激光焊接技术应用及其发展趋势(精)
激光焊接技术的研究现状及发展趋势
激光焊接技术的研究现状及发展趋势一、本文概述激光焊接技术,作为一种先进的焊接工艺,自诞生以来便在多个领域展现出其独特的优势和应用潜力。
本文旨在全面综述激光焊接技术的研究现状,并探讨其未来的发展趋势。
我们将从激光焊接的基本原理出发,分析其在不同材料、不同工业领域的应用情况,总结当前激光焊接技术面临的挑战与问题,并预测其未来的发展方向。
我们还将关注激光焊接技术的创新点和发展热点,以期为读者提供一个全面、深入、前沿的激光焊接技术全景图。
通过本文的阅读,读者可以了解到激光焊接技术的最新进展,以及未来可能的技术突破和应用拓展,为相关研究和应用提供参考和借鉴。
二、激光焊接技术的研究现状激光焊接技术自诞生以来,便以其独特的优势在工业生产中占据了重要的地位。
作为一种高效、高精度、低热输入的焊接方法,激光焊接已广泛应用于汽车、电子、航空、冶金等多个领域。
目前,激光焊接技术的研究现状主要体现在以下几个方面。
激光焊接的工艺研究已经相当成熟。
研究人员通过不断优化激光功率、焊接速度、保护气体等参数,实现了对焊接过程的精确控制。
同时,针对不同材料的特性,研究人员还开发出了多种激光焊接方法,如脉冲激光焊、连续激光焊、激光填丝焊等,以满足不同行业的需求。
激光焊接设备的研究也在不断进步。
随着激光技术的快速发展,激光焊接设备的功率和稳定性得到了显著提升。
同时,设备的智能化、自动化水平也在不断提高,如机器人激光焊接系统的出现,大大提高了生产效率和质量稳定性。
激光焊接过程中的质量控制和检测技术也是当前研究的热点。
通过在线监测焊接过程中的温度、熔池形态等关键参数,可以实时调整焊接工艺参数,保证焊接质量。
同时,无损检测技术的应用也为激光焊接的质量控制提供了有力支持。
然而,尽管激光焊接技术在许多方面已经取得了显著的成果,但仍存在一些挑战和问题。
例如,对于某些高反射率或高导热性的材料,激光焊接的难度较大。
激光焊接的成本较高,也在一定程度上限制了其应用范围。
激光焊接技术应用及其发展趋势
激光焊接技术应用及其发展趋势激光焊接技术是一种高能密度热源焊接技术,具有焊接速度快、熔深大、变形小、焊接质量高等优点,因此在工业生产中得到了广泛的应用。
以下是激光焊接技术的应用及其发展趋势。
激光焊接技术在汽车制造行业得到了广泛的应用。
激光焊接可以用于汽车零部件的生产,如车门、车身与车顶的焊接,能够有效提高焊接质量和尺寸精度。
激光焊接还可以用于整车的焊接,提高整车的强度和安全性能。
激光焊接技术在航空航天行业也得到了广泛的应用。
激光焊接可以用于航空航天设备的生产,如发动机零部件的焊接、涡轮叶片的焊接等,能够提高零部件的强度、耐腐蚀性和耐高温性。
激光焊接技术还可以应用于电子元器件的生产。
激光焊接可以替代传统的焊接方法,如电阻焊接、电弧焊接等,从而提高焊接质量和生产效率。
激光焊接还可以实现多层电子元器件的焊接,提高电子元器件的可靠性和稳定性。
随着科技的不断发展,激光焊接技术也在不断推动着创新。
未来激光焊接技术的发展趋势有以下几个方面:激光焊接技术将越来越广泛地应用于高新技术领域。
随着人工智能、新能源、新材料等领域的快速发展,对于焊接技术的要求也越来越高,激光焊接技术具有其独特的优势,将在这些领域得到更多应用。
激光焊接技术将更加智能化。
随着机器学习和自动化技术的发展,激光焊接设备将具备更高的智能化水平,能够实现自动调节焊接参数、自动检测焊接质量等功能,提高焊接效率和质量。
激光焊接技术将更加绿色环保。
传统的焊接方法通常会产生大量的烟尘和废气,对环境造成污染,而激光焊接技术采用非接触加工方式,只需要少量的气体辅助,减少了废气的排放,更加环保。
激光焊接技术将向着微小化方向发展。
随着微电子技术的不断发展,对于微观零部件的生产提出了更高的要求,激光焊接技术可以实现微观尺寸的焊接,满足微电子领域的需求。
激光焊接技术具有广泛的应用前景,并且在不断推动着科技创新,未来的发展趋势将更加广泛、智能化、环保和微小化。
激光焊接技术应用及其发展趋势
激光焊接技术应用及其发展趋势激光焊接技术是一种高效、精确的焊接方法,已经广泛应用于各个行业。
本文将从应用领域和发展趋势两个方面,对激光焊接技术进行分析和探讨。
激光焊接技术的应用领域非常广泛,主要可以分为以下几个方面。
首先是汽车制造领域。
激光焊接技术在汽车钢板、车身焊接等方面具有广泛的应用。
激光焊接不仅可以提高焊接速度和质量,还可以减少焊接变形,提高产品的稳定性和可靠性。
在汽车制造领域,激光焊接技术已经成为主流的焊接方法。
其次是电子电器行业。
随着电子产品的不断发展和更新换代,电子电器行业对于焊接技术的要求也越来越高。
激光焊接技术在电子电器领域可以实现微细焊接,很好地满足了这一需求。
激光焊接可以实现精密的焊点,不仅可以提高产品的可靠性和稳定性,还可以大大减少电子元器件的尺寸和重量。
再次是航空宇航领域。
航空宇航领域对于焊接技术的要求非常严苛,需要同时考虑材料的高强度和轻量化。
激光焊接技术可以实现高质量和高效率的焊接,能够满足航空宇航领域对于焊接的要求。
激光焊接不仅可以焊接各类金属材料,还可以焊接复合材料和非金属材料,因此在航空宇航领域具有广阔的应用前景。
激光焊接技术还在石油化工、医疗器械、光电子等领域得到了广泛应用。
在石油化工领域,激光焊接技术可以实现高强度和高质量的管道焊接,提高设备的可靠性和安全性。
在医疗器械领域,激光焊接技术可以实现微细焊接,用于制造各类医疗器械。
在光电子领域,激光焊接技术可以实现精密的焊接,用于制造光纤器件、激光器等。
首先是实时监测和在线质量控制。
激光焊接技术的焊接速度非常快,很难在焊接过程中进行实时监测和控制。
实时监测和在线质量控制成为了激光焊接技术的发展方向。
通过采用先进的光学传感技术,可以实时监测焊接过程中的温度、焊缝形貌等参数,及时调整焊接参数,确保焊接质量。
