九年级数学上册第23章旋转单元测试卷2
人教版九年级数学上册第23章《图形的旋转》单元检测试题2
![人教版九年级数学上册第23章《图形的旋转》单元检测试题2](https://img.taocdn.com/s3/m/72503a06bfd5b9f3f90f76c66137ee06eff94e01.png)
第 23 章旋转单元检测( B 卷)附答案(满分 100 分,时间40 分钟)命题人:陈锦喜单位:矿泉中学试卷命题企图 : 中考取有好多实质操作题,可是考试中有时不行能实质操作,这就需要同学们在平常着手,培育自己的实践操作能力. “旋转”既考察基着手操作有考察图形空间想象能力,本测试题是在掌握本章的知识基础长进行提高和稳固,考察数学解题过程,学生解题的切入点不一样,运用的思想方法不一样,表现出不一样的思想水平。
使不一样思想层次的考生都有表现的时机,进而有效地域分出学生不一样的数学能力。
试卷展望难度为0.6 左右。
一. 选择题 ( 每题 4 分,共 20 分)1.如图 , 过圆心 O和圆上一点 A 连一条曲线 ,将曲线OA绕 O点按同一方向连续旋转三次, 每次旋转900, 把圆分红四部分 , 则( )AA.这四部分不必定相等B.这四部分相等O·C.前一部分小于后一部分D.不可以确立2.图( 1)中,能够经过旋转和翻折形成图案(2)的梯形切合条件为()A.等腰梯形 ; B .上底与两腰相等的等腰梯形 ;C.底角为 60°且上底与两腰相等的等腰梯形;D.底角为 60°的等腰梯形3.按序连结矩形各边中点所得的四边形()A.是轴对称图形而不是中心对称图形; B.是中心对称图形而不是轴对称图形;C.既是轴对称图形又是中心对称图形; D.没有对称性4.如图,直线y= 3 x+ 3 与y轴交于点P,将它绕着点P 旋转 90?°所得的直线的分析式为().A. y=3x+ 3B. y=-3x+ 3 33C. y= 1x+ 3D. y=-1x+ 3 335.如图,△ ABC中,∠ B=90°,∠ C=30°, AB=1,将△ ABC?绕极点 A 旋转 180°,点 C 落在C′处,则 CC′的长为()A.4 B .42C.23 D .25二、填空题(每题 4 分,共 20 分)6.以下图的五角星绕中心点旋转必定的角度后能与自己完整重合,则其旋转的角度起码为 __ ______ .7.如图,将 Rt △ ABC 绕点 C 按顺时针方向旋转 90°到△ A?′B′ C 的地点, ?已知斜边AB=?10cm,?BC=?6cm, ?设 A?′ B?′的中点是 M,?连结 AM, ?则 AM= cm .8.以下图,P 是等边△ ABC 内一点,△ BMC 是由△ BPA 旋转所得,则∠PBM =.9.如图,设 P 是等边三角形 ABC 内随意一点,△ ACP′是由△ ABP 旋转获得的,则 PA___ ___PB+ PC(填“ >”、“<”或“=” ).第 8题图第9题图第10题图10.如图, E、F 分别是正方形ABCD 的边 BC、CD 上一点,且BE+ DF = EF,则∠ EAF =____ .三. 解答题(共 60 分)11.( 10 分)作图 (1) 已知△ ABC和点 O,画出△ DEF,使△ DEF和△ ABC对于点 O成中心对称.(2)已知四边形 ABCD和点 O,求作四边形 A'B'C'D' ,使四边形 A'B'C'D' 和四边形 ABCD对于点 O成中心对称 .12.( 10 分)如图是一个每边长4m 的荷花池, O 到各极点距离相等,计划在池中安装13盏灯,使夜景变得更为美丽。
2024-2025学年人教新版九年级上册数学《第23章+旋转》单元测试卷
![2024-2025学年人教新版九年级上册数学《第23章+旋转》单元测试卷](https://img.taocdn.com/s3/m/5e97ab77bc64783e0912a21614791711cc7979c2.png)
2024-2025学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题(共10小题,满分30分)1.如图,若点M是等边△ABC的边BC上一点,将△AMC绕点A顺时针旋转得到△ANB,连接MN,则下列结论:①∠BMN=30°;②MN=AM;③BN∥AM,其中正确的个数有()A.3个B.2个C.1个D.0个2.把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°3.下列图形是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)5.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.6.如图,三个完全相同的四边形组成的图案绕点O旋转可以和原图形重合,则旋转角可以是()A.60°B.90°C.120°D.150°7.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.8.李明家有一个时钟,假期间,某天上午他8点整出门锻炼,回家时发现时针刚好旋转了60°,那么李明回家的时间是()A.9点整B.9点半C.10点整D.10点半9.如图,已知点A(﹣1,0),B(0,2),A与A′关于y轴对称,连结A′B,现将线段A′B以A′点为中心顺时针旋转90°得A'B',点B的对应点B′的坐标为()A.(3,1)B.(2,1)C.(4,1)D.(3,2)10.如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N二.填空题(共10小题,满分30分)11.在圆、正六边形、正八边形中,属于中心对称图形的有个.12.在平面直角坐标系中,若点A(a,3)与点B(﹣1,b)于原点对称,则a+b=.13.时钟从下午3时到晚上9时,时针沿顺时针方向旋转了度.14.如图,点O是矩形ABCD的对称中心,点P,Q分别在边AD,BC上,且PQ经过点O,AB=6,AP =3,BC=8,点E是边AB上一动点.则△EPQ周长的最小值为.15.如图,方格纸中每个小正方形的边长均为1,已知A(﹣1,3),B(﹣4,4),C(﹣2,1).(1)画△ABC关于原点成中心对称的△A1B1C1;(2)若第二象限存在点D,使点A、B、C、D构成平行四边形,则D的坐标为.16.如图,在平面直角坐标系中有一个航空母舰的简图.若将该图案各个顶点的纵坐标保持不变,横坐标都减去3,则所得到的新图案是由原图案向平移3个单位长度得到的.17.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.18.如图是由中国结和雪花两种元素组成的一个图案,这个图案绕着它的旋转中心旋转角度α°(0°<α<360°)后能够与它本身重合,则角α最小是度.19.如图,小刚利用计算机绘制了一个树叶图案,曲线C1为抛物线的一部分,顶点为A,曲线C2与曲线C1关于直线y=﹣x对称,点B为点A的对称点,则点B的坐标为.20.如图,O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=130°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.设∠AOB为α,当△COD为等腰三角形时,α为.三.解答题(共6小题,满分60分)21.如图,这是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求BB'的长.22.已知点M(3m﹣2,2m+1),解答下列问题:(1)若点M与(﹣7,﹣7)关于原点对称,求点m的值;(2)若点N(3,9),且直线MN平行于x轴,求点M的坐标.23.如图,在五边形ABCDE中,∠EAB=∠BCD=90°,AB=BC,∠ABC=α,AE+CD=DE.(1)将△ABE绕点B顺时针旋转α,画出旋转后的△BCM,并证明D、C、M三点在一条直线上;(2)求证:△EBD≌△MBD.24.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25.如图,在△ABC中,AB=BC,点O是AC边上的中点,将△ABC绕着点O旋转180°得到△ACD.(1)求证:四边形ABCD是菱形;(2)如果∠ABC=30°,BC=2,求菱形ABCD的面积.26.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案与试题解析一.选择题(共10小题)1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C二.填空题(共10小题)11.【答案】见试题解答内容12.【答案】﹣2.13.【答案】180.14.【答案】.15.【答案】(1)见解答.(2)(﹣5,2)或(﹣3,6).16.【答案】左.17.【答案】见试题解答内容18.【答案】60.19.【答案】(﹣2,0).20.【答案】85°或115°或145°.三.解答题(共6小题)21.【答案】4.22.【答案】(1)m=3;(2)M(10,9).23.【答案】(1)画图见解析,证明见解析;(2)见解析.24.【答案】见解析.25.【答案】(1)略;(2)2.26.【答案】见试题解答内容。
人教版九年级上册数学第23章测试卷及答案
![人教版九年级上册数学第23章测试卷及答案](https://img.taocdn.com/s3/m/67a8444e32687e21af45b307e87101f69e31fba0.png)
精品基础教育教学资料,仅供参考,需要可下载使用!人教版九年级上册数学《第23章旋转》单元测试题一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=度.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了度.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(写出1个即可).16.下列4种图案中,是中心对称图形的有个.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.21.如图所示的两个图形成中心对称,请找出它的对称中点.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度.(2)若连结EF,则△AEF是三角形;并证明.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.人教版九年级上册数学《第23章旋转》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.【分析】旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这是判断旋转的关键,据此解答即可.【解答】解:A、是由图形通过轴对称得到的;B、是由图形通过轴对称得到的;C、是通过轴对称和旋转得到的;D、是由图形通过顺时针旋转90°得到的.故选:D.【点评】此题主要考查了旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.【分析】先利用旋转的性质得∠CBD=α,BC=BD,再根据等腰三角形的性质和三角形内角和定理得到∠BCD=90°﹣α,然后利用互余表示出∠ACE,从而利用互余可得到∠CAE的度数.【解答】解:∵线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,∴∠CBD=α,BC=BD,∴∠BCD=∠BDC,∴∠BCD=(180°﹣α)=90°﹣α,∵∠ACB=90°,∴∠ACE=90°﹣∠BCD=90°﹣(90°﹣α)=α,∵AE⊥CE,∴∠CAE=90°﹣∠ACE=90°﹣α.