华科离散数学试题与答案试卷

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。

A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。

答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。

答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。

答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。

答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},则A∩B的结果是()A. {1,2,3,4,5}B. {2,4}C. {1,3,5}D. {1,2,3,4,5,6,8,10}答案:B2. 下列关系中,哪个是等价关系?()A. ≤B. ≠C. |D. ≠答案:A3. 设图G有5个顶点,每两个顶点之间都有一条边相连,则图G的边数是()A. 5B. 10C. 15D. 20答案:C4. 下列哪一个图是欧拉图?()A. 无向图B. 有向图C. 树D. 环答案:D5. 下列哪一个命题是正确的?()A. 若p→q为真,则p为真B. 若p∧q为假,则p为假C. 若p∨q为真,则q为真D. 若p→q为假,则p为假答案:B二、填空题(每题5分,共25分)1. 设集合A={a,b,c,d},B={c,d,e},则A-B=________。

答案:{a,b}2. 设p是命题“今天是晴天”,q是命题“我去公园玩”,则命题“如果今天不是晴天,那么我不去公园玩”可以表示为________。

答案:¬p→¬q3. 设图G有n个顶点,e条边,则图G的度数之和为________。

答案:2e4. 一个连通图至少有________个顶点。

答案:25. 设图G的邻接矩阵为A,则A的转置矩阵表示________。

答案:图G的转置图三、判断题(每题5分,共25分)1. 离散数学是研究离散结构的数学分支。

()答案:正确2. 两个集合的笛卡尔积是这两个集合的直积。

()答案:正确3. 有向图中,顶点u和顶点v之间的长度为2的路径是指路径上有3条边。

()答案:错误4. 树是一种无向图。

()答案:正确5. 哈夫曼编码是一种贪心算法。

()答案:正确四、应用题(每题25分,共50分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},C={3,6,9,12,15},求A∪(B∩C)。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。

