11,,1,,/)( .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)Doolittle 分解过程依次计算一行u 同时计算一列l 完成,并将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(2)求解方程组的代入公式中用到的u ij 和l ij 都直接在A 的相应位置取值即可. 算法的伪代码描述:Input :阶数n ;矩阵A ;常数项向量b7. 结果与分析8. 附录:程序清单%**************************************************** % 程序名: LinearSystemByLU.m *% 程序功能: 利用LU分解(Doolittle分解)解方程组. *%****************************************************clc;clear all;n=3; % 矩阵阶数A=[1 2 6; 2 5 15; 6 15 46];b=[1;3;10];% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L在A下三角, U在上三角(对角线为1) endfor k=1:n % 用代入法求解下三角方程组Ly=by(k)=b(k);3 %∑-==-=11,,2,1,kjj kjk knkylby33enddisp('方程组Ly=b的解:y=');disp(y');for k=n:-1:1 % 回代求解上三角方程组Ux=y x(k)=y(k);6 %∑+=-=-=nkjj kjk knnkxuyx11,,1,,666 enddisp('原方程组的解:x='); disp(x');《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之Cholesky 分解) 2. 实验题目对矩阵A 进行Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A . 3. 实验目的理解矩阵的Cholesky 分解. 4. 基础理论矩阵的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个下三角矩阵L 和L 转置的乘积,即A =LL T,其中L 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t kktk it ik ik k r kr kk kk nk k i l l l a l l a l其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算一列对角线上的元素l kk ,再计算这列其他元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完l ij 后,a ij 就不再使用,为节省存储空间,将计算的l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 上三角部分为0,对角线和下三角部分为A 中对应的元素.算法的伪代码描述:Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)行号 伪代码注释1 for k ← 1 to n2∑-=-=112k r krkk kk l a l3 for i ← k to n4 ∑-=-=11/)(k t kk tk it ik ik l l l a l计算结果存放在a ij5 endfor6 endfor7return L输出L7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Cholesky.m * %* 程序功能:对称正定矩阵的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数 A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A ='); for i=1:n for j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n');% 一行完毕换行end% Cholesky 分解 for k=1:n % 计算对角线上的l _{kk}% 计算其他的l _{ik} % 和l _{ki}end % L 在A 下三角, L^T 在上三角disp('分解结果:'); disp('L='); for i=1:n for j=1:n if i>=j % 在下三角部分或对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 在上三角部分, 则显示0 fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之改进的Cholesky 分解) 2. 实验题目对矩阵A 进行改进的Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的理解矩阵改进的Cholesky 分解. 4. 基础理论矩阵的改进的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵L 和对角矩阵D 与L 转置的乘积,即A =LDL T,其中L 和D 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t k kt it t ik ik k r kr r kk k nk k i d l l d a l l d a d其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算D 的一个元素d k ,再计算L 中这列的元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完d k 和l ij 后,a kk 或a ij 就不再使用,为节省存储空间,将计算的a kk 或l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线和上三角部分为0,下三角部分为A 中对应的元素;D 对角线为A 中对应的元素,其余都是0.