其次是多波长激光焊接技术。
由于不同材料对于激光的吸收特性不同,单一波长的激光焊接技术难以对不同材料进行有效焊接。
激光焊接技术的研究现状及发展趋势探究
激光焊接技术的研究现状及发展趋势探究激光焊接技术是近年来发展迅猛的一种金属材料连接技术,具有高效、高精度、无污染等优点,广泛应用于汽车、航天、电子、化工等领域。
文章将从研究现状和发展趋势两方面进行探究。
一、研究现状1. 激光焊接技术的应用范围不断扩大。
目前,激光焊接技术已经广泛应用于汽车制造、电子电气、工程机械、石油化工等领域,并在航空、航天、国防等高端领域得到了广泛的应用。
2. 激光功率不断提高。
激光功率是影响激光焊接技术的主要因素之一,目前激光功率已经从原来的几百瓦提高到了几千瓦,以满足不同领域对焊接深度和速度的要求。
3. 激光脉冲宽度控制技术不断完善。
激光脉冲宽度是影响激光焊接技术的另一项关键因素。
随着激光脉冲宽度控制技术的不断提高,激光焊接技术的稳定性和精度得到了极大提高。
4. 激光焊缝的质量得到了显著提升。
随着激光焊接技术的不断发展,焊缝质量得到了极大提升。
现在的激光焊接技术已经能够实现低热影响区、小变形、高连接强度等优点。
二、发展趋势1. 激光焊接技术将向高功率和高频率发展。
随着激光功率不断提高,激光焊接技术将向高功率和高频率发展,以应对越来越复杂的焊接需求。
2. 激光焊接技术将更加智能化。
随着人工智能技术的不断提高,激光焊接技术将更加智能化,实现更高效、更精准的焊接操作。
3. 激光焊接技术将向多模式发展。
多模式激光器可以同时发射多个波长的激光,实现多种焊接模式切换,提高焊接效率和质量。
4. 激光检测技术将与激光焊接技术紧密结合。
激光检测技术可以对焊接缺陷、裂纹等进行检测和分析,提高焊接质量和工艺优化。
综上所述,激光焊接技术在不断发展中,应用领域不断拓展,同时也涌现出了一系列新技术和新方向。
未来,激光焊接技术将更加智能化、高效化,进一步满足市场需求。
2024年激光焊接技术市场发展现状
2024年激光焊接技术市场发展现状引言激光焊接技术是一种利用激光束对金属材料进行精细焊接的技术。
由于其高精度、高效率和无需物理接触等优点,激光焊接技术在制造业中扮演着重要角色。
本文将对激光焊接技术市场的发展现状进行分析和探讨。
市场概况激光焊接技术市场目前呈现出快速增长的态势。
据统计数据显示,全球激光焊接技术市场规模在过去几年里保持了持续增长,预计未来几年内市场规模将进一步扩大。
这主要归因于激光焊接技术在汽车制造、航空航天、电子设备、医疗器械等领域的日益广泛应用。
发展趋势1. 自动化程度提高近年来,随着制造业向智能化、自动化方向发展,激光焊接技术也在不断向自动化程度更高的方向发展。
自动化激光焊接系统的出现使得生产效率大幅提升,同时降低了人工成本和减少了人为误差。
2. 激光焊接技术与机器人技术的结合机器人技术的快速发展也为激光焊接技术的进一步应用提供了巨大机遇。
激光焊接技术与机器人技术的结合可以实现更高级别的自动化和精密焊接操作。
在汽车制造和航空航天领域,机器人激光焊接系统已经广泛应用,提升了生产效率和产品质量。
3. 激光焊接技术的多功能化激光焊接技术不仅可以用于传统金属材料的焊接,还可以应用于其他领域,如塑料焊接、电子元器件焊接等。
通过与不同领域的技术结合,激光焊接技术的适用范围得到了扩大,为市场的发展提供了更多机会。
4. 能源效率的提高传统焊接技术存在能源浪费和环境污染等问题,而激光焊接技术具有高能源转化效率和低能源消耗的特点。
随着环保的日益重视,激光焊接技术的能源效率优势将成为推动其市场发展的重要因素之一。
市场挑战尽管激光焊接技术市场发展前景广阔,但也面临一些挑战。
1. 价格因素限制激光焊接技术设备相对传统焊接设备而言价格较高,因此在初期投资上存在一定难度。
这使得中小型企业难以承担相关设备的成本,限制了其广泛应用。
2. 技术门槛较高激光焊接技术需要经过专业培训和技术熟悉才能正确操作。
由于技术门槛较高,一些中小企业可能面临人才不足的问题。
激光焊接技术
激光焊接技术激光焊接技术是一种高效、精确的金属连接方法,广泛应用于制造业领域。
本文将介绍激光焊接技术的原理、应用以及未来的发展趋势。
一、激光焊接技术原理激光焊接技术利用高能激光束,将焊接材料加热到熔点或者高于熔点,使其熔化并通过表面张力达到连接的目的。
激光束能够扫描焊接接头,将能量集中在小区域内,使焊接过程更加精确,减少了热影响区域。
同时,激光焊接还能实现非接触焊接,避免了传统焊接中的接触污染问题。
二、激光焊接技术应用1. 汽车制造激光焊接技术在汽车制造中扮演重要角色。
它可以实现汽车零部件的精确连接,提高零部件的强度和密封性。
例如,车身焊接中的激光斜焊接技术能够提高焊缝质量,提高车身整体刚性。
2. 电子制造激光焊接技术在电子制造领域应用广泛。
电子器件的微小尺寸要求高精度的焊接技术,激光焊接技术能够满足这一需求。
它可以焊接超薄导线,实现高密度的连接。
此外,激光焊接还能够实现熔池形状的控制,避免焊接过程中的高热影响。
3. 航空航天航空航天制造要求材料具有高强度、轻质和高温抗性。
激光焊接技术能够实现这些要求,因为它能够焊接高强度的金属,并且焊接过程中热影响区域较小,减少了材料的变形。
三、激光焊接技术的未来发展随着制造业的不断发展,激光焊接技术也在不断演进。
未来,我们可以期待以下几个发展趋势:1. 新材料的应用新材料对焊接技术提出了更高的要求。
激光焊接技术可以适应各种材料的焊接,包括钢铁、铝合金、镍基合金等。
随着新材料的出现,激光焊接技术将不断发展以满足新材料焊接的需求。
2. 自动化和智能化随着制造业的自动化水平不断提高,激光焊接技术也将朝着自动化和智能化方向发展。
例如,激光焊接机器人可以实现自动化的焊接过程,提高生产效率和产品质量。
3. 激光焊接装备的小型化随着激光焊接技术的不断发展,相应的焊接装备也越来越小型化。