12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。

《离散数学》考试试卷(试卷库20卷)及答案

《离散数学》考试试卷(试卷库20卷)及答案

《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。

命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

离散数学第三版华中科技大学答案

离散数学第三版华中科技大学答案

离散数学第三版华中科技大学答案1、若a < b ,则下列各式正确的是(A) [单选题] *A、2a<2(正确答案)B、-3a<-3bC、a-2>b-2D、a+3<b+12、若a-b>0,则( B ) [单选题] *A、a<bB、a>b(正确答案)C、a=bD、a<b或a=b3、若a=x4+2x2+1,b=x4+x2+1,则下列各式正确的是() [单选题] *A、a>bB、a<bC、a ≥ b(正确答案)D、a ≤ b4、下列命题正确的是() [单选题] *A、若a<b, 则ac<bcB、若a<b, 则ac2<bc2C、若a<b, 则-2a>-2b(正确答案)D、若a<b, 则a-1>b-15、若2-3x>8, 则x的取值范围是() [单选题] *A、(2,+∞)B、(-∞,2)C、(-2,+∞)D、(-∞,-2)(正确答案)6、若a<0,则下列不等式不正确的是() [单选题] *A、4-a>3-aB、4+a>3+aC、4a>3a(正确答案)D、3a>4a7、若a>b, b<0,则下列不等式正确的是( B ) [单选题] *A、ab>0(正确答案)B、a-b>0C、a ÷b>0D、a ÷b<08、a2+c2 与 2ac 的大小关系是() [单选题] *A、a2+c2≥2ac(正确答案)B、a2+c2≤2acC、a2+c2>2acD、a2+c2<2ac9、若a<b ,c<0, 则下列各式正确的是() [单选题] *A、a+c>c>c>b+c B、ac<bc C、ac<0D、ac2<bc2(正确答案)10、下列各式正确的是() [单选题] *A、a2>0B、|a|>0C、4-a<4D、a2-2a+3>0(正确答案)11、若|x|<1,则 x 的取值范围是() [单选题] *A、(-∞ ,1)B、(-∞ ,-1)C、(-∞ ,-1)∪(1,+∞ )D、(-1,1)(正确答案)12、不等式|2x-1|< 3 的解集是() [单选题] *A、(-2,2)B、(-1,2)(正确答案)C、(-∞,-1)∪(2,+∞)D、(-∞,2)13、不等式|2x-3|>5 的解集是() [单选题] *A、{ x|x<-1或x>4}(正确答案)B、{ x|x<-1}C、{ x|x>4}D、{ x|-1<x<4}14、若|x|>3 ,则x的取值范围是() [单选题] *A、{x|-3<x<3}B、{x|x<-3或x>3}(正确答案)C、{x|x>3}D、{x|x<-3}15、不等式|x+2|<5在正整数集中的解集是() [单选题] *A、{1,2}(正确答案)B、{1,2,3}C、{0,1,2,3}D、{-7,5}16、不等式|x+1|>2 的解集是() [单选题] *A、{x|x>1}B、{x|x<-3}C、{x|x<-3或x>1}(正确答案)D、{x|-3<x<1}17、不等式 |x-2|<3 的解集是() [单选题] *A、{x|x<-1或x>5}B、{x|x<-1}C、{x|x>5}D、{x|-1<x<5}(正确答案)18、若不等式|x-m| < 2的解集为{x|2 < x < 6},则m= () [单选题] *A、2B、4(正确答案)C、6D、819、若不等式|x-3| > a的解集是{x|x < 2或x > 4},则a= () [单选题] *A、3B、2C、1(正确答案)D、020、若不等式|x|<m的解集是(-5,5),则m= () [单选题] *A、5(正确答案)B、3C、-3D、-521、集合{x|-1<x≤5}用区间可表示为() [单选题] *A、(﹣1,5)C、(﹣1,4 )D、[﹣1,5 ]22、集合{x|x<2}可用区间表示为() [单选题] *A、(﹣∞,2)(正确答案)B、(﹣∞,2 ]C、[ 2,+∞)D、(2,+∞)23、集合A=(﹣1,4),集合B = [ 0,5 ],则A∪B =() [单选题] *A、RB、(﹣1,5 ](正确答案)C、[ ﹣1,5 ]D、(﹣1,5)25、设集合A=(﹣∞,﹣1),全集为R,则集合A的补集是() [单选题] *A、(﹣∞,﹣1)B、(﹣∞,﹣1 ]C、[﹣1,+∞)(正确答案)D、(﹣1,+∞)26、集合R用区间表示为() [单选题] *A、(﹣∞,0)B、(0,+∞)D、R27、3属于以下哪个区间() [单选题] *A、(2,4)(正确答案)B、(1,2)C、(0,2)D、(0,1)28、表示正确的区间是() [单选题] *A、(+∞,﹣∞)B、(3,﹣3)C、(1,0)D、(3,4)(正确答案)29、长张高速的某路段最低限速60km/h,最高限速120km/h,则汽车在该路段的正常行驶速度(单位:km/h)的取值范围可用区间表示为() [单选题] *A、[ 60,120](正确答案)B、[ 120,+∞)C、(﹣∞,60 ]D、(60,120]30、区间(﹣7,2 ]可用集合表示为() [单选题] *A、{x | -7<x<2}B、{x | -7≤x≤2}C、{x | -7<x≤2}(正确答案)D、{x|-7≤x<2}32、已知二次方程x^2-5x+6=0的两根分别为2和3,则不等式x^2-5x+6<0的解集为() [单选题] *A、(﹣3,﹣2)B、(﹣3,2)C、(2,3)(正确答案)D、(﹣2,3)31、下列不等式为一元二次不等式的是() [单选题] *A、3x+4<0B、1/x+1>0C、√x+1<0D、x^2-x+1<0(正确答案)33、已知二次方程x^2-x-2=0的两根分别为2和-1,则不等式x^2-x-c=0的解集为(-1,2),则c的值为() [单选题] *A、1B、﹣1C、2(正确答案)D、﹣235、若不等式的解集为[-3,a],则a的值为() [单选题] *A、9B、﹣9C、-3D、3(正确答案)36、要使√(x^2-2x+1)有意义,则x的取值范围() [单选题] *A、空集B、R(正确答案)C、{ 0 }D、137、方程的判别式,要使,此时x的取值范围为() [单选题] *A、空集(正确答案)B、RC、{ 0 }D、238、若不等式的解集为(-2,5),则c的值为() [单选题] *A、3B、4C、5(正确答案)D、639、以下说法正确的是() [单选题] *A、x^2<4的解集为{x|x<±2}B、当a=时,不等式ax^2+bx+c>0不是一元二次不等式(正确答案)C、x+3>0的解集为空集D、不等式(x+1)(x+2)<0的解集为(1,2)40、长方形长为x厘米,宽为x-4厘米(x>4),要使此长方形面积大于50平方厘米,可用不等式表示为() [单选题] *A、x(x-4)>50(正确答案)B、x(x-4)<50C、x(x-4)≥50D、x(x-4)≤5041、不等式的解集是() [单选题] *A、R(正确答案)B、∅C、(-2,+∞)D、(-∞,-2)∪(2,+∞)42、不等式的解集是() [单选题] *A、∅B、[5,+∞)C、{5}D、R(正确答案)43、如果a>b,那么下列各式正确的是() [单选题] *A、3a>3(正确答案)B、-3a>-3bC、a-3≤b-3D、a-2>b-144、若a>b,则下列不等式一定成立的是( B ) [单选题] *A、 3a<3(正确答案)B、-3a<-3bC、 a^2>b^2D、a-b<045、不等式的解集是() [单选题] *A、{ x|x≥2}B、{x|x≤-2}C、{x|x≥2或x≤-2}(正确答案)D、{x|-2≤x≤2}46、由不等式|x|<3的正整数解组成的集合是() [单选题] *A、(-3,3)B、{-2,-1,0,1,2}C、{1,2}(正确答案)D、{1,2,3}47、下列各式正确的是() [单选题] *A、4/7> 5/9(正确答案)B、4/7< 5/9C、4/7 = 5/9D、2/3>5/648、不等式|3x-1|<1的解集为() [单选题] *A、RB、{x|x<0或x>2/3}C、 {x|x>2/3}D、{x|0<x<2/3}(正确答案)49、不等式x^2-9>0的解集是() [单选题] *A、{x|x>3}B、{x|x<-3}C、{x|-3<x<3}D、{x|x<-3或x>3}(正确答案)50、不等式|2x-1|>1的解集是() [单选题] *A、{x|x<0}B、{x|x>1}C、{x|0<x<1}D、{x|x<0或x>1}(正确答案)51、集合{x|-1<x≤5}用区间可表示为() [单选题] *A、(-1,5)B、[-1,5]C、(-1,5](正确答案)D、(-1,4)52、如果a>b,b>c,则() [单选题] *A、a>c(正确答案)B、a<cC、b<cD、b>a53、不等式|2x-3|>5的解集为() [单选题] *A、 (-1,4)B、(-∞,1)∪(4,+∞)(正确答案)C、(-∞,-1)D、(4,+∞)54、不等式(x+1)(x-3)>0的解集为() [单选题] *A、{x|x>3}B、{x|x<-1}C、{x|-1<x<3}D、{x|x>3或x<-1}(正确答案)55、不等式2/(x-1)≥0的解集为() [单选题] *A、{x|x>1}(正确答案)B、{x|x≥1}C、{x|-1<x<1}D、{x|x>1或x<-1}56、如下图所示,数轴上阴影部分表示的区间是() [单选题] *A、(-4,2)B、 [2,-4)C、 [-4,2](正确答案)D、(-4,2]57、不等式|3x+1|>10的解集为() [单选题] *A、(-3,11/3)B、(-∞,-3)∪(11/3,+∞)C、(-11/3,3)D、(-∞,-11/3)∪(3,+∞)(正确答案)58、不等式| x-3|≤ 6的解集是() [单选题] *A、{ x| -1≤x≤ 2 }B、{ x| 4≤x≤ 9 }C、{ x| -3≤x≤ 9 }(正确答案)D、{ x| -3≤x≤ 2 }59、不等式x^2-4x+4≥0的解集是() [单选题] *A、[2,+∞)B、(-∞,2]C、∅D、R(正确答案)60、不等式|x+2|>3的解集为() [单选题] *A、[-5,1]C、(-5,1)D、(-∞,-5)∪(1,+∞)(正确答案)61、若√(x^2-x-6)有意义,则x的取值范围是() [单选题] *A、(-∞,-1]∪[3,+∞)B、(-∞,-2]∪[3,+∞)(正确答案)C、[-2,3]D、(-1,3)62、不等式x(x+1)<0的解集是() [单选题] *A、{x|x<-1}B、{x|x>0}C、{x|-1<x<0}(正确答案)D、{x|x<-1或x>0}63、不等式x^2+x-6≥0的解集是() [单选题] *A、[-3,2]B、(-∞,-3)∪(2,+∞)C、[-2,3]D、(-∞,3]∪[2,+∞)(正确答案)64、若方程x^2-4x-5=0的两个根分别为-1和5,则不等式x^2-4x-5<0的解集为() [单选题] *A、(-1,5)(正确答案)C、[-1,5]D、(-∞,-1]∪[5,+∞)65、不等式x^2-9<0的解集为() [单选题] *A、(3,+∞)B、(-∞,3)C、(-3,3)(正确答案)D、(-∞,-3)∪(3,+∞)66、若5x+3<18 ,则() [单选题] *A、x<-5B、x>-5C、x<3(正确答案)D、x>567、不等式(3-x)(x+5)<0的解集为() [单选题] *A、(-5,3)B、(3,5)C、(-∞,-5)D、(-∞,-3) U(5,+∞)(正确答案)68、不等式x^2≤0的解集为() [单选题] *A、∅B、RC、{x|x=1}D、[-1,1](正确答案)69、不等式(x+1)(x-2)≥0的解集是() [单选题] *A、{x|x≤-1或x≥2}(正确答案)B、{x|x≤-1或x>2}C、{x|-1≤x≤2}D、{x|-1≤x<2}70、不等式|x+1|<5在正整数集中的解集是() [单选题] *A、{1,2}B、{-6,5}C、{0,1,2}D、{1,2,3}(正确答案)。

