最新人教版九年级上册数学测试卷初三数学旋转单元测试题及答案
人教版九年级上学期数学《旋转》单元测试卷含答案
多边形 的面积是________.
三、解答题
21.下图是一个风车图案的一部分,风车图案是一个关于点 的中心对称图形,请你把它补全.
22.如图,在 中, , ,将 绕点 按顺时针方向旋转后得到 ,此时点 在 边上,求旋转角的大小.
[详解]解:如图,
∵点P为斜边B C的中点,
∴PB=PC= B C=6,
∵△A B C绕着它的斜边中点P逆时针旋转90°至△DEF的位置,
∴PF=PC=6,∠FPC=90°,∠F=∠C=30°,
在Rt△PFH中,∵∠F=30°,
∴PH= PF= ×6=2 ,
在Rt△CPM中,∵∠C=30°,
∴PM= PC= ×6=2 ,∠PMC=60°,
纵坐标为为2× = ,
∴点C′的坐标为( , ).
故选A.
[点睛]本题考查了坐标与图形变化-旋转,正方形的性质,熟记性质并判断出点C′的位置是解题的关键.
7.如图, 是一张矩形纸片,点 为矩形对角线的交点,直线 经过点 交 于 ,交 于 .
操作:先沿直线 剪开,并将直角梯形 绕 点旋转 后,恰好与直角梯形 完全重合,再将重合后的直角梯形 以直线 为轴翻转 后所得的图形可能是( )
25.如图,已知点A,B的坐标分别为(4,0),(3,2).
(1)画出△AOB关于原点O对称的图形△COD;
(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;
(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.
26.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转 后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为 .
人教版九年级数学上册《旋转》单元测试含答案
人教版九年级数学上册《旋转》单元测试一、单选题(共10题;共30分)1、如图所示,下图可以看作是一个菱形通过几次旋转得到的,每次可能旋转()。
A、30°B、60°C、90°D、150°2、平面直角坐标系内一点(-3,4)关于原点对称点的坐标是()A、(3,4)B、(-3,-4 )C、(3,-4)D、(4,-3)3、如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是()A、顺时针旋转90°B、逆时针旋转90°C、顺时针旋转45°D、逆时针旋转45°4、如下图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C ,连结AC并延长到D ,使CD=CA ,连结BC并延长到E ,使CE=CB ,连结DE , A、B的距离为()A、线段AC的长度B、线段BC的长度C、线段DE长度D、无法判断5、如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A、3B、1.5C、D、6、已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在()A、第一象限B、第二象限C、第三象限D、第四象限7、(2016春•无锡校级月考)已知点A(1,x)和点B(y,2)关于原点对称,则一定有()A、x=﹣2,y=﹣1B、x=2,y=﹣1C、x=﹣2,y=1D、x=2,y=18、有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是()A、图①B、图②C、图③D、图④9、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A、70°B、80°C、60°D、50°10、如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为()A、(2,1)B、(﹣2,1)C、(﹣2,﹣1)D、(2,﹣l)二、填空题(共8题;共25分)11、已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a=________ ,b=________ .12、如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB 绕点O逆时针旋转90°得△,则点的坐标为________13、如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=________ .14、如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是________.15、如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是________.16、如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为________.17、如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为________.18、有六张分别印有三角形、正方形、等腰梯形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为________.三、解答题(共5题;共35分)19、如下图所示,利用关于原点对称的点的坐标特征,作出与线段AB关于原点对称的图形.20、在如图的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).⑴画出△ABC关于点O的中心对称的△A1B1C1;⑵如果建立平面直角坐标系,使点B的坐标为(-5,2),点C的坐标为(-2,2),求点A1的坐标;⑶将△ABC绕点O顺时针旋转90°,画出旋转后的△A2B2C2,并求线段BC扫过的面积.21、如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C (1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.22、如图,将其补全,使其成为中心对称图形.23、如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90゜,得到△A′B′C′,画图,并写出点A的对应点A′的坐标及B点的对应点B′的坐标.四、综合题(共1题;共10分)24、(2012•贺州)如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度,建立如图坐标系.(1)请你作出△ABC关于点A成中心对称的△AB1C1(其中B的对称点是B1, C的对称点是C1),并写出点B1、C1的坐标.(2)依次连接BC1、C1B1、B1C.猜想四边形BC1B1C是什么特殊四边形?并说明理由.参考答案一、单选题1、【答案】 B【考点】利用旋转设计图案【解析】【解答】设每次旋转角度x°,则6x=360,解得x=60,∴每次旋转角度是60°,故选B.【分析】图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.根据所给出的图,6个角正好构成一个周角,且6个角都相等,即可得到结果.2、【答案】 C【考点】关于原点对称的点的坐标【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答,故平面直角坐标系内一点P(-3,4)关于原点对称点的坐标(3,-4).【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键。
人教版九年级上册数学《旋转》单元检测含答案
C. D.
4.如图,△ABC与△A′B′C′成中心对称,下列说法不正确的是( )
A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′
C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ACO=S△A′B′O
5.如图,Rt△ABC向右翻滚,下列说法正确的有( )
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少?点C的坐标又是什么?
24.感知:如图①,在△ABC中,∠C=90°,AC=BC,D是边BC上一点(点D不与点B,C重合).连接AD,将AD绕着点D逆时针旋转90°,得到DE,连接BE,过点D作DF∥AC交AB于点F,可知△ADF≌△EDB,则∠ABE的大小为________.
正确的有三种,
故选C.
点睛:在平移和旋转图形中,对应角相等,平移中对应线段相等且平行,旋转图形对应线段相等但不一定平行.
6.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()
A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)
21.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.
(1)求证:OC=AD;
(2)求OC的长.
22.如图,在网格中有一个四边形图案.
(1)请你分别画出△ABC绕点O顺时针旋转90°的图形,关于点O对称的图形以及逆时针旋转90°的图形,并将它们涂黑;
8.如图,E,F分别是正方形ABCD的边CD,AD上的点,CE=DF,AE,BF相交于点O.下列结论:①AE=BF;②AE⊥BF;③△ABF与△DAE成中心对称.其中,正确的结论有( )
九年级上册数学《旋转》单元测试(附答案)
人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题1.将下面图按顺时针方向旋转90°后得到的是( )A. B. C. D.2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是( )A. 等腰三角形B. 正三角形C. 等腰梯形D. 菱形3.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A. 点AB. 点BC. 点CD. 点D4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则B′的坐标为( )A. (2,4)B. (-2,4)C. (4,2)D. (2,-4)5.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是( )A. (-5,-3)B. (1,-3)C. (-1,-3)D. (5,-3)6.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A. ①B. ②C. ③D. ④7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C′使得点A′恰好落在AB 上,则旋转角度为( )A. 30°B. 60°C. 90°D. 150°8.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针绕点A旋转到△AEF(A、B、E在同一直线上),连接CF,则CF的长为( )A. B. 5 C. 7 D.9.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )A. (-a,-b)B. (-a,-b-1)C. (-a,-b+1)D. (-a,-b-2)10.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,那么∠BAB′的度数为( )A. 30°B. 35°C. 40°D. 50°二、填空题11.如图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____次旋转而得到的,每一次旋转____度.12.如图,点A、B、C、D、O都在方格纸的格点上,若是由绕点O按顺时针方向旋转而得到的,则旋转的角度为__.13.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.现在将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_____.14.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠的度数是_______15.已知点P(a,-3)和Q(4,b)关于原点对称,则=_____.16.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________.17.如图,在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=10,BD=9,则△AED的周长是______.18.如图所示,两个边长都为4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的对称中心,则图中阴影部分的面积为_______cm2.三、解答题19. 如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?20.如图,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由.(4)若AB=5,AC=3,求线段AD的长度范围.21.如图,P是矩形ABCD下方一点,将△PCD绕点P顺时针旋转60°后,恰好点D与点A重合,得到△PEA,连接EB,问:△ABE是什么特殊三角形?请说明理由.22.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.23.在△AOB中,C,D分别是OA、OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.如图,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点.求证:(1)AC′=BD′;(2)AC′⊥BD.24.平面内有一等腰直角三角板(∠ACB=90°)和一直线MN,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图①),易证:AF+BF=2CE;当三角板绕点A顺时针旋转至图②、图③的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,请直接写出你的猜想,不需证明.参考答案一、选择题1.将下面图按顺时针方向旋转90°后得到的是( )A. B. C. D.【答案】A【解析】【分析】根据旋转的意义,找出图中眼,眉毛,嘴5个关键处按顺时针方向旋转90°后的形状即可选择答案.【详解】根据旋转的意义,图片按顺时针方向旋转90度,即正立状态转为顺时针的横向状态,从而可确定为A 图.故选A.【点睛】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是( )A. 等腰三角形B. 正三角形C. 等腰梯形D. 菱形【答案】D【解析】等腰三角形是轴对称图形,正三角形是轴对称图形,等腰梯形是轴对称图形,菱形既是中心对称图形又是轴对称图形,故选D.3.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】试题分析:旋转对称图形是指:把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角.按照定义的要求旋转角度=360°/n.A选项中旋转的角度是0°,不成立;B项旋转角度是90°,则n=4,所以符合题目,故选B;C选项中,旋转不成立;D项旋转角度得出n不为整数,所以也不成立.考点:本题考查旋转对称图形,要掌握图形变换的知识.点评:本题难度较大,主要是空间立体要求严格.4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则B′的坐标为( )A. (2,4)B. (-2,4)C. (4,2)D. (2,-4)【答案】C【解析】【分析】根据矩形的特点和旋转的性质来解决.【详解】如图,矩形的对边相等,B′C′=OA=4,A′B′=OC=2,∴点B′的坐标为(4,2)故选C.【点睛】需注意旋转前后线段的长度不变,第一象限内点的符号为(+,+).5.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是( )A. (-5,-3)B. (1,-3)C. (-1,-3)D. (5,-3)【答案】C【解析】分析:点P(-2,3)向右平移3个单位得到点P1,则,点与点关于原点对称,则故选C.考点:1、关于原点对称的点的坐标;2、坐标与图形变化——平移.【此处有视频,请去附件查看】6. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A. ①B. ②C. ③D. ④【答案】B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,通过观察发现,当涂黑②时,所形成的图形关于点A中心对称.故选B.7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C′使得点A′恰好落在AB 上,则旋转角度为( )A. 30°B. 60°C. 90°D. 150°【答案】B【解析】试题分析:根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义即可得旋转角为60°.故选B.考点:旋转的性质.【此处有视频,请去附件查看】8.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针绕点A旋转到△AEF(A、B、E在同一直线上),连接CF,则CF的长为( )A. B. 5 C. 7 D.【答案】A【解析】【分析】由于△ADC按逆时针方向绕点A旋转到△AEF,显然△ADC≌△AEF,则有∠EAF=∠DAC,AF=AC,那么∠EAF+∠EAC=∠DAC+∠EAC,即∠FAC=∠BAD=90°.在Rt△ACD中,利用勾股定理可求AC,同理在Rt△FAC中,利用勾股定理可求CF.【详解】∵△ADC按逆时针方向绕点A旋转到△AEF,∴△ADC≌△AEF,∴∠EAF=∠DAC,AF=AC,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠FAC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠FAC=90°,又∵在Rt△ADC中,AC=,∴在Rt△FAC中,CF=.故选A.【点睛】本题利用了勾股定理、全等三角形的性质等知识.9.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )A. (-a,-b)B. (-a,-b-1)C. (-a,-b+1)D. (-a,-b-2)【答案】D【解析】【分析】设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A、A′关于点C对称,设点A的坐标是(x,y),则=0, =-1,解得x=-a,y=-b-2,∴点A的坐标是(-a,-b-2).故选D.【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A′关于点C成中心对称是解题的关键10.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,那么∠BAB′的度数为( )A. 30°B. 35°C. 40°D. 50°【答案】C【解析】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°-2∠C′CA=40°.故选C.二、填空题11.如图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____次旋转而得到的,每一次旋转____度.【答案】四;72【解析】解:根据题意,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过四次旋转而得到,每次旋转的度数为360°除以5,为72度.12.如图,点A、B、C、D、O都在方格纸的格点上,若是由绕点O按顺时针方向旋转而得到的,则旋转的角度为__.【答案】90°【解析】如图:∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°13.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.现在将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_____.【答案】.【解析】【分析】由题意可得△AA'C是等边三角形,可得旋转角为60°,可得△BCB'是等边三角形,可得∠A'BB'=90°,根据勾股定理可得BB'的长.【详解】∵∠ACB=90°,∠ABC=30°,AC=2cm∴∠A=60°,AB=4,∵△ABC绕点C逆时针旋转至△A′B′C′∴A'C=60°,A'B'=4,BC=B'C,∠ACA'=∠BCB'∵AC=A'C,∠A=60°∴△ACA'是等边三角形,∴∠ACA'=60°,AA'=2∴A'B=2,∠BCB'=60°,且BC=CB'∴△BCB'是等边三角形∴∠CBB'=60°∴∠A'BB'=90°∴BB'=2【点睛】本题考查了旋转的性质,等边三角形的性质,勾股定理,关键是证△A'B'B是直角三角形.14.