小型化的焊接装备更加灵活,可以适应各种生产环境,提高生产的灵活性和效率。
综上所述,激光焊接技术在制造业中发挥着重要的作用。
2023年激光焊接行业市场环境分析
2023年激光焊接行业市场环境分析激光焊接技术是一种高新技术,具有高精度、高速度、高质量等特点,在各个行业中应用广泛,市场前景广阔。
本文将从行业发展趋势、市场规模和市场竞争等方面进行分析。
一、行业发展趋势1. 自动化程度提高随着自动化技术的不断发展,激光焊接设备的自动化程度也将不断提高,许多企业将会更多的采用大型自动化激光焊接设备,以提高生产效率和品质。
2. 应用领域进一步拓展目前激光焊接技术已经广泛应用于汽车、机械制造、航空航天、冶金、电子等多个领域。
未来还将有更多的行业将激光焊接技术应用到自身的生产和制造中。
3. 优化设备结构由于激光焊接设备的结构和性能不断优化,制造成本和能耗将会进一步降低。
未来,激光焊接设备将会更加紧凑、智能化和环保。
二、市场规模根据统计,全球激光焊接设备市场规模从2020年的约300亿美元,到2025年有望达到535亿美元左右。
在中国市场,激光焊接设备市场的规模也在逐年扩大,单年增长率高达20%以上。
三、市场竞争目前,全球激光焊接设备市场处于高度竞争状态。
市场主要厂商包括TRUMPF、ROFIN,Prima Power、Coherent等。
在国内,激光焊接设备市场竞争也会越来越激烈。
较为知名的企业有德美特,诺尼、鼎泰、美卓等。
随着技术不断更新和市场的扩大,市场竞争将更加激烈,企业需要在研发和市场营销上不断精进才能在激烈的竞争中占据优势。
总之,随着激光焊接技术的不断发展,其市场前景无限,企业需要注重技术创新和市场营销,不断提高自身核心竞争力,才能在竞争中取得更好的成绩。
激光焊接技术的研究现状及发展趋势探究
激光焊接技术的研究现状及发展趋势探究1. 引言1.1 激光焊接技术的定义激光焊接技术是一种利用激光束将热能集中到焊接点进行熔化并连接材料的先进焊接方法。
通过激光束高能量密度和高束质量,可以实现快速、高效、精确的焊接过程。
激光焊接技术在金属、塑料、陶瓷等材料的连接中广泛应用,具有焊缝小、热影响区少、变形小等优点。
随着激光技术的不断进步和发展,激光焊接技术已成为现代制造业中一种重要的焊接方法,被广泛应用于汽车、航空航天、电子、医疗器械等领域。
激光焊接技术的发展为加工技术的进步和产品质量的提高提供了重要支持,是当前研究和发展的热点之一。
1.2 激光焊接技术的重要性1.提高生产效率:激光焊接技术具有快速焊接速度、操作简便等特点,可以大幅提高生产效率,节约人力、时间和成本。
2.提高焊接质量:激光焊接技术能够实现高精度的焊接,焊缝质量好,可以避免气孔、裂纹等焊接缺陷,确保焊接连接的牢固性和稳定性。
3.拓展适用范围:激光焊接技术可以应用于各种金属材料的焊接,包括高熔点金属和难焊材料,具有很强的适用性和通用性。
4.降低能源消耗:相比传统焊接方法,激光焊接技术采用光能作为热源,能量利用效率高,节能环保,有利于减少对环境的影响。
激光焊接技术在制造业中的重要性不容忽视,其在提高生产效率、提高焊接质量、拓展适用范围和降低能源消耗等方面的优势,使其成为现代工业领域中备受重视的焊接技术之一。
2. 正文2.1 激光焊接技术的研究现状1. 激光焊接技术的发展历程:激光焊接技术自20世纪70年代开始逐渐发展,并在各个领域得到广泛应用。
随着激光技术和光学技术的不断进步,激光焊接技术的研究也得到了快速发展。
2. 激光焊接技术的研究热点:当前的研究主要集中在提高焊接质量和效率、拓展适用范围、降低成本和提高稳定性等方面。
利用不同波长的激光进行焊接,探索新的焊接材料、优化焊接参数等。
3. 激光焊接技术的现有问题:虽然激光焊接技术在许多领域取得了成功,但仍然存在一些问题,如焊接过程中容易产生气孔、热裂纹等缺陷,需要进一步研究和解决。
激光焊接技术应用及其发展趋势
激光焊接技术应用及其发展趋势激光焊接技术是一种高能量密度的热源焊接技术,具有焊缝深、狭、小热影响区和可控性好的特点,因此在许多领域有广泛的应用。
以下是激光焊接技术的应用及其发展趋势的详细介绍。
激光焊接技术的应用:1. 汽车制造业:激光焊接技术可以高效、精确地焊接汽车车身、零部件和发动机等,提高汽车的结构强度和疲劳寿命。
2. 电子产品制造业:激光焊接技术可以用于焊接电子元器件、电子芯片和导电线路等,提高电子产品的性能和可靠性。
3. 航空航天工业:激光焊接技术可以用于焊接飞机组件、发动机零部件和航天器结构等,提高航空航天器的安全性和性能。
4. 医疗器械制造业:激光焊接技术可以用于焊接人工关节、牙齿种植体和器官植入物等,提高医疗器械的适应性和耐用性。
5. 冶金工业:激光焊接技术可以用于焊接金属材料、合金和复合材料等,提高冶金工业的生产效率和产品质量。
6. 其他应用领域:激光焊接技术还可以用于焊接微观材料、精密仪器、钟表和珠宝等。
激光焊接技术的发展趋势:1. 高功率激光器的发展:随着激光器技术的不断进步,高功率激光器的应用范围越来越广泛。
高功率激光器可以提供更高的焊接速度和能量密度,进一步提高激光焊接的效率和质量。
2. 自适应控制系统的应用:激光焊接过程中受到气流、温度和材料变形等因素的影响,容易导致焊缝质量不稳定。
为了解决这个问题,自适应控制系统可以实时监测焊接过程中的参数变化,并调整激光焊接的参数,保证焊缝质量的稳定性。
3. 混合焊接技术的发展:激光焊接技术可以与其他焊接技术(例如电弧焊、等离子焊和摩擦焊等)结合使用,形成混合焊接技术。
混合焊接技术可以充分利用各种焊接技术的优点,提高焊接效率和质量。
4. 激光焊接机器人的应用:随着机器人技术的不断进步,激光焊接机器人的应用越来越广泛。
激光焊接机器人可以实现自动化焊接,减少人力成本和提高生产效率。
激光焊接技术具有广泛的应用领域和良好的发展前景。