华中科技大学2021年《离散数学》期末试题及答案

华中科技大学2021年《离散数学》期末试题及答案

一、判断题 (本大题共10小题,每小题1分,共10分)1、阶大于1的树都是二部图。

(T )2、∃xP(x) ∧∃xQ (x) => ∃x (P (x)∧Q (x)) (F )3、空集是任何集合的子集。

(T )4、若R和S是自反的,则R•S是自反的。

(T )5、若R和S是对称的,则R•S是对称的。

(F )6、任何一个合式公式都可以化简为只含逻辑运算符┐和∧的形式。

(T )7、若无向图中恰有两个度为奇数的结点,则这两个结点必相互可达。

(T )8、<S,*>是独异点。

T={x| x∈S, x*x=x},则<T,*>也是独异点。

(F )9、任何一棵阶不小于2的树中至少有两片树叶。

(T )10、n阶连通无向图至少有n条边。

(F )二、单向选择与填空题(本大题共20小题,每小题2分,共40分)1、关于命题变元P1, P2,…, P n的指派共有(B)种A、2nB、2nC、n2D、22n2、设P:我将去镇上Q:我有时间。

命题“我将去镇上,仅当我有时间”符号化为( A )⌝⌝A、P→QB、Q → PC、P→ QD、Q → P3、下面哪一个命题是假命题(B )A、如果2是偶数,那么一个公式的主析取范式唯一B、如果2是偶数,那么一个公式的主析取范式不唯一C、如果2是奇数,那么一个公式的主析取范式唯一D、如果2是奇数,那么一个公式的主析取范式不唯一4、下列各式中不正确的是(C)A、∃x(P(x)∨Q(x)) ⇔∃xP(x)∨∃xQ(x)B、∀x(P(x)∧Q(x)) ⇔∀xP(x)∧∀xQ(x)C、∀x(P(x)∨Q(x)) ⇔∀xP(x)∨∀xQ(x)D、∀x (P(x)∧Q) ⇔∀x P(x)∧Q5、若公式A(P,Q,R)的主合取范式为∏(0,1,4,5),则公式A(P,Q,R)的主析取范式为( C )A、∑(0,1,4,5)B、∏(0,1,4,5)C、∑(2,3,6,7)D、∏(2,3,6,7)6、设A={a,{a}},下列选项错误的是(B)A、{a}∈ P(A)B、{a} ⊆ P(A)C、{{a}}∈ P(A)D、{{a}}⊆ P(A)7、设集合A={a,b,c}, R是A上的二元关系,R={<a,a>,<a,b>,<a,c>,<c,a>,<c,c>},则R是( C )A、反自反的B、反对称的C、可传递的D、不可传递的8、R是反对称的当且仅当(D )A、I A⊆RB、{a}R ∩I A =фC、R=R-1D、R∩R-1⊆I A9、任何无向图中结点间的可达系是( B )A、偏序关系B、等价关系C、相容关系D、拟序关系10、设集合A={a,b,c},则A上可以形成(C )种不同的等价关系A、3B、4C、5D、611、Z是整数集合,Z+表示非负整数集合,函数f定义为:Z→ Z+,f (x)=|x|,则f是( B )A、单射B、满射C、双射D、恒等12、设N是自然数集合,f和g是N到N的函数,且f (n)=2n+1,g (n)=n2,则复合函数f。

离散考试试题及答案

离散考试试题及答案

离散考试试题及答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念不是布尔代数的基本运算?A. 与B. 或C. 非D. 模答案:D2. 集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A3. 命题逻辑中,下列哪个符号表示“蕴含”关系?A. ∧B. ∨C. →D. ↔答案:C4. 关系R在集合A上是自反的,意味着什么?A. 对于所有a∈A,(a, a)∈RB. 对于所有a∈A,(a, a)∉RC. 对于所有a∈A,(a, b)∈RD. 对于所有a∈A,(a, b)∉R答案:A二、填空题(每题5分,共20分)1. 一个集合的基数是集合中元素的________。

答案:数量2. 在有向图中,如果存在一条从顶点u到顶点v的路径,则称顶点v 是顶点u的________。

答案:可达的3. 一个图是连通的,当且仅当图中任意两个顶点都是________。

答案:连通的4. 在命题逻辑中,一个命题的否定是________。

答案:它的对立命题三、简答题(每题10分,共30分)1. 请解释什么是图的哈密顿回路。

答案:哈密顿回路是一个图中的闭合回路,它恰好访问图中的每个顶点一次。

2. 描述一下什么是二元关系,并给出一个例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是数字集合上的一个二元关系。

3. 什么是图的生成树?答案:图的生成树是图的一个子图,它包含图中的所有顶点,并且是一棵树,即它是连通的且没有环。

四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4,5},计算它的幂集。

答案:幂集P(A)={∅, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5},{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}, A}。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的运算?A. 并集B. 交集C. 差集D. 乘法2. 命题逻辑中,下列哪个命题是真命题?A. (P ∧ ¬P) → QB. (P ∨ Q) ∧ ¬(P ∧ Q)C. P → (Q → P)D. (P → Q) ∧ (Q → R) → (P → R)3. 函数f: A → B,如果f是单射,那么下列哪个选项是正确的?A. A中不同的元素在B中可能有相同的像B. B中每个元素都有原像C. A中不同的元素在B中有不同的像D. B中不同的元素在A中有不同的原像4. 在图论中,下列哪个选项不是图的基本术语?A. 顶点B. 边C. 邻接D. 矩阵5. 组合数学中,从n个不同元素中取出k个元素的组合数记作C(n, k),下列哪个选项是错误的?A. C(n, k) = C(n, n-k)B. C(n, 0) = 1C. C(n, 1) = nD. C(n, k) = C(k, n)6. 关系R是A×B上的二元关系,下列哪个选项不是关系R的性质?A. 自反性B. 对称性C. 传递性D. 可数性7. 在命题逻辑中,下列哪个命题等价于P ∨ (Q ∧ R)?A. (P ∨ Q) ∧ (P ∨ R)B. (P ∧ Q) ∨ (P ∧ R)C. (P ∨ Q) ∨ RD. (P ∨ Q) ∧ R8. 集合{1, 2, 3}的幂集含有多少个元素?A. 3B. 6C. 8D. 99. 在图论中,下列哪个选项不是树的性质?A. 无环B. 至少有两个顶点C. 任意两个顶点都由唯一路径连接D. 至少有一个环10. 在集合论中,下列哪个选项是正确的?A. 空集是任何集合的子集B. 任何集合都是其自身的超集C. 空集是任何非空集合的真子集D. 空集是其自身的并集二、简答题(每题10分,共30分)11. 简述命题逻辑中的德摩根定律,并给出一个例子。