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠的度数是_______【答案】50°【解析】试题分析:由旋转的性质知:∠B=∠D=40°,根据三角形内角和定理知:∠AOB=180°-110°-40°=30°,已知旋转角∠DOB=80°,则∠α=∠DOB-∠AOB=50°.故答案为:50°.点睛:此题主要考查的是旋转的性质,同时还涉及到三角形内角和定理的运用,根据旋转的性质得出∠DOB 和∠AOB的度数是解题的关键.15.已知点P(a,-3)和Q(4,b)关于原点对称,则=_____.【答案】1【解析】【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】∵点P(a,-3)和Q(4,b)关于原点对称,∴a=-4,b=3,∴(a+b)2010=(-1)2010=1.故答案为1.【点睛】本题主要考查了关于原点对称的点的坐标的特点,比较简单.16.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________.【答案】(7,3)【解析】令x=0得y=2,则OB=2,令y=0得,x=1,则OA=1,由旋转的性质可知:O′A=1,O′B′=2.则点B′(3,1).故答案为:(3,1).点睛:本题考查坐标与图形变化-旋转、30度的直角三角形的性质等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.17.如图,在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=10,BD=9,则△AED的周长是______.【答案】19.【解析】试题分析:∵将△BCD绕点B逆时针旋转60°得到△BAE∴△BDC≌△BAE∴BE=BD,∠DBE=60°,AE=CD∴△DBE是等边三角形∴DE=BD=9∴△AED的周长=DE+AD+AE=DE+AC=19考点:1、旋转的性质;2、等边三角形的性质18.如图所示,两个边长都为4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的对称中心,则图中阴影部分的面积为_______cm2.【答案】4.【解析】【分析】图中阴影部分的面积不在任意的三角形中,所以需构造三角形,设BC与OE相交于M,CD与OG相交于N,连接OC、OB,则易证△OCN≌△OBM,则阴影部分的面积为△OBC的面积.【详解】设BC与OE相交于M,CD与OG相交于N,连接OC、OB,∵正方形ABCD与正方形OEFG的边长均为4cm∴OB=OC=2cm在△OCN和△OBM中,OB=OC,∠OCN=∠OBM=45°,∠CON=∠BOM∴△OCN≌△OBM,∵O是正方形ABCD的对称中心,△OCB的高等于正方形边长的一半,∴S阴影=S△OBC=S正方形=4cm2.故答案为4.【点睛】把阴影部分的面积转化成三角形的面积是解题的关键.三、解答题19. 如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△AB F;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?【答案】解:(1)证明:在正方形ABCD中,∠D=∠ABC=90°,∴∠ABF=90°.∴∠D=∠ABF=90°.又∵DE=BF,AD=AB,∴△ADE≌△ABF(SAS).(2)将△ADE顺时针旋转90后与△ABF重合,旋转中心是点A.【解析】试题分析:(1)根据SAS定理,即可证明两三角形全等.(2)将△ADE顺时针旋转后与△ABF重合,A不变,因而旋转中心是A,∠DAB是旋转角,是90度.20.如图,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由.(4)若AB=5,AC=3,求线段AD的长度范围.【答案】(1)△A′BD即为所求(2)A′B=AC(3)AB+AC>2AD(4)1<AD<4.【解析】【试题分析】(1)根据成中心对称的定义,延长AD到A’,使A’D=AD,点C与点B关于点D对称,连接A’B即可,△A′BD即为所求;(2)根据成中心对称的两个图形对应边相等,得A′B=AC;(3)由(2)得:AB+AC=AB+A′B,根据三角形两边之和大于第三边,得AB+A′B >AA’=2AD,即AB+AC>2AD;(4)由(3)得,根据三角形两边之和大于第三边,两边之差小于第三边,得5-3<AA’=2AD<5+3,即2<2AD<8,所以1<AD<4.【试题解析】(1)如图所示,△A′BD即为所求;(2)A′B=AC;(3)AB+AC>2AD,理由:由于△A′BD与△ACD关于点D成中心对称,所以AD=A′D,AC=A′B,在△ABA′中,有AB+A′B>AA′,即AB+AC>AD+A′D,因此AB+AC>2AD;(4)由(3)可得,在△ABA′中,有AB-A′B<AA′<AB+A′B,即AB-AC<2AD<AB+AC,因此有2<2AD<8,所以1<AD<4.【方法点睛】本题目是一道以成中心对称的两个图形为背景,展开研究,涉及到怎样作一个图形关于某个点的中心对称图形,成中心对称图形的性质,三角形的三边关系,涉及的知识面广,知识点多,难度较大.21.如图,P是矩形ABCD下方一点,将△PCD绕点P顺时针旋转60°后,恰好点D与点A重合,得到△PEA,连接EB,问:△ABE是什么特殊三角形?请说明理由.【答案】解:△ABE是等边三角形.理由如下:……………………………………… 1分由旋转得△PAE≌△PDC∴CD=AE,PD=PA,∠1=∠2……………………3分∵∠DPA=60°∴△PDA是等边三角形…………4分∴∠3=∠PAD=60°.由矩形ABCD知,CD=AB,∠CDA=∠DAB=90°.∴∠1=∠4=∠2=30°………………………6分∴AE=CD=AB,∠EAB=∠2+∠4=60°,∴△ABE为等边三角形…………………………7分【解析】特殊三角形有等腰三角形、等边三角形、直角三角形(等腰直角三角形),此题根据旋转的性质和矩形的性质可知是等边三角形.22.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.【答案】(1)120°;(2)5.【解析】【分析】(1)利用已知得出∠BCO=45°,进而根据三角形内角和定理求出∠BOC的度数;(2)根据OFE1=∠B+∠1,易得∠OFE1的度数,进而得出∠4=90°,在Rt△AD1O中根据勾股定理就可以求得AD1的长.【详解】(1)如图乙所示,∠BCO=60°-15°=45°,∠BOC=180°-45°-45°=90°;(2)如图乙所示,∵∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;∴∠D1FO=60°,∵∠CD1E1=30°,∴∠4=90°,又∵AC=BC,∠A=45°即△ABC是等腰直角三角形.∴OA=OB=AB=3cm,∵∠ACB=90°,∴CO=AB=×6=3(cm),又∵CD1=7(cm),∴OD1=CD1-OC=7-3=4(cm),在Rt△AD1O中,AD1=(cm)【点睛】本题主要考查了勾股定理和旋转的性质,能熟练应用勾股定理,并且掌握旋转前后的两个图形完全相等.23.在△AOB中,C,D分别是OA、OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.如图,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点.求证:(1)AC′=BD′;(2)AC′⊥BD.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;(2)由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论【详解】(1)∵将△OCD绕点O顺时针旋转到△,∴OC=,OD=,∠=∠.∵OA=OB,C、D为OA,OB的中点,∴OC=OD,∴.在△和△中,,∴△≌△,∴=.(2)延长交于E,交BO于F.∵△≌△,∴∠.又∠AFO=∠BFE,∠,∴∠.∴∠BEA=,∴⊥.【点睛】题考查了旋转的性质、全等三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.24.平面内有一等腰直角三角板(∠ACB=90°)和一直线MN,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图①),易证:AF+BF=2CE;当三角板绕点A顺时针旋转至图②、图③的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,请直接写出你的猜想,不需证明.【答案】图2成立过点C作CD⊥BF,交FB的延长线于点D证出△AEC≌△BDC,∴CE=CD,AE=BD证出四边形CEFD是正方形,∴CE=EF=DF∴AF+BF=AE+EF+DF-BD,AF+BF=2CE图3不成立应为AF-BF=2CE【解析】【分析】过B作BH⊥CE与点H,易证△ACE≌△CBH,根据全等三角形的对应边相等,即可证得AF+BF=2CE.【详解】图2,AF+BF=2CE仍成立,证明:过B作BH⊥CE于点H,∵∠BCH+∠ACE=90°,又∵在直角△ACE中,∠ACE+∠CAE=90°,∴∠CAE=∠BCH,又∵AC=BC,∠AEC=∠BHC=90°∴△ACE≌△CBH.∴CH=AE,BF=HE,CE=BH,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.图3中,过点C作CG⊥BF,交BF延长线于点G,∵AC=BC,可得∠AEC=∠CGB,∠ACE=∠BCG,∴△CBG≌△CAE,∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE.【点睛】正确作出垂线,构造全等三角形是解决本题的关键.。
人教版九年级上学期数学《旋转》单元测试题附答案
九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .4.正方形ABCD中的顶点A在平面坐标系中的坐标为()1,1,若将正方形ABCD绕着原点O按逆时针旋转135.则旋转后的点A坐标为( )A .(-1, 1)B .(1, -1)C .(0, -D .(-5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A .1个B .2个C .3个D .4个6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行8.根据指令[],(0,0360)s A s A ≥≤<机器人在平面上能完成如下动作:先在原地顺时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点()3,0-,应下的指令是( ) A . 3,90?⎡⎤⎣⎦ B . 90,3⎡⎤⎣⎦ C . 3,90⎡⎤-⎣⎦ D . 3,270⎡⎤⎣⎦9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形10.如图,Rt △A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为( )A .4B .6C .8D .1011.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )A B .5 C .8 D .412.如图,Rt ABC 中,C 90∠=,A 60∠=,AC 6=,以斜边AB 的中点D 为旋转中心,把这个三角形按逆时针方向旋转90得到Rt A'B'C',则旋转后两个直角三角形重叠部分的面积为( )A .6B .9C .D .二、填空题 13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E重合连接C D ,则∠B D C 的度数为_____度.14.在平面直角坐标系中,O为坐标原点,点A 的坐标为,1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A ,O,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A ,O,B ,P 四颗棋子成为一个中心对称图形,请写出棋子P 的位置坐标_____(写出1 个即可).16.如图,在△B D E中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .三、解答题17.如图,P是正ABC内的一点,若将PAC绕点A逆时针旋转到P'AB,(1)求PAP'∠的度数.(2)若AP 3=,BP 4=,PC 5=,求PAB ∠的度数.18.如图,ABC 的顶点坐标分别为()A 2,2-,()B 4,4,()C 1,2.将ABC 绕坐标原点O 逆时针旋转90,得到A B C '''(A '、B '、C '分别为A 、B 、C 的对应点),在坐标系中画出A B C ''',并写出A '、B '、C '三点的坐标.19.如图1,ABC 中,C 90∠=,BC 3=,AC 4=,AB 5=,将ABC 绕着点B 旋转一定的角度,得到DEB .(1)若点F 为AB 边上中点,连接EF ,则线段EF 的范围为________.(2)如图2,当DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.22.如图①,在Rt ABC 中,90C ∠=.将ABC 绕点C 逆时针旋转得到''A B C ,旋转角为α,且0180α<<.在旋转过程中,点'B 可以恰好落在AB 的中点处,如图②.()1求A ∠的度数;()2当点C 到'AA 的距离等于AC 的一半时,求α的度数.23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,D E .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.24.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示. ()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.参考答案一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°[答案]B[解析][分析]由旋转的性质可知∠B =∠A B 1C 1,A B =A B 1,由等腰三角形的性质和三角形的内角和定理可求得∠B =∠B B 1A =∠A B 1C 1=40°,从而可求得∠B B 1C 1=80°.[详解]由旋转的性质可知:∠B =∠A B 1C 1,A B =A B 1,∠B A B 1=100°.∵A B =A B 1,∠B A B 1=100°,∴∠B =∠B B 1A =40°.∴∠A B 1C 1=40°.∴∠B B 1C 1=∠B B 1A +∠A B 1C 1=40°+40°=80°.故选:B .[点评]本题主要考查的是旋转的性质,由旋转的性质得到△A B B 1为等腰三角形是解题的关键.2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)[答案]D[解析][分析]根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.[详解]解:点P(3,5)关于原点对称的点的坐标是(-3,-5),故选D .[点评]本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .[答案]C[解析][分析]根据两三角形的位置关系确定几何变换类型,继而得出答案.[详解]A 、图形通过旋转得到;B 、图形通过旋转得到;C 、图形通过平移得到;D 、图形通过旋转得到;故选:C .[点评]本题考查了几何变换的类型,属于基础题,关键是掌握几种几何变换的特点.4.正方形中的顶点在平面坐标系中的坐标为,若将正方形绕着原点按逆时针旋转.则旋转后的点坐标为( )A .(-1, 1)B .(1, -1)C .(0, -)D .(-, 0)[答案]D[解析][分析]根据旋转中心为原点,旋转方向逆时针,旋转角度135°,作出点A 的对称图形A ′,求得OA 的长度,也就求得了OA ′的长度,可得所求点的坐标.[详解]如图:∵∴OA ′=O,∴A′0).故选:D .[点评]本题考查了由图形旋转得到相应坐标,根据旋转中心,旋转方向及角度得到相应图形是解决本题的关键.ABCD A ()1,1ABCD O 135A5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个[答案]B[解析][分析] 根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.[详解]解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B .[点评]此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握6.如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是( )A .B .C .或D .或OABC OA OC x y ()5,3D AB C CDB △90︒D 'D ()2,10()2,0-()2,10()2,0-()10, 2()2,0-[答案]C[解析][分析]先根据正方形的性质求出B D 、B C 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.[详解]四边形OA B C 是正方形,由题意,分以下两种情况:(1)如图,把逆时针旋转,此时旋转后点B 的对应点落在y 轴上,旋转后点D 的对应点落在第一象限由旋转的性质得:点的坐标为(2)如图,把顺时针旋转,此时旋转后点B 的对应点与原点O 重合,旋转后点D 的对应点落在x 轴负半轴上由旋转的性质得:点的坐标为综上,旋转后点D 的对应点的坐标为或故选:C .(5,3)D 5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒CDB △90︒B 'D 2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴D (2,10)CDB △90︒B ''D ''2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴D ''(2,0)-D (2,10)(2,0)-[点评]本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键. 7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行 [答案]D[解析][分析]根据三种变换得到的图形都与原图形全等,进行分析.[详解]解:根据平移、旋转和轴对称的基本性质,知A . B . C 都是正确的;D . 在旋转中,对应线段不一定平行,故错误.故选D .[点评]本题主要考查几何变换的类型,熟悉掌握是关键.8.根据指令机器人在平面上能完成如下动作:先在原地顺时针旋转角度,再朝其面对的方向沿直线行走距离.现在机器人在平面直角坐标系的原点,且面对轴的负方向,为使其移动到点,应下的指令是( ) [],(0,0360)s A s A ≥≤<A s y ()3,0-A .B .C .D .[答案]A[解析][分析] 若顺时针旋转90°,则机器人面对x 轴负方向,根据向x 轴负半轴走3个单位可得相应坐标.[详解]解:根据点(0,0)到点(−3,0),即可知机器人先顺时针转动,再向左平移3个单位,于是应下指令为[3,].故选A .[点评]本题主要考查坐标与图形变化-旋转,熟悉掌握是关键.9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形[答案]C[解析][分析]直接利用等腰三角形的性质分别分析得出答案.[详解]A 、等腰三角形两底角相等,正确,不合题意;B 、等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合,正确,不合题意;3,90?⎡⎤⎣⎦ 90,3⎡⎤⎣⎦ 3,90⎡⎤-⎣⎦ 3,270⎡⎤⎣⎦9090C 、等腰三角形的三边相等,错误,符合题意;D 、等腰三角形是轴对称图形但不是中心对称图形,正确,不合题意;故选:C .[点评]此题主要考查了等腰三角形的性质,正确掌握等腰三角形的性质是解题关键.10.如图,Rt△A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为()A .4B .6C .8D .10[答案]C[解析][分析]过点B '作B 'E⊥A C 于点E,由题意可证△A B C ≌△B 'A E,可得A C =B 'E=4,即可求△A B 'C 的面积.[详解]如图:过点B '作B 'E⊥A C 于点E∵旋转∴A B =A B ',∠B A B '=90°∴∠B A C +∠B 'A C =90°,且∠B 'A C +∠A B 'E =90°∴∠B A C =∠A B 'E ,且∠A EB '=∠A C B =90°,A B =A B '∴△A B C ≌△B 'A E (A A S )∴A C =B 'E =4∴S △A B 'C =×A C ×B 'E =×4×4=8 故选C .