随着激光器技术、自适应控制系统、混合焊接技术和机器人技术的不断进步,激光焊接技术的应用范围将会更加广泛,焊接质量将会更加稳定和高效。
激光焊接技术的研究现状及发展趋势探究
激光焊接技术的研究现状及发展趋势探究激光焊接技术是一种高精度、高效率的焊接方法,近年来得到了广泛的应用和发展。
本文将探究激光焊接技术的研究现状和发展趋势,分析其在各个领域的应用以及未来的发展方向。
一、激光焊接技术的研究现状1. 激光焊接工艺激光焊接是利用激光束对材料进行加热,从而使材料表面产生熔化,并将熔化池与受热区域形成牢固的结合。
激光焊接工艺主要包括传统激光焊接、深层激光焊接、激光-激光混合焊接、激光-煤炭混合焊接等多种方式,每种方式都有其适用的具体情况。
2. 激光焊接设备激光焊接设备包括激光发生器、激光传输系统和焊接装置等部分。
目前,市场上主要有固体激光器、液体激光器和气体激光器等多种类型的激光器可供选择,其中固体激光器因其高功率、高能量密度和高效率等优势,逐渐成为主流。
3. 激光焊接材料激光焊接可适用于多种材料,包括金属材料、合金材料、塑料材料等。
而随着激光焊接设备和工艺的不断改进,其在特殊材料、复合材料和高温材料等方面的应用也逐渐增多。
4. 激光焊接检测技术激光焊接后的焊缝质量直接影响着工件的使用性能,因此激光焊接检测技术成为焊接过程中不可或缺的一部分。
目前,主要的检测技术包括激光扫描显微镜检测、红外热像仪检测、超声波检测和X射线检测等多种方式。
5. 激光焊接应用领域激光焊接技术已经广泛应用于汽车制造、航空航天、电子设备、医疗器械、管道制造等领域。
在汽车制造中,激光焊接可以实现车身零部件的高效焊接,提高生产效率,减少成本。
6. 激光焊接的优势与传统焊接方法相比,激光焊接具有焊缝小、变形小、热影响区小、焊接速度快、热影响深度浅等特点。
激光焊接在一些对焊接质量要求高、对材料变形敏感的领域有着明显的优势。
1. 激光焊接设备的技术升级随着激光技术的不断发展,激光焊接设备的性能将不断提升。
固体激光器的输出能量和能量密度将不断增加,激光束质量和稳定性将得到进一步提高,激光束调控技术也将更加精密。
2. 激光焊接工艺的创新针对不同的焊接需求,激光焊接技术将不断进行工艺创新。
激光焊接技术应用及其发展趋势
激光焊接技术应用及其发展趋势激光焊接技术是一种高精度、高效率的焊接技术,已经广泛应用于许多领域。
下面将介绍激光焊接技术的应用及其发展趋势。
1. 电子制造业:激光焊接技术可以用于微细电子元件的焊接,如集成电路芯片的焊接,具有高精度、高质量的特点。
激光焊接技术还可以用于手机、电脑等电子产品的组装,可以提高产品的生产效率和质量。
2. 汽车制造业:激光焊接技术可以用于汽车零部件的焊接,如车身、底盘等部件的连接。
激光焊接技术具有高焊接速度、窄焊缝宽度、焊接强度高等优点,可以提高汽车制造过程中的焊接质量和效率。
4. 医疗器械制造业:激光焊接技术可以用于医疗器械制造过程中的焊接,如激光焊接手术器械的连接。
激光焊接可以提供高精度焊接,减少了传统焊接过程中可能带来的感染和污染的风险。
1. 高功率激光焊接技术:随着科技的不断发展,激光焊接技术的功率不断提高,从而提高了焊接的速度和质量。
目前,已经有大功率激光焊接技术应用于汽车制造和航空航天等领域。
2. 激光焊接自动化:随着机器人技术的发展,激光焊接技术与机器人技术的结合越来越紧密,实现了激光焊接的自动化。
通过机器人进行激光焊接可以提高生产效率和质量,并减少劳动力成本。
3. 激光焊接微尺度加工:随着激光技术的不断发展,激光焊接技术应用于微尺度加工领域的研究也不断深入。
激光纳米焊接技术可以实现纳米级的焊接,为微电子器件的制造提供了新的可能性。
4. 激光焊接材料的研究:随着材料科学的不断发展,新的材料在激光焊接中的应用也得到了研究。
激光和纳米材料的相结合可以实现高强度、高精度的焊接。
激光焊接技术已经得到了广泛应用,并且在不断发展中。
随着技术的进步,激光焊接技术将在更多领域发挥重要作用,并为人们的生产和生活带来更多的便利。
激光焊接技术的研究现状及发展趋势探究
激光焊接技术的研究现状及发展趋势探究激光焊接技术是一种高能量密度焊接工艺,广泛应用于航空航天、汽车制造、电子设备等领域。
随着工业的发展和需求的提升,激光焊接技术也得到了快速发展。
本文将探究激光焊接技术的研究现状及未来发展趋势。
当前,激光焊接技术已经取得了重要的进展。
高功率激光焊接技术的发展,使得激光焊接可以适用于更厚的金属板材,同时也提高了工作效率。
激光焊接还可以实现对焊缝形态的精确控制,提高焊接质量。
随着激光器技术的不断发展,激光焊接技术也会得到更多的改进和突破。
激光器的功率将会进一步提高。
高功率激光器可以提供更大的能量密度,使得焊接速度更快,并可以应用于更多种类的材料。
激光器的脉冲频率将会增加。
快速脉冲激光器可以在焊接过程中控制热输入,以减少热影响区域的大小,提高焊接的精度。
为了进一步提高焊接质量,激光焊接技术还可以与其他辅助技术相结合。
在传统激光焊接技术的基础上,可以加入等离子弧焊、电弧激光混合焊等技术,以实现适应不同材料和焊接情况的需求。
综合利用传感技术和自动控制技术,可以实现对焊接过程的实时监控和控制,提高焊接的稳定性和一致性。
激光焊接技术的研究还面临着一些挑战和难题。
焊接过程中会产生大量的热影响区,容易导致材料变形、裂纹等问题。
激光焊接技术在焊接非金属材料时存在一定的限制,如焊缝质量差、熔池不稳定等。
未来研究的重点将会是解决这些问题。
激光焊接技术在航空航天、汽车制造、电子设备等领域具有重要的应用价值。
当前,激光焊接技术在功率和精度方面已经取得了突破性进展,但仍存在一些挑战需要解决。
未来发展的重点将是提高功率和控制精度,与其他辅助技术相结合,实现对焊接过程的实时监控和控制。
希望本文对于激光焊接技术的研究和发展具有一定的启示意义。
激光焊接技术的应用及发展