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.【分析】根据旋转对称图形的概念作答.【解答】解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.【点评】本题考查了旋转对称图形的知识,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:∵P(﹣5,4),点P(﹣5,4)向右平移9个单位得到点P1∴P1(4,4),∴将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是(4,﹣4),故选:A.【点评】本题考查坐标与图形变化﹣旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.【分析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:A.【点评】本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:根据中心对称的性质,得点P(2,﹣1)关于中心对称的点的坐标为(﹣2,1).故选:D.【点评】此题主要考查了关于原点对称的点坐标的关系,记忆方法是结合平面直角坐标系的图形记忆.8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:要使8枚棋子组成的图案是轴对称图形,则黑子可以摆放在横坐标为3的格点上,故摆放错误的是A,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形定义.9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.【分析】根据平移后对应点的连线平行且相等可得答案.【解答】解:能通过图甲平移得到的是B,故选:B.【点评】此题主要考查了图形的平移,关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.【点评】本题考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=42 度.【分析】先利用旋转的性质得到∠CAC′=∠BAB'=32°,AB=AB′,再根据等腰三角形性质和三角形内角和定理计算出∠B=74°,接着利用平行线的性质得到∠B′AC′=∠AB′B=74°,然后计算∠B′AC﹣∠CAC′即可.【解答】解:∵△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,∴∠CAC′=∠BAB'=32°,AB=AB′,∵AB=AB′∴∠B=∠AB′B=(180°﹣32°)=74°,∵AC'∥BC,∴∠B′AC′=∠AB′B=74°,∴∠B'AC=∠B′AC﹣∠CAC′=74°﹣32°=42°.故答案为42.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.【分析】由等边三角形的性质得出∠ABC=∠BAC=60°,AC=AB=3,求出∠APC=120°,当PB ⊥AC时,PB长度最小,设垂足为D,此时PA=PC,由等边三角形的性质得出AD=CD=AC =,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,求出PD=AD•tan30°=AD=,BD =AD=,即可得出答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=AC=,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=AD•tan30°=AD=,BD=AD=,∴PB=BD﹣PD=﹣=.故答案为:.【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理、三角函数等知识;熟练掌握等边三角形的性质是解决问题的关键.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了140 度.【分析】∠AOA′就是旋转角,根据等边三角形的性质得出∠AOB等于60°,再根据∠BOA′等于90°,从而求出∠AOA′的度数.【解答】解:旋转角∠AOA′=∠AOB+∠BOA′=60°+80°=140°.∴△AOB旋转了140度.故答案为:140.【点评】本题主要考查了旋转的性质,正确理解旋转角是解题的关键;此题较简单,解题时要能根据等边三角形的性质求出角的度数.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=﹣5 .【分析】根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.【解答】解:∵点A(a,1)与点A′(4,b)关于原点对称,∴a、b的值分别为﹣4,﹣1.所以a+b=﹣1﹣4=﹣5,故答案为:﹣5【点评】本题考查了关于原点对称的点的坐标:两点关于原点对称,则两点的横、纵坐标都是互为相反数.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(0,1)(写出1个即可).【分析】直接利用中心对称图形的性质得出答案.【解答】解:如图所示:点P(0,1)答案不唯一.故答案为:(0,1).【点评】此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.下列4种图案中,是中心对称图形的有 2 个.【分析】根据中心对称图形的概念即可求解.【解答】解:第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【点评】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是轴对称图形(填写“轴对称”、“中心对称”).【分析】根据轴对称图形的概念与中心对称图形的概念即可作答.【解答】解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.【点评】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,对称轴两边图形折叠后可重合.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为10096 .【分析】由图象可知点B2019在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2019在x轴上,∵OA=,OB=4,∠AOB=90°,∴AB=,∴B2(10,4),B4(20,4),B6(30,4),…∴B2018(10090,4).∴点B2019横坐标为10090++=10096.故答案为:10096.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.【分析】充分运用旋转的性质,旋转前后三角形全等,即△ABP≌△ACE,根据对应角相等,三角形内角和定理,对应边的夹角为旋转角,通过计算解答题目问题.【解答】解:根据旋转的性质可得△ABP≌△ACE,AC与AB是对应边,∠BAC=∠BAP+∠PAC=60°,∵∠PAC=20°,∴∠CAE=∠BAP=40°,∴∠BAE=∠BAC+∠CAE=100°.【点评】本题考查旋转的性质,旋转变化前后,对应角分别相等,结合三角形内角和定理求出相关的角.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.【分析】先根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得到AD=AE,CE =BD=19,∠DAE=∠BAC=60°,则可判断△ADE为等边三角形,从而得到DE=AD=13,然后计算△DEC的周长.【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵△ABD绕点A逆时针旋转到△ACE的位置,∴AD=AE,CE=BD=19,∠DAE=∠BAC=60°,∴△ADE为等边三角形,∴DE=AD=13,∴△DEC的周长=DE+DC+CE=13+21+19=53.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.21.如图所示的两个图形成中心对称,请找出它的对称中点.【分析】根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.【点评】本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和平移的性质画出A、B、C的对应点A2、B2、C2,然后计算一个矩形的面积加上△ABC的面积得到△ABC扫过的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,△ABC扫过的面积=5×4+×2×4=24.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点A,旋转角度是90 度.(2)若连结EF,则△AEF是等腰直角三角形;并证明.【分析】(1)根据旋转变换的定义,即可解决问题;(2))根据旋转变换的定义,即可解决问题.【解答】解:(1)如图,由题意得:旋转中心是点A,旋转角度是90度.故答案为A、90.(2)等腰直角三角形由旋转得:AF=AE,∠FAB=∠EAD∴∠FAB+∠BAE=∠EAD+∠BAE即∠FAE=∠BAD∵四边形ABCD是正方形∴∠FAE=∠BAD=90°∴△AEF是等腰直角三角形故答案为等腰直角.【点评】本题主要考查了旋转变换的性质、正方形的性质及其应用问题;解题的关键是牢固掌握旋转变换的性质、正方形的性质,这是灵活运用、解题的基础和关键.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.【分析】(1)由旋转性质知BD=BA、∠CBA=∠EBD,据此可得∠BDA=∠BAD=70°,从而得∠ABD=∠ABC=40°,结合∠C=90°可得答案;(2)由旋转性质得BE=BC=8、DE=AC=6、AB=BD=10,从而得AE=2,利用勾股定理知AD =2,作BF⊥AD得AF=AD=,再次利用勾股定理可得答案.【解答】解:(1)由旋转性质知BD=BA、∠CBA=∠EBD,∵∠BDA=70°,∴∠BAD=70°,∴∠ABD=∠ABC=40°,∵∠C=90°,∴∠BAC=50°;(2)∵BC=8、AC=6,∠C=90°,∴AB=10,由旋转性质知△ABC≌△DBE,则BE=BC=8、DE=AC=6,∴AE=2,在Rt△ADE中,AD===2,作BF⊥AD于点F,∵BA=BD,∴AF=AD=,则BF===3.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.也考查了等腰三角形的性质和勾股定理.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.【分析】(1)当AB∥CB′时,∠BCB′=∠B=∠B′=30°,则∠A′CD=90°﹣∠BCB′=60°,∠A′DC=∠BCB′+∠B′=60°,可证:△A′CD是等边三角形;(2)连接CP,当E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.【解答】(1)证明:∵AB∥CB′,∴∠B=∠BC B′=30°,∴∠BC A′=90°﹣30°=60°,∵∠A′=∠A=60°,∴△A′CD是等边三角形;(2)解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA1=120°,∵∠B′=30°,∠A′CB′=90°,设AC=a,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=AC.【点评】此题考查了旋转的性质,特殊三角形的判定与性质,相似三角形的判断与性质.关键是根据旋转及特殊三角形的性质证明问题.。