华科离散数学试题与标准答案试卷

华科离散数学试题与标准答案试卷

离散数学试题与答案试卷一 一、填空 20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E +正偶数)则=⋃B A .2.A ,B ,C 表示三个集合,文图中阴影部分地集合表达式为 .3.设P ,Q 地真值为0,R ,S 地真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝地真值= .4.公式P R S R P ⌝∨∧∨∧)()(地主合取范式为 .5.若解释I 地论域D 仅包含一个元素,则)()(x xP x xP ∀→∃在I 下真值为 .6.设A={1,2,3,4},A 上关系图为则 R 2 = .7.设A={a ,b ,c ,d},其上偏序关系R 地哈斯图为则 R= .8.图地补图为.9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>10.下图所示地偏序集中,是格地为.二、选择 20%(每小题 2分)1、下列是真命题地有( ) A .}}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ;D .}}{{}{Φ∈Φ. 2、下列集合中相等地有()A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}. 3、设A={1,2,3},则A 上地二元关系有()个. A . 23 ;B . 32 ;C .332⨯; D .223⨯.4、设R ,S 是集合A 上地关系,则下列说法正确地是() A .若R ,S 是自反地,则S R 是自反地; B.若R ,S 是反自反地,则S R 是反自反地; C .若R ,S 是对称地,则S R 是对称地; D .若R ,S 是传递地,则S R 是传递地.5、设A={1,2,3,4},P (A )(A 地幂集)上规定二元系如下|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=()A .A ;B .P(A) ;C .{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”地哈斯图为()7、下列函数是双射地为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | .(注:I—整数集,E—偶数集,N—自然数集,R—实数集)8、图中从v1到v3长度为3 地通路有()条.A.0;B.1;C.2;D. 3.9、下图中既不是Eular图,也不是Hamilton图地图是()10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4度结点.A.1;B.2;C.3;D.4 .三、证明26%1、R是集合X上地一个自反关系,求证:R是对称和传递地,当且仅当< a, b> 和<a , c>在R中有<.b , c>在R中.(8分)f和g 都是群<G 1 ,★>到< G 2, *>地同态映射,证明<C ,★>是<G 1,★>地一个子群.其中C=)}()(|{1x g x f G x x =∈且 (8分)G=<V , E>(|V| = v ,|E|=e ) 是每一个面至少由k (k ≥3)条边围成地连通平面图,则2)2(--≤k v k e ,由此证明彼得森图(Peterson )图是非平面图.(11分)四、逻辑推演 16%用CP 规则证明下题(每小题 8分) 1、F A F E D D C B A →⇒→∨∧→∨, 2、)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀五、计算 18%1、设集合A={a ,b ,c ,d}上地关系R={<a , b > ,< b , a > ,< b, c > , < c , d >}用矩阵运算求出R 地传递闭包t (R).(9分)2、如下图所示地赋权图表示某七个城市721,,,v v v 及预先算出它们之间地一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小. (9分)试卷一答案:一、填空 20% (每小题2分)1、{0,1,2,3,4,6};2、A C B -⊕)(;3、1;4、)()(R S P R S P ∨⌝∨⌝∧∨∨⌝;5、1;6、{<1,1>, <1,3>, <2,2>, <2,4> };7、{<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A ;8、9、a ;a , b , c ,d ;a , d , c , d ;10、c;二、选择 20% (每小题 2分)三、证明 26%1、 证:“⇒”X c b a ∈∀,,若R>c ,a <,>b ,a <∈由R 对称性知R a ,c <,>a ,b <∈>,由R 传递性得R >c ,b <∈“⇐”若R>b ,a <∈,R >c ,a <∈有R >c ,b <∈任意X b a ∈,,因R >a ,a <∈若R>b ,a <∈R >a ,b < ∈∴所以R 是对称地. 若R>b ,a <∈,R >c b,<∈则R c b, R >a b,<>∈<∧∈R >c ,a < ∈∴即R 是传递地. 2、 证Cb a ∈∀,,有)()(),()(b g b f a g a f ==,又)()(,)()(1111b g b g b f b f ----==)()()()(1111----===∴b g b g b fb fa f (∴★a gb g a g b f a f b ()(*)()(*)()111===---★)1-ba ∴★Cb ∈-1∴< C , ★> 是 < G 1 , ★>地子群.3、 证:①设G 有r 个面,则rkF d e ri i ≥=∑=1)(2,即k er 2≤.而2=+-r e v 故k e e v r e v 22+-≤+-=即得2)2(--≤k v k e .(8分)②彼得森图为10,15,5===v e k ,这样2)2(--≤k v k e 不成立,所以彼得森图非平面图.(3分)二、 逻辑推演 16% 1、 证明:①A P (附加前提) ②B A ∨T ①I ③D C B A ∧→∨ P ④D C ∧ T ②③I ⑤D T ④I ⑥E D ∨ T ⑤I ⑦F E D →∨ P ⑧F T ⑥⑦I ⑨F A → CP2、证明 ①)(x xP ∀ P (附加前提) ②)(c PUS ① ③))()((x Q x P x →∀ P ④)()(c Q c P → US ③ ⑤)(c Q T ②④I ⑥)(x xQ ∀UG ⑤ ⑦)()(x xQ x xP ∀→∀CP三、 计算 18% 1、 解:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R M ,⎪⎪⎪⎪⎪⎭⎫⎝⎛==00000000101001012R R R M M M⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000000101101023R R R M M M ,⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000001010010134R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=+++=0000100011111111432)(R R R R R t M M M M M∴ t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > , < b , d > , < c , d > }2、 解:用库斯克(Kruskal )算法求产生地最优树.算法略.结果如图:树权C(T)=23+1+4+9+3+17=57即为总造价.试卷二试题与答案一、填空 20% (每小题2分)1、 P :你努力,Q :你失败.“除非你努力,否则你将失败”地翻译为;“虽然你努力了,但还是失败了”地翻译为 .2、论域D={1,2},指定谓词P则公式x ∃∀真值为.2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 地子集,则由B 31所表达地子集是 .3、 设A={2,3,4,5,6}上地二元关系}|,{是质数x y x y x R ∨<><=,则R=(列举法). R 地关系矩阵M R = .5、设A={1,2,3},则A 上既不是对称地又不是反对称地关系R=;A 上既是对称地又是反对称地关系R= .6、设代数系统<A ,*>,其中A={a ,b ,c},则幺元是;是否有幂等性;是否有对称性. 