[点评]本题考查了旋转的性质,全等三角形的判定和性质,熟练运用旋转的性质是解决本题的关键. 11.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )AB .5C .8D .4[答案]A[解析][分析] 利用旋转的性质得出四边形A EC F 的面积等于正方形A B C D 的面积,进而可求出正方形的边长,再利用勾股定理得出答案.[详解]把顺时针旋转的位置,1212ADE ABF四边形A EC F 的面积等于正方形A B C D 的面积等于25,,,中,故选A .[点评]此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键. 12.如图,中,,,,以斜边的中点为旋转中心,把这个三角形按逆时针方向旋转得到,则旋转后两个直角三角形重叠部分的面积为( )A .B .C .D .[答案]B[解析][分析] 如图,先计算出A B =2A C =12,根据中点定义则可得B D =6,根据旋转的性质可得 D =B D =6,在Rt △BD M 中,可求得D M 、B M 的长,从而可求得B ′M 的长,然后在Rt △B ′MN 中求出MN 的长,继而求得B N 的长,在Rt △B NG 中求出B N 的长,然后利用S 阴影=S △B NG -S △B MD 进行计算即可得.[详解]如图,∵∠C =90°,∠A =60°,A C =6,∴A B =2A C =12,∠B =30°,∵点D 为A B 的中点,∴AD DC 5∴==DE 3=Rt ADE ∴AE ==Rt ABC C 90∠=A 60∠=AC 6=AB D 90Rt A'B'C'69B'∴B D =6,∵△A B C 绕点D 按逆时针方向旋转得到, ∴ D =B D =6,在Rt △B D M 中,∠B =30°,∠B D M=90°, ∴B M=2D M ,B D 2+D M 2=B M 2,∴D M=∴B ′M=B ′D -D M=6-在Rt △B ′MN中,∠B ′=30°,∴MN= B ′M=3∴,在Rt△B NG 中,B G=2NG ,B G2=NG 2+B N 2, ∴∴S 阴影=S △B NG -S △B MD ==9, 故选B .[点评]本题考查了旋转的性质、含30度角的直角三角形的性质、勾股定理、三角形的面积等,熟练掌握旋90Rt A'B'C'B'12((1133622⨯+⨯+-⨯转的性质是解题的关键.二、填空题13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E 重合连接C D ,则∠B D C 的度数为_____度.[答案]15[解析][分析]根据△EB D 由△A B C 旋转而成,得到△A B C ≌△EB D ,则B C =B D ,∠EB D =∠A B C =30°,则有∠B D C =∠B C D ,∠D B C =180﹣30°=150°,化简计算即可得出.[详解]解:∵△EB D 由△A B C 旋转而成,∴△A B C ≌△EB D ,∴B C =B D ,∠EB D =∠A B C =30°,∴∠B D C =∠B C D ,∠D B C =180﹣30°=150°,∴; 故答案为:15.[点评]此题考查旋转的性质,即图形旋转后与原图形全等.14.在平面直角坐标系中,O 为坐标原点,点A 的坐标为1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____. 15BDC ∠=︒()1180150152BDC BCD ∠=∠=︒-︒=︒[答案](﹣1[解析][分析]根据旋转的性质可知△OC A ≌△OD B ,进而得即可解题.[详解]解:如下图,由旋转的性质可知,△OC A ≌△OD B , ∵A 的坐标为1),∴∴∴B 的坐标为(﹣1)[点评]本题考查了图形的旋转,属于简单题,熟悉概念是解题关键.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子 A ,O ,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子 P ,使 A ,O ,B ,P 四颗棋子成为一个中心对称图形,请写出棋子 P 的位置坐标_____(写出 1 个即可).[答案](0,1).[解析][分析]直接利用中心对称图形的性质得出答案.[详解]如图所示:点P(0,1)答案不唯一.故答案为:(0,1).[点评]此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.如图,在△B D E 中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E 旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .[答案](3,[解析][分析]根据旋转的性质,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD,过P 作PF ⊥x轴于F ,再根据点C 在B D 上确定出∠PD B =45°并求出PD 的长,然后求出∠PD O=60°,根据直角三角形两锐角互余求出∠D PF=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得D F=PD ,利用勾股定理列式求出PF ,再求出OF ,即可得到点P ,即旋转中心的坐标.[详解]如图,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD ,过P 作PF ⊥x 轴于F ,∵点C 在B D 上,∴点P 到A B 、B D 的距离相等,都是 B D ,即× ∴∠PD B =45°,121212=4,∵∠B D O=15°,∴∠PD O=45°+15°=60°,∴∠D PF=30°,∴D F=PD =×4=2, ∵点D 的坐标是(5,0),∴OF=OD -D F=5-2=3,由勾股定理得,∴旋转中心的坐标为(3,. 故答案为:(3,.[点评]本题考查了坐标与图形变化-旋转,熟练掌握旋转的性质确定出旋转中心的位置并得到含有30°角的直角三角形是解题的关键.三、解答题17.如图,是正内的一点,若将绕点逆时针旋转到,(1)求的度数.(2)若,,,求的度数.[答案](1);(2).1212P ABC PAC A P'AB PAP'∠AP 3=BP 4=PC 5=PAB ∠PAP'60∠=APB 150∠=[解析][分析](1)根据旋转的性质,找出∠PA P′=∠B A C ,根据等边三角形的性质,即可解答;(2)连接PP′,根据旋转的性质及已知可得到△A PP′是等边三角形,△B PP′是直角三角形,从而求得答案.[详解]如图,根据旋转的性质得,,∵是等边三角形,∴,∴;如图,连接,由旋转可知:,所以,,又∵,∴,()1PAP'BAC ∠∠=ABC BAC 60∠=PAP'60∠=()2PP 'P AB PAC ≅'CAP BAP ∠∠'=AP AP 3='=CP BP 5='=CAP PAB 60∠∠+=P AP BAP BAP 60∠∠∠=+=''∴是等边三角形,∴,∴,∵,∴,∴是直角三角形,∴∴.[点评]本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.如图,的顶点坐标分别为,,.将绕坐标原点逆时针旋转,得到(、、分别为、、的对应点),在坐标系中画出,并写出、、三点的坐标.[答案],,,画图见解析.[解析][分析]根据点的坐标的特点可知,点A 在第四象限的平分线上,所以绕点O 逆时针旋转90°在第一象限的平分线上,点B 在第一象限的平分线上,所以绕点O 逆时针旋转90°后在第二象限的平分线上,分别求出点A ′,B ′的坐标,然后再找出点C 旋转后的点C ′,顺次连接即可.P AP 'AP AP PP 3=='='APP 60∠'=222345+=222P P PB P B '='+P PB 'P PB 90∠'=APB P PB APP 150∠∠∠=+=''ABC ()A 2,2-()B 4,4()C 1,2ABC O 90A B C '''A 'B 'C 'A B C A B C '''A 'B 'C'()A 2,2'()B 4,4'-()C 2,1'-[详解]∵,,,∴,,.画图[点评]本题考查旋转变换作图,做这类题的关键是按要求旋转后找对应点,然后顺次连接.19.如图,中,,,,,将绕着点旋转一定的角度,得到 .(1)若点为边上中点,连接,则线段的范围为________.(2)如图,当直角顶点在边上时,延长,交边于点,请问线段、、具有怎样的数量关系,请写出探索过程.[答案](1);(2)A G+EG=D E ,理由见解析.[解析][分析](1)图1中,利用旋转的性质得B E=B C =3,再根据三角形三边的关系得B E-B F≤EF≤B E+B F(当且仅当B 、()A 2,2-()B 4,4()C 1,2()A 2,2'()B 4,4'-()C 2,1'-1ABC C 90∠=BC 3=AC 4=AB 5=ABC B DEB F AB EF EF 2DEB E AB DE AC G DE EGAG 0.5EF 5.5≤≤E 、F 共线时取等号),从而得到线段EF 的范围;(2)图2中,利用旋转的性质得B E=B C =3,B D =B A =5,D E=A C =4,∠A =∠D ,再判断△A GE ∽△D EB ,然后利用相似比计算出A G 、EG ,从而可得到线段D E 、EG 、A G 的数量关系.[详解](1)∵点F 为A B 边上中点,∴B F=2.5,∵△A B C 绕着点B 旋转一定的角度得到△D EB ,∴B E=B C =3,∵B E-B F≤EF≤B E+B F(当且仅当B 、E 、F 共线时取等号),∴0.5≤EF≤5.5,故答案为0.5≤EF≤5.5;(2).理由如下:∵绕着点旋转一定的角度得到,∴,,,,∴,∵,,∴,∴,即, ∴,,∴,AG EG DE +=ABC B DE BE BC 3==BD BA 5==DE AC 4==A D ∠∠=AE AB BE 2=-=A D ∠∠=AEG BED ∠∠=AGE DEB ∽AG EG AE BD BE DE ==AG EG 2534==AG 2.5=EG 1.5=AG EG 4+=∴.[点评]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.[答案](1)3;(2)B E =D F ,B E ⊥D F .[解析][分析](1)根据旋转的性质可得A E =A F ,A D =A B ,然后根据D E =A D ﹣A E 计算即可得解;(2)根据旋转可得△A B E 和△A D F 全等,根据全等三角形对应边相等可得B E =D F ,全等三角形对应角相等可得∠A B E =∠A D F ,然后求出∠A B E +∠F =90°,判断出B E ⊥D F .[详解]解:(1)∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴A E =A F =4,A D =A B =7,∴D E =A D ﹣A E =7﹣4=3;(2)B E 、D F 的关系为:B E =D F ,B E ⊥D F .理由如下:∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴△A B E ≌△A D F , AG EG DE +=∴B E=D F,∠A B E=∠A D F,∵∠A D F+∠F=180°﹣90°=90°,∴∠A B E+∠F=90°,∴B E⊥D F,∴B E、D F的关系为:B E=D F,B E⊥D F.[点评]考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.[答案](1)见解析;(2)见解析;(3)D (﹣3,﹣2),F(﹣2,3),垂直且相等[解析][分析](1)分别延长B O,A O到占D ,C ,使D O=B O,C O=A O,再顺次连接成△C OD 即可;(2)将A ,B 绕点O按逆时针方向旋转90°得到对应点E,F,再顺次连接即可得出△EOF;(3)利用图象即可得出点的坐标,以及线段B F和D F的关系.[详解](1)如图所示:(2)如图所示:(3)结合图象即可得出:D (﹣3,﹣2),F (﹣2,3),线段B F 和D F 的关系是:垂直且相等.[点评]此题考查了图形的旋转变换以及图形旋转的性质,难度不大,注意掌握解答此类题目的关键步骤. 22.如图①,在中,.将绕点逆时针旋转得到,旋转角为,且.在旋转过程中,点可以恰好落在的中点处,如图②.求的度数;当点到的距离等于的一半时,求的度数.[答案](1);(2).[解析][分析]Rt ABC 90C ∠=ABC C ''A B C α0180α<<'BAB ()1A ∠()2C 'AA AC α 30A ∠= 120α=(1)利用旋转的性质结合直角三角形的性质得出△C B B ′是等边三角形,进而得出答案;(2)利用锐角三角函数关系得出sin ∠C A D =,即可得出∠C A D =30°,进而得出α的度数. [详解] 将绕点逆时针旋转得到,旋转角为,∴∵点可以恰好落在的中点处,∴点是的中点.∵,∴, ∴,即是等边三角形.∴.∵,∴;如图,过点作于点,点到的距离等于的一半,即. 在中,,, ∴,∵,12CD AC =()1ABC C ''A B C α'CB CB ='B AB 'B AB 90ACB ∠=1''2CB AB BB ==''CB CB BB =='CBB 60B ∠=90ACB ∠=30A ∠=()2C 'CD AA ⊥D C 'AA AC 12CD AC =Rt ADC 90ADC ∠=1sin 2CD CAD AC ∠==30CAD ∠='CA CA =∴.∴,即.[点评]考查旋转的性质以及等边三角形的判定等知识,解题关键是正确掌握直角三角形的性质. 23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,DE .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.[答案](1)6+或[解析][分析](1)根据勾股定理得到 A C =6,根据全等三角形的性质得到A E=B D ,当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,于是得到结论;(2)当点D 在C F 的右侧,当点D 在C F 的左侧,根据勾股定理即可得到结论[详解]解:(1)∵在Rt △A B C 中,∠A C B =90°,'30A CAD ∠=∠='120ACA ∠=120α=∴A C =6,∵∠EC D =∠A C B =90°,∴∠A C E=∠B C D ,在△A C E 与△BC D中, ,∴△A C E ≌△B C D (SA S),∴A E=B D ,∴△A D E 的周长=A E+A D +D E=AB +D E ,∴当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,当C D ⊥A B 时,C D 最短,等于3,此时∴△A D E 的周长的最小值是;(2)当点D 在C F 的右侧,∵C F= A B =3,C D =4, ∴∴A E=B D =B F ﹣D F=3;当点D 在C F 的左侧,同理可得=AC BC ACE BCD CE CE =⎧⎪∠∠⎨⎪=⎩12综上所述:A E 的长度为3或.[点评]本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.24.两块等腰直角三角形纸片和按图所示放置,直角顶点重合在点处,,.保持纸片不动,将纸片绕点逆时针旋转角度,如图所示. 利用图证明且;当与在同一直线上(如图)时,求的长和的正弦值.[答案](1)详见解析;(2)7,. [解析][分析] (1)图形经过旋转以后明确没有变化的边长,证明,得出A C =B D ,延长B D 交A C 于E ,证明∠A EB =90,从而得到.(2) 如图3中,设A C =x ,在Rt △A B C 中,利用勾股定理求出x ,再根据sinα=sin ∠A B C =即可解决问题[详解] 证明:如图中,延长交于,交于.AOB COD 1O 25AB =17CD =AOB COD O (090)αα<<2()12AC BD =AC BD ⊥()2BD CD 3AC α725AOC BOD ≅︒BD AC ⊥AC AB()12BD OA G AC E∵,∴,在和中,,∴,∴,,∵,∵,∴,∴,∴.解:如图中,设,∵、在同一直线上,,∴是直角三角形,90AOB COD ∠=∠=AOC DOB ∠=∠AOC BOD OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩AOC BOD ≅AC BD =CAO DBO ∠=∠90DBO GOB ∠+∠=OGB AGE ∠=∠90CAO AGE ∠+∠=90AEG ∠=BD AC ⊥()23AC x=BD CD BD AC ⊥ABC∴,∴,解得,∵,,∴,∴. [点评]本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型. 222AC BC AB +=222(17)25x x ++=7x =45ODC DBO α∠=∠+∠=45ABC DBO ∠+∠=ABC α∠=∠7sin sin 25AC ABC AB α=∠==。
人教版九年级上册数学《旋转》单元测试题含答案
故选C.
考点:1.关于原点对称的点的坐标;2.坐标与图形变化-平移.
6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B逆时针旋转90°到△A'BC'的位置,则AA'的长为( )
D、因为点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,所以△ODE绕点C顺时针旋转60°得到△OBC,所以D选项错误.
故选C
【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正六边形和等边三角形的性质.
5. 在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )
二、填空题(本大题共4小题,每小题5分,满分20分)
11.已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在第_____象限.
12.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.
13.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB'C'可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段B'C的长为______.
数.
七、(本题满分12分)
22.如图, 口ABCD中,AB⊥AC,AB=1,BC= ,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.
(1)试说明 旋转过程中,AF与CE总保持相等;
人教版数学九年级上册《旋转》单元测试题(附答案)
16.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
17.在平面直角坐标系中,点A坐标为(-2,4),与原点的连线OA绕原点顺时针转90°,得到线段OB,连接线段AB,若直线y=kx-2与△OAB有交点,则k的取值范围是____.
三、解答题
19.不同的“基本图形”的旋转可能具有相同的旋转效果.如图,点O是六个正三角形的公共顶点,这个图案可以看作是哪个“基本图形”以点O为旋转中心经过怎样旋转组合得到的?
20.如果把钟表的时针在任一时刻所在的位置作为起始位置,那么时针旋转出一个平角及一个周角,至少需要多长时间?
21.如图,△ABC绕点O旋转后,顶点A 对应点为A′,试确定旋转后的三角形.
( )
A.105°B.115°C.120°D.135°
【答案】C
【解析】
试题分析:∵DE=DF,∠EDF=30°,∴∠DEF= (180°﹣∠EDF)=75°,∴∠DEC=105°,∵∠C=45°,∴∠CDE=180°﹣45°﹣105°=30°,∴∠BDN=120°,故选C.
考点:旋转的性质.
10.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()
2.点A的坐标为(2,3),则点A关于原点的对称点A′的坐标为()
人教版九年级上册数学《旋转》单元测试卷(含答案)
13.如图,在△ABC中,∠ACB=90∘,AC=BC=1cm,如果以AC的中点O为旋转中心,将△ABC旋转180∘,点B落在点D处,连接BD,那么线段BD的长为___cm.
A.4B.5C.6D.8
10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=4 ,BC 中点为D.将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是( )
A. 4 B. 6C. 2+2 D. 8
二、填空题
11.请写出一个是中心对称图形的几何图形的名称:.