【3套】人教版九年级数学上册第23章旋转单元练习卷含答案
![【3套】人教版九年级数学上册第23章旋转单元练习卷含答案](https://img.taocdn.com/s3/m/5d2528f59ec3d5bbfd0a7451.png)
人教版九年级数学上册第23章旋转单元练习卷含答案一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。
第23章 旋转 人教版数学九年级上册单元闯关双测(测能力)及答案
![第23章 旋转 人教版数学九年级上册单元闯关双测(测能力)及答案](https://img.taocdn.com/s3/m/e139171f580102020740be1e650e52ea5418ce66.png)
第二十三章旋转(测能力)——2022-2023学年人教版数学九年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )A. B. C. D.2.如图,在的正方形网格中,每个小正方形的顶点为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2种B.3种C.4种D.5种3.在平面直角坐标系中,以原点为对称中心,把点逆时针旋转90°,得到点B,则点B的坐标为( )A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)4.若点与点关于原点成中心对称,则的值是( )A.1B.3C.5D.75.如图,直线于点O,曲线c关于点O中心对称,点A的对应点是点于点于点D.若,则阴影部分的面积为( )A.5B.6C.12D.无法确定6.如图,在中,,若M是BC边上任意一点,将绕点A逆时针旋转得到,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A. B. C. D.7.如图,在中,,将绕顶点C逆时针旋转得到,M是BC的中点,P是的中点,连接PM.若,,则线段PM的最大值是( )A.4B.3C.2D.18.中,已知,,点D在边BC上,(如图),把绕着点D逆时针旋转m°()后,如果点B恰好落在初始的边上,那么m的值为( )A.60B.120C.80或120D.无法计算9.如图,在中,,,将绕点C顺时针旋转60°得到,点A、B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是( )A. B.,C. D.10.如图,在边长为a的正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则的面积为( )A. B. C. D.二、填空题(每小题4分,共20分)11.如图,在中,,,,将绕点A顺时针旋转一定角度得到,当点B的对应点D恰好落在BC边上时,则CD的长为___________.12.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点的坐标分别为是关于x轴的对称图形,将绕点逆时针旋转180°,点的对应点为M,则点M的坐标为______.13.将边长为1的正方形绕点C按顺时针方向旋转到的位置(如图),使得点D落在对角线上,与相交于点H,则________(结果保留根号).14.如图是一个中心对称图形,点A为对称中心,若的长为__________.15.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到,若,则阴影部分的面积为____________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)如图,已知四边形ABCD是中心对称图形,E,F是对角线BD上的两点,且,试说明:(1);(2).17.(8分)已知在平面直角坐标系中,的三个顶点的坐标分别为.(1)画出关于原点成中心对称的,并写出点的坐标;(2)画出将绕点按顺时针方向旋转所得的.18.(10分)如图,已知,垂足为C,,,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段___________;(2)求线段DB的长度.19.(10分)将矩形ABCD绕点A顺时针旋转,得到矩形AEFG.(1)如图,当点E在BD上时,求证:.(2)当为何值时,?画出图形,并说明理由.20.(12分)在某次课外兴趣小组活动时,老师提出了如下问题:如图(1),在中,若,求边上的中线的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使得,再连接BE(或将绕点D旋转得到),把AB,AC, 集中在中,利用三角形的三边关系,可得,则.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.解决问题:受到以上启发,请你证明下列命题:如图(2),在中,D是BC边上的中点,,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:;(2)若,探索线段BE,CF,EF之间的等量关系,并加以证明.21.(12分)在等腰中,,AM是的角平分线,过点M作于点N,.将绕点M旋转,使的两边交直线AB于点E,交直线AC于点F,请解答下列问题:(1)当绕点M旋转到如图①的位置时,求证:;(2)当绕点M旋转到如图②、图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,,,则___________,__________.答案以及解析1.答案:C解析:A中的图形设计既运用了轴对称也运用了旋转,故本选项错误;B中的图形设计既运用了轴对称也运用了旋转,故本选项错误;C中的图形设计没有运用旋转,也没有运用轴对称,故本选项正确;D中的图形设计运用了轴对称,故本选项错误.2.答案:C解析:如图所示,若使组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.3.答案:B解析:如图,由旋转的性质,得,,点B在第二象限,.4.答案:C解析:∵点与点关于原点对称,,,解得.5.答案:B解析:直线于点O,曲线c关于点O中心对称,点A的对应点是点于点于点过点作于点,则由中心对称的性质可知,阴影部分的面积等于矩形的面积. 阴影部分的面积为.故选B.6.答案:C解析:由旋转可得,,,,.,,,,故选项C中的结论正确.,故选项A中的结论不一定正确.当时,,,,故不一定正确.设AC,MN交于点O,当确定时,为定角,不确定,不确定,不一定正确.故选C.7.答案:B解析:如图,连接PC.在中,,,,根据旋转不变性可知,,,又,,,又,,PM的最大值为3(此时P,C,M共线).故选B.8.答案:C解析:当把绕着点D逆时针旋转m°()后,点B恰好落在AB边上的点时,如图①,,,,,.当把绕着点D逆时针旋转m°()后,点B恰好落在AC边上的点时,如图②,,,,,,,,.故选C.9.答案:D解析:A、由旋转的性质可知,,,为等边三角形,,本选项结论正确,不符合题意;B、在中,,,点F是边AC的中点,,由旋转的性质可知,,,,在和中,,,,,四边形EBFD为平行四边形,,,本选项结论正确,不符合题意;C、,,本选项结论正确,不符合题意;D、在中,,,同理可得,,,故本选项结论错误,符合题意;故选:D.10.答案:C解析:作于G,于H,,,,,,,,由旋转变换的性质可知,,,是等边三角形,,由题意得,,,,,,的面积.故选C.11.答案:1.5解析:由旋转的性质可得,,是等边三角形,,又,.12.答案:解析:本题考查轴对称、中心对称、坐标与图形的旋转变化.将绕点逆时针旋转180°,如图所示,所以点M的坐标为.13.答案:解析:∵四边形为正方形,.由旋转的性质,得为等腰直角三角形,.14.答案:8解析:题图是一个中心对称图形,点A为对称中心,,,设,则.在中,由勾股定理,得,解得,即,.15.答案:解析:设AB与交于点D.为等腰直角三角形,.由旋转的性质知,.在中,,设,则,又,,,,,.16.答案:(1)四边形ABCD是中心对称图形,,.又,.(2),,,.17.答案:(1)如图所示,其中点的坐标为.(2)如图所示.18.答案:解:(1),,是等边三角形,.故答案为4.(2)作于点E.是等边三角形,,又,,在中,,,.在中,.19.答案:(1)证明:如图①,由旋转可得,,,,,又,,又,,,又,.(2)解:如图,当时,点G在BC的垂直平分线上,分两种情况讨论:①如图②,当点G在AD右侧时,取BC的中点H,连接GH交AD于M,,,四边形ABHM是矩形,,GM垂直平分AD,,是等边三角形,,旋转角;②如图③,当点G在AD左侧时,同理可得是等边三角形,,旋转角.20.答案:(1)证明:如图,延长FD到G,使得,连接BG,EC.(或把绕点D旋转得到),.,.在中,,.(2)解:,证明如下:若,则.由(1)知,,即,在中,,.21.答案:(1)证明:是等腰直角三角形,,AM是的平分线,,,在四边形ABMN中,,,,,,,,,,,.(2)解:如题图②,同(1)得,,,,,,,,.如题图③,同(1)得,,,,,,,,.(3)解:在和中,,,,在中,,,,.在中,,.又,,①由(1)知,如题图①,,;②由(2)知,如题图②,不成立;③由(2)知,如题图③,,.综上,,或.故答案为1,或.。
九年级数学 上册 第23章 旋转 单元检测题(二)含答案
![九年级数学 上册 第23章 旋转 单元检测题(二)含答案](https://img.taocdn.com/s3/m/b8fc9bc0102de2bd960588f3.png)
人教版九年级数学上册第23章《旋转》单元测试及答案 (二) (时间:90分钟,分值:100分)一、 选择题(每小题3分,共30分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )2.下列图形中,是中心对称图形的有( )A .4个B .3个C .2个D .1个 3.在平面直角坐标系中,已知点,若将绕原点逆时针旋转得到,则点在平面直角坐标系中的位置是在( )A.第一象限B.第二象限C.第三象限D.第四象限 4.已知0a <,则点(2,1a a --+)关于原点的对称点 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知点、点关于原点对称,则的值为( )A.1B.3C.-1D.-3 6.下列命题中是真命题的是( )A.全等的两个图形是中心对称图形B.关于中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形7.四边形ABCD 的对角线相交于O ,且AO BO CO DO ===,则这个四边形( )A.仅是轴对称图形 B.仅是中心对称图形 C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形8.如图所示,A 、B 、C 三点在正方形网格线的交点处.若将△绕着点A 逆时针旋转到如图位置,得到△,使三点共线,则的值为( )A. 1B.223 C.310D. 29.如图所示,在正方形中,,点在上,且,点是上一动点,连 接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在 上, 则的长是( )A .1B .2C .3D .4 10.如图,在正方形网格中,将△绕点旋转后得到△,则下列旋转方式中,符合题意的是( ) A.顺时针旋转90° B.逆时针旋转90° C.顺时针旋转45° D.