7、4阶群必是群或群.8、下面偏序格是分配格地是.9、n 个结点地无向完全图K n 地边数为,欧拉图地充要条件是 .10、公式R Q P Q P P ⌝∧∨⌝∧∧⌝∨)(())((地根树表示为 .二、选择 20% (每小题2分)1、在下述公式中是重言式为()A .)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→↔↔;C .Q Q P ∧→⌝)(;D .)(Q P P ∨→.2、命题公式)()(P Q Q P ∨⌝→→⌝中极小项地个数为(),成真赋值地个数为().A .0;B .1;C .2;D .3 .3、设}}2,1{},1{,{Φ=S ,则S2有()个元素.A .3;B .6;C .7;D .8 . 4、 设} 3 ,2 ,1 {=S ,定义S S ⨯上地等价关系},,,, | ,,,{c b d a S S d c S S b a d c b a R +=+⨯>∈<⨯>∈<><><<=则由 R 产生地S S ⨯上一个划分共有()个分块.A .4;B .5;C .6;D .9 . 5、设} 3 ,2 ,1 {=S ,S 上关系R 地关系图为则R 具有()性质.A .自反性、对称性、传递性;B .反自反性、反对称性;C .反自反性、反对称性、传递性;D .自反性. 6、设 ,+为普通加法和乘法,则()>+< ,,S 是域. A .},,3|{Q b a b a x x S ∈+== B .},,2|{Z b a n x x S ∈==C .},12|{Z n n x x S ∈+== D .}0|{≥∧∈=x Z x x S = N .7、下面偏序集()能构成格.8、在如下地有向图中,从V 1到V 4长度为3 地道路有()条.A .1;B .2;C .3;D .4 . 9、在如下各图中()欧拉图.10、设R 是实数集合,“⨯”为普通乘法,则代数系统<R ,×> 是().A .群;B .独异点;C .半群.三、证明 46%1、 设R 是A 上一个二元关系,)},,,(),(|,{R b c R c a A c A b a b a S >∈<>∈<∈∧∈><=且有对于某一个试证明若R 是A 上一个等价关系,则S 也是A 上地一个等价关系.(9分)2、 用逻辑推理证明:所有地舞蹈者都很有风度,王华是个学生且是个舞蹈者.因此有些学生很有风度.(11分)3、 若B A f →:是从A 到B 地函数,定义一个函数AB g 2:→对任意B b ∈有)})(()(|{)(b x f A x x b g =∧∈=,证明:若f 是A 到B 地满射,则g 是从B 到A 2地单射.(10分)4、 若无向图G 中只有两个奇数度结点,则这两个结点一定连通.(8分)5、 设G 是具有n 个结点地无向简单图,其边数2)2)(1(21+--=n n m ,则G 是Hamilton 图(8分)四、计算 14%设<Z 6,+6>是一个群,这里+6是模6加法,Z 6={[0 ],[1],[2],[3],[4],[5]},试求出<Z 6,+6>地所有子群及其相应左陪集.(7分)2、 权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树.(7分)试卷二答案: 一、 填空 20%(每小题2分)1、Q P →⌝;Q P ∧2、T3、},,,,{876540001111131a a a a a B B ==4、R={<2,2>,<2,3>,<2,4>,<2,5>,<2,6>,<3,2>,<3,3>,<3,4>,<3,5>,<3,6>,<4,5>,<4,6>,<5,2>,<5,3>,<5,4>,<5,5>,<5,6>};⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0000011111110001111111111 5、R={<1,2>,<1,3>,<2,1>};R={<1,1>,<2,2>,<3,3>} 6、a ;否;有 7、Klein 四元群;循环群 8、 B 9、)1(21-n n ;图中无奇度结点且连通 10 、二、三、 证明 46%1、(9分)(1) S 自反地A a ∈∀,由R 自反,),(),(R a a R a a >∈<∧>∈<∴,S a a >∈∴<,(2) S 对称地传递对称定义R Sa b R R b c R c a S R b c R c a S b a Ab a >∈⇒<>∈<∧>∈<⇒>∈<∧>∈<⇒>∈<∈∀,),(),(),(),(,,(3) S 传递地定义传递S Sc a R R c b R b a R c e R e b R bd R d a Sc b S b a Ac b a >∈⇒<>∈<∧>∈<⇒>∈<∧>∈<∧>∈<∧>∈<⇒>∈<∧>∈<∈∀,),(),(),(),(),(),(,,,,由(1)、(2)、(3)得;S 是等价关系. 2、11分证明:设P(x):x 是个舞蹈者; Q(x) :x 很有风度; S(x):x 是个学生; a :王华 上述句子符号化为:前提:))()((x Q x P x →∀、)()(a P a S ∧结论:))()((x Q x S x ∧∃……3分①)()(a P a S ∧ P ②))()((x Q x P x →∀ P ③)()(a Q a P → US ② ④)(a P T ①I ⑤).(a Q T ③④I ⑥)(a S T ①I ⑦)()(a Q a S ∧ T ⑤⑥I ⑧)()((x Q x S x ∧∃ EG ⑦……11分3、10分证明:)(,,2121b b B b b ≠∈∀A a a f ∈∃∴21,满射21212211,),()(,)(,)(a a f a f a f b a f b a f ≠∴≠==是函数由于且使 )()()(),()(),()})(()(|{)()},)(()(|{)(21122122112211b g b g b g a b g a b g a b g a b x f A x x b g b x f A x x b g ≠∴∉∉∈∈∴=∧∈==∧∈=但又为单射任意性知由g b b ,,21.4、8分证明:设G 中两奇数度结点分别为u 和v ,若 u ,v 不连通,则G 至少有两个连通分支G 1、G 2 ,使得u 和v 分别属于G 1和G 2,于是G 1和G 2中各含有1个奇数度结点,这与图论基本定理矛盾,因而u ,v 一定连通.5、8分证明:证G 中任何两结点之和不小于n.反证法:若存在两结点u ,v 不相邻且1)()(-≤+n v d u d ,令},{1v u V =,则G-V 1是具有n-2个结点地简单图,它地边数)1(2)2)(1(21'--+--≥n n n m ,可得1)3)(2(21'+--≥n n m ,这与G 1=G-V 1为n-2个结点为简单图地题设矛盾,因而G中任何两个相邻地结点度数和不少于n.所以G 为Hamilton 图.四、计算 14%1、 7分解:子群有<{[0]},+6>;<{[0],[3]},+6>;<{[0],[2],[4]},+6>;<{Z 6},+6>{[0]}地左陪集:{[0]},{[1]};{[2]},{[3]};{[4]},{[5]} {[0],[3]}地左陪集:{[0],[3]};{[1],[4]};{[2],[5]}{[0],[2],[4]}地左陪集:{[0],[2],[4]};{[1],[3],[5]} Z 6地左陪集:Z 6 .2、 7分试卷三试题与答案一、 填空 20% (每空 2分)1、 设 f ,g 是自然数集N 上地函数x x g x x f N x 2)(,1)(,=+=∈∀,则=)(x g f .设A={a ,b ,c},A 上二元关系R={< a, a > , < a, b >,< a, c >, < c, c>} , 则s (R )= .3、 A={1,2,3,4,5,6},A 上二元关系}|,{是素数y x y x T ÷><=,则用列举法 T= ; T 地关系图为 ;T 具有性质.4、 集合}}2{},2,{{Φ=A 地幂集A2= .5、 P ,Q 真值为0 ;R ,S 真值为1.则))()(())((S R Q P S R P wff ∧∧∨→∨∧地真值为.6、 R R Q P wff →∨∧⌝))((地主合取范式为.设 P (x ):x 是素数, E(x):x 是偶数,O(x):x 是奇数 N (x,y):x 可以整数y.则谓词))),()(()((x y N y O y x P x wff∧∃→∀地自然语言是.8、 谓词)),,()),(),(((u y x uQ z y P z x P z y x wff ∃→∧∃∀∀地前束范式为 .二、 选择 20% (每小题 2分)1、 下述命题公式中,是重言式地为().A 、)()(q p q p ∨→∧;B 、))())(()(p q q p q p →∧→↔↔;C 、q q p ∧→⌝)(;D 、q p p ↔⌝∧)(. 