A 内部B. 外部C. 边上D. 以上都有可能
8.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()
A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)
9.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()
(1)延长MP交CN于点E(如图2).j求证:△BPM@△CPE;k求证:PM = PN;
(2)若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变.此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变.请直接判断四边形MBCN
9.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()
最新人教版初中数学九年级数学上册第三单元《旋转》测试(含答案解析)
一、选择题1.如图,在ABC 中,15B ∠=︒,将ABC 绕点A 逆时针旋转得到ADE ,当点B ,C ,D 恰好在同一直线上时,50CAD ∠=︒,则E ∠的度数为( )A .50°B .75°C .65°D .60°2.道路千万条,安全第一条,下列交通标志是中心对称图形的为( )A .B .C .D .3.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 5.以下四幅图案,其中图案是中心对称图形的是( )A .B .C .D .6.下列图形中,是中心对称但不是轴对称的图形是( )A .平行四边形B .矩形C .菱形D .等边三角形 7.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .22B .23C .3D .328.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .1 9.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .平行四边形C .正五边形D .菱形 10.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( ) A .正方形 B .矩形 C .菱形 D .矩形或菱形 11.下列四个图案中,不是中心对称图案的是( )A .B .C .D . 12.如图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的12,如图②,移动正方形A 的位置,使正方形B 的一个顶点与正方形A 的对称中心重合,则重叠部分面积是正方形B 面积的( )A .12B .14C .16D .18二、填空题13.如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线长分别为12和16时,则阴影部分面积为_________.14.如图,点E 在正方形ABCD 的边CB 上,将DCE 绕点D 顺时针旋转90˚到ADF 的位置,连接EF ,过点D 作EF 的垂线,垂足为点H ,于AB 交于点G ,若4AG =,3BG =,则BE 的长为___________.15.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.16.将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD =_________.(结果保留根号)17.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.18.矩形是中心对称图形,对矩形ABCD 而言,点A 的对称点是点____.19.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.20.如图,正方形ABCD 的边长为2,BE 平分∠DBC 交CD 于点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,延长BE 交DF 于G ,则BF 的长为_____.三、解答题21.如图,ABC ∆的顶点坐标分别为()3,30,1,()),1,1(A B C ---.(1)请画出ABC ∆关于点B 成中心对称的11A BC ∆,并写出点11,A C 的坐标; (2)四边形11AC AC 的面积为 . 22.如图,等边△ABC 中,P 是BC 边上任意一点,将△ABP 绕点A 逆时针旋转60°.(1)请用圆规和无刻度的直尺作出旋转后的三角形(保留作图痕迹,不写作法和证明); (2)记点P 的对应点为P ʹ,试说明△APP ʹ的形状,并说明理由23.已知:点D 是等腰直角三角形ABC 斜边BC 所在直线上一点(不与点B 重合),连接AD .(1)如图1,当点D 在线段BC 上时,将线段AD 绕点A 逆时针方向旋转90︒得到线段AE ,连接CE .求证:,BD CE BD CE =⊥;(2)如图2,当点D 在线段BC 延长线上时,将线段AD 绕点A 逆时针方向旋转90︒得到线段AE ,连接CE ,请画出图形.上述结论是否仍然成立,并说明理由;(3)根据图2,请直接写出,,AD BD CD 三条线段之间的数量关系.24.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于点(1,0)成中心对称的图形△A 2B 2C 2;(3)若△A 1B 1C 1绕点M 旋转可以得到△A 2B 2C 2,请直接写出点M 的坐标;(4)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.25.某学习小组在探究三角形全等时,发现了下列两种基本图形,请给予证明.(1)如图1,AC 与BD 交于点O ,AB ∥CD ,AB=CD ,求证:OA=OC .(2)如图2,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .求证:BD =AE .(3)数学老师赞赏了他们的探索精神,并鼓励他们用图1或图2的基本图形来解决问题:如图3,把一块含45°的直角三角板ABC (即ABC ∆是等腰直角三角形,90C =∠,AC BC =)绕点A 逆时针旋转后成为ADE ∆,已知点B 、C 的对应点分别是点D 、E .连结BD ,并作射线CE 交BD 于点F ,试探究在旋转过程中,DF 与BF 的大小关系如何,并证明.26.在6×6方格中,每个小正方形的边长为1,点A ,B 在小正方形的格点上,请按下列要求画一个以AB 为一边的四边形,且四边形的四个顶点都在格点上.(1)在图甲中画一个是中心对称图形但不是轴对称图形;(2)在图乙中画一个既是中心对称图形又是轴对称图形.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由旋转的性质得出AD=AB ,∠E=∠ACB ,由点B ,C ,D 恰好在同一直线上,则△BAD 是底角为15°的等腰三角形,求出∠BAD=150°,可得100BAC ∠=︒,由三角形内角和定理即可得出结果.【详解】解:∵将ABC 绕点A 逆时针旋转得到ADE ,∴AD=AB ,∠E=∠ACB ,∵点B ,C ,D 恰好在同一直线上,∴△BAD 是底角为15°的等腰三角形,∴∠BDA=15B ∠=︒,∴∠BAD=150°,∵50CAD ∠=︒,∴100BAC ∠=︒∴1801001565BCA -∠=︒-=,∴65E ∠=.故选:C【点睛】此题主要考查了旋转的性质、等腰三角形的判定和性质、三角形的内角和定理等知识;判断出三角形ABD 是等腰三角形是解本题的关键.2.D解析:D【分析】根据中心对称图形定义可得答案.【详解】解:A 、不是中心对称图形,故此选项不合题意;B 、不是中心对称图形,故此选项不合题意;C 、不是中心对称图形,故此选项不合题意;D 、是中心对称图形,故此选项符合题意;故选:D .【点睛】本题考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是轴对称图形,是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.D解析:D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【解答】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.A解析:A【分析】根据中心对称图形的定义逐一分析即可.【详解】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解题的关键.6.A解析:A【分析】根据轴对称及中心对称的概念,结合选项进行判断.【详解】A、平行四边形是中心对称图形,不是轴对称图形,故本选项正确;B、矩形是中心对称图形,也是轴对称图形,故本选项错误;C、菱形是中心对称图形,也是轴对称图形,故本选项错误;D、等边三角形不是中心对称图形,但是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.A解析:A【分析】由△ABP绕点B顺时针旋转90°得到△CBP',根据旋转的性质得BP=BP′,∠PBP′=90,则△BPP′为等腰直角三角形,由此得到PP′=2BP,即可得到答案..【详解】解:解:∵△ABP绕点B顺时针旋转90°得到△CBP',而四边形ABCD为正方形,BA=BC,∴BP=BP′,∠PBP′=90,∴△BPP′为等腰直角三角形,而BP=2,∴PP′=2BP=22.故选:A.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形和等腰直角三角形的性质.8.B解析:B【分析】连接PC,根据直角三角形斜边上的中线等于斜边的一半求出PC,利用中点求出CM,再根据三角形两边之和大于第三边即可求得PM的最大值.【详解】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,''90A CB ACB ∠=∠=︒,∵P 是A B ''的中点,M 是BC 的中点,∴CM=BM=1,PC=12A′B′=2 又∵PM≤PC+CM ,即PM≤3,∴PM 的最大值为3(此时P 、C 、M 共线).故选:B .【点睛】本题考查旋转变换、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.9.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意;B 、不是轴对称图形,是中心对称图形.故不符合题意;C 、是轴对称图形,不是中心对称图形.故不符合题意;D 、是轴对称图形,也是中心对称图形.故符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断即可.【详解】A :该图形即是中心对称图形也是轴对称图形,不符合题意;B :该图形即是中心对称图形也是轴对称图形,不符合题意;C :该图形是轴对称图形,但不是中心对称图形,符合题意;D :该图形是中心对称图形,但不是轴对称图形,不符合题意;故选:C.【点睛】本题主要考查了中心对称图形的判断,熟练掌握相关概念是解题关键.12.D解析:D【分析】设正方形B 的面积为S ,正方形B 对角线的交点为O ,标注字母并过点O 作边的垂线,根据正方形的性质可得OE=OM ,∠EOM=90°,再根据同角的余角相等求出∠EOF=∠MON ,然后利用“角边角”证明△OEF 和△OMN 全等,根据全等三角形的面积相等可得阴影部分的面积等于正方形B 的面积的14,再求出正方形B 的面积=2正方形A 的面积,即可得出答案.【详解】解:设正方形B 对角线的交点为O ,如图1,设正方过点O 作边的垂线,则OE =OM ,∠EOM =90°,∵∠EOF+∠EON =90°,∠MON+∠EON =90°,∴∠EOF =∠MON ,在△OEF 和△OMN 中 EOF MON OE 0MOEF OMN 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△OEF ≌△OMN (ASA ),∴阴影部分的面积=S 四边形NOEP +S △OEF =S 四边形NOEP +S △OMN =S 四边形MOEP =14S 正方形CTKW , 即图1中阴影部分的面积=正方形B 的面积的四分之一,同理图2中阴影部分烦人面积=正方形A 的面积的四分之一,∵图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的12, ∴正方形B 的面积=正方形A 的面积的2倍,∴图2中重叠部分面积是正方形B 面积的18, 故选D .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.二、填空题13.48【分析】根据菱形的面积等于对角线乘积的一半求出菱形的面积再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答【详解】如图所示:∵菱形的两条对角线的长分别为12和16菱形的面积∵是菱形 解析:48 【分析】根据菱形的面积等于对角线乘积的一半求出菱形的面积,再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答.【详解】如图所示:∵菱形ABCD 的两条对角线的长分别为12和16,菱形ABCD 的面积11216962=⨯⨯=, ∵O 是菱形两条对角线的交点,菱形ABCD 是中心对称图形,∴OEG OFH ∆≅∆,四边形OMAH ≅四边形ONCG , 四边形OEDM ≅四边形OFBN ,∴阴影部分的面积11964822ABCD S ==⨯=菱形, 故答案为:48.本题考查了菱形的性质、中心对称图形的性质、菱形的面积公式,熟知菱形的面积公式,利用菱形的性质判断出阴影的面积是菱形面积的一半是解答的关键.14.【分析】连接EG根据DG垂直平分EF即可得出EG=FG设BE=x则CE=7-x=AFFG=EG=11-x再根据Rt△BEG中BE2+BG2=EG2即可得到BE的长【详解】解:如图所示连接EG由旋转可解析:56 11【分析】连接EG,根据DG垂直平分EF,即可得出EG=FG,设BE=x,则CE=7-x=AF,FG=EG=11-x,再根据Rt△BEG中,BE2+BG2=EG2,即可得到BE的长.【详解】解:如图所示,连接EG,由旋转可知DCE≌ADF,∴DE=AF,CE=AF,∵DG⊥EF,∴H为EF的中点,∴DG垂直平分EF,∴EG=FG,设BE=x,则CE=5-x=AF,FG=EG=8-x,∵∠B=90°,∴BE2+BG2=EG2即2223(11)x x+=-解得5611 x=故答案为:56 11【点睛】本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.15.40【分析】由旋转的性质可得∠A=∠A=50°∠BCB=∠ACA由直角三角形的性质可求∠ACA=40°=∠B′CB【详解】解:∵把△ABC绕点C顺时针旋转得到△ABC∴∠A=∠A=50°∠BCB=∠【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=40°=∠B′CB.【详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=40°∴∠BCB'=40°故答案为40.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.16.【分析】先根据正方形的性质得到CD=1∠CDA=90°再利用旋转的性质得CF=根据正方形的性质得∠CFE=45°则可判断△DFH为等腰直角三角形从而计算CF-CD即可【详解】∵四边形ABCD为正方形1【分析】先根据正方形的性质得到CD=1,∠CDA=90°,再利用旋转的性质得,根据正方形的性质得∠CFE=45°,则可判断△DFH为等腰直角三角形,从而计算CF-CD即可.【详解】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴,∠CFDE=45°,∴△DFH为等腰直角三角形,∴-1.-1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.17.15°或60°【分析】分情况讨论:①DE⊥BC②AD⊥BC然后分别计算的度数即可解答【详解】解:①如下图当DE⊥BC时如下图∠CFD=60°旋转角为:=∠CAD=60°-45°=15°;(2)当AD解析:15°或60°.分情况讨论:①DE⊥BC,②AD⊥BC,然后分别计算α的度数即可解答.【详解】解:①如下图,当DE⊥BC时,如下图,∠CFD=60°,旋转角为:α=∠CAD=60°-45°=15°;(2)当AD⊥BC时,如下图,旋转角为:α=∠CAD=90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.18.C【分析】根据把一个图形绕某一点旋转180°如果旋转后的图形能够与原来的图形重合那么这个图形就叫做中心对称图形这个点叫做对称中心可得答案【详解】解:矩形是中心对称图形对称中心是对角线的交点点A的对称解析:C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】解:矩形是中心对称图形,对称中心是对角线的交点,点A的对称点是点C,故答案为C.【点睛】本题考查了中心对称图形,关键是掌握中心对称图形的性质.19.40【分析】根据旋转的性质得出AD=AC∠DAE=∠BAC=20°求出∠DAE=∠CAE=20°再求出∠DAC的度数即可【详解】解:∵△ABC绕点A逆时针旋转至△AED∠BAC=20°∴AD=AC∠解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.20.2【分析】过点E作EM⊥BD于点M则△DEM为等腰直角三角形根据角平分线以及等腰直角三角形的性质即可得出ME的长度再根据正方形以及旋转的性质即可得出线段BF的长【详解】过点E作EM⊥BD于点M如图所解析:【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出ME的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【详解】过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∴EM,∵BE平分∠DBC,EM⊥BD,∴EM=EC,设EM=EC=x,∵CD=2,∴DE=2﹣x,∴x=(2﹣x),2解得x=﹣2,∴EM=﹣2,由旋转的性质可知:CF=CE=2,∴BF=BC+CF=﹣2=.故答案为:【点睛】本题考查了旋转的性质、正方形的性质以及角平分线的性质,解题的关键是求出线段CF 的长度.本题属于基础题,难度不大,解决该题型题目时,结合角平分线以及等腰直角三角形的性质求出线段的长度是关键.三、解答题21.(1)画图见解析,()()113,1,1,3A C -;(2)16 【分析】(1)根据中心对称图形的特征即可画出11A BC ,进而可得点11,A C 的坐标; (2)易判断四边形11AC AC 是平行四边形,再根据平行四边形的面积公式求解即可. 【详解】解:(1)11A BC 如图所示:点11,A C 的坐标是()()113,1,1,3A C -; (2)四边形11AC AC 的面积=4×4=16. 故答案为:16.【点睛】本题考查了中心对称作图和四边形面积的计算,属于常考题型,熟练掌握中心对称图形的特征是解题关键.22.(1)见解析;(2)△APP ʹ是等边三角形,理由见解析.【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)根据“含有60°角的等腰三角形是等边三角形”进行判断△APP ʹ的形状.【详解】解:(1)如图所示,(2)△APP ʹ是等边三角形,如图,连接PP ʹ,根据作图得∠PAP ʹ=60°,AP =AP ʹ,∴△APP ʹ是等边三角形.【点睛】本题考查的是作图-旋转变换和等边三角形的判断,熟知图形旋转的性质及等边三角形的判定定理是解答此题的关键.23.(1)证明见解析;(2)图见解析,结论仍然成立,理由见解析;(3)2222AD BD CD =+.【分析】(1)先根据等腰直角三角形的定义可得,90,45AB AC BAC ABC ACB =∠=︒∠=∠=︒,再根据旋转的性质可得,90AD AE DAE =∠=︒,然后根据角的和差可得BAD CAE ∠=∠,最后根据三角形全等的判定定理与性质、垂直的定义即可得证;(2)先根据旋转的定义画出图形,再根据旋转的性质可得,90AD AE DAE =∠=︒,然后根据角的和差可得BAD CAE ∠=∠,最后根据三角形全等的判定定理与性质、垂直的定义即可得证;(3)如图(见解析),先在Rt ADE △中,根据勾股定理可得222DE AD =,再在Rt CDE △中,根据勾股定理可得22222DE CE CD BD CD =+=+,由此即可得出答案.【详解】(1)ABC 是等腰直角三角形,,90,45AB AC BAC ABC ACB ∴=∠=︒∠=∠=︒,由旋转的性质得:,90AD AE DAE =∠=︒,BAC CAD DAE CAD ∴∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,,45BD CE ACE ABD ∴=∠=∠=︒,90BCE ACB ACE ∴∠=∠+∠=︒,BD CE ∴⊥;(2)成立,理由如下:由题意,画出图形如下:由旋转的性质得:,90AD AE DAE =∠=︒,BAC CAD DAE CAD ∴∠+∠=∠+∠,即BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,,45BD CE ACE ABD ∴=∠=∠=︒,90BCE ACB ACE ∴∠=∠+∠=︒,BD CE ∴⊥;(3)如图,连接DE ,,90AD AE DAE =∠=︒,∴在Rt ADE △中,22222=+=DE AD AE AD ,由(2)可知,,BD CE BD CE =⊥,∴在Rt CDE △中,22222DE CE CD BD CD =+=+,2222AD BD CD ∴=+,即,,AD BD CD 三条线段之间的数量关系为2222AD BD CD =+.【点睛】本题考查了等腰直角三角形的性质、旋转的性质、勾股定理、三角形全等的判定定理与性质等知识点,熟练掌握旋转的性质是解题关键.24.(1)见解;(2)见解析;(3)M 的坐标为(-1,0);(4)P 的坐标为(2,0)【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)分别作出A ,B ,C 关于点(1,0)的对称点A 2,B 2,C 2即可.(3)连接A 1A 2,B 1B 2交于点M ,点M 即为所求.(4)连接BA 2交x 轴于点P ,点P 即为所求.【详解】解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求.(3)如图,点M 即为所求,点M 的坐标为(-1,0).(4)如图,点P 即为所求,点P 的坐标为(2,0).【点睛】本题考查作图——旋转变换,平移变换,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)见解析;(2)见解析;(3)DF BF =,理由见解析【分析】(1)利用三角形ABD CDO ∆∆,全等来证即可(2)利用一线三直角证2B ∠=∠,再证两三角形全等即可(3)证F 为BD 中点,构造一个三角形,过点D 作DG ∥BC ,交CF 延长线于点G ,只要证GDF CBF ∆∆≌,看看条件DG ∥BC ,有BCF G ∠=∠,以及DFG CFB =∠∠,差一边,由旋转知BC D E =,只要证GD=DE ,由90AED ∠=︒,得90AEC DEG ∠+∠=︒,90ACB ∠=︒,则90BCF ACE ∠+∠=︒,AE=AC ,=ACE AEC ∠∠,得到BCF DEF=G ∠=∠∠,DG=DE=BC ,为此GDF CBF ∆∆≌得证即可.【详解】证明:(1)∵AB ∥CD ∴A C ∠=∠,B D ∠=∠,又∵AB CD =∴()ABD CDO ASA ∆∆≌,∴OA OC =,(2)∵BD l ⊥,CE l ⊥,∴90BDA CEA ∠=∠=︒∴190B ∠+∠=︒,∵90BAC ∠=︒∴1290∠+∠=︒∴2B ∠=∠,又∵AB AC =∴()ABD CAE AAS ∆∆≌,∴BD AE =,,(3)DF BF =.理由如下:,法一:过点D 作DG ∥BC ,交CF 延长线于点G ,∴G BCF ∠=∠∵90ACB ∠=︒∴90BCF ACE ∠+∠=︒,由旋转得:AC AE =∴ACE AEC ∠=∠,∵90AED ∠=︒∴90AEC DEG ∠+∠=︒,∴BCF DEG ∠=∠∴G DEG ∠=∠∴DE DG =,又∵DE BC =∴DG BC =,又∵DFG CFB =∠∠∴()GDF CBF AAS ∆∆≌,∴DF BF =,法二:作AH EC ⊥,BM CF ⊥,DN CF ⊥交CF 延长线于N ,∵AC AE =∴CH EH =,∵90ACB ∠=︒∴90BCF ACH ∠+∠=︒,又∵90ACH HAC ∠+∠=︒,AC BC =,∴ACH CBM ∆∆≌∴CH BM =∴EH BM =,在AEH ∆与EDN ∆中,由图2可证:EH DN =∴DN BM =,∵DN CF ⊥,BM CF ⊥∴DN ∥BM ,在DNF ∆与BMF ∆中,由图1可证:DF BF =.【点睛】本题考查利用全等证线段相等问题,利用好平行线,使问题得以解决,利用好一线三直角,找到∠B=∠CAE ,使问题得以解决,利用好旋转,有线等就有角等,使∠G=∠DEG=∠BCG ,GD=DE=BC ,使问题得以解决.26.(1) (2)【分析】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形;(2)根据是中心对称图形又是轴对称图形可以确定是菱形或者正方形;【详解】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形画图如下:(2)根据是中心对称图形又是轴对称图形可以确定是正方形画图如下:【点睛】本题考查了作图应用设计,熟练掌握轴对称图形和中心对称图形是解题关键.。