逆时针旋转45°二、填空题(每小题3分,共24分) 11.如图所示,把一个直角三角尺绕着角的顶点顺时针旋转,使得点落在的延长线上的点处,则∠的度数为_____ .12.正方形是中心对称图形,它绕它的中心旋转一周和原来的图形重合________次.13.如图所示,ABC △与DEF △关于O 点成中心对称.则AB _______DE , ∥______,AC =________.14.边长为的正方形绕它的顶点旋转,顶点所经过的路线长为______.15.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.16. 点(34)P -,关于原点对称的点的坐标为________. 17.已知点与点关于原点对称,则的值是_______.18.直线3y x =+上有一点,则点 关于原点的对称点为________.三、解答题(共46分) 19.(8分)如图所示,在△中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连接1AA ,求证:四边形11OAA B 是平行四边形.20.(8分)找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.21.(8分)如图所示,网格中有一个四边形和两个三角形. (1)请你画出三个图形关于点的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请你写出这个整体图形对称轴的条数; 这个整体图形至少旋转多少度与自身重合? 22.(6分)如图所示,已知是△的中线,画出以点为对称中心,与△•成中心对称的三角形.23.(8分)图①②均为76 的正方形网格,点A B C 、、 在格点上. (1)在图①中确定格点D ,并画出以 为顶点的四边形,使其为轴对称图形.(画出一个即可)(2)在图②中确定格点E ,并画出以为顶点的四边形,使其为中心对称图形.(画出一个即可)24.(8分)如图所示,将正方形中的△绕对称中心旋转至△的位置,,交于.请猜想与有怎样的数量关系?并证明你的结论.参考答案1.C 解析:选项A 、B 是中心对称图形但不是轴对称图形,选项C 既是中心对称图形又是轴对称图形,选项D 是轴对称图形但不是中心对称图形.2.B 解析:第一、二、三个图形都是中心对称图形,第四个图形不是中心对称图形.3.C 解析:已知点在第一象限,旋转后,则点应在第三象限.4.D 解析:∵ 当时,点在第二象限,∴ 点关于原点的对称点在第四象限.5.D 解析:由点、点关于原点对称知,所以6.B 解析:由中心对称图形和轴对称图形的定义知,选项B 正确.7.C 解析:因为AO BO CO DO ===,所以四边形ABCD 是矩形.8.D 解析:过B 点作BD ⊥于点,由图可知,即=2. 9.C 解析:由题意知,,又由,知△≌△,所以.10.B 解析:根据图形可知:将△绕点逆时针旋转90°可得到△.故选B . 11.解析:由题意得∠, ,所以∠.12.4 解析:正方形的两条对角线的夹角为,且对角线分正方形所成的4个小三角形都全等. 13.=,EF ,DF 14.4π 解析:∵ ∴ 顶点绕顶点旋转所经过的路径是个半圆弧,所以顶点所经过的路线长为4π 15.12016.(34)-, 解析:两个点关于原点对称时,它们的坐标符号相反,所以点的坐标为(34)-,. 17.2 解析:∵ 点与点关于原点对称,∴ 3,1b a ==-, ∴ 2a b +=.18.(,) 解析:将点代入3y x =+,得6n =,∴ 对称点为().19.(1)6,135°;(2)证明:11190AOA OA B ∠=∠=︒,∴11//OA A B . 又11OA AB A B ==,∴四边形11OAA B 是平行四边形. 20.解:图中的旋转中心就是该图的几何中心,即点O.该图绕旋转中心O旋转90180270360,,,,都能与原来的图形重合,因此,它是一个中心对称图形.21.解:(1)如图所示.(2)2条对称轴,这个整体图形至少旋转.22.解:(1)延长,且使,点关于的对称点为,点关于的对称点为;(2)连接.则△为所求作的三角形(如图所示).23.解:(1)如图①所示;(2)如图②所示.24.解:.证明如下:在正方形中,为对角线,为对称中心,∴.∵△为△绕点旋转所得,∴,∴.在△和△中,∴△≌△,∴.。
人教版九年级上册数学 第二十三章 旋转 单元测试卷(含答案)
![人教版九年级上册数学 第二十三章 旋转 单元测试卷(含答案)](https://img.taocdn.com/s3/m/8ec28e6bc77da26925c5b0df.png)
第二十三章旋转单元测试卷一、选择题1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( ).2. 时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是( ).A.此时分针指向的数字为3B.此时分针指向的数字为6C.此时分针指向的数字为4D.分针转动3,但时针却未改变3.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是().A.M或O或N B.E或O或C C.E或O或N D.M或O或C4.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为().A.(3,)B.(3,)C.(,)D.(,)第3题第4题第5题5.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为().A.30,2 B.60,2 C.60, D.60,6.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)7.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().A.30° B.45° C.60° D.90°8.在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( ).A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)二. 填空题9. 如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=.10.如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________ cm.11.绕一定点旋转180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:_____________________.12.如图所示,在Rt△ABC中,∠A=90°,AB=AC=4cm,以斜边BC上距离B点cm的H为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是_________cm2.13.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.14. 如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于________.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,…,则:(1)点P5的坐标为__________;(2)落在x轴正半轴上的点P n坐标是_________,其中n满足的条件是________.16.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三综合题17. 如图,已知,点P是正方ABCD内一点,且AP∶BP∶CP=1∶2∶3.求证:∠APB=135°.18.如图,已知点D是△ABC的BC边的中点,E、F分别是AB、AC上的点,且DE⊥DF.求证: BE + CF>EF19.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP BC为边在BC的下方作等边△PBC,求AP的最大值.逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)20.如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.答案与解析一、选择题1.【答案】C.2.【答案】C.【解析】分针每5分钟转动30.3.【答案】A.【解析】 因为以M 或O 或N 为旋转中心两个图形能够完全重合.4.【答案】D.【解析】因为是菱形,所以可得为等腰直角三角形.5.【答案】C.【解析】△BDC 为正三角形,所以△FDC 为直角三角形,∠DCF=30°,DF=1,FC=,即求得. 6.【答案】B.【解析】根据题意画出△AOB 绕着O 点顺时针旋转120°得到的△COD,连接OP ,OQ ,过Q 作QM⊥y 轴,∴∠POQ=120°, ∵AP=OP,∴∠BAO=∠POA=30°,∴∠MOQ=30°,在Rt△OMQ 中,OQ=OP=2,∴MQ=1,OM=,则P 的对应点Q 的坐标为(1,﹣),故选B7.【答案】D.8.【答案】C.【解析】232,1),A (2,4),A (即旋转90°后3A 坐标为(-1,1).二、填空题9.【答案】5.【解析】作FG ⊥AC ,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F 是DE 的中点,∴FG ∥CD ∴GF=CD=AC=3EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4 根据勾股定理,AF=5.10.【答案】32;【解析】当点F 在正方形ABCD 的对角线AC 上时,CF=AC ﹣AF ,当点F 不在正方形的对角线上时由三角形的三边关系可知AC ﹣AF <CF <AC+AF ,∴当点F 在正方形ABCD 的对角线AC 上时,C 、F 两点之间的距离最小,∴CF=AC﹣AF=4﹣=32cm .故答案为:32.11.【答案】60°或120°.【解析】正六边形的中心角是60°.12.【答案】1.【解析】证明△FHC 和△FHG 是等腰直角三角形,且腰长为,即得. 13.【答案】5.【解析】做DF ⊥BC,EG ⊥AD,交AD 的延长线于点G ,则AD=BF,可证得△DEG ≌△DCF,即EG=FC,又因为3ADE s =△,所以EG=3, 即BC=BF+FC=AD+EG=5.14.【答案】32.【解析】由旋转可知△APP ′是等腰直角三角形,所以PP ′=32.15.【答案】(1) ,(2)落在x 轴正半轴上的点P n 坐标是,其中n 满足的条件是n=8k (k=0,1,2,…) 16.【答案】(-1,).【解析】首先求得12,P P 的坐标,即可求得3P 坐标.三.解答题17.【解析】证明:将△APB 绕点B 沿顺时针方向旋转90°至△CP′B 位置(如图),则有△APB ≌△CP′B.∴BP′= BP,CP′=AP , ∠PBP′= 90°,∠APB=∠CP′B.设CP′= AP= k,则BP′= BP=2k,CP= 3k ,在Rt △BP′P 中,BP′= BP= 2k ,∴∠BP′P=45°.=(3k)2= CP2,∴∠C P′P=90°,∴∠CP′B=∠CP′P+∠BP′P=90°+45°=135°,即∠APB=135°.18.【解析】证明:将△BDE绕点D沿顺时针方向旋转180°至△CDG位置,则有△BDE≌△CDG.∴BE=CG,ED=DG.∵DE⊥DF,即 DF⊥EG.∴EF=FG,在△FCG中CG+CF>FG,即BE+CF>EF.19.【解析】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).20.【解析】⑴①DE=EF;②NE=BF.③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴ DE=EF,NE=BF⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时, DE=EF.。