激光焊接技术的应用及发展激光焊接技术是一种利用激光束加热材料来完成焊接过程的高精度焊接技术。
它具有高效、快速、无损、精确等优点,已经广泛应用于汽车制造、航空航天、电子电器、金属加工等领域。
随着科技的不断进步和人们对产品质量要求的提升,激光焊接技术也在不断发展。
激光焊接技术的应用范围非常广泛。
在汽车制造领域,激光焊接可以用于车身焊接、发动机焊接、轮毂焊接等,提高了汽车的结构强度和整体质量。
在航空航天领域,激光焊接可以用于航空发动机部件、燃烧室、涡轮叶片等的焊接,提高了零部件的耐高温性能和结构强度。
在电子电器领域,激光焊接可以用于电子元器件的焊接,确保焊接点的稳定性和可靠性。
在金属加工领域,激光焊接可以用于金属板材的拼接焊接,提高了工件的精确度和焊接强度。
激光焊接技术的发展也呈现出三个主要趋势。
首先,激光焊接设备的性能不断提升,如激光功率的增加、脉冲宽度的减小、光斑质量的改善等,使得激光焊接技术能够应用于更多领域。
其次,激光焊接技术正向微小化、集成化发展,如激光焊接头的微型化、激光焊接机器人的智能化等,提高了焊接的精确度和效率。
最后,激光焊接技术正与其他相关技术结合,如激光-电弧复合焊接技术、激光-电阻焊接技术等,进一步扩大了激光焊接技术的应用范围。
然而,激光焊接技术仍然存在一些挑战和限制。
首先,激光设备的成本较高,导致激光焊接技术在一些领域的应用受到限制。
其次,激光焊接过程对操作人员的要求较高,需要专业的技术人员进行操作和维护,增加了工作的复杂性和难度。
此外,一些特殊材料的焊接,如高反射性材料和高导热性材料的焊接,仍然存在着一定的难度和技术挑战。
总之,激光焊接技术的应用广泛且前景广阔,它具有高效、快速、无损、精确等优点,已经成为现代工业生产中不可或缺的焊接技术之一、虽然激光焊接技术在应用中仍面临一些挑战和限制,但随着科技的不断进步,相信这些问题都可以得到解决,激光焊接技术将会发展得更加成熟和完善。
激光焊接技术应用及其发展趋势
激光焊接技术应用及其发展趋势激光焊接技术是一种高效、精密的焊接方法,随着科学技术的不断发展,激光焊接技术在各个行业中得到了广泛的应用,并且在未来的发展中有着巨大的潜力。
本文将从激光焊接技术的原理和特点、应用领域以及发展趋势等方面进行详细的介绍和分析。
一、激光焊接技术的原理和特点激光焊接是利用激光束对焊接材料进行加热、熔化和冷却,从而实现焊接的一种高技术焊接方法。
激光焊接技术有非常突出的优势,首先是在焊接过程中激光束经聚焦后能够提供高能量密度的热源,因此可以实现高速、高温的熔化焊接。
激光焊接不需要接触,可以实现对材料的非接触式加工,避免了传统焊接中容易产生的氧化、变形等问题。
激光焊接还具有热影响区小、焊接变形小、焊缝质量高等优点。
激光焊接技术得到了越来越广泛的应用,并在许多行业中取代传统的焊接方法。
二、激光焊接技术的应用领域1. 汽车制造业在汽车制造业中,激光焊接技术被广泛应用于汽车车身的生产中。
激光焊接可精确控制焊接的温度和深度,可以实现对汽车车身的高精度焊接,使得焊接接缝更加紧密,提高了车身的强度和密封性,同时还能够减轻车身重量,提高汽车的燃油经济性。
2. 航空航天制造业在航空航天领域,由于激光焊接技术的高精度和高质量优势,被广泛用于制造航天器结构、航空发动机、导弹、卫星等领域。
激光焊接技术可以提高航空器和航天器的耐热性能、降低结构重量、提高使用寿命,同时还能够提高制造效率和降低生产成本。
3. 电子电气制造业在电子电气制造业中,激光焊接技术被广泛应用于生产半导体器件、电子元器件、电机线圈等领域。
激光焊接技术可以实现对薄膜、微小零件的高精度焊接,同时还能够避免污染和热影响,提高器件的性能和质量。
1. 多波长激光焊接技术传统激光焊接技术只能使用单一波长的激光进行焊接,而多波长激光焊接技术可以利用多种波长的激光,通过组合和调控不同波长的激光来实现对不同材料的高效焊接。
多波长激光焊接技术可以提高焊接质量和效率,拓宽了激光焊接技术的应用范围。
激光焊接技术应用及其发展趋势
激光焊接技术应用及其发展趋势
激光焊接技术是指使用激光束将金属材料高速熔化后再进行连接的焊接方法。
随着科技的不断进步,激光焊接技术的应用越来越广泛,尤其在航空航天、汽车、电子、医疗等领域得到了广泛的应用。
目前,激光焊接技术的应用主要集中在以下几个方面:
1.航空航天领域:激光焊接技术具有高精度、高效率、高质量等特点,可以用来焊接航空航天领域中的各种材料,如钛合金、铝合金等。
2.汽车制造业:激光焊接技术可以用于汽车制造中的各个环节,如车身、底盘等部分的连接,以及汽车零部件的制造等。
3.电子领域:激光焊接技术可以用于焊接电子零部件,如电子器件、半导体芯片等,同时还可以用于生产电子产品的外壳。
4.医疗领域:激光焊接技术可以用于生产医用器械,如手术刀、牙科器具等,也可以用于生产人工关节等医疗器械。
随着激光技术的不断发展,激光焊接技术也在不断改进和完善。
激光焊接技术的发展趋势主要表现在以下几个方面:
1.开发更高功率的激光器:提高激光功率可以使激光焊接速度更快,同时还可以将焊缝质量提高到更高的水平。
2.开发更先进的自动化设备:自动化设备可以提高生产效率和质量,同时还可以节约人力资源。
3.研发更高端的控制系统:可以实现对激光焊接焊接过程的更精细的控制,从而提高焊接质量和稳定性。
4.发展新的材料和新的焊接方法:可以扩大激光焊接技术的应用范围,同时还可以提高焊接质量和效率。
总之,激光焊接技术是目前最先进的焊接技术之一,具有广泛的应用前景。
未来随着相关技术的不断发展和完善,激光焊接技术的应用范围将进一步扩大,同时还将逐渐向更高效、更智能化的方向发展。
激光焊接技术应用及其发展趋势
激光焊接技术应用及其发展趋势激光焊接技术是一种先进的焊接方法,它利用激光束对焊接材料进行加热,将其熔化并连接在一起。
激光焊接技术具有高能量密度、焊点热影响小、焊缝窄、焊接速度快等优点,因此得到了广泛的应用,并在不断发展和完善。