人教版初中数学九年级数学上册第三单元《旋转》测试卷(有答案解析)
一、选择题1.如图,在△ABC 中,AB =AC ,∠BAC =45°,点D 在AC 边上.将△ABD 绕点A 逆时针旋转45°得到△ACD ′,且D ′、D 、B 三点在同一条直线上,则∠ABD 的大小为( )A .15°B .22.5°C .25°D .30°2.如图,将△ABC 绕点A 旋转,得到△AEF ,下列结论正确的个数是( ) ①△ABC ≌△AEF ;②AC=AE ;③∠FAB=∠EAB ;④∠EAB=∠FAC .A .1B .2C .3D .43.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 4.下列图形中,是中心对称图形的是( )A .B .C .D . 5.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .3C .4D .456.如图,将ABC 绕点C 顺时针旋转80°,得到DEC ,若3120B A ∠=∠=︒,则α∠的度数是( )A .60︒B .50︒C .40︒D .307.如图,将一个含30角的直角三角尺AOB 放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知30OAB ∠=︒,12AB =,点D 为斜边AB 的中点,现将三角尺AOB 绕点O 顺时针旋转90︒,则点D 的对应点D 的坐标为( )A .(33,3)B .(63,6)-C .(3,33)-D .(33,3)- 8.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°9.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5-- 10.下列图形是中心对称图形的是( )A .B .C .D .11.如图,将Rt △ABC 绕点A 按顺时针方向旋转一定角度得到Rt △ADE ,点B 的对应点D恰好落在BC 边上,若DE =12,∠B =60°,则点E 与点C 之间的距离为( )A .12B .6C .62D .63 12.若点A (3-m ,n+2)关于原点的对称点B 的坐标是(-3,2),则m ,n 的值为( )A .m=-6,n=-4B .m=O ,n=-4C .m=6,n=4D .m=6,n=-4二、填空题13.如图,将Rt ABC 绕点A 逆时针旋转30°,得到Rt ADE △,点E 恰好落在斜边AB 上,连接BD ,则BDE ∠=______.14.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________.15.如图,在正方形ABCD 中,3AB =,点E 在CD 边上,1DE =,把ADE 绕点A 顺时针旋转90°,得到ABE '△,连接EE ',则线段EE '的长为______.16.如图所示,把一个直角三角尺ACB 绕30角的顶点B 顺时计旋转,使得点A 落在CB 的延长线上的点E 处,则BCD ∠的度数为______.17.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.18.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为_____.19.如图,Rt ABC 中,90BAC ∠=︒,∠C=30°,AB=2,将ABC 绕着点A 顺时针旋转,得到AMN ,使得点B 落在BC 边上的点M 处,MN 与AC 交于点D ,则ADM △的面积为____.20.如图,把Rt ABC ∆绕点A 逆时针旋转40︒,得到Rt AB C ''∆,点C '恰好落在边AB 上,连接BB ',则BB C ''∠=___________度.三、解答题21.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (4,0),C (5,2).将△ABC 绕着点A 按逆时针方向旋转90︒后得到△AB 1C 1. (1)请画出△AB 1C 1;(2)写出点B 1,C 1的坐标;(3)求出线段1BB 的长.22.如图1,等腰Rt ABC 中,90A ∠=︒,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是______,位置关系是______.(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若8AD =,20AB =,请直接写出PMN 面积的最大值.23.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C .(1)请画出ABC ∆向左平移5个单位长度后得到的111A B C ∆;并写出1A 、1B 、1C 的坐标;(2)请画出ABC ∆关于原点对称的222A B C ∆;并写出2A 、2B 、2C 的坐标. 24.己知,如图,点P 是等边△ABC 内一点,∠APB=112°,如果把△APB 绕点A 旋转,使点 B 与点C 重合,此时点P 落在点P '处,求PP C '∠的度数.25.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,平行四边形ABCD 的顶点在格点上.仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)将线段AD 绕点A 逆时针旋转90°,画出对应线段AE ;(2)过点E画一条直线把平行四边形ABCD分成面积相等的两部分;(3)过点D画格点线段DP,使得DP⊥BC于点M,垂足为M;(4)过点M画线段MN,使得MN//AB,MN=AB.26.如图所示,△ ABC和△ AEF为等边三角形,点 E 在△ ABC 内部,且 E 到点 A、B、C 的距离分别为 3、4、5,求∠AEB的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由旋转的性质可得∠BAC=∠CAD'=45°,AD=AD',由等腰三角形的性质可得∠AD'D=67.5°,∠D'AB=90°,即可求∠ABD的度数.【详解】解:∵将△ABD绕点A逆时针旋转45°得到△ACD′,∴∠BAC=∠CAD'=45°,AD=AD',∴∠AD'D=1(180°-45°)=67.5°,∠D'AB=90°,2∴∠ABD=90°-67.5°=22.5°;故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,直角三角形两锐角互余等知识;熟练运用旋转的性质和等腰三角形的性质是解题的关键.2.B解析:B【分析】由旋转的性质得到△ABC≌△AEF,再由全等三角形的性质逐项判断即可.【详解】∵△ABC绕点A旋转得到△AEF,∴△ABC≌△AEF,∴AC=AF ,不能确定AC=AE,故①正确,②错误;∵∠EAF=∠BAC,∴∠EAF-∠BAF=∠BAC-∠BAF,∴即∠EAB=∠FAC,但不能确定∠EAB等于∠FAB,故③错误,④正确;综上所述,结论正确的是①④,共2个.故选:B.【点睛】此题考查了旋转的性质.掌握旋转前后的图形全等是解答此题的关键.3.D解析:D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【解答】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.D解析:D【分析】根据中心对称图形的定义和图形的特点即可求解.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.5.A解析:A【分析】先利用互余计算出∠BAC =30°,再根据含30度的直角三角形三边的关系得到AB =2BC =2,接着根据旋转的性质得A 'B '=AB =2,B 'C =BC =1,A 'C =AC ,∠A '=∠BAC =30°,∠A 'B ' C =∠B =60°,于是可判断CA A '为等腰三角形,所以∠CA A '=∠A '=30°,再利用三角形外角性质计算出∠B 'CA =30°,可得B 'A =B 'C =1,然后利用A A '=A B '+A 'B '进行计算.【详解】解:∵∠ACB =90°,∠B =60°,∴∠BAC =30°,∴AB =2BC =2×1=2, ∵ABC 绕点C 顺时针旋转得到A 'B 'C , ∴A 'B '=AB =2,B 'C =BC =1,A 'C =AC ,∠A '=∠BAC =30°,∠A 'B 'C =∠B =60°, ∴CA A '为等腰三角形, ∴∠CA A '=∠A '=30°,∵A 、B '、A '在同一条直线上,∴∠A 'B 'C =∠B 'AC +∠B 'CA ,∴∠B 'CA =60°﹣30°=30°,∴B 'A =B 'C =1,∴A A '=A B '+A 'B '=2+1=3.故选:A .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系. 6.A解析:A【分析】根据旋转的性质找到对应点、对应角、对应线段作答.【详解】解:∵3120B A ∠=∠=︒∴120B ∠=︒,40A ∠=︒∵△ABC 绕点C 逆时针旋转80°得到△DEC ,∴∠D=∠A=40°,∠DEC=∠B=120°,∴∠DCE=180°-40°-120°=20°,∵∠DCA=80°∴∠α=∠DCA-∠DCE=80°-20°=60°.故选:A .【点睛】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度. 7.D解析:D【分析】先利用直角三角形的性质、勾股定理分别求出OB 、OA 的长,再根据旋转的性质可得,OA OB ''的长,从而可得点,A B ''的坐标,然后根据中点坐标公式即可得.【详解】在Rt AOB 中,30OAB ∠=︒,12AB =, 2216,632OB AB OA AB OB ∴===-=, 由旋转的性质得:63,6OA OA OB OB ''====,点D 为斜边A B ''的中点, 将三角尺AOB 绕点O 顺时针旋转90︒,∴点A 的对应点A '落在x 轴正半轴上,点B 的对应点B '落在y 轴负半轴上, (63,0),(0,6)A B ''∴-,又点D 为斜边A B ''的中点,63006(,)22D +-'∴,即(33,3)D '-, 故选:D .【点睛】本题考查了直角三角形的性质、勾股定理、旋转的性质、中点坐标公式,熟练掌握旋转的性质是解题关键.8.C解析:C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F .则∠AFB=90°,∴在Rt △ABF 中,∠B=90°-∠BAD=25°,∴在△ABC 中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC 的度数为85°.故选C .考点: 旋转的性质.9.C解析:C【解析】分析:根据关于原点对称的点的坐标特点解答.详解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选C.点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.10.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,不符合题意,故选项A错误;B、是中心对称图形,符合题意,故选项B正确;C、不是中心对称图形,不符合题意,故选项C错误;D、不是中心对称图形,符合题意,故选项D错误;故选B.【点睛】本题主要考查了中心对称图形的概念,掌握中心对称图形的概念是解题的关键.11.D解析:D【分析】由旋转的性质可得DE=BC=12,AD=AB,AC=AE,∠DAB=∠EAC,由直角三角形的性质可得AB=12BC=6,AC=3,AB=63,通过证明△ACE是等边三角形,可得AC=AE=EC=63.【详解】解:如图,连接EC,∵将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,∴DE=BC=12,AD=AB,AC=AE,∠DAB=∠EAC,∵∠B=60°,∴∠ACB=30°,∴AB=12BC=6,AC3AB=3∵AD =AB ,∠B =60°,∴△ABD 是等边三角形,∴∠DAB =60°=∠EAC ,∴△ACE 是等边三角形,∴AC =AE =EC =故选:D .【点睛】本题考查了旋转的性质,直角三角形的性质,等边三角形的判定和性质,求出AC 的长是本题的关键.12.B解析:B【解析】试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.考点:原点对称二、填空题13.【分析】先根据旋转的性质可得再根据直角三角形的性质可得然后根据等腰三角形的性质三角形的内角和定理可得最后根据角的和差即可得【详解】由旋转的性质得:故答案为:【点睛】本题考查了旋转的性质等腰三角形的性 解析:15︒【分析】先根据旋转的性质可得,90,30AB AD AED C DAE =∠=∠=︒∠=︒,再根据直角三角形的性质可得60ADE ∠=︒,然后根据等腰三角形的性质、三角形的内角和定理可得75ABD ∠=︒,最后根据角的和差即可得.【详解】由旋转的性质得:,90,30AB AD AED C DAE =∠=∠=︒∠=︒,9060ADE DAE ∴∠=︒-∠=︒,,30AB AD DAE =∠=︒,()1180752ABD ADB DAE ∴∠=∠=︒-∠=︒, 756015BDE ADB ADE ∴∠=∠-∠=︒-︒=︒,故答案为:15︒.【点睛】本题考查了旋转的性质、等腰三角形的性质等知识点,熟练掌握旋转的性质是解题关键. 14.【分析】根据旋转的性质绕点顺时针方向旋转了90°则△POP´为等腰直角三角形且OP=OP´利用勾股定理求出OP 的长进而可求得PP´的长【详解】解:∵绕点顺时针方向旋转使边落在x 轴上∴∠POP´=∠A解析:【分析】根据旋转的性质,AOP 绕点O 顺时针方向旋转了90°,则△POP´为等腰直角三角形,且OP=OP´,利用勾股定理求出OP 的长,进而可求得PP´的长.【详解】解:∵AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,∴∠POP´=∠AOA´=90°,OP=OP´,∴△POP´为等腰直角三角形,∵点P 坐标为(3,4),∴5=,∴PP´=故答案为:【点睛】本题考查了坐标与图形变换-旋转变换、勾股定理、等腰三角形的判定与性质,掌握旋转的性质,结合旋转的角度得到△POP´为等腰直角三角形是解答的关键.15.【分析】先根据正方形的性质可得再根据旋转的性质可得从而可得点在同一条直线上然后根据线段的和差可得最后在中利用勾股定理即可得【详解】四边形ABCD 是正方形由旋转的性质得:点在同一条直线上则在中故答案为解析:【分析】先根据正方形的性质可得90,3ABC D C CD BC AB ∠=∠=∠=︒===,再根据旋转的性质可得1,90BE DE ABE D ''==∠=∠=︒,从而可得点,,E B C '在同一条直线上,然后根据线段的和差可得4E C '=,最后在Rt ECE '中,利用勾股定理即可得.【详解】四边形ABCD 是正方形,90,3ABC D C CD BC AB ∴∠=∠=∠=︒===,1DE =,312CE CD DE ∴=-=-=,由旋转的性质得:1,90BE DE ABE D ''==∠=∠=︒,180ABC ABE '∴∠+∠=︒,∴点,,E B C '在同一条直线上,134E C BE BC ''∴=+=+=,则在Rt ECE '中,EE '==,故答案为:【点睛】本题考查了正方形的性质、旋转的性质、勾股定理等知识点,熟练掌握正方形与旋转的性质是解题关键.16.【分析】根据旋转的性质△ABC≌△EDBBC=BD求出∠CBD的度数再求∠BCD的度数【详解】解:根据旋转的性质△ABC≌△EDBBC=BD则△CBD是等腰三角形∠BDC=∠BCD∠CBD=180°解析:15【分析】根据旋转的性质△ABC≌△EDB,BC=BD,求出∠CBD的度数,再求∠BCD的度数.【详解】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°-∠DBE=180°-30°=150°,∠BCD=1(180°-∠CBD)=15°.2故答案为15°.【点睛】本题考查了旋转的性质,解题时根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转求出即可.17.40【分析】由旋转的性质可得∠A=∠A=50°∠BCB=∠ACA由直角三角形的性质可求∠ACA=40°=∠B′CB【详解】解:∵把△ABC绕点C顺时针旋转得到△ABC∴∠A=∠A=50°∠BCB=∠解析:40【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=40°=∠B′CB.【详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=40°∴∠BCB'=40°故答案为40.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.18.(42)【分析】画出平面直角坐标系作出新的ACBD的垂直平分线的交点P点P即为旋转中心【详解】解:平面直角坐标系如图所示旋转中心是P点P(42)故答案为:(42)【点睛】本题考查坐标与图形变化﹣旋转解析:(4,2)【分析】画出平面直角坐标系,作出新的AC ,BD 的垂直平分线的交点P ,点P 即为旋转中心.【详解】解:平面直角坐标系如图所示,旋转中心是P 点,P (4,2),故答案为:(4,2).【点睛】本题考查坐标与图形变化﹣旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.19.【分析】先根据直角三角形的性质可得再根据旋转的性质可得然后根据等边三角形的判定与性质可得又根据三角形的外角性质三角形的内角和定理可得最后根据直角三角形的性质勾股定理可得据此利用直角三角形的面积公式即 3【分析】先根据直角三角形的性质可得60B ∠=︒,再根据旋转的性质可得2,60AM AB AMN B ==∠=∠=︒,然后根据等边三角形的判定与性质可得60AMB ∠=°,又根据三角形的外角性质、三角形的内角和定理可得30DAM ∠=︒,90ADM ∠=︒,最后根据直角三角形的性质、勾股定理可得1,3DM AD ==用直角三角形的面积公式即可得.【详解】在Rt ABC 中,90,30,2BAC C AB ∠=︒∠=︒=,60B ∴∠=︒,由旋转的性质可知,2,60AM AB AMN B ==∠=∠=︒,ABM ∴是等边三角形,60AMB ∴∠=︒,30DAM AMB C ∴∠=∠-∠=︒,18090ADM DAM AMN ∴∠=︒-∠-∠=︒,在Rt ADM △中,11,2DM AM AD ====,则ADM △的面积为111222DM AD ⋅=⨯=,故答案为:2. 【点睛】 本题考查了旋转的性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等知识点,熟练掌握旋转的性质是解题关键.20.20【分析】先根据旋转的性质得到∠AC′B′=∠C=90°∠BAB′=40°AB=AB′则利用等腰三角形的性质和三角形内角和定理可计算出∠ABB′的度数然后利用直角三角形两锐角互余计算∠BB′C′【解析:20【分析】先根据旋转的性质得到∠AC′B′=∠C=90°,∠BAB′=40°,AB=AB′,则利用等腰三角形的性质和三角形内角和定理可计算出∠ABB′的度数,然后利用直角三角形两锐角互余计算∠BB′C′.【详解】解:∵Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB′C′,点C′恰好落在边AB 上, ∴∠AC′B′=∠C=90°,∠BAB′=40°,AB=AB′,∵AB=AB′,∴∠ABB′=∠AB′B ,∴∠ABB′=12(180°-40°)=70°, ∴∠BB′C′=90°-∠CBB′=20°.故答案为:20.【点睛】本题考查了旋转的性质,等腰三角形的性质.理解旋转前后对应角相等,旋转角相等,对应线段相等是解题关键.三、解答题21.(1)见解析;(2)11(13)(14)B C -,,,;(3)1BB【分析】(1)根据旋转的性质确定点B 1、C 1的位置,顺次连线即可得到图形;(2)依据(1)即可得到答案;(3)根据勾股定理计算得出答案.【详解】解:(1)如图(2)由(1)可知:11(13)(14)B C -,,,; (3)由勾股定理可得:22133BB=+=32 【点睛】此题考查旋转画图,旋转的性质,根据点在直角坐标系中的位置确定坐标,勾股定理,正确画出旋转图形是解题的关键.22.(1)PM PN =, PM PN ⊥;(2)PMN 是等腰直角三角形,理由见解析;(3)98【分析】(1)根据题意可证得BD CE =,利用三角形的中位线定理得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线定理得出//PM CE ,得出DPM DCA =∠∠,通过角的转换得出DPM ∠与DPN ∠互余,证得PM PN ⊥.(2)先证明E ABD AC ∆≌,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论.(3)当BD 最大时,PMN 的面积最大,而BD 最大值是28AB AD +=,21()2PMN S PM =⨯,计算得出结论. 【详解】(1)线段PM 与PN 的数量关系是PM PN =,位置关系是PM PN ⊥.∵等腰Rt ABC 中,90A ∠=︒,∴AB=AC ,∵AD=AE ,∴AB-AD=AC-AE ,∴BD=CE ,∵点M ,P ,N 分别为DE ,DC ,BC 的中点,∴12PM CE =,12PN BD =, ∴PM PN =; ∵//PM CE ,∴DPM DCA ∠=∠,∵90A ∠=︒,∴90ADC ACD ∠+∠=︒,∵ADC DPN ∠=∠(两直线平行内错角相等),∴90MPN DPM DPN DCA ADC ∠=∠+∠=∠+∠=︒,∴PM PN ⊥.(2)PMN 是等腰直角三角形.证明:由旋转可知,BAD CAE ∠=∠,AB AC =,AD AE =,∴()ABD ACE SAS ≌△△,∴ABD ACE ∠=∠,BD CE =, 根据三角形的中位线定理可得,12PN BD =,12PM CE =, ∴PM PN =, ∴PMN 是等腰三角形,同(1)的方法可得,PM //CE ,∴DPM DCE ∠=∠, 同(1)的方法得,//PN BD ,PNC DBC ∠=∠,∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,∵90BAC ∠=︒,∴90ACB ABC ∠+∠=︒,∴90MPN ∠=︒,∴PMN 是等腰直角三角形.(3)由(2)知,PMN 是等腰直角三角形,12PM PN BD ==, ∴PM 最大时,PMN 面积最大,∵点D 在BA 的延长线上,BD 最大,∴28BD AB AD =+=,∴14PM =, ∴2211149822PMN S PM ==⨯=最大△.【点睛】本题主要考查了三角形中位线定理,等腰直角三角形的性质与判定,全等三角形的性质与判定,直角三角形的性质的综合运用,熟练掌握中位线定理是解题关键.23.(1)图象见解析,A1(-4,1),B1(-1,2)C1(-2,4);(2)图象见解析,A2(-1,-1),B2(-4,-2)C2(-3,-4).【分析】(1)依据平移的方向和距离,即可得到△A1B1C1,依据图象写出1A、1B、1C的坐标即可;(2)依据中心对称,即可得到△A2B2C2,依据图象写出1A、1B、1C的坐标即可.【详解】解:(1)△A1B1C1如图所示,A1(-4,1),B1(-1,2)C1(-2,4);(2)△A2B2C2如图所示,A2(-1,-1),B2(-4,-2)C2(-3,-4).【点睛】本题主要考查作图-平移变换与旋转变换,求关于原点对称的点坐标,解题的关键是掌握平移变换与旋转变换的定义与性质,并据此得出变换后所得对应点.24.52°【分析】根据旋转的性质得到AP'=AP,∠BAP=∠CAP',利用等边三角形的性质及角的和差得到△PAP'是等边三角形,即可求解.【详解】解∶∵△APB≌AP'C,∴∠AP'C=∠APB=112°,且AP'=AP,∠BAP=∠CAP',又∵∠BAP+∠PAC=60°,∴∠CAP'+∠PAC=60°,即∠PAP'=60°,∴△PAP'是等边三角形,∴∠PP'C=∠AP'C-∠AP'P=112°-60°=52°.【点睛】本题考查旋转的性质、等边三角形的判定与性质,掌握旋转的性质是解题的关键.25.(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据旋转的性质直接作图即可;(2)连接AC、BD,交于一点O,然后连接EO即可得出图形;(3)把线段AD绕点D顺时针旋转90°,即可得到线段DP⊥BC,与BC交于一点M,即可得出答案;(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求.【详解】解:(1)(2)(3)如图所示:(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求,如图所示:【点睛】本题主要考查旋转的性质、平行四边形的性质及中心对称图形,熟练掌握旋转的性质、平行四边形的性质及中心对称图形是解题的关键.26.150°【分析】连接FC,可证△AEB≌△AFC(SAS),然后根据勾股定理的逆定理可求的∠EFC=90°,然后根据全等的性质可求解.【详解】连接FC,则△AEB≌△AFC(SAS).在△EFC中,EF=3,FC=4,EC=5,所以是直角三角形,则∠EFC=90°,∠AEB=∠AFC=90°+60°=150°。