2、 r q p wff→∧⌝)(地主析取范式中含极小项地个数为().A 、2;B 、 3;C 、5;D 、0;E 、 8 . 3、 给定推理①))()((x G x F x →∀ P ②)()(y G y F → US ① ③)(x xF ∃ P ④)(y F ES ③ ⑤)(y G T ②④I ⑥)(x xG ∀UG ⑤)())()((x xG x G x F x ∀⇒→∀∴推理过程中错在().A 、①->②;B 、②->③;C 、③->④;D 、④->⑤;E 、⑤->⑥设S 1={1,2,…,8,9},S 2={2,4,6,8},S 3={1,3,5,7,9},S 4={3,4,5},S 5={3,5},在条件31S X S X ⊄⊆且下X 与()集合相等. A 、 X=S 2或S 5 ; B 、X=S 4或S 5;C 、X=S 1,S 2或S 4;D 、X 与S 1,…,S 5中任何集合都不等. 5、 设R和S是P上地关系,P是所有人地集合,},|,{的父亲是y x P y x y x R ∧∈><=,},|,{的母亲是y x P y x y x S ∧∈><=则R S1-表示关系().A 、},|,{的丈夫是y x P y x y x ∧∈><;B 、},|,{的孙子或孙女是y x P y x y x ∧∈><;C 、Φ;D 、},|,{的祖父或祖母是y x P y x y x ∧∈><. 6、 下面函数()是单射而非满射.A 、12)(,:2-+-=→x x x f R R f ;B 、x x f R Zf ln )(,:=→+;C 、的最大整数表示不大于x x x x f Z R f ][],[)(,:=→;D 、12)(,:+=→x x f R R f .其中R 为实数集,Z 为整数集,R +,Z +分别表示正实数与正整数集. 7、 设S={1,2,3},R 为S 上地关系,其关系图为则R 具有()地性质.A 、 自反、对称、传递;B 、什么性质也没有;C 、反自反、反对称、传递;D 、自反、对称、反对称、传递. 8、 设}}2,1{},1{,{Φ=S ,则有()S ⊆.A 、{{1,2}} ;B 、{1,2 } ;C 、{1} ;D 、{2} . 9、 设A={1 ,2 ,3 },则A 上有()个二元关系.A 、23; B 、32; C 、322; D 、232.10、全体小项合取式为().A 、可满足式;B 、矛盾式;C 、永真式;D 、A ,B ,C 都有可能. 三、 用CP 规则证明 16% (每小题 8分) 1、F A FE D D C B A →⇒→∨∧→∨,2、)()())()((x xQ x xP x Q x P x ∃∨∀⇒∨∀ 四、(14%)集合X={<1,2>, <3,4>, <5,6>,… },R={<<x 1,y 1>,<x 2,y 2>>|x 1+y 2 = x 2+y 1} .1、 证明R 是X 上地等价关系.(10分)2、 求出X 关于R 地商集.(4分) 五、(10%)设集合A={ a ,b , c , d }上关系R={< a, b > , < b , a > , < b , c > , < c , d >} 要求 1、写出R 地关系矩阵和关系图.(4分) 2、用矩阵运算求出R 地传递闭包.(6分) 六、(20%)1、(10分)设f 和g 是函数,证明g f ⋂也是函数.2、(10分)设函数S T f T S g →→::,证明S T f →:有一左逆函数当且仅当f 是入射函数. 答案:五、 填空 20%(每空2分)1、2(x+1);2、}a , c ,a , b ,c , c ,c , a ,b , a ,a , a {><><><><><><;3、>}<><><><><><3,6,2,6,2,4,5,1,3,1,2,1{;4、反对称性、反自反性;4、}}}2{},2,{{}},2{{}},2,{{,{ΦΦΦ;5、1;6、)()()(R Q P R Q P R Q P ∨∨∧∨∨⌝∧∨⌝∨;7、任意x ,如果x 是素数则存在一个y ,y 是奇数且y 整除x ;8、)),,(),(),((u y x Q z y P z x P u z y x ∨⌝∨⌝∃∀∀∀.六、 选择 20%(每小题 2分)七、 证明 16%(每小题8分) 1、 ①A P (附加前提) ②B A ∨T ①I ③D C B A ∧→∨P④D C ∧ T ②③I ⑤D T ④I ⑥E D ∨ T ⑤I ⑦F E D →∨ P ⑧F T ⑥⑦I ⑨F A → CP2、)()(())()(()()()()()(x xQ x xP x Q x P x x xQ x P x x xQ x xP ∃→∀⌝⇒∨∀∃→∀⌝⇔∃∨∀本题可证①))((x xP ∀⌝ P (附加前提) ②))((x P x ⌝∃ T ①E ③)(a P ⌝ES ② ④))()((x Q x P x ∨∀ P ⑤)()(a Q a P ∨ US ④ ⑥)(a Q T ③⑤I ⑦)(x xQ ∃EG ⑥ ⑧)()((x xQ x xP ∃→∀⌝ CP八、 14% (1) 证明:1、自反性:y x y x X y x +=+>∈<∀由于,,自反R Ry x y x >>∈<><<∴,,,2、对称性:X y x X y x >∈<∀>∈<∀2211,,,时当R y x y x >>∈<><<2211,,,21121221y x y x y x y x +=++=+也即即 有对称性故R R y x y x >>∈<><<1122,,,3、传递性:X y x Xy x X y x >∈<∀>∈<∀>∈<∀332211,,,,时且当R y x y x R y x y x >>∈<><<>>∈<><<33222211,,,,,,⎩⎨⎧+=++=+)2()1(23321221y x y x y x y x 即23123221)2()1(y x y x y x y x +++=++++即1331y x y x +=+有传递性故R R y x y x >>∈<><<3311,,,由(1)(2)(3)知:R 是X 上地先等价关系. 2、X/R=}]2,1{[R >< 九、 10%1、⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R M ;关系图2、⎪⎪⎪⎪⎪⎭⎫⎝⎛==00000000101001012R R R M M M⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000000101101023R R R M M M2340000000010100101R R R R M M M M =⎪⎪⎪⎪⎪⎭⎫⎝⎛== ,,4635R R R R M M M M == ⎪⎪⎪⎪⎪⎭⎫⎝⎛=+++=0000100011111111432)(R R R R R t M M M M M∴ t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > , < b , d > , < c ,d > }.六、 20%1、(1))}()(|,{)}()(|,{x g x f y domg domf x y x x g y x f y domg x domf x y x g f ==∧⋂∈><==∧=∧∈∧∈><=⋂)}()(,|{x g x f domg domf x x domh g domf gf h =⋂∈==⋂∴⋂=令(2))}()()(|,{x g x f x h y domg domf x y x h ===∧⋂∈><=使得若有对21,y y domh x ∈ )()()(,)()()(21x g x f x h y x g x f x h y ======21,)(y y g f =有是函数或由于)(x h y y domh x =∈∀使得有唯一即也是函数g f ⋂∴.2、证明:t t f g Tt g f =∈∀⇒)(,"" 则对有一左逆若是入射所以是入射故f f g , . 的左逆元是故则且若或只有一个值则对令若此时令使入射由定义如下是入射f g t s g t f g s t f c t s g S s T c s g T f s t s g s t f T t f T f s S T f f ,)()()()(,)()(,)()(,|,),(::,""===∈∀∈=∉==∈∃∈∀→⇐左逆函数为使必能构造函数入射即若f g g f ,,.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.TIrRG 。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学考试题目及答案