九年级上学期数学-第二十三章 旋转 单元过关检测02(原卷版)
![九年级上学期数学-第二十三章 旋转 单元过关检测02(原卷版)](https://img.taocdn.com/s3/m/02d2a9bedbef5ef7ba0d4a7302768e9951e76e1e.png)
2022—2023学年九年级上学期第三单元过关检测(2)一、选择题(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)下列正多边形,绕其中心旋转72°后,能和自身重合的是()A.B.C.D.2.(4分)在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移3.(4分)如图,将线段AB先绕原点О按逆时针方向旋转90°,再向下平移4个单位,得到线段CD,则点A的对应点C的坐标是()第3题第4题A.(1,﹣6)B.(﹣1,6)C.(1,﹣2)D.(﹣1,﹣2)4.(4分)如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.105°B.95°C.85°D.75°5.(4分)如图,直线l1∥l2,现将一个含30°角的直角三角板的锐角顶点B放在直线l2上,将三角板绕点B旋转,使直角顶点C落在l1与l2之间的区域,边AC与直线l1相交于点D,若∠1=35°,则图中的∠2的度数是()第5题第6题A.65°B.75°C.85°D.80°6.(4分)如图,在△AOB中,AO=2,BO=AB=3.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段BB′的长为()A.2B.22C.3D.327.(4分)问题:“如图1,平面上,正方形内有一长为12,宽为6的矩形纸片,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙三名同学分别作了自认为边长最小的正方形,求出该正方形的边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可以移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可以移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和时就可以移转过去;结果取n=18.对甲、乙、丙评价正确的是()A.甲的思路错,n值正确B.乙的思路对,n值正确C.丙的思路对,n值正确D.甲、乙的思路都错,丙的思路对8.(4分)如图,在等边△ABC中,D是边AC上一动点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=10,则△AED的周长的最小值是()第8题第9题第10题A.10B.103C.10+53D.209.(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB'C'D'的位置,旋转角为α(0°<α<90°),若∠1=120°,则∠α等于()A.25°B.30°C.45°D.65°10.(4分)如图,点P是等边三角形ABC内一点,且P A=3,PB=4,PC=5,则∠APB的度数是()A.90°B.100°C.120°D.150°11.(4分)如图Rt△ABC中,∠ACB=90°,D是斜边AB的中点,将△ABC绕点A按顺时针方向旋转,点C落在CD的延长线上的E处,点B落在F处,若AC=42,BC=217,则CE的长为()第11题第12题A.7.5B.6C.6.4D.6.512.(4分)如图,在矩形ABCD中,AB=2,BC=4,F为BC中点,P是线段BC上一点,设BP=m(0<m≤4),连结AP并将它绕点P顺时针旋转90°得到线段PE,连结CE、EF,则在点P从点B向点C 的运动过程中,有下面四个结论:①当m≠2时,∠EFP=135°;②点E到边BC的距离为m;③直线EF一定经过点D;④CE的最小值为2.其中结论正确的是()A.①②B.②③C.②③④D.③④二、填空题(本题共4个小题,每小题4分,共16分,答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)如图,边长为2的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x 轴上,以点O为旋转中心,将△ABO按顺时针方向旋转120°,得到△OA'B′,则点A′的坐标为.第13题第14题第15题14.(4分)如图,在矩形ABCD中,AC是对角线.将矩形ABCD绕点B顺时针旋转90°到矩形GBEF位置,H是EG的中点.若AB=6,BC=8,则线段CH的长为.15.(4分)如图,边长为2的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE将线段CE绕点C顺时针旋转60°得到CF,连接DF,则在点E运动过程中,DF的最小值是.16.(4分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,1),(3,0),(2,﹣1).点M从坐标原点O出发,第一次跳跃到点M1,使得点M1与点O关于点A成中心对称;第二次跳跃到点M2,使得点M2与点M1关于点B成中心对称;第三次跳跃到点M3,使得点M3与点M2关于点C成中心对称;第四次跳跃到点M4,使得点M4与点M3关于点A成中心对称;…,依此方式跳跃,点M2022的坐标是.三、解答题(本题共8个小题,共86分,答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上,解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移4个单位,则点B的对应点坐标为;(2)将△AOB绕点O逆时针旋转90°后得到△A1OB1,请在图中作出△A1OB1;(3)求△A1OB1的面积.18.(8分)如图,将等边△ABC绕点C顺时针旋转60°,得到△ADC,分别过点A、点C作BC、AD边上的高,交BC、AD于点E、F.(1)求证:四边形AECF是矩形;(2)连接BD,若AB=3,求BD的长.19.(10分)如图,已知Rt△ABC中,∠ACB=90°,先把△ABC绕点C顺时针旋转90°至△EDC后,再把△ABC沿射线BC平移至△GFE,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结AG,求证:四边形ACEG是正方形.20.(10分)如图,△ABC与△ACD为正三角形,点O为射线CA上的动点,作射线OM与射线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与射线CD相交于点F.(1)如图1,点O与点A重合时,点E,F分别在线段BC,CD上,求证:△AEC≌△AFD;(2)如图2,当点O在CA的延长线上时,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE、CF、CO三条线段之间的数量关系,并说明理由.21.(12分)如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是;(2)若把点Q向右平移a个单位长度,向下平移a个单位长度后,得到的点M(m,n)落在第四象限,求a的取值范围;(3)在(2)条件下,当a取何值,代数式m2+2n+5取得最小值.22.(12分)如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)证明:在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,当AC绕点O顺时针旋转多少度时,四边形BEDF是菱形,请给出证明.23.(12分)如图,已知正方形ABCD的面积为S.(1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(只要求画出图形,不要求写作法)(2)用S表示(1)中作出的四边形A1B1C1D1的面积S1;(3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)的要求作出一个新的四个边形,面积为S2,则S1与S2是否相等,为什么?24.(14分)如图,有一副直角三角板如图1放置(其中∠D=45°,∠C=30°),P A,PB与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(1)在图1中,∠DPC=;(2)①如图2,若三角板PBD保持不动,三角板P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立;②如图3,在图1基础上,若三角板P AC的边P A从PN处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,当PC转到与P A重合时,两三角板都停止转动,在旋转过程中,当∠CPD=∠BPM时,求旋转的时间是多少?。
人教版九年级数学上册第二十三章旋转单元测试卷
![人教版九年级数学上册第二十三章旋转单元测试卷](https://img.taocdn.com/s3/m/969fa132abea998fcc22bcd126fff705cc175c05.png)
2017年秋人教版九年级数学上册《第23章旋转》单元测试卷一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A.(3,-2)B. (2,3)C.(-2,-3) D.(2,-3)3.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=( )A.20°B.30°C.40°D.50°4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()ABCA B C D5.已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H7.四边形ABCD的对角线相交于O,且AO=BO=CO=DO,则这个四边形( )A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形,又不是中心对称图形8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.︒9030 B.︒60 D.︒45 C.︒9.下列命题正确的个数是( )(1)成中心对称的两个三角形是全等三角形;(2)两个全等三角形必定关于某一点成中心对称;(3)两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;(4)成中心对称的两个三角形,对称点的连线都经过对称中心.A.1 B.2 C.3 D.410.如图,在正方形网格中,将△ABC 绕点A 旋转后得到△ADE ,则下列旋转方式中,符合题意的是( )A .顺时针旋转90°B .逆时针旋转90°C .顺时针旋转45°D .逆时针旋转45°二、填空题(每小题3分,共24分)11.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A .点MB .格点NC .格点PD .格点Q12.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第________象限.13.