九年级上册数学《旋转》单元检测题(含答案)
人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A. B. C. D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A. B. C. D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A. B. C. D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A. 3B.C. 4D.6.已知点是点关于原点的对称点,则的值为( )A. 6B. -5C. 5D. ±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A. ∠ABC=∠A'B'C'B. ∠BOC=∠B'A'C'C. AB=A'B'D. OA=OA'8.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A. 2条B. 3条C. 4条D. 5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A. B. C. D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A. 2种B. 3种C. 4种D. 5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A. ①②③B. ①②④C. ②③④D. ①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A. 11B. 12C. 4+5D. 4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A. (1, 2)B. (2, 1)C. (1, 1)D. (2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A. B. C. D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点,,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点,,保持,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形.请你用这种瓷砖拼出三种不同的图案.使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知,绕点逆时针旋转得到,恰好在上,连接.(1)与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A. B. C. D.【答案】D【解析】试题分析:根据图形,由规律可循.从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B【解析】试题分析:根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点:1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A. B. C. D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度.点A 在第二象限的角平分线上,且OA=,正好旋转到y轴正半轴.则A点的对应点A1的坐标是(0,).【详解】∵A的坐标是(-1,1),∴OA=,且A1在y轴正半轴上,∴A1点的坐标是(0,).故选:D.【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A. B. C. D.【答案】A【解析】【分析】设A(,1),过A作AB⊥x轴于B,于是得到AB=1,OB=,根据边角关系得到∠AOB=30°,由于点(,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A(,1),过A作AB⊥x轴于B,则AB=1,OB=,∴tan∠AOB===,∴∠AOB=30°,∵点(,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点(,1)绕原点顺时针旋转60°后得到点是(,-1),故选:A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A. 3B.C. 4D.【答案】A【解析】【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A、B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选:A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A. 6B. -5C. 5D. ±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.故选:C.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A. ∠ABC=∠A'B'C'B. ∠BOC=∠B'A'C'C. AB=A'B'D. OA=OA'【答案】B【解析】【分析】根据中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选:B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义.也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有()A. 2条B. 3条C. 4条D. 5条【答案】C【解析】试题分析:直接利用轴对称图形的性质分别得出符合题意的答案.解:如图所示:能满足条件的线段有4条.故选:C.考点:利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A. B. C. D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项:最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==72°;D、最小旋转角度==60°;综上可得:旋转的角度最大的是A.故选:A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A. 2种B. 3种C. 4种D. 5种【答案】C【解析】试题分析:利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A. ①②③B. ①②④C. ②③④D. ①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是:①②④是中心对称图形;而③不是中心对称图形.故选:B.【点睛】考查了中心对称图形的概念.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A. 11B. 12C. 4+5D. 4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选:D.【点睛】考查图形的平移变换和弧长公式的运用.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A. (1, 2)B. (2, 1)C. (1, 1)D. (2, 2)【答案】B【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选:B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A. B. C. D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得:图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案】(1). 中心对称(2). 对称中心【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心.故答案是:中心对称,对称中心.【点睛】考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为:4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是:四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点,,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点,,保持,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是:①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是:60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠B OB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是:(-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形.请你用这种瓷砖拼出三种不同的图案.使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】【分析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示.答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题.关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是:横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解:根据图形可知:,,,各点关于原点对称的点的坐标分别是:,,,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标.关键是掌握关于原点对称的两个点的坐标特点是:横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知,绕点逆时针旋转得到,恰好在上,连接.(1)与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2).【解析】【分析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B、∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补.理由如下:由旋转的性质知:,∴,∵,∴,因此与互补;线段.理由如下:由旋转知:,,,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【解析】【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示:,即为所求,点的坐标为:;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。
新人教版初中数学九年级数学上册第三单元《旋转》测试(含答案解析)
一、选择题1.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D . 2.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 3.下列图形一定不是中心对称图形的是( )A .正六边形B .线段()213y x x =-+≤≤C .圆D .抛物线2y x x =+4.以下四幅图案,其中图案是中心对称图形的是( )A .B .C .D .5.如图,将等边ABC 绕点C 逆时针旋转得到A B C '',旋转角为()060αα︒<<︒.若160BDA '∠=︒,则α的大小是( )A .20°B .40°C .60°D .80°6.下列四个图案中,是中心对称图形的是( )A .B .C .D .7.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒8.如图,把ABC 绕点C 顺时针旋转35︒,得到A B C ''',A B ''交AC 于点D ,若105A CB '∠=︒,则ACB '∠度数为( )A .45︒B .30C .35︒D .70︒ 9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .菱形 10.如图,在Rt △ABC 中,AB=AC ,D ,E 是斜边BC 上两点,且∠DAE=45°,将△ABE 绕点A 顺时针旋转90°后,得到△ACF ,连接DF ,则下列结论中有( )个是正确的.①∠DAF=45° ②△ABE ≌△ACD ③AD 平分∠EDF ④222BE DC DE +=A .4B .3C .2D .111.如图,△ABC 的顶点在网格中,现将△ABC 绕格点O 顺时针旋转α角(0°<α<360°),使旋转后所得三角形的顶点也在格点上,则当旋转前后的图形形成轴对称图形时,符合条件的α角的度有( )A .1个B .3个C .6个D .8个12.如图,已知△ABC 与△CDA 关于点O 成中心对称,过点O 任作直线EF 分别交AD,BC 于点E,F,则下则结论:①点E 和点F,点B 和点D 是关于中心O 的对称点;②直线BD 必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△AOE 与△COF 成中心对称.其中正确的个数为 ( )A .2B .3C .4D .5二、填空题13.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.14.如图,在边长为1的正方形ABCD 中,将射线AC 绕点A 按顺时针方向旋转α度(0<α≤360°),得到射线AE ,点M 是点D 关于射线AE 的对称点,则线段CM 长度的最小值和最大值的和为_____.15.如图,在平面直角坐标系中,若△ABC ≌△DEF 关于点H 成中心对称,则对称中心H 点的坐标是_________.16.如图所示,把一个直角三角尺ACB 绕30角的顶点B 顺时计旋转,使得点A 落在CB 的延长线上的点E 处,则BCD ∠的度数为______.17.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.18.如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =22.将△BDE 绕点B 逆时针方向旋转后得△BD'E',当点E'恰好落在线段AD'上时,则CE'=_______.19.如图,将边长为1的正三角形AOP 沿x 轴正方向作无滑动的连续反转,点P 依次落在点1P ,2P ,32020P P 的位置,则点2020P 的坐标为______.20.在平面直角坐标系中,将点P (﹣3,2)绕点Q (﹣1,0)顺时针旋转90°,所得到的对应点P '的坐标为____.三、解答题21.如图,等腰Rt △ABC 中,∠A =45°,∠ABC =90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE .(1)求∠DCE 的度数;(2)若AB =4,CD =3AD ,求DE 的长.22.如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3).(1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1.(2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2;②直接写出点B 2的坐标为 .23.如图,在平面直角坐标系中,边长为4的正方形OABC 的顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕点O 按顺时针方向旋转,旋转角为θ,当点A 第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N .(1)若30θ=︒时,求点A 的坐标;(2)设MBN △的周长为P ,在旋转正方形OABC 的过程中,P 值是否有变化?请证明你的结论;24.如图,△ABC 各顶点的坐标分别为A (4、4),B (-2,2),C (3,0), (1)画出它的以原点O 为对称中心的△A'B'C'(2)写出 A',B',C'三点的坐标.(3)把每个小正方形的边长看作1,试求△ABC 的周长.25.在平面直角坐标系中,四边形AOBC 是矩形,点(0 0)O ,,点(10 0)A ,,点(0 6)B ,.以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为点D ,E , F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB △≌BCA ;②求出ABH 面积.26.如图,在7×7的正方形网格中,选取14个格点,以其中3个格点为顶点画出△ABC .(1)请你以选取的格点为顶点再画出一个三角形,要求所画的三角形与△ABC 组成的图形是中心对称图形;(2)若网格中每个小正方形的边长为1,请猜想新得到的中心对称图形是什么特殊图形(不用证明),并求出它的面积.【参考答案】***试卷处理标记,请不要删除一、选择题解析:C【分析】根据中心对称图形的概念进行判断即可;【详解】A 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;B 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;C 、图形旋转180度之后能与原图形重合,故是中心对称图形;D 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;故选:C .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合;2.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是轴对称图形,是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.D解析:D【分析】根据中心对称图形的定义即可得.【详解】A 、正六边形是中心对称图形,此项不符题意;B 、线段()213y x x =-+≤≤是中心对称图形,对称中心是点(2,0),此项不符题意;C 、圆是中心对称图形,此项不符题意;D 、抛物线2y x x =+是关于直线12x =-轴对称的,不是中心对称图形,此项符合题意; 故选:D .【点睛】本题考查了中心对称图形、抛物线的图象等知识点,熟练掌握概念是解题关键.解析:A【分析】根据中心对称图形的定义逐一分析即可.【详解】解:A 、是中心对称图形,故此选项符合题意;B 、不是中心对称图形,故此选项不合题意;C 、不是中心对称图形,故此选项不合题意;D 、不是中心对称图形,故此选项不合题意.故选:A .【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解题的关键.5.A解析:A【分析】利用旋转的性质结合等边三角形的性质和三角形外角的性质,可得出答案;【详解】解:如图,∵ABC 和A B C ''均为等边三角形,∴60A A '∠=∠=︒由旋转得,旋转角为ACA α'∠=,∵160BDA '∠=︒∴160DOA A ''∠+∠=︒∴100DOA '∠=︒∵DOA COA '∠=∠,180ACA CAA COA ''∠+∠+∠=︒ ∴20ACA '∠=︒∴α的大小是20°故选:A【点睛】本题主要考查旋转的性质以及等边三角形的性质和三角形外角的性质等知识,正确掌握旋转的性质是解题关键.6.B解析:B【分析】根据中心对称图形的概念和各图特点即可解答.【详解】解:根据中心对称图形的概念,可知B 中的图形是中心对称图形,而A 、C 和D 中的图形不是中心对称图形.故选:B .【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.C解析:C【分析】先根据旋转的性质可得,35A A ACA ''∠=∠∠=︒,再根据三角形的内角和定理可得A '∠的度数,由此即可得.【详解】由旋转的性质得:,35A A ACA ''∠=∠∠=︒,90A DC '∠=︒,18055A A DC ACA '''∴∠=︒-∠-∠=︒,55A A '∴∠=∠=︒,故选:C .【点睛】本题考查了旋转的性质、三角形的内角和定理,熟练掌握旋转的性质是解题关键. 8.C解析:C【分析】先根据旋转的定义可得35BCB ACA ''∠=∠=︒,再根据角的和差即可得.【详解】由旋转的定义得:BCB '∠和ACA '∠均为旋转角,35BCB ACA ''∴∠=∠=︒,105A CB '∠=︒,35ACB BCB A A CB CA '''∠=∠-∠'∴∠-=︒,故选:C .【点睛】本题考查了旋转的定义,熟练掌握旋转的概念是解题关键.9.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意;B 、不是轴对称图形,是中心对称图形.故不符合题意;C 、是轴对称图形,不是中心对称图形.故不符合题意;D 、是轴对称图形,也是中心对称图形.故符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.B解析:B【分析】①根据旋转的性质可得出∠BAE=∠CAF ,由∠BAC=90°、∠DAE=45°可得出∠CAD+∠CAF=45°,即可判断①;②根据旋转的性质可得出△BAE ≌△CAF ,不能推出△BAE ≌△CAD ,即可判断②;③根据∠DAE=∠DAF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=DF ,求出∠DCF=90°,根据勾股定理推出即可.【详解】∵在Rt △ABC 中,AB=AC ,∴∠B=∠ACB=45°,①由旋转,可知:∠CAF=∠BAE ,∵∠BAD=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠CAF+∠BAE=∠DAF=45°,故①正确;②由旋转,可知:△ABE ≌△ACF ,不能推出△ABE ≌△ACD ,故②错误;③∵∠EAD=∠DAF=45°,∴AD 平分∠EAF ,故③正确;④由旋转可知:AE=AF ,∠ACF=∠B=45°,∵∠ACB=45°,∴∠DCF=90°,由勾股定理得:CF 2+CD 2=DF 2,即BE 2+DC 2=DF 2,在△AED 和△AFD 中,AD AD EAD DAF AE AF =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△AFD (SAS ),∴DE=DF,∴BE2+DC2=DE2,故④正确.故选B.