算法的伪代码描述: Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:ImprovedCholesky.m * %* 程序功能:对称正定矩阵的改进的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A =');for i=1:nfor j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n'); % 一行完毕换行end% Cholesky分解for k=1:n% 计算D对角线上的u_{kk}% 计算L的元素l_{ik}% 和L转置的元素l_{ki} end % L在A下三角, D在对角线disp('分解结果:');disp('L=');for i=1:nfor j=1:nif i>j % 在下三角部分, 则取A对于的元素显示fprintf('%10.4f',A(i,j));elseif i==j % 在对角线上, 则显示1fprintf('%10d',1);else % 在上三角部分, 则显示0fprintf('%10d',0);endendfprintf('\n'); % 换行enddisp('D='); for i=1:n for j=1:n if i==j % 在对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 其余显示0fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之追赶法) 2. 实验题目用追赶法求解线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----101053001210023100124321x x x x 3. 实验目的熟悉解线性方程组的追赶法. 4. 基础理论对于系数矩阵为三对角矩阵的方程组,其Crout 分解可分解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11111211122111122211n n nn n n nn n n t t t s a s a s a s b a c b a c b a c b A这样,解方程组可以由如下2步完成:“追”:,,,3,2,/)(,,/,/,1111111111n i s y a f y t a b s s c t s f y b s i i i i i i i i i i i i =-=-====-----其中:Tn f f ),,(1 为方程组的常数项,n t 没用;“赶”:.1,,2,1,,1 --=-==+n n i x t y x y x i i i i n n5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程在“追”的过程中,向量s 和y 都有n 个元素,t 只有n -1个元素,又1s 和1y 的计算公式与其它i s 和i y 不同,所以先单独计算1s 和1y ,然后在一个n -1次循环中,求其它i s 和i y 以与i t .由于在“追”的过程中,i b ,i c 和i f 在分别计算完对应的i s ,i t 和i y 后就不再使用,所以借用数组b ,c 和f 存储向量s ,t 和y ;同样在“赶”的过程中,i y 在计算完对应的i x 后就不再使用,所以再一次借用数组f 存储向量x .追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x改进的追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"s(1) = b(1);y(1) = f(1); % 先单独求s_1和y_1 for k = 1 : n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"x(n) = y(n); % 先单独求x_nfor k = n-1 : -1 : 1% 再求x_i(i=n-1,n-2, (1)endx=x' % 输出解向量-------------------------------------------------------------------------------------------------------------------改进的程序:%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"% b(1)=b(1); % s_1仍在b_1中,不用重新计算y(1)=f(1)/b(1); % 先单独y_1for k=1:n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"% f(n)=f(n); % x_n等于y_n仍在f_n中for k=n-1:-1:1% 再求x_i(i=n-1,n-2, (1)endx=f' % 输出解向量《数值计算方法》实验4报告班级:20##级####x班学号:20##2409####:##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Jacobi迭代)2. 实验题目用Jacobi迭代法求解线性方程组1231231232251223x x x x x x x x x +-=⎧⎪++=⎪⎨++=⎪⎪⎩任取3. 实验目的掌握解线性方程组的Jacobi 迭代法. 4. 基础理论将第i (n i ≤≤1)个方程i n in i i b x a x a x a =+++ 2211移项后得到等价方程ii n in i i i i i i i i i a x a x a x a x a b x /)(11,11,11------=++--便可构造出Jacobi 迭代公式,1,0,/)()()(11,)(11,)(11)1(=------=++--+k a x a x a x a x a b x ii k n in k i i i k i i i k i i k i . 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验4报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Gauss-Seidel 迭代) 2. 实验题目用Gauss-Seidel 迭代法求解线性方程组。
利用MATLAB进行数值计算与数值方法分析
利用MATLAB进行数值计算与数值方法分析一、引言数值计算是一种通过数值方法来解决实际问题的方法,它在科学工程领域中得到广泛的应用。
而MATLAB作为一种强大的数值计算工具,在数值计算和数值方法的分析中扮演着重要的角色。
本文将讨论利用MATLAB进行数值计算与数值方法分析的一些基本原理与实践方法。
二、MATLAB的基本特点MATLAB是一种高级的计算机语言和环境,具有以下几个基本特点:1.丰富的数学函数库:MATLAB内置了大量的数值分析和数学运算函数,可以方便地进行各种数值计算和数学运算。
2.灵活的矩阵操作:MATLAB以矩阵作为基本的数据类型,可以进行矩阵的各种运算和操作,方便处理线性方程组和矩阵运算等问题。
3.强大的绘图功能:MATLAB具有强大的绘图功能,可以制作各种二维和三维的图形,方便进行数据的可视化分析。
4.友好的交互式界面:MATLAB提供了友好的交互式界面,用户可以方便地输入和执行各种命令,实时查看结果。