如图4,△COD 是△AOB 绕点O 顺时针方向旋转40°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠D的度数是 . 14.如图5,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是__________.15.如图6,四边形ABCD 中,∠BAD=∠C=90º,AB=AD ,AE ⊥BC 于E ,若线段AE=5,则S 四边形ABCD = .16.如图,设P 是等边三角形ABC 内任意一点,△ACP ′是由△ABP 旋转得到的,则PA__________PB+PC (选填“>”、“=”、“<”)E DCB A图6O DCB A图417.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a+b的值是__________.18.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为__________.三、解答题(共66分)19.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是__________,∠AOB1的度数是__________;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.20.(9分)如图10,E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.21.(9分)已知正方形ABCD 和正方形AEFG 有一个公共点A,点G 、E 分别在线段AD 、AB 上.(1)如图11(1), 连接DF 、BF,若将正方形AEFG 绕点A 按顺时针方向旋转,判断命题:“在旋转的过程中,线段DF 与BF 的长始终相等”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG 绕点A 按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG 的长始终相等?并以图11(2)为例说明理由.22.如图,在Rt △ABC 中,∠ACB=90°,点D 、F 分别在AB 、AC 上,CF=CB ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF .(1)求证:△BCD ≌△FCE ;(2)若EF ∥CD ,求∠BDC 的度数.图1123.如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.24.如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?答案:一、选择题(每小题3分,共30分)1.B 2.D 3.A 4.B 5.D 6.D 7.C 8.C 9.B 10.B 二、填空题(每小题3分,共24分)11.B12.故答案为15°.13.故答案为:4.14.故填空答案:4π.15.∴PA<PB+PC.16.故答案为:(3,﹣4).17.故答案为:2.18.故答案为:(﹣3,﹣6).三、解答题(共66分)19.(1)解:因为,∠OAB=90°,OA=AB,所以,△OAB为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,所以,∠AOB1的度数是90°+45°=135°.(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1,又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.(3)解:▱OAA 1B 1的面积=6×6=36.20.解:将△BCE 以B 为旋转中心,逆时针旋转90º,使BC 落在BA 边上,得△BAM ,则∠MBE=90º,AM=CE,BM=BE,因为CE +AF =EF ,所以MF =EF ,又BF=BF,所以△FBM ≌△FBE,所以∠MBF=∠EBF, 所以∠EBF=ºº190452⨯= 21.解:(1)解:(1)不正确.若在正方形GAEF 绕点A 顺时针旋转45°,这时点F 落在线段AB 或AB 的延长线上.(或将正方形GAEF 绕点A 顺时针旋转,使得点F 落在线段AB 或AB 的延长线上).如图:设AD=a ,AG=b ,则22a 2b +a ,2b|<a , ∴DF >BF ,即此时DF ≠BF ;(2)连接BE ,则DG=BE .如图,(2)连接BE ,则DG=BE .如图,∵四边形ABCD 是正方形,∴AD=AB ,∵四边形GAEF 是正方形,∴AG=AE ,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE ,∴△DAG ≌△BAE ,∴DG=BE .∵四边形ABCD 是正方形,∴AD=AB ,∵四边形GAEF 是正方形,∴AG=AE ,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE ,∴△DAG ≌△BAE ,∴DG=BE .22.(1)证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,∴CD=CE ,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.23.解:猜想:BM=FN.证明:在正方形ABCD中,BD为对角线,O为对称中心,∴BO=DO,∠BDA=∠DBA=45°,∵△GEF为△ABD绕O点旋转所得,∴FO=DO,∠F=∠BDA,∴OB=OF,∠OBM=∠OFN,在△OMB和△ONF中,∴△OBM≌△OFN,∴BM=FN.24.解:(1)∵BC=BE,BA=BF,∴BC和BE,BA和BF为对应边,∵△ABC旋转后能与△FBE重合,∴旋转中心为点B;(2)∵∠ABC=90°,而△ABC旋转后能与△FBE重合,∴∠ABF等于旋转角,∴旋转了90度;(3)AC=EF,AC⊥EF.理由如下:∵△ABC绕点B顺时针旋转90°后能与△FBE重合,∴EF=AC,EF与AC成90°的角,即AC⊥EF.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
人教版九年级数学(上)第二十三章《旋转》检测卷含答案
![人教版九年级数学(上)第二十三章《旋转》检测卷含答案](https://img.taocdn.com/s3/m/7793781b42323968011ca300a6c30c225901f0c1.png)
人教版九年级数学(上)第二十三章《旋转》检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列图形,既是轴对称图形,又是中心对称图形的是2.将大写字母E绕点P按顺时针方向旋转90°得到的图形是3.下列说法中,正确的有①平行四边形是中心对称图形;②两个全等三角形一定成中心对称;③中心对称图形的对称中心是连接两对称点的线段的中点;④一个图形若是轴对称图形,则一定不是中心对称图形;⑤一个图形若是中心对称图形,则一定不是轴对称图形.A.1个B.2个C.3个D.4个4.如图,已知点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,则下列说法正确的是A.△ODE绕点O顺时针旋转60°得到△OBCB.△ODE绕点O逆时针旋转120°得到△OABC.△ODE绕点F顺时针旋转60°得到△OABD.△ODE绕点C逆时针旋转90°得△OAB5.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度,得到的点的坐标是A.(4,-3)B.(-4,3)C.(0,-3)D.(0,3)6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B逆时针旋转90°到△A'BC'的位置,则AA'的长为A.10√2B.10C.20D.5√27.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为A.30,2B.60,2D.60,√3C.60,√328.如图,在平面直角坐标系中,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b+2)9.有两个完全重合的直尺,将其中一个始终保持不动,另一个直尺绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是A.图①B.图②C.图③D.图④10.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点.下列结论:①(BE+CF )=√22BC ;②S △AEF ≤14S △ABC ;③S 四边形AEDF =AD ·EF ;④AD ≥EF ;⑤AD 与EF 可能互相平分,其中正确结论的个数是A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.已知a<0,则点P (-a 2,-a+1)关于原点的对称点P'在第 四 象限.12.如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 延长线上的点E 处,则∠BDC= 15° .13.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AB=6,Rt △AB'C'可以看作是由Rt △ABC 绕点A 逆时针方向旋转60°得到的,则线段B'C 的长为 3√7 .14.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,AC=6√3,BC 的中点为D ,将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG 在旋转过程中,DG 的最大值是 9 .三、(本大题共2小题,每小题8分,满分16分)15.如图,四边形ABCD绕点O旋转后,顶点A的对应点为点E.试确定旋转后的四边形.解:如图所示,四边形EB'C'D'即为四边形ABCD绕点O旋转后的四边形.AB,请你用旋转的16.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,且AF=12方法说明线段BE和DF之间的关系.AB,∴AE=AF,解:∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵E是AD的中点,AF=12∴△DFA≌△BEA,∴把△ABE绕点A逆时针旋转90°可得到△ADF,∴BE=DF,BE⊥DF.四、(本大题共2小题,每小题8分,满分16分)17.△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.答案图解:(1)如图,C 1(-3,2). (2)如图,C 2(-3,-2).18.已知点P (x+1,2x-1)关于原点的对称点在第一象限,试化简:|x-3|-|1-x|. 解:∵点P (x+1,2x-1)关于原点的对称点P'的坐标为(-x-1,-2x+1),点P'在第一象限,∴{-x -1>0,-2x +1>0,∴x<-1,∴|x-3|-|1-x|=-x+3-1+x=2.五、(本大题共2小题,每小题10分,满分20分)19.如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上的一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,求AP 的长. 