【点睛】本题考查了全等三角形的判定与性质、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.11.B解析:B【分析】画出图形,利用图象法解决问题即可.【详解】观察图象可知,满足条件的α的值为90°或180°或270°,故选B.【点睛】本题考查了旋转变换,轴对称的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.12.D解析:D【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,可根据上述特点对各结论进行判断.【详解】△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,则有:(1)点E和点F;B和D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形ABCD是中心对称图形,正确;(4)四边形DEOC与四边形BFOA的面积必相等,正确;(5)△AOE与△COF成中心对称,正确;其中正确的个数为5个,故选D.【点睛】熟练掌握平行四边形的性质和中心对称图形的性质是解决此题的关键.二、填空题13.【分析】延长BN交CM与E判定△NME为等腰直角三角形求出NE的长再据勾股定理可计算得MN的长【详解】解:如下图在正方形ABCD中延长BN交CM于E由题意据中心对称的性质得∠ABE=∠CDM∠MDC解析:2【分析】延长BN交CM与E,判定△NME为等腰直角三角形,求出NE的长,再据勾股定理可计算得MN的长.【详解】解:如下图在正方形ABCD中延长BN交CM于E,由题意据中心对称的性质,得∠ABE=∠CDM,∠MDC与∠MCD互余,∠ABE与∠EBC互余∴∠EBC=∠DCM;同理可得∠MCB=∠ABN又∠ABN=∠CDM∴∠MCB=∠MDC又BC=CD∴△BEC≌△CMD∴∠BEC=∠CMD=90° BE=CM=4 CE=DM=3∴ME=CM-CE=1,NE=BE-BN=1所以△MNE为等腰直角三角形,且∠NEM是直角,ME=NE=1,由勾股定理得222+=NE ME2【点睛】此题考查综合运用中心对称的性质解决问题.其关键是要运用中心对称的性质找全等条件,证明△BEC≌△CMD.14.﹣1【分析】由轴对称的性质可知AM=AD故此点M在以A圆心以AD为半径的圆上故此当点AMC在一条直线上时CM有最小值【详解】解:如图所示:连接AM∵四边形ABCD为正方形∴AC==∵点D与点M关于A解析:2﹣1【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【详解】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC2222+=+2AD CD11∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′2﹣1,21.【点睛】本题主要考查的是旋转的性质,正方形的性质,依据旋转的性质确定出点M运动的轨迹是解题的关键.15.(2-1)【分析】连接对应点ADCF根据对应点的连线经过对称中心则交点就是对称中心H点在坐标系内确定出其坐标【详解】解:如图连接ADCF则交点就是对称中心H点观察图形可知H(2-1)故答案为:(2-解析:(2,-1)【分析】连接对应点AD、CF,根据对应点的连线经过对称中心,则交点就是对称中心H点,在坐标系内确定出其坐标.【详解】解:如图,连接AD、CF,则交点就是对称中心H点.观察图形可知,H(2,-1).故答案为:(2,-1).【点睛】本题考查了中心对称的性质:对应点的连线经过对称中心,且被对称中心平分.确定H点位置是解决问题的关键.16.【分析】根据旋转的性质△ABC≌△EDBBC=BD求出∠CBD的度数再求∠BCD的度数【详解】解:根据旋转的性质△ABC≌△EDBBC=BD则△CBD是等腰三角形∠BDC=∠BCD∠CBD=180°解析:15【分析】根据旋转的性质△ABC≌△EDB,BC=BD,求出∠CBD的度数,再求∠BCD的度数.【详解】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°-∠DBE=180°-30°=150°,∠BCD=1(180°-∠CBD)=15°.2故答案为15°.【点睛】本题考查了旋转的性质,解题时根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转求出即可.17.120°【解析】试题分析:若△ABC以O为旋转中心旋转后能与原来的图形重合根据旋转变化的性质可得△ABC旋转的最小角度为180°﹣60°=120°故答案为120°考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.18.【分析】如图连接CE′过B作BH⊥CE′于H根据等腰直角三角形的性质可得AB=BC=BD=BE=2根据旋转的性质可得∠D′BD=∠ABE′D′B=BE′=BD=2根据角的和差关系可得∠ABD′=∠C解析:26+【分析】如图,连接CE′,过B作BH⊥CE′于H,根据等腰直角三角形的性质可得AB=BC=22,BD=BE=2,根据旋转的性质可得∠D′BD=∠ABE′,D′B=BE′=BD=2,根据角的和差关系可得∠ABD′=∠CBE′,利用SAS可证明△ABD′≌△CBE′,可得∠D′=∠CE′B=45°,可得出BH=E′H=22BE′=2,利用勾股定理可求出CH的长,进而可得CE′的长.【详解】如图,连接CE′,过B作BH⊥C E′于H,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22,∴AB=BC=22,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,在△ABD′和△CBE中AB BCABD CBE BD BE''=⎧⎪∠=∠''⎨⎪=⎩∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=22BE′=2,在Rt△BCH中,CH=22BC CH-=826-=,∴CE′=26+,26【点睛】本题考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定与性质及勾股定理的应用,熟练掌握旋转的性质是解题关键.19.【分析】根据图形的翻转分别得出的横坐标再根据规律即可得出各个点的横坐标进一步得出答案即可【详解】解:由题意可知的横坐标是1的横坐标是25的横坐标是4的横坐标是依此类推下去的横坐标是2017的横坐标是 解析:(2020,0)【分析】根据图形的翻转,分别得出1P 、2P 、3P ⋯的横坐标,再根据规律即可得出各个点的横坐标,进一步得出答案即可.【详解】解:由题意可知1P 、2P 的横坐标是1,3P 的横坐标是2.5,4P 、5P 的横坐标是4,6P 的横坐标是5.5⋯依此类推下去,2017P 、2018P 的横坐标是2017,2019P 的横坐标是2018.5,2020P 的横坐标是2020,2020P ∴的坐标是(2020,0),故答案为(2020,0).【点睛】本题考查翻折变换,等边三角形的性质及坐标与图形性质,根据题意得出1P 、2P 、3P ⋯的横坐标,得出规律是解答此题的关键.20.(12)【分析】根据题意画出图形即可解决问题【详解】如图观察图象可知P (12)故答案为:(12)【点睛】本题考查坐标与图形变化-旋转解题的关键是理解题意学会利用图象法解决问题属于中考常考题型解析:(1,2).【分析】根据题意,画出图形即可解决问题.【详解】如图,观察图象可知,P '(1,2).故答案为:(1,2).【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.三、解答题21.(1)90°;(2)【分析】(1)根据旋转的性质和等腰直角三角形的性质即可得∠DCE的度数;(2)根据勾股定理求出AC的长,根据CD=3AD,可得CD和AD的长,根据旋转的性质可得AD=EC,再根据勾股定理即可得DE的长.【详解】解:(1)∵△ABC为等腰直角三角形,∴∠BAD=∠BCD=45°,由旋转的性质可知∠BAD=∠BCE=45°,∴∠DCE=∠BCE+∠BCA=45°+45°=90°;(2)∵BA=BC,∠ABC=90°,∴AC==∵CD=3AD,∴AD=DC=由旋转的性质可知:AD=EC,∴DE==【点睛】本题考查了旋转的性质、等腰直角三角形,解决本题的关键是掌握旋转的性质.22.(1)作图见解析;(2)①作图见解析;②(-3,3).【分析】(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)①利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2即可;②利用所画图形写出B2点的坐标.【详解】解:(1)如图,△A1B1C1为所作;(2)①画如图,△A2B2C2为所作;②点B2的坐标为(﹣3,3).故答案为(-3,3).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角.23.(1)(2,23);(2)不变【详解】解:(1)如图1,过A作AD⊥y轴,交y轴于点Dθ=︒,正方形OABC的边长是4∵AD⊥y轴,30∴AD=2,OD=23∴A的坐标是(2,23)(2)P值无变化.证明:延长BA交y轴于E点.(如图2)在△OAE 与△OCN 中90?AOE CON OAE OCN OA OC =⎧⎪==⎨⎪=⎩∠∠∠∠∴△OAE ≌△OCN (AAS )∴OE=ON ,AE=CN .在△OME 与△OMN 中45?OE ON MOE MON OM OM =⎧⎪∠=∠=⎨⎪=⎩,∴△OME ≌△OMN (SAS )∴MN=ME=AM+AE ,∴MN=AM+CN ,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=8.∴在旋转正方形OABC 的过程中,P 值无变化.【点睛】此题主要考查了一次函数的综合应用、全等三角形的判定与性质等知识,利用图形旋转的变化规律得出对应边之间关系是解题关键.24.(1)见解析;(2)A′坐标为(-4,-4);B′坐标为(2,-2);C′坐标为(-3,0);(3)2101729++.【分析】(1)找到各点关于原点对称的点,顺次连接可得到△A′B′C′;(2)结合直角坐标系可得出出A′,B′,C′三点的坐标;(3)根据勾股定理得到AB ,AC ,BC 的长,相加即可求得△ABC 的周长.【详解】解:(1)所画图形如下:(2)结合图形可得A′坐标为(-4,-4);B′坐标为(2,-2);C′坐标为(-3,0); (3)2262210AB =+=221417AC =+222529.BC +=.则△ABC 的周长为【点睛】此题考查了旋转作图及中心对称、勾股定理的知识,解答本题的关键是根据旋转的三要素,中心对称的性质,得到各点的对应点,难度一般.25.(Ⅰ)(2,6)D ;(Ⅱ)①见解析;②1025. 【分析】(Ⅰ)根据旋转可得AD=OA=10,又因为AC=6,利用勾股定理即可求出CD 的长度,从而知道BD 的长度,即可求出点D 的坐标;(Ⅱ)①根据AD=BC ,AB=BA ,即可得到Rt Rt ADB BCA ∆∆≌;②设AH BH m ==,则10HC BC BH m =-=-,在Rt AHC ∆中,根据222AH HC AC =+,可以求出m 的值,再根据三角形面积公式即可求出三角形ABH 面积.【详解】解:(Ⅰ)(10,0)A ,(0,6)B ,10OA ∴=,6OB =,四边形AOBC 是矩形, 6AC OB ∴==,10OA BC ==,90OBC C ∠=∠=︒. 矩形ADEF 是由矩形AOBC 旋转得到, 10AD AO ∴==.在Rt ADC ∆中,8CD ==,108=2BD BC CD ∴=-=-,(2,6)D ∴.(Ⅱ)由四边形ADEF 是矩形,得到90ADE ∠=︒, 点D 在线段BE 上,90ADB ∴∠=︒.由(Ⅰ)可知,=AD AO BC =,=90C ADB ∠=︒∠,在Rt △ADB 和Rt △BCA 中,=BA AB AD BC ⎧⎨=⎩Rt ADB Rt (HL)BCA ∴∆∆≌.②如图②中,由ADB BCA ∆∆≌,BAD CBA ∴∠=∠,BH AH ∴=.设AH BH m ==,则10HC BC BH m =-=-,在Rt AHC ∆中,222AH HC AC =+,2226(10)m m ∴=+-,解得453m =453BH ∴=, 113410262255ABHS BH AC ∴=⨯⨯=⨯⨯=. 【点睛】本题主要考查了旋转以及三角形全等,熟练旋转的性质以及全等三角形的判定是解决本题的关键.26.(1)如图所示见解析;(2)是平行四边形,面积是6.【分析】(1)确定出对称中心,然后根据中心对称图形的性质作出即可;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,再根据格点的特点,利用三角形的面积公式即可得平行四边形的面积.【详解】(1)如图所示:所画的三角形与△ABC 组成的图形是中心对称图形;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,面积是:123262⨯⨯⨯=. 【点睛】本题考查了利用中心对称的性质作图,平行四边形的判定,熟练掌握中心对称的性质是作图的关键,要注意对称中心的确定.。
最新人教版九年级初三数学上册《旋转》全章测试含答案
九年级数学《旋转》全章测试班级姓名学号成绩一、选择题(每小题5分,共25分)1、平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)2、国旗上的五角星图案绕它的中心旋转后能与自身重合,那么它的旋转角可能是().A.54°B.60°C.72°D.108°3、下列图形中,是中心对称图形的是()4、同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.右图是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中菱形AEFG可以看成是把菱形ABCD以点A为中心()A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到5、右图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是()A.90°B.60°C.45°D.30°二、填空题(第6-9题每空4分,第10题每空3分共26分)6、已知点A(a+b,4)与点B(-2,a-b)关于原点对称,则a= ,b= .7、在线段、等边三角形、平行四边形和圆中,既是轴对称图形,又是中心对称图形的是.8、点P(-1,3)绕着原点顺时针旋转90o与P’重合,则P’的坐标为.9、如图,P为正方形ABCD内的一点,PC=1,将△CDP绕点C逆时针旋转得到△CBE,则PE=__________ .10、如图,P是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.BCD ABPE若将△PAC 绕点A 逆时针旋转后,得到△P'AB ,则点P 与点P' 之 间的距离为_______,∠APB =______°.三、作图题(共24分)11、(8分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC 绕点O 顺.时针旋转90°后的△A 1B 1C 1.12、(8分)如图,画出△ABC 关于原点O 对称的△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标.13、 (8分)请用4.块.图1中的图形设计一个中心对称图形,把设计的图形画在下面10×10的方格中.(要求:以点O 为对称中心)四、证明题(共25分)xy(2,3)(-2,-1)(-3,2)C B A-4432-4-3-2-1432-3-1-211O图114、(8分)以△ABC 中AB 、AC 为边分别作正方形ADEB 、ACGF ,连接DC 、BF. 证明:CD=BF.15、(8分)如图,将△ABC 绕顶点B 按逆时针方向旋转60°,得到△EBD ,连结AD ,DC ,∠DAB=30°.求证:AD 2+AB 2=AC 2.16、(9分) ) 如图,在四边形ABCD 中,∠B+∠D=180°,AB=AD ,AC=1,∠ACD=60°,A B ED C求四边形ABCD 的面积.附加题在等边三角形ABC 中,AD ⊥BC 于点D .(1)如图1,请你直接写出线段AD 与BC 之间的数量关系: AD= BC ;(2)如图2,若P 是线段BC 上一个动点(点P 不与点B 、C 重合),联结AP ,将线段AP 绕点A 逆时针旋转60°,得到线段AE ,联结CE ,猜想线段AD 、CE 、PC 之间的数量关系,并证明你的结论;(3)如图3,若点P 是线段BC 延长线上一个动点,(2)中的其他条件不变,按照(2)中的作法,请在图3中补全图形,并直接写出线段AD 、CE 、PC 之间的数量关系.CABD学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:一、选择题1.D2.C3.D4.D5.C 二、填空题6.a=-1,b=37.线段和圆8.(3,1)9.2 10. 6,150°三、作图题11.(略) 12.A 1(3,-2),B 1(2,1),C 1(-2,-3) 13.(略) 14.证明ADC ≅ABF(SAS) ∴CD=BF 15.证明:∵ΔABC 绕顶点B 旋转60°得到ΔEBD ∴ΔABC ≅ΔEBD ,∠ABE=60° ∴AC=ED , AB=BE ∴ΔABE 为等边三角形 ∴AB=AE ,∠EAB=60° ∵∠DAB=30° ∴∠EAD=90°在Rt ΔAED 中,∠EAD=90° ∴AE 2 + AD 2 =ED 2 ∵AE=AB , ED=AC ∴AD 2 + AB 2 =AC 2附加题:(1)32(2)猜想:3CE+PC ) 证明略(3)3CE-PC )E16.延长CD 到E ,使得DE=BC 连接AE 证ΔADE ≅ΔABC (SAS ) ∴AC=AE∵∠ACD=60°∴ΔACE 为等边三角形S 四ABCD =S ΔACE =1232341、泰山不是垒的,学问不是吹的。
人教版九年级数学上册 旋转几何综合单元测试卷(含答案解析)
人教版九年级数学上册旋转几何综合单元测试卷(含答案解析)一、初三数学旋转易错题压轴题(难)1.如图一,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若161A EEC=-,求nm的值.(3)如图二,在(2)的条件下,直线AB上有一点P,BP=2,点E是直线DC上一动点,在BE左侧作矩形BEFG且始终保持BE nBG m=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(1)56;(2)33;(3)存在,63【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=推出16A CEC=A126nm,推出BH=A126nm,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到3FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA 1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2,∴BA 1=2HA 1,∴∠ABA 1=30°,∴旋转角为30°,∵22125+=∴D 到点D 1所经过路径的长度3055π⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=, ∴16A C EC= ∴A 126n m, ∴BH=A 12226n m n m -=, ∴42226n m n m-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴242416n n m m-=•, ∴33n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,33BE n BG m ==, ∵四边形BEFG 是矩形, ∴3FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME , ∴3FG F FM FE D ==, ∵∠DFM=90°,tan 33FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°, ∴3FM DM =; 在矩形ABCD 中,有33AD AB = 333=3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=33AB =,∴DM=AN=BP=2,∴332322FM DM ==⨯=, ∴63PF PM MF =+=+;【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.2.我们定义:如图1,在△ABC 看,把AB 点绕点A 顺时针旋转α(0°<α<180°)得到AB',把AC 绕点A 逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC 的“旋补三角形”,△AB'C'边B'C'上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD= BC ;②如图3,当∠BAC=90°,BC=8时,则AD 长为 .猜想论证:(2)在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图4,在四边形ABCD ,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.【答案】(1)①12;②4;(2)AD=12BC ,证明见解析;(3)存在,证明见解析,39.【解析】【分析】(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=12AB′即可解决问题; ②首先证明△BAC ≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=12BC .如图1中,延长AD 到M ,使得AD=DM ,连接E′M ,C′M ,首先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;【详解】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=12AB′=12BC,故答案为12.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=12B′C′=12BC=4,故答案为4.(2)结论:AD=12 BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=12BC.(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=12BM=7,∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt △CDF 中,∵CD=23,CF=6,∴tan ∠CDF=3,∴∠CDF=60°=∠CPF ,易证△FCP ≌△CFD ,∴CD=PF ,∵CD ∥PF ,∴四边形CDPF 是矩形,∴∠CDP=90°,∴∠ADP=∠ADC ﹣∠CDP=60°,∴△ADP 是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC 是△PAB 的“旋补三角形”,在Rt △PDN 中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=2222=(3)6DN PD ++=39.【点睛】本题考查四边形综合题.3.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平分线CE 于点E ,AE 交CD 于点F ,连结PQ .(1)求证:APQ QCE ∆∆≌;(2)证明:DF BQ QF +=;(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ∆的面积.【答案】(1)证明见解析;(2)证明见解析;(3)当222x =-+//QF CE ;AQF S ∆442=-+.【解析】【分析】(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,再证明()F AQ FAQ SAS '∆∆≌;(3)连结AC ,设QF CE ,推出QCF ∆是等腰直角三角形°,再证明()ABQ ADF SAS ∆∆≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,22.5QAB DAF ∠=∠=︒,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出△AQF 的面积.