三、数值计算与数值方法分析数值计算是利用计算机进行数值运算和数学计算的过程,通常将实际问题转化为数学模型,然后利用数值方法求解这些模型。
数值方法是一种通过数值计算来近似解决实际问题的方法,常用的数值方法包括数值逼近、数值积分、差分法、数值解微分方程等。
在实际应用中,我们通常会遇到各种实际问题,如求解非线性方程、求解线性方程组、数值积分、数值微分、函数逼近、曲线拟合、数据插值等。
对于这些问题,我们可以利用MATLAB提供的数值计算工具和数值方法进行分析和求解。
四、数值计算的基本步骤进行数值计算通常需要经过以下几个基本步骤:1.问题建模:将实际问题转化为数学模型,并定义相应的变量、参数和初始条件。
2.选择数值方法:根据问题的特点和要求,选择适当的数值方法进行求解,如牛顿法、二分法、高斯消去法、龙格-库塔法等。
3.编程实现:利用MATLAB编写程序实现所选择的数值方法,将问题具体化为计算机可以理解的指令。
数值计算方法学习课程(运用Matlab)讲义共97页
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab 的特点与功能
Matlab 符号计算功能强大
Matlab 的绘图功能强大
Matlab提供丰富的绘图命令, 很方便实现数据的可视化
Matlab 的编程功能
Matlab简单易学、编程效率高。
Matlab 丰富的工具箱(toolbox)
根据专门领域中的特殊需要而设计的各种可选工具箱
MATLAB快速入门
1
编程环境
编程入门 绘图
2
3
Matlab 简介
Matlab是一种广泛应用于工程 计算及数值分析领域的新型高级 语言,现已成为国际公认的最优 秀的工程应用开发环境。 Matlab 提供了强大的科学计算、灵活的程序设计流 程、高质量的图形可视化与界面设计等功能,被广泛 应用于科学计算、控制系统、信息处理等领域的分析、 仿真和毕业设计。Matlab 功能强大、简单易学、
数与算术表达式
Matlab 中的数默认是双精度实数,表示方法同 C 语言 3, -9, 0.4, 1.603e-12, 3.23e+20
浮点运算的相对误差为 eps 浮点数表示范围为:10-308 ~ 10308 复数的输入 z=3+4i (4 与 i 之间不能有空格) z=3+4*i
acosh 反双曲余弦函数 atanh sqrt log log10 log2 反双曲正切函数 平方根函数 自然对数函数 常用对数函数 以2为底的对数函数
简单实例
练习:
①求29的自然对数和无理数e的 值 3 x x 2 e 6 . 3 ② f() x , t h e n f( 2 ) ? 2 x l n ( x 0 . 5 )
cos(0),2^10,2+4i A=[1 2 3;2 4 6;3 6 9] det(A) t=0:pi/100:2*pi; y=sin(t); plot(t,y,'r*')
Matlab 变量
变量命名原则
以字母开头:x1,y,千万不要以数字开头 后面可以跟 字母、数字 和 下划线
变量名称区分字母的 大小 写,比如Abc和abc不同 字母间不可留空格,可以用下划线math_score Matlab 语句的通常形式 变量=表达式
Symbolic Math PDE Optimization Signal process Image Process Statistics Control System System Identification
……
Matlab 的基本用法
Matlab 系统的启动
双击 桌面上的Matlab 快捷图标
Matlab 数值运算
数学运算符
+ 加法 - 减法 * 乘法 / 和 \ 除法(右除和左除) ^ 幂运算
.*
./
.\
.^ 点运算
常用数学函数
函数名 sin cos tan asin acos 含 义 正弦函数 余弦函数 正切函数 反正弦函数 反余弦函数 函数名 exp pow2 abs angle real 含 义 自然指数函数 2的幂 绝对值函数 复数的幅角 复数的实部
矩阵
Matlab 的操作对象是 矩阵 矩阵的直接输入
例:>> A = [1 2 3; 4 5 6; 7 8 9]
矩阵用方括号“[ ]”括起 矩阵同一行中的元素之间用空格或逗号分隔 矩阵行与行之间用 分号分开 直接输入法中,分号可以用回车代替
矩阵下标
矩阵元素的引用
单个元素的引用
编程效率高,深受广大科技工作者的欢迎。
感受Matlab
A=magic(3),det(A),inv(A) ,eig(A) 求的根 f (x) = x*exp(x^2) 的10次导数, 在区间【0,1】上的积分等运算 x=syms x f= x*exp(x^2) diff(f ,x,10) int(f,x,0,1) 绘图
Matlab 的工作界面
当前工 作目录 命令 提示符 当前工 作空间 命令窗口
输入命令的 历史记录
Matlab 的命令窗口
交互式的命令执行方式
在Command Window内的提示符(>>)之后 输入运算式,并按 Enter 键即可 缺省变量名 「ans」
若不想在屏幕上输出结果,可以在语句最后加分号
Matlab: Matrix Laboratry
Matlab 是一个交互式软件系统
输入一条命令,立即就可以得出该命令的结果
Matlab 具有很强的数值计算功能
Matlab 以矩阵作为数据操作的基本单位,但无需 预先指定矩阵维数(动态定维)
提供十分丰富的数值计算函数,方便计算,提高效率 简便易学:Matlab 命令与数学中的符号、公式非 常接近,可读性强,容易掌握
使用 Windows “开始” 菜单→程序→MATLAB7.0 →MATLAB7.0
Matlab 系统的退出
在 Matlab 主窗口 File 菜单中选择 Exit Matlab 命令 在 Matlab 命令窗口输入 exit 或 quit 命令 单击 Matlab 主窗口的“关闭”按钮
注:在任何时候,只要按ctrl+c,MATLAB将停止运行 的所有工作
例:>> A(2,3)
利用小括弧和元素所在的位置(下标)
x(i):向量 x 中的第 i 个元素 A(i, j):矩阵 A 中的第 i 行,第 j 列元素
续行符…的作用
MatlabInf
无穷大
nan/NaN Not-a-Number,一个不定值,如 0/0 eps 浮点运算相对精度
i/j
虚部单位,即 1
应尽量避免给系统预定义变量重新赋值!
特殊变量 ans
Matlab 数值运算
atan
sinh
反正切函数
双曲正弦函数
imag
conj
复数的虚部
复数共轭运算
cosh
双曲余弦函数
rem
求余数或模运算
常用数学函数
函数名
tanh asinh
含 义
双曲正切函数 反双曲正弦函数
函数名
mod fix floor ceil round sign gcd lcm 模除求余
含 义
向零方向取整 不大于自变量的最大整数 不小于自变量的最小整数 四舍五入到最邻近的整数 符号函数 最大公因子 最小公倍数