本文将从激光焊接技术的应用领域、发展趋势等方面进行深入探讨。
一、激光焊接技术的应用领域1.汽车制造业在汽车制造业中,激光焊接技术被广泛应用于汽车车身、底盘和发动机等部件的生产中。
激光焊接可以实现对薄板、异种材料的高效焊接,提高了生产效率和产品质量。
2.航空航天领域航空航天领域对焊接工艺的要求非常严格,激光焊接技术因其高精度、低变形、无焊渣等优点,被广泛应用于航空航天器件的制造中,包括航天器的舱壁、涡轮发动机的叶片等。
3.电子产品制造在电子产品的制造过程中,激光焊接技术可以实现对微小零件的精密焊接,包括微型电子元件、迷你电路板等,提高了产品的稳定性和可靠性。
4.军工制造军工制造领域对焊接技术的要求也非常高,激光焊接技术凭借其高能量密度、高焊接速度、不受重力影响等优点,被广泛应用于军工产品的生产制造中。
1.智能化发展随着人工智能和自动化技术的不断发展,智能化制造已成为行业发展的主要趋势。
激光焊接技术将与智能化制造相结合,实现焊接过程的智能控制和监测,提高了焊接质量和生产效率。
2.高功率激光焊接技术随着激光技术的不断发展,高功率激光焊接技术将成为未来的发展方向。
高功率激光焊接技术可以实现更高的焊接速度和更大的焊接深度,满足更多的工业应用需求。
3.激光增材制造技术激光增材制造技术是将激光焊接技术与三维打印技术相结合,可以实现对金属材料的精密加工和制造。
该技术可以应用于航空航天、船舶制造、医疗器械等行业。
4.激光微纳加工技术激光微纳加工技术是利用激光对微小尺度的材料进行加工,可以实现对微细结构的加工和制造,包括微型零件、微型器件等。
该技术将会在电子、光电子、医疗器械等领域发挥重要作用。
激光焊接技术应用及其发展趋势
激光焊接技术应用及其发展趋势1. 引言1.1 激光焊接技术的定义激光焊接技术是一种高度精密的焊接方法,通过利用激光束的能量来瞬间加热工件表面,使其在短时间内达到熔点并形成焊缝。
这种焊接技术通常用于焊接金属、塑料和其他材料,具有高效、精准、无接触和无污染的特点。
激光焊接是一种非接触式的焊接方法,可以实现高速、高质量的焊接,适用于各种不同形状和材质的工件。
由于激光焊接技术具有高能量密度、热影响区小、焊接速度快等优势,被广泛应用于汽车制造、航空航天、电子、光电子、医疗器械等领域。
激光焊接技术的发展将不断推动现代制造业的发展,提高产品质量和生产效率,具有重要的战略意义和实践价值。
1.2 激光焊接技术的意义激光焊接技术的意义在于其在制造业中的重要性和广泛应用。
激光焊接技术通过高能激光束的瞬间作用,可以对工件进行高精度、高效率的焊接,有效提高了生产效率和产品质量。
与传统焊接方法相比,激光焊接技术具有更小的热影响区、更少的变形、更高的焊接速度和更强的焊缝质量,能够完成更复杂和高要求的焊接任务。
激光焊接技术还能实现自动化和智能化焊接,提高了生产线的自动化水平,降低了人工成本,提升了企业的竞争力。
在制造业向智能化、绿色化转型的背景下,激光焊接技术的应用将越来越广泛,其意义也将更加凸显。
2. 正文2.1 激光焊接技术的发展历程激光焊接技术的发展历程追溯到20世纪60年代,当时激光技术刚刚开始应用于工业领域。
最早的激光焊接实验是在1967年由西德的Koch和Haferkamp进行的。
随后,激光焊接技术在工业领域取得了长足的发展。
在70年代和80年代,激光焊接技术逐渐成熟,并开始在汽车、航空航天、电子等多个领域得到广泛应用。
随着激光技术的不断进步,激光焊接的精度和效率也得到了极大提升。
进入21世纪,随着激光技术的不断创新和发展,激光焊接技术在制造业中的地位日益重要。
通过不断改进设备和工艺,激光焊接技术的应用范围不断扩大,成为现代制造业中不可或缺的一部分。
激光焊接技术的研究现状及发展趋势探究
激光焊接技术的研究现状及发展趋势探究激光焊接技术是近年来快速发展的一种高精度、高效率的焊接方法。
本文旨在探究当前激光焊接技术的研究现状以及未来的发展趋势。
1. 研究现状激光焊接技术有很多优点,例如焊接速度快、焊接质量高、对焊接材料影响小等。
因此,该技术目前已广泛应用于航空、航天、汽车、电子等领域。
1.1 激光焊接的设备和材料目前,激光焊接设备的主要发展趋势是将多种激光器、传感器和控制系统集成在一起,以提高生产效率和质量。
同时,激光焊接机也不断推出新的创新型产品,如手持式激光焊接枪,便于操作同时更具灵活性。
在激光焊接材料方面,焊接铜、铝、镁等特殊材料仍然是一个研究重点,如何在不损坏材料的情况下提高焊接质量和稳定性仍是一个挑战。
1.2 激光焊接的应用领域激光焊接技术目前已经得到了广泛的应用。
例如,航空航天和汽车行业是激光焊接技术的主要应用领域之一。
通过激光焊接,可以提高生产效率和产品质量,同时还可以减少汽车车身和气动外壳的重量,提高汽车性能。
此外,激光焊接还广泛应用于电子设备、医疗设备和制造业等领域。
2. 发展趋势2.1 高效能和低成本的焊接方法激光焊接技术的研究已经很成熟,但是在成本和效率方面,仍然存在一些挑战。
因此,未来的焊接方法应该具备高效能和低成本的特点。
如何在现有的设备和技术基础上实现低成本和高效能的激光焊接,是未来的研究重点之一。
同时,新型的激光器装置和焊接设备也将不断涌现。
2.2 智能化焊接方法随着人工智能、大数据和互联网的不断发展,智能化焊接方法将是未来的发展趋势之一。
智能化焊接方法能够自动识别工件的形状、材料等属性,并根据不同材料和形状选择合适的焊接参数,提高焊接效率和质量。
未来的激光焊接设备将不仅仅具有焊接功能,还将拥有实时数据采集、监控等智能化功能,更好地为工业制造提供服务。
结论总体而言,激光焊接技术在航空、汽车、电子等领域已经得到了广泛的应用。
未来,该技术的发展重点是提高焊接效率和质量,降低成本;同时,智能化焊接方法也将是未来的发展趋势之一。
激光焊接技术的研究现状及发展趋势探究