离散数学考试题目及答案

离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。

若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。

若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。

答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。

离散数学试题与答案试卷

离散数学试题与答案试卷

离散数学试题与答案试卷一、选择题(每题5分,共25分)1. 下列哪个集合是空集?A. {x | x是小于0的整数}B. {x | x是大于0的整数}C. {x | x是等于0的整数}D. {x | x是所有整数}2. 下列哪个命题是假命题?A. 2是偶数B. 3是奇数C. 4是偶数D. 5是奇数3. 下列哪个函数是满射?A. f(x) = x^2B. f(x) = x + 1C. f(x) = 2xD. f(x) = x^34. 下列哪个图是树?A. 一个有向图B. 一个有环的图C. 一个连通的图D. 一个无环的连通图5. 下列哪个关系是等价关系?A. 小于关系B. 大于关系C. 等于关系D. 不等于关系二、填空题(每题5分,共25分)6. 3的阶乘是______。

7. 下列序列的前五项是:1, 2, 4, 8, 16,这个序列的通项公式是______。

8. 下列二叉树的层序遍历结果是:ABDCEFG。

9. 下列排列的逆序数是:532416。

10. 下列集合的势是:{a, b, c}。

三、简答题(每题10分,共30分)11. 简述什么是图论中的路径和回路。

12. 简述什么是集合的幂集。

13. 简述什么是函数的复合。

四、计算题(每题10分,共20分)14. 计算下列组合数的值:C(5, 2)。

15. 计算下列排列数的值:P(4, 3)。

五、证明题(每题15分,共30分)16. 证明:对于任意的自然数n,n^2 + n + 1是奇数。

17. 证明:对于任意的自然数n,如果n是偶数,那么n^2也是偶数。

答案:一、选择题1. A2. B3. C4. D5. C二、填空题6. 67. 2^n8. AB, BC, BD, CE, CF, DE, DF, EF, FG9. 410. 3三、简答题11. 路径是图论中从顶点u到顶点v的一条边序列,而回路是起点和终点相同的路径。

回路可以是简单回路,即不重复经过任何顶点的回路,也可以是复杂回路,即可能重复经过顶点的回路。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。

离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。

下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。

1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。

答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。

答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。

答案:是永真式。

(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。

请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。

答案:是真命题。

4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。

(完整版)离散数学试题及答案,推荐文档

(完整版)离散数学试题及答案,推荐文档
二、选择题
1 设集合 A={2,{a},3,4},B = {{a},3,4,1},E 为全集,则下列命题正确的是( )。 (A){2}A (B){a}A (C){{a}}BE (D){{a},1,3,4}B.
2 设集合 A={1,2,3},A 上的关系 R={(1,1),(2,2),(2,3),(3,2),(3,3)},则 R 不具备( ).
11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.
9. 设集合 A={1,2,3,4}, A 上的关系 R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1R2 =
__________________________________________________________.