解:如图,∵AC=9,AO=3,∴OC=6,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60°得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中,{∠A=∠C,∠2=∠3, OP=OD,∴△AOP≌△CDO,∴AP=CO=6.20.在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A'BO',点O,A旋转后的对应点为O',A',记旋转角为β.(1)如图1,若β=90°,求AA'的长;(2)如图2,若β=120°,求点O'的坐标.解:(1)∵β=90°,∴∠A'BA=90°,∵A(8,0),B(0,6),∴OA=8,OB=6,根据勾股定理得,AB=√OA 2+OB 2=√82+62=10, 由旋转的性质得,A'B=AB=10,在Rt △A'BA 中,根据勾股定理得,AA'=√AB 2+A 'B 2=√102+102=10√2. (2)如图,过点O'作O'C ⊥y 轴于点C , 由旋转的性质得,O'B=OB=6,∵β=120°,∴∠OBO'=120°,∴∠O'BC=180°-120°=60°, ∴BC=12O'B=12×6=3,CO'=√O 'B 2-BC 2=√62-32=3√3,∴OC=OB+BC=6+3=9,∴点O'的坐标为(3√3,9).六、(本题满分12分)21.如图,在等腰△ABC 中,∠CAB=90°,P 是△ABC 内一点,PA=1,PB=3,PC=√7,将△APB 绕点A 逆时针旋转后与△AQC 重合.求: (1)线段PQ 的长; (2)∠APC 的度数.解:(1)∵△APB 绕点A 旋转与△AQC 重合,∴AQ=AP=1,∠QAP=∠CAB=90°, ∴在Rt △APQ 中,PQ=√AQ 2+AP 2=√2.(2)∵∠QAP=90°,AQ=AP,∴∠APQ=45°.∵△APB绕点A旋转与△AQC重合,∴CQ=BP=3.在△CPQ中,PQ=√2,CQ=3,CP=√7,∴CP2+PQ2=CQ2,∴∠CPQ=90°,∴∠APC=∠CPQ+∠APQ=135°.七、(本题满分12分)22.如图,▱ABCD中,AB⊥AC,AB=1,BC=√5,对角线BD,AC交于点O.将直线AC绕点O顺时针旋转分别交BC,AD于点E,F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)证明:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.解:(1)在▱ABCD中,AD∥BC,OA=OC,∴∠1=∠2,在△AOF和△COE中,{∠1=∠2,OA=OC,∠3=∠4,∴△AOF≌△COE(ASA),∴AF=CE.(2)由题意,∠AOF=90°(如图1),又∵AB ⊥AC ,∴∠BAO=90°,∴∠BAO=∠AOF ,∴AB ∥EF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.(3)当EF ⊥BD 时,四边形BEDF 是菱形(如图2).由(1)知,AF=CE ,∵▱ABCD ,∴AD=BC ,AD ∥BC ,∴DF ∥BE ,DF=BE ,∴四边形BEDF 是平行四边形,又∵EF ⊥BD ,∴▱BEDF 是菱形,∵AB ⊥AC ,∴在△ABC 中,∠BAC=90°,∴BC 2=AB 2+AC 2, ∵AB=1,BC=√5,∴AC=√BC 2-AB 2=√(√5)2-12=2, ∵四边形ABCD 是平行四边形,∴OA=12AC=12×2=1, ∵在△AOB 中,AB=AO=1,∠BAO=90°, ∴∠1=45°,∵EF ⊥BD ,∴∠BOF=90°,∴∠2=∠BOF-∠1=90°-45°=45°,即旋转角为45°. 八、(本题满分14分)23.如图1,在正方形ABCD 中,点M ,N 分别在AD ,CD 上,若∠MBN=45°,易证MN=AM+CN. (1)如图2,在梯形ABCD 中,BC ∥AD ,AB=BC=CD ,点M ,N 分别在AD ,CD 上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD 中,AB=BC ,∠ABC+∠ADC=180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 又有怎样的数量关系?请直接写出猜想,不需证明.解:(1)MN=AM+CN.理由如下:如图2,∵BC ∥AD ,AB=BC=CD ,∴梯形ABCD 是等腰梯形,∴∠A+∠BCD=180°,把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则△ABM ≌△CBM',∴AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC ,∴∠BCM'+∠BCD=180°,∴点M',C ,N 三点共线,∵∠MBN=12∠ABC ,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=12∠ABC ,∴∠MBN=∠M'BN ,在△BMN 和△BM'N 中,{BM =BM ',∠MBN =∠M 'BN ,BN =BN , ∴△BMN ≌△BM'N (SAS),∴MN=M'N ,又∵M'N=CM'+CN=AM+CN ,∴MN=AM+CN.(2)MN=CN-AM.。
人教新版数学九年级上学期《第23章旋转》单元测试(含答案)
![人教新版数学九年级上学期《第23章旋转》单元测试(含答案)](https://img.taocdn.com/s3/m/61f1dcf3710abb68a98271fe910ef12d2bf9a952.png)
人教新版数学九年级上学期《第23章旋转》单元测试一.选择题(共10小题)1.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种2.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.3.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.80°C.84°D.86°4.如图,E是正方形ABCD的边CB延长线上的一点.把△AEB绕着点A逆时针旋转后与△AFD重合,则旋转的角度可能是()A.90°B.60°C.45°D.30°5.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°6.已知点A关于x轴的对称点坐标为(﹣1,2),则点A关于原点的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)7.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)8.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)9.将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(﹣2,0),∠ABO=30°.则△AOB旋转过程中所扫过的图形的面积为()A.B.C.D.10.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n的坐标是()+1A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)二.填空题(共6小题)11.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.12.下图右侧有一盒拼板玩具,左侧有五块板a、b、c、d、e,如果游戏时可以平移或旋转,但不能翻动盒中任何一块,那么a、b、c、d、e中,是盒中找不到的?(填字母代号)13.将一副三角板的两个直角顶点叠放在一起拼成如下的图形.若∠EAB=40°,则∠CAD=;将△ABC绕直角顶点A旋转时,保持AD在∠BAC的内部,设∠EAC=x°,∠BAD=y°,则x与y的关系是.14.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=秒时,点P与点C中心对称,且对称中心在直径AB上.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),以O旋转中心,将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,OP n(n为正整数),则点P6的坐标是;△P5OP6的面积是.16.在五行五列的方格棋盘上沿骰子的某条棱翻动骰子,骰子在棋盘上只能向它所在格的左、右、前、后格翻动.开始时骰子在3C处,如图1,将骰子从3C处翻动一次到3B处,骰子的形态如图2;如果从3C处开始翻动两次,使朝上,骰子所在的位置是.三.解答题(共7小题)17.如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.18.如图,已知平面直角坐标系中两点A(﹣1,5)、B(﹣4,1).(1)将A、B两点沿x轴分别向右平移5个单位,得到点A1、B1,请画出四边形ABB1A1,并直接写出这个四边形的面积;(2)画一条直线,将四边形ABB1A1分成两个全等的图形,并满足这两个图形都是轴对称图形.19.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.20.在△ABC中,AB=AC,∠BAC=100°.将线段CA绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<360°,连接AD、BD.(1)如图1,当α=60°时,∠CBD的大小为;(2)如图2,当α=20°时,∠CBD的大小为;(提示:可以作点D关于直线BC的对称点)(3)当α为°时,可使得∠CBD的大小与(1)中∠CBD的结果相等.21.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.22.在学习了第四章《基本的平面图形》的知识后,小明将自己手中的一副三角板的两个直角顶点叠放在一起拼成如下的图形1和图形2.(1)在图1中,当AD平分∠BAC时,小明认为此时AB也应该平分∠FAD,请你通过计算判断小明的结论是否正确.(2)小明还发现:只要AD在∠BAC的内部,当△ABC绕直角顶点A旋转时,总有∠FAB=∠DAC(见图2),请你判断小明的发现是否正确,并简述理由.(3)在图2中,当∠FAC=x,∠BAD=y,请你探究x与y的关系.23.如图,在等边△ABC中,点D是AC边上一点,连接BD,过点A作AE⊥BD 于E.(1)如图1,连接CE并延长CE交AB于点F,若∠CBD=15°,AB=4,求CE的长;(2)如图2,当点D在线段AC的延长线上时,将线段AE绕点A逆时针旋转60°得到线段AF,连接EF,交BC于G,连接CF,求证:BG=CG.参考答案一.选择题1.C.2.D.3.B.4.A.5.B.6.A.7.B.8.B.9.D.10.C.二.填空题11.13.12.D.13.40°,y=180﹣x.14.或或或.15.512.16.2B或4B.三.解答题17.解:注:本题画法较多,只要满足题意均可,画对一个得(1分).18.解:(1)如图所示的四边形ABB1A1即为要求画的四边形,S四边形ABB1A1=5×(5﹣1)=20(平方单位);(2)如图所示:∵四边形ABB1A1是平行四边形,∴直线AB1即为所要求画的直线.19.(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF≌△DMF,∴EF=MF;(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB﹣AE=3﹣1=2,BM=BC+CM=3+1=4,∴BF=BM﹣MF=4﹣x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,则EF的长为.20.