激光焊接技术的研究现状及发展趋势探究1. 引言1.1 激光焊接技术的重要性激光焊接技术是一种高效、精密的焊接方法,其在制造业中具有重要的地位和作用。
激光焊接技术可以实现高速、高质量的焊接,广泛应用于汽车制造、航空航天、光电子、电子通讯等行业。
激光焊接技术能够实现对焊接过程的精确控制,可有效降低材料损伤和变形,提高焊接质量和效率。
激光焊接技术还可以实现对不同材料的焊接,如金属、塑料、玻璃等,具有广泛的适用性。
激光焊接技术的发展对于提高制造业的产品质量、降低成本、提高效率具有重要意义。
随着制造业的不断发展和自动化程度的提高,对于激光焊接技术的需求也在不断增加。
深入研究激光焊接技术的原理和应用,探索其在不同领域的发展潜力,对于推动制造业的转型升级和提高国家竞争力具有积极的促进作用。
1.2 研究现状概述激光焊接技术是一种高效、精密且环保的焊接方法,近年来受到广泛关注和研究。
目前,国内外许多研究机构和企业纷纷投入到激光焊接技术的研究与应用中,取得了一系列重要成果。
在研究现状方面,国内外学者在激光焊接技术的基础原理、优化方法、参数控制等方面进行了深入研究,取得了许多创新性成果。
激光焊接技术在航空航天、汽车制造、电子设备等领域得到了广泛应用,为实现产品制造的高质量、高效率提供了重要支持。
激光焊接技术仍然存在一些问题和挑战,比如焊接速度、焊缝质量、材料适应性等方面仍有待提高。
研究人员需要不断探索新的技术手段和方法,以解决这些问题,并推动激光焊接技术的持续发展。
未来,随着科技的不断进步和产业的不断发展,激光焊接技术将会不断创新和完善,为各个行业带来更多的可能性和机遇。
1.3 研究目的和意义激光焊接技术的研究目的和意义在于探究其在工业领域中的应用潜力和优势,为提高产品质量、生产效率和节约资源做出贡献。
通过深入研究激光焊接技术,可以更好地了解其原理和特点,推动其在不同领域的应用和发展。
研究激光焊接技术还可以帮助提高传统焊接工艺的效率和精度,减少环境污染和能源消耗,实现可持续发展和资源利用的最大化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光焊接技术应用及其发展趋势激光焊接是激光加工材料加工技术应用的重要方面之一。
70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。
由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的YAG 激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。
目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。
一、激光焊接的质量与特点激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。
图1显示在不同的辐射功率密度下熔化过程的演变阶段[2],激光焊接的机理有两种:1、热传导焊接当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。
2、激光深熔焊当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿入更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。
这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。
这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。
传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。
传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。
激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。
激光焊接的焊缝形状对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:l,最高可达10:1。
显示四种焊法在316不锈钢及DUCOLW30钢上的焊缝截面形状的比较,对比的结论有以下几点:(1)激光焊和电子束焊比TIG和等离子焊的主要优点相似:焊缝窄、穿透深、焊缝两边平行、热影响区小;(2)TIG和等离子焊投资少,广泛应用了许多年,经验比较多;(3)激光焊和电子束焊在高生产率方面优势大得多。
但电子束焊须在真空室或局部真空中进行。
也可在空气中,但熔透能力比激光焊差;(4)激光焊和电子束焊,焊缝窄且热影响区小,因而变形最小。
2、激光焊接焊缝的组织性能采用大功率激光光束焊接时,因其能量密度极高,被焊工件经受快速加热和冷却的热循环作用,使得焊缝和热影响区区域极窄,其硬度远远高于母材,因此,该区域的塑性相对较低。
为了降低接头区域的硬度,应采取焊接前预热和焊后回火等相应的工艺措施。
激光回火是一种在激光焊后随即采用非聚焦的低能量密度光束对焊道进行多道扫描从而降低焊缝硬度的新工艺。
激光焊接金属及热影响区的组织和硬度是由化学成分和冷却速度决定的。
在激光焊接中,现行焊接工艺一般不需要填充金属。
在这种情况下,焊缝的组织和硬度主要由钢板的化学成分和激光照射条件来决定。
采用填充焊丝的激光焊接由于可以选择任意合金成分的焊丝作为最佳的焊缝过渡合金,因而可以保证两侧母材的联结具有最佳性能[4]。
可以对高熔点、高热导率、物理性质差异较大的异种或同种金属材料进行焊接[5],可以得到无污染、杂质少的焊缝。
激光焊接加热速度快,焊接熔池迅速冷却,与普通的常规焊接在金相组织上有着很大的区别。