【详解】(1)∵四边形ABCD 是正方形,∴AB BC =,90B BCD DCM ∠=∠=∠=︒,∵BP BQ =,∴PBQ ∆是等腰直角三角形,AP QC =,∴45BPQ ∠=︒,∴135APQ ∠=︒∵CE 平分DCM ∠,∴45DCE ECM ∠=∠=︒,∴135QCE ∠=︒,∴135APQ QCE ∠=∠=︒,∵AQ QE ⊥,∴90AQB CQE ∠+∠=︒.∵90AQB BAQ ∠+∠=︒.∴BAQ CQE ∠=∠.∴()APQ QCE ASA ∆≌.(2)由(1)知APQ QCE ∆∆≌.∴QA QE =.∵90AQE ∠=︒,∴AQE ∆是等腰直角三角形,∴45QAE ∠=︒.∴45DAF QAB ∠+∠=︒,如图4,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,其中点D 与点B 重合,且点F '在直线BQ 上,则45F AQ '∠=︒,F A FA '=,AQ AQ =,∴()F AQ FAQ SAS '∆∆≌.∴QF QF BQ DF '==+.(3)连结AC ,若QF CE ,则45FQC ECM ∠=∠=︒.∴QCF ∆是等腰直角三角形,∴2CF CQ x ==-,∴DF BQ x ==.∵AB AD =,90B D ∠=∠=︒,∴()ABQ ADF SAS ∆∆≌.∴AQ AF =,22.5QAB DAF ∠=∠=︒,∴AC 垂直平分QF ,∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=︒,2FQ QN =,∴22FQ BQ x ==.在Rt QCF ∆中,根据勾股定理,得222(2)(2)(2)x x x -+-=.解这个方程,得1222x =-+ 2222x =--(舍去).当222x =-+QF CE .此时,QCF QEF S S ∆∆=,∴212QCF AQF QEF AQF AQE S S S S S AQ ∆∆∆∆∆+=+==, ∴()2222111222AQF AQE QCF S S S AQ CQ AQ CQ ∆∆∆=-=-=- ()222112(2)4244222x x x x ⎡⎤=+--=⋅==-+⎣⎦【点睛】本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.4.综合与实践问题情境在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1, MN 是过点A 的直线,点C 为直线MN 外一点,连接AC ,作∠ACD=60°,使AC=DC ,在MN 上取一点B ,使∠DBN=60°.观察发现(1)根据图1中的数据,猜想线段AB、DB、CB之间满足的数量关系是;(2)希望小组认真思考后提出一种证明方法:将CB所在的直线以点C为旋转中心,逆时针旋转60°,与直线MN交于点E,即可证明(1)中的结论. 请你在图1中作出线段CE,并根据此方法写出证明过程;实践探究(3)奋进小组在继续探究的过程中,将点C绕点A逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:在图2中,线段AB、DB、CB之间满足的数量关系是;在图3中,线段AB、DB、CB之间满足的数量关系是;提出问题(4)智慧小组提出一个问题:若图3中BC⊥CD于点C时,BC=2,则AC为多长?请你解答此问题.【答案】(1)AB+DB=CB;(2)见解析;(3)AB-DB=CB;DB-AB=CB;(4)23【解析】【分析】(1)根据图中数据直接猜想AB+DB=CB(2)在射线AM上一点E,使得∠ECB=60°,证明△ACE≌△DCB,推出EB=CB从而得出(1)中的结论;(3)利用旋转的性质和线段的和差关系以及全等三角形的性质得出线段关系;(4)过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.证明△ACE≌△DCB,得出BC=EC,结合△ECB为等边三角形,得出∠ECA=90°,在Rt△AEC中根据边长计算出AC的长度.【详解】综合与实践(1)AB+DB=CB(2)线段CE如图所示.证明:∵∠ECB=∠ACD=60º,∴∠2+∠ACB=∠1+∠ACB,∴∠2=∠1.∵∠ACD=∠DBN=60º, ∠ABD+∠DBN=180º,∴∠ABD+∠ACD=180º,∴在四边形ACDB中,∠CAB+∠3=180º.∵∠CAB+∠4=180º,∴∠4=∠3.又∵AC=DC,∴△ACE≌△DCB(ASA)∴EA=BD,EC=BC.又∵∠ECB=60°,∴△ECB为等边三角形,∴EB=CB.而EB=EA+AB=DB+AB,∴CB=DB+AB.(3) AB-DB=CB;DB-AB=CB;(4)证明:如图,过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.∵∠DCA=60º∴∠ECB+∠BCA=∠DCA+∠BCA即∠ECA=∠BCD∵∠DBN=120º∴∠DBA=60º又∵∠AFB=∠DFC∴∠EAF=∠BDC又∵AC=DC∴△ACE≌△DCB(ASA)∴BC=EC∴△ECB为等边三角形∴∠CEB=60º∵BC⊥CD∴∠ECA=∠BCD=90º∴在Rt△AEC中,∠CAE=30º∵BC=2,EC=BC∴AC=EC·tan60º= 23【点睛】本题考查了全等三角形的判定和性质,旋转的性质,根据题中条件适当添加辅助线构造全等三角形,利用全等的性质得出线段关系是本题的关键.5.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G 到BE 的距离为h.∴. ∴. ∴点G 到BE 的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.6.综合与实践问题情境在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中90,2,2ACB DCE AC CD ︒∠=∠===观案发现(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度; 操作证明(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论. 探究发现(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.【答案】(1)90;(2)证明见解析;(3)31BD =-;(4)AD BE ⊥【解析】【分析】(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;(4)根据旋转的性质及垂直的判定可知AD BE ⊥.【详解】(1),,90CE CD AC BC ECA DCB ==∠=∠=︒,BE AD ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,//,//HF AD FG BE ∴,AD BE ⊥,HF GF ∴⊥,90HFG ∴∠=︒;(2)证明:如下图,连接AD BE ,,由旋转可知CE CD =,90ECD ACD ∠=∠=︒,又∵AC=BC ,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,11,22FH AD FG BE ∴==, FH FG ∴=;(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形,2CD =1CF DF ∴==,2BC AC ==,223BF BC CF ∴=-=,31BD BF DF ∴=-=-,G 是BD 的中点,31DG -∴=, 31BD BF DF ∴=-=-;(4)AD BE ⊥. 连接AD ,由(3)知,CF DE ⊥,∵ECD ∆是等腰直角三角形,∴F 是ED 中点,又∵H 是AE 中点,∴AD ∥HF ,∵HF ⊥ED ,∴AD BE ⊥.【点睛】本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.7.(1)问题发现如图1,△ACB 和△DCE 均为等腰直角三角形,∠ACB=90°,B,C,D 在一条直线上.填空:线段AD,BE 之间的关系为 .(2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE 的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B 是线段PA 外一点,PB=5,连接AB,将AB 绕点A 逆时针旋转90°得到线段AC,随着点B 的位置的变化,直接写出PC 的范围.【答案】(1) AD=BE ,AD⊥BE.(2) AD=BE ,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE ,AD ⊥BE .理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD ⊥BE ,∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值2,图3-2中,当P 、E 、B 共线时,BE 最大,最大值2,∴22,即22【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.8.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题9.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.10.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______;()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ;②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】【分析】 ()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题;()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE ==PBE 1S PE BM 22=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题;【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,DE ==CE 2∴=,故答案为2.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==, Rt ACD ∴≌()Rt CAE HL ; ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC1==,AG EF1==,G F90∠∠==,PA PE2∴==PBE 12S PE BM BM22∴=⋅⋅=,∴当BM的值最大时,PBE的面积最大,BM PB≤,PB AB PA≤+,PB22∴≤,BM22∴≤BM∴的最大值为22+PBE∴21.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
初中数学人教版九年级上册第23章《旋转》测试卷解析及答案-九上23
人教版数学九年级上册第23单元《旋转》测试答案一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四题号 1 2 3 4 5 6 7 8 9 10 答案 C C A D B A A B B A二.填空题:本大题有6个小题,每小题4分,共24分。
11. 150 12. 5 13. 二12114. 40°15. ③④16.8三.解答题:本大题有7个小题,共66分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分6分)A1(2,-2),B1(3,0),C1(1,1),··········(1分一个,共3分)··················(3分)18.(本小题满分8分)证明:∵△ABO与△CDO关于O点中心对称,∴BO=DO,AO=CO,·····················(1分)∵AF=CE,∴AO-AF=CO-CE,······················(1分)∴FO=EO,························(1分)在△FOD和△EOB中⎪⎩⎪⎨=∠=∠DO BO EOB FOD ·······················(2分)∴△FOD ≌△EOB (SAS ), ·················(2分) ∴DF=BE ··························(1分) 19. (本小题满分8分)解:∵把Rt △ABC 绕点A 逆时针旋转40°,得到在Rt △AB'C',∴∠BAB'=40°,AB=AB', ··················(2分) ∴∠ABB'=∠AB'B , ·····················(2分) ∴∠ABB'=240-180︒︒=70°, ··················(2分) ∴∠BB'C'=90°-70°=20°. ··················(2分) 20. (本小题满分10分)证明:(1)∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的, ∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC , ······(1分) ∵AB=AC ,∴AE=AF ,且∠EAB=∠FAC ,AB=AC , ············(1分) ∴△AEB ≌△AFC (SAS) ··················(1分) ∴BE=CF ; ·························(1分) (2)∵四边形ACDE 为菱形,AB=AC=2,∴DE=AE=AC=AB=2,AC//DE , ···············(1分) ∴∠AEB=∠ABE ,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°, ···················(1分) ∴△ABE 为等腰直角三角形, ·················(1分) ∴BE=2AB=2, ······················(1分) ∴BD=BE-DE=2-2. ····················(2分) 21. (本小题满分10分)解:(1)∵点A (-8,0)向右平移4个单位后,再向上平移2a =24=2个单位得∴点E 的坐标为(-4,2), ··················(1分) ∵点C (-2,4)向右平移4个单位后,再向上平移2a =24=2个单位得到点G , ∴点G 的坐标为(2,6), ··················(1分) ∴H 点的坐标为(-4, 6); ·················(2分) (2)连接AG 、DF 它们的交点为点P ,如图,由题意有A (-8,0),G (2,24a+), ············(2分) ∴AG 的中点P 点坐标为(-3,42a+), ············(2分)∵P 的坐标为(-3 ,m ), ∴m=42a +=48+a 。
人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析
第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转 C.对称和平移 D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点B 、A 、B1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180° 10.如图,在△ABC 中,∠AB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .5B .3C .4D .10二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB 绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BAB1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT △ADB 中,即:BD 的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2. ∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0x+2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52;②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34.23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1); (2)OP '=(a )动点T 在原点左侧,当1TO OP '=时,△P'TO 是等腰三角形,∴点1T,0),(b )动点T 在原点右侧,①当T2O=T2P'时,△P'TO 是等腰三角形,得:2T (54,0),②当T3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T4P'=P'O 时,△P'TO 是等腰三角形,得:点T4(4,0).综上所述,符合条件的t 的值为,54,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BCOC =,∴∴点B 的坐标为(1.(2)如图2所示:(A 1)图2yx O B 1CB A∵点B1与点A1的纵坐标相同,∴A1B1∥OA .①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:A 1图3yxO B 1CBA当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B1的坐标为(1.∴点B1的坐标为(﹣11.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。
数学九年级上册《旋转》单元检测卷(附答案)
6.下列图形中,既是中心对称又是轴对称的图形是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
三、解答题(共 4 小题 ,每小题 10 分 ,共 40 分 )
18. 如图 ,在正方形网格中,每个小正方形的边长均为 个单位.将 向绕点 逆时针旋转 ,得到 ,请你画出 (不要求写画法).
如图 ,已知点 和 ,试画出与 关于点 成中心对称的图形.
19.如图所示,已知 ,且 .
说明 经过怎样的变换后可与 重合;
二、填空题(共 5 小题 ,每小题 3 分 ,共 15 分 )
13.从数学对称的角度看:下面的几组大写英文字母:① ;② ;③ ;④ .不同于另外三组的一组是________,这一组的特点是________.
14.若点 与 关于原点 对称,则 ________且 ________.
15.如图,这个图形是由”基本图案” 绕着点________顺时针依次旋转________次得到的,则每次旋转的角度为________.
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
10.如图,将线段 绕点 顺时针旋转 后,得到线段 ,则点 的对应点 的坐标是()
A.(-3, 2)B.(2, 2)C.(3, 0)D.(2, 1)
【答案】C
【解析】
【分析】
根据旋转的性质得出BC=A′O,进而得出A′点坐标.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转单元测试题
一、选择题
1.将叶片图案旋转180°后,得到的图形是( )
2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针
方向旋转60°后得到△AB′C′,则等于() A.60°
B.105°
C.120°
D.135°
3.(南平)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在
位置,A点落在位置,若,则的度数是( )
A.50°
B.60°
C.70°
D.80°
4.(安徽)在平面直角坐标系中,A点坐标为(3,4),将OA绕原点
O逆时针旋转90°得到OA′,则点A′的坐标是( )
A.(-4,3)
B.(-3,4)
C.(3,-4)
D.(4,-3)
5.(济宁)在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( )
A.(-2,1)
B.(1,1)
C.(-1,1)
D.(5,1)
6.(嘉兴)如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:
①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;
②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;
③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.
其中,能将△ABC变换成△PQR的是( )
A.①②
B.①③
C.②③
D.①②③
7.(黑龙江)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )
8.(潍坊)如图,边长为1的正方形绕点逆时针旋转到
正方形,图中阴影部分的面积为( )
A. B.
C. D.
二、填空题
9.(盐城)写出两个你熟悉的中心对称的几何图形名称,它们是____________.
10.(衡阳)如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为_____________.
11.(吉林)如图,直线与双曲线交于A、C两点,将直线绕点O顺时针旋转
度角(0°<≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是_________.
12.(邵阳)如图,若将△ABC绕点O顺时针旋转180°后得到△A′B′C′,则A点的对应点A′点的坐标是
_____________.
13.(北京)在平面直角坐标系xOy中,直线y=-x绕点O顺时针旋转90°得到直线,直线与反
比例函数的图象的一个交点为A(a,3),则反比例函数的解析式是______.
14.(东营)在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.
三、解答题
15.(宿迁)如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.
16.(大连)如图,已知△ABC和△A″B″C″及点O.
⑴画出△ABC关于点O对称的△A′B′C′;
⑵若△A″B″C″与△ABC关于点O′对称,请确定点O′的位置;
17.(大兴安岭)如图,在网格中有一个四边形图案. (1)请你画出此图案绕点D顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;
(2)若网格中每个小正方形的边长为l,旋转后点A的对应点依次为A1、A2、A3,求四边形AA1A2A3的面积;
(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.
18. 已知:如图在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.
(1)试猜想AE与BF有何关系?说明理由.
(2)若△ABC的面积为3cm2,求四边形ABFE的面积;
(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.
19. 如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.
(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;
(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变
换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.
20. 如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题:
(1)图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程)
(2)在图中建立适当的直角坐标系,写出△DEF各顶点的坐标.
学习方法指导
同学们只要能做到以下几点你的学习一定能有突飞孟进的提高:
上好每堂课,用好每一秒。
练准每道题,迈实每一步。
课上漏掉一分钟,课后需要几倍功。
信心来自于实力,实力来自与勤奋。
祝你学习进步,加油!。