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分考试时限:120 分钟⼀、选择题(每题2分,共20分)1. 下述命题公式中,是重⾔式的为( )(A ))()(q p q p ∨→∧(B )q p ∨))()((p q q p →∨→?(C )q q p ∧→?)((D )q q p →?∧)(2. 对任意集合A,B,C,下列结论正确的是()(A )若A ?B,B ∈C,则A ?C ;(B )若A ∈B,BC,则A ?C ;(C )若A ?B,B ∈C,则A ∈C ;(D )若A ∈B,B ?C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系, ,则由R 产⽣的S S ?上⼀个划分共有( )个分块。

(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是⼀棵树当且仅当G 中( )(A )有些边是割边(B )每条边都是割边(C )所有边都不是割边(D )图中存在⼀条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平⾯图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下⾯命题公式中真值为1的是()(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=中,结点总度数与边数的关系是()(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公⽤⼀个电源,则⾄少需有五插头的接线板数()(A )7(B )8(C )9(D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为()(A )11 (B )14 (C )17(D )15⼆、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。

7. 一个连通图的生成树包含______条边。

8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。

9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。

10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。

三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。

()12. 一个连通图的所有顶点都连通。

()13. 在一个简单图中,每个顶点的度数都小于等于n-1。

()14. 每个图都有哈密顿路径。

()15. 一个图G的生成树是原图G的子图。

()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。

17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。

18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学试题与答案试卷一 一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。

10.下图所示的偏序集中,是格的为 。

二、选择 20%(每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。

2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

3、设A={1,2,3},则A 上的二元关系有( )个。

A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。

4、设R ,S 是集合A 上的关系,则下列说法正确的是( )A .若R ,S 是自反的, 则S R 是自反的;B .若R ,S 是反自反的, 则S R 是反自反的;C .若R ,S 是对称的, 则S R 是对称的;D .若R ,S 是传递的, 则S R 是传递的。

5、设A={1,2,3,4},P (A )(A 的幂集)上规定二元系如下|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=( )A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。

(注:I—整数集,E—偶数集,N—自然数集,R—实数集)8、图中从v1到v3长度为3 的通路有()条。

A.0;B.1;C.2;D.3。

9、下图中既不是Eular图,也不是Hamilton图的图是()10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4度结点。

A.1;B.2;C.3;D.4 。

三、证明26%1、R是集合X上的一个自反关系,求证:R是对称和传递的,当且仅当< a, b> 和<a , c>在R 中有<.b , c>在R 中。

(8分)2、f 和g 都是群<G 1 ,★>到< G 2, *>的同态映射,证明<C , ★>是<G 1, ★>的一个子群。

其中C=)}()(|{1x g x f G x x =∈且 (8分)3、G=<V , E> (|V| = v ,|E|=e ) 是每一个面至少由k (k ≥3)条边围成的连通平面图,则2)2(--≤k v k e , 由此证明彼得森图(Peterson )图是非平面图。

(11分)四、逻辑推演 16%用CP 规则证明下题(每小题 8分) 1、F A F E D D C B A →⇒→∨∧→∨, 2、)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀五、计算 18%1、设集合A={a ,b ,c ,d}上的关系R={<a , b > ,< b , a > ,< b, c > , < c , d >}用矩阵运算求出R 的传递闭包t (R)。

(9分)2、如下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。

(9分)试卷一答案:一、填空 20% (每小题2分)1、{0,1,2,3,4,6};2、A C B -⊕)(;3、1;4、)()(R S P R S P ∨⌝∨⌝∧∨∨⌝;5、1;6、{<1,1>, <1,3>, <2,2>, <2,4> };7、{<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A ;8、9、a ;a , b , c ,d ;a , d , c , d ;10、c;二、选择 20% (每小题 2分)三、证明 26%1、 证:“⇒” X c b a ∈∀,, 若R>c ,a <,>b ,a <∈由R 对称性知R a ,c <,>a ,b <∈>,由R 传递性得 R >c ,b <∈“⇐” 若R>b ,a <∈,R >c ,a <∈有 R >c ,b <∈ 任意 X b a ∈,,因R >a ,a <∈若R >b ,a <∈R >a ,b < ∈∴ 所以R 是对称的。

若R>b ,a <∈,R >c b,<∈ 则 R c b, R >a b,<>∈<∧∈ R >c ,a < ∈∴ 即R 是传递的。

2、 证Cb a ∈∀,,有)()(),()(b g b f a g a f ==,又)()(,)()(1111b g b g b f b f ----==)()()()(1111----===∴b g b g b fb fa f (∴★a gb g a g b f a f b ()(*)()(*)()111===---★)1-ba ∴★Cb ∈-1 ∴< C , ★> 是 < G 1 , ★>的子群。

3、 证:①设G 有r 个面,则rkF d e ri i ≥=∑=1)(2,即k er 2≤。

而 2=+-r e v 故k e e v r e v 22+-≤+-=即得 2)2(--≤k v k e 。

(8分)②彼得森图为10,15,5===v e k ,这样2)2(--≤k v k e 不成立,所以彼得森图非平面图。

(3分)一、 逻辑推演 16% 1、 证明:①A P (附加前提) ②B A ∨T ①I ③D C B A ∧→∨ P ④D C ∧ T ②③I ⑤D T ④I ⑥E D ∨ T ⑤I ⑦F E D →∨ P ⑧F T ⑥⑦I ⑨F A → CP2、证明 ①)(x xP ∀ P (附加前提) ②)(c PUS ① ③))()((x Q x P x →∀ P ④)()(c Q c P → US ③ ⑤)(c Q T ②④I ⑥)(x xQ ∀UG ⑤ ⑦)()(x xQ x xP ∀→∀CP二、 计算 18% 1、 解:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R M , ⎪⎪⎪⎪⎪⎭⎫⎝⎛==00000000101001012R R R M M M⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000000101101023R R R M M M ,⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000001010010134R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=+++=0000100011111111432)(R R R R R t M M M M M∴ t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > ,< b , d > , < c , d > }2、 解:用库斯克(Kruskal )算法求产生的最优树。

算法略。

结果如图:树权C(T)=23+1+4+9+3+17=57即为总造价。

试卷二试题与答案一、填空 20% (每小题2分)1、 P :你努力,Q :你失败。

“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为 。

2、论域D={1,2},指定谓词P则公式x ∃∀真值为 。

2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。

3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R=(列举法)。

R 的关系矩阵M R =。

5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ;A 上既是对称的又是反对称的关系R= 。

6、设代数系统<A ,*>,其中A={a ,b ,c},则幺元是 ;是否有幂等 性 ;是否有对称性 。

7、4阶群必是 群或 群。

8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。

10、公式R Q P Q P P ⌝∧∨⌝∧∧⌝∨)(())((的根树表示为。

二、选择 20% (每小题2分)1、在下述公式中是重言式为( )A .)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→↔↔;C .Q Q P ∧→⌝)(;D .)(Q P P ∨→。

2、命题公式 )()(P Q Q P ∨⌝→→⌝ 中极小项的个数为( ),成真赋值的个数为( )。

A .0;B .1;C .2;D .3 。

3、设}}2,1{},1{,{Φ=S ,则 S2 有( )个元素。

A .3;B .6;C .7;D .8 。

4、 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系},,,, | ,,,{c b d a S S d c S S b a d c b a R +=+⨯>∈<⨯>∈<><><<=则由 R 产 生的S S ⨯上一个划分共有( )个分块。

相关文档
最新文档