二、激光焊接的应用领域1、制造业应用激光拼焊(Tailored Bland Laser Welding)技术在国外轿车制造中得到广泛的应用[6],据统计,2000年全球范围内剪裁坯板激光拼焊生产线超过100条,年产轿车构件拼焊坯板7000万件,并继续以较高速度增长。
国内生产的引进车型Passat,Buick,Audi等也采用了一些剪裁坯板结构。
日本以CO2激光焊代替了闪光对焊进行制钢业轧钢卷材的连接,在超薄板焊接的研究,如板厚100微米以下的箔片,无法熔焊,但通过有特殊输出功率波形的YAG激光焊得以成功,显示了激光焊的广阔前途。
日本还在世界上首次成功开发了将YAG激光焊用于核反应堆中蒸气发生器细管的维修等[6],在国内苏宝蓉等还进行了齿轮的激光焊接技术[7]。
2、粉末冶金领域随着科学技术的不断发展,许多工业技术上对材料特殊要求,应用冶铸方法制造的材料已不能满足需要。
由于粉末冶金材料具有特殊的性能和制造优点,在某些领域如汽车、飞机、工具刃具制造业中正在取代传统的冶铸材料,随着粉末冶金材料的日益发展,它与其它零件的连接问题显得日益突出,使粉末冶金材料的应用受到限制[8]。
在八十年代初期,激光焊以其独特的优点进入粉末冶金材料加工领域,为粉末冶金材料的应用开辟了新的前景,如采用粉末冶金材料连接中常用的钎焊的方法焊接金刚石,由于结合强度低,热影响区宽特别是不能适应高温及强度要求高而引起钎料熔化脱落,采用激光焊接可以提高焊接强度以及耐高温性能。
3、汽车工业20世纪80年代后期,千瓦级激光成功应用于工业生产,而今激光焊接生产线已大规模出现在汽车制造业,成为汽车制造业突出的成就之一。
德国奥迪、奔驰、大众、瑞典的沃尔沃等欧洲的汽车制造厂早在20世纪80年代就率先采用激光焊接车顶、车身、侧框等钣金焊接,90年代美国通用、福特和克莱斯勒公司竟相将激光焊接引入汽车制造,尽管起步较晚,但发展很快。
意大利菲亚特在大多数钢板组件的焊接装配中采用了激光焊接,日本的日产、本田和丰田汽车公司在制造车身覆盖件中都使用了激光焊接和切割工艺,高强钢激光焊接装配件因其性能优良在汽车车身制造中使用得越来越多,根据美国金属市场统计,至2002年底,激光焊接钢结构的消耗将达到70 000t比1998年增加3倍。
根据汽车工业批量大、自动化程度高的特点,激光焊接设备向大功率、多路式方向发展。
在工艺方面美国Sandia国家实验室与Pratt Witney联合进行在激光焊接过程中添加粉末金属和金属丝的研究,德国不莱梅应用光束技术研究所在使用激光焊接铝合金车身骨架方面进行了大量的研究,认为在焊缝中添加填充余属有助于消除热裂纹,提高焊接速度,解决公差问题,开发的生产线已在奔驰公司的工厂投入生产。
4、电子工业激光焊接在电子工业中,特别是微电子工业中得到了广泛的应用[12]。
由于激光焊接热影响区小加热集中迅速、热应力低,因而正在集成电路和半导体器件壳体的封装中,显示出独特的优越性,在真空器件研制中,激光焊接也得到了应用,如钼聚焦极与不锈钢支持环、快热阴极灯丝组件等。
传感器或温控器中的弹性薄壁波纹片其厚度在0.05-0.1mm,采用传统焊接方法难以解决,TIG焊容易焊穿,等离子稳定性差,影响因素多而采用激光焊接效果很好,得到广泛的应用。
5、生物医学生物组织的激光焊接始于20世纪70年代,Klink等及jain用激光焊接输卵管和血管的成功焊接及显示出来的优越性,使更多研究者尝试焊接各种生物组织,并推广到其他组织的焊接。
有关激光焊接神经方面目前国内外的研究主要集中在激光波长、剂量及其对功能恢复以及激光焊料的选择等方面的研究,刘铜军进行了激光焊接小血管及皮肤等基础研究的基础上又对大白鼠胆总管进行了焊接研究。
激光焊接方法与传统的缝合方法比较,激光焊接具有吻合速度快,愈合过程中没有异物反应,保持焊接部位的机械性质,被修复组织按其原生物力学性状生长等优点将在以后的生物医学中得到更广泛的应用。
6、其他领域在其他行业中,激光焊接也逐渐增加特别是在特种材料焊接中国内进行了许多研究,如对BT20钛合金[22]、HEl30合金[23]、Li-ion电池[24]等激光焊接,德国玻璃机械制造商Glamaco Coswig公司与IFW接合技术与材料实验研究院合作开发出了一种用于平板玻璃的激光焊接新技术。
三、激光焊接设备的智能化控制激光焊接监控自动化的关键之一是熔池的实时监视,因此,跟踪传感器的选择成为了一个至关重要的前提。
在所有传感器中,光学传感器以其灵敏度和测量精度高,动态特性好,于工件无接触及包含的信息量大等特点,成为发展得最快的跟踪传感器,而CCD(Charge-coupled Device电荷耦合装置)集成光学器件的应用又使得光学传感器上升到了视频传感的新高度[25]。
激光焊接的优点之一是焊接速度快,薄板的焊接速度可达10m/min以上[26],在高速连续的焊接过程中,如果出现焊接缺陷,将在极短的时间内造成大量的废品。
实现在线的激光焊接质量监测是保证质量的十分重要的环节,华中科技大学设计的信号处理及反馈控制系统通过将声、光传感器所采取的信号放大、滤波、双限比较后进行A/D转换,再将数字信号由微机进行处理等,对激光输出功率、焊接速度、离焦量等工艺参数进行控制实现最佳工艺数[27]。
解决熔透问题,基本前提是对激光焊接过程进行实时检测和控制,提取激光焊接的特征信号。
近十年来,国内外的研究机构主要针对焊接过程中光致等离子体产生的声、光、电、热等信息进行提取,并分析处理,寻找特征信号[28,29,30]。
在填丝激光焊接时,激光填丝焊对接间隙宽度是主要的参数,为了保证缝全长都取得良好均匀的成形,实现高质量的激光填丝激光焊,开发了高精度对缝间隙检测传感器以从高质量送丝控制系统。
对于激光深熔焊而言,利用光学传感器检测焊接过程中的等离子体和反射激光的信号特征是一种简单而有效的实时检测焊接过程的方法[32]。
目前,利用光电管检测焊接过程中的等离子体或反射光的方法主要从工件侧面或与激光同轴两个方向进行。
至于光学传感器的选择,有三种不同波段的传感器可用于激光焊接过程检测。