解:(1)∵∠BAC=100°,AB=AC,∴∠ABC=∠ACB=40°,当α=60°时,由旋转的性质得AC=CD,∴△ACD是等边三角形,∴∠DAC=60°,∴∠BAD=∠BAC﹣∠DAC=100°﹣60°=40°,∵AB=AC,AD=AC,∴∠ABD=∠ADB==70°,∴∠CBD=∠ABD﹣∠ABC=70°﹣40°=30°,故答案为:30°;(2)如图2所示;作点D关于BC的对称点M,连接AM、BM、CM、AM.则△CBD≌△CBM,∴∠BCM=∠BCD=∠ACD=20°,CD=CA=CM,∴∠ACM=60°,∴△ACM是等边三角形,∴AM=AC=AB,∠MAC=60°,∴∠BAM=40°,∵∠CAD=∠CDA=(180°﹣20°)=80°,∴∠BAD=∠CAD=20°,∵AD=AD,∴△DAB≌△DAM,∴BD=DM,∵BD=BM,∴BD=DM=BM,∴∠DBM=60°,∴∠DBC=∠CBM=30°,故答案为30°(3)①由(1)可知,∠α=60°时可得∠BAD=100°﹣60°=40°,∠ABC=∠ACB=90°﹣=40°,∠ABD=90°﹣∠BAD=120°﹣=70°,∠CBD=∠ABD﹣∠ABC=30°.②如图3,翻折△BDC到△BD1C,则此时∠CBD1=30°,∠BCD=60°﹣∠ACB=﹣30°=20°,∠α=∠ACB﹣∠BCD1=∠ACB﹣∠BCD=﹣20°=20°;③以C为圆心CD为半径画圆弧交BD的延长线于点D2,连接CD2,∠CDD2=∠CBD+∠BCD=30°+﹣30°=50°,∠DCD2=180°﹣2∠CDD2=180°﹣100°=80°,∠α=60°+∠DCD2=140°.综上所述,α为60°或20°或140°时,∠CBD=30°.故答案为60或20或140.21.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.22.解:(1)小明的结论正确,理由如下:∵AD平分∠BAC,∠BAD+∠CAD=90°,∴∠BAD=∠CAD=45°.∵∠FAB+∠BAD=90°,∴∠FAB=45°,∴∠FAB=∠BAD,∴AB平分∠FAD.(2)小明的结论正确,理由如下:∵∠BAD+∠CAD=90°,∠FAB+∠BAD=90°,∴∠FAB=∠DAC.(3)∵∠FAC=∠FAB+90°,∴∠FAB=∠FAC﹣90°.∵∠BAD=90°﹣∠FAB,∴∠BAD=180°﹣∠FAC,即y=180°﹣x(90<x<180°).23.解:(1)∵△ABC为等边三角形∴AB=BC=AC=4,∠BAC=60°且∠DBC=15°∴∠ABE=45°且AE⊥BD∴∠BAE=∠ABE=45°∴AE=BE,且AC=BC∴CF垂直平分AB即AF=BF=2,CF⊥AB∵∠ABE=45°∴∠FEB=∠ABE=45°∴BF=EF=2,∵Rt△BCF中,CF==2∴CE=2﹣2(2)如图2:过点M作CM∥BD∵将线段AE绕点A逆时针旋转60°得到线段AF∴AE=AF,∠EAF=60°,∴△AEF为等边三角形∴∠AFE=∠AEF=60°∴∠FAC+∠EAC=60°,且∠BAE+∠EAC=60°∴∠BAE=∠CAF,且AB=AC,AE=AF∴△ABE≌△ACF∴BE=CF,∠AEB=∠AFC=90°∴∠BEF=150°,∠MFC=30°∵MC∥BD∴∠BEF=∠GMC=150°,∴∠CMF=30°=∠CFM∴CM=CF且CF=BE∴BE=CM且∠BGE=∠CGM,∠BEG=∠CMG ∴△BGE≌△GMC∴BG=GC。
人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析
![人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析](https://img.taocdn.com/s3/m/9ef342d3db38376baf1ffc4ffe4733687e21fce2.png)
第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转 C.对称和平移 D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点B 、A 、B1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180° 10.如图,在△ABC 中,∠AB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .5B .3C .4D .10二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB 绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BAB1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT △ADB 中,即:BD 的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2. ∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0x+2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52;②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34.23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1); (2)OP '=(a )动点T 在原点左侧,当1TO OP '=时,△P'TO 是等腰三角形,∴点1T,0),(b )动点T 在原点右侧,①当T2O=T2P'时,△P'TO 是等腰三角形,得:2T (54,0),②当T3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T4P'=P'O 时,△P'TO 是等腰三角形,得:点T4(4,0).综上所述,符合条件的t 的值为,54,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BCOC =,∴∴点B 的坐标为(1.(2)如图2所示:(A 1)图2yx O B 1CB A∵点B1与点A1的纵坐标相同,∴A1B1∥OA .①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:A 1图3yxO B 1CBA当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B1的坐标为(1.∴点B1的坐标为(﹣11.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。
人教版九年级数学上册第二十三章 旋转 单元测试卷(教师版,含答案)
![人教版九年级数学上册第二十三章 旋转 单元测试卷(教师版,含答案)](https://img.taocdn.com/s3/m/c98a087eb9f3f90f77c61b30.png)
人教版九年级数学上册第二十三章旋转单元测试卷(满分:150分时间:120分钟)一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请将正确选项的代号填写在答题框中,填写正确记4分,不填、填错或多填记0分.1.在平面直角坐标系中,点P(2,-3)关于原点的对称点P′的坐标是(C)A.(-2,-3) B.(-3,-2) C.(-2,3) D.(-3,2)2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是(B)A.96 B.69 C.66 D.993.下列图形属于中心对称图形的是(C)4.下列说法正确的是(B)A.全等的两个图形成中心对称B.成中心对称的两个图形全等C.成中心对称的两个图形一定关于某条直线对称D.关于某条直线成轴对称的两个图形一定关于某一点成中心对称5.如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是由△ABC经过怎样的图形变化得到的?有下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中正确的结论是(D)A.①④ B.②③ C.②④ D.③④6.如图,将△ABC按顺时针方向转动一个角后成为△AB′C′,下列等式正确的有(C)①BC=B′C′;②∠BAB′=∠CAC′;③∠ABC=∠AB′C′;④AB=B′C′.A.1个 B.2个 C.3个 D.4个7.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为(B)A.10° B.15° C.20° D.25°8.如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是(D)A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)9.如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C,若点B′恰好落在线段AB上,AC,A′B′交于点O,则∠COA′的度数是(B)A .50°B .60°C .70°D .80°10.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG =120°.绕点O 旋转∠FOG,分别交线段AB ,BC 于D ,E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE 的面积始终等于433;④△BDE 周长的最小值为6.上述结论正确的个数是(C)A .1B .2C .3D .4 二、填空题(本大题共6个小题,每小题4分,共24分) 请将答案填在对应题号的横线上.11.如图所示,图(1)经过平移变化成图(2),图(2)经过旋转变化成图(3).12.若点A(2x -1,5)和点B(4,y +3)关于点(-3,2)对称,那么点A 在第二象限.13.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,阴影部分的面积为12.14.将一副三角尺按如图的方式放置,将三角尺ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角尺ADE 的一边所在的直线与BC 垂直,则α的度数为15°或60°.15.如图,已知抛物线C 1与抛物线C 2关于原点中心对称,如果抛物线C 1的解析式为y =34(x +2)2-1,那么抛物线C 2的解析式为y =-34(x -2)2+1.16.如图,在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm ,将△AOB 绕顶点O 按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D =1.5 cm.三、解答题(本大题共9小题,共86分) 解答题应写出必要的文字说明或推演步骤.17.(8分)如图,在△ABC 中,∠B =10°,∠ACB =20°,AB =4 cm ,△ABC 按逆时针方向旋转一定角度后与△ADE 重合,且点C 恰好成为AD 的中点.(1)指出旋转中心,并求出旋转的度数; (2)求出∠BAE 的度数和AE 的长.解:(1)∵△ABC 逆时针旋转一定角度后与△ADE 重合,A 为公共顶点, ∴旋转中心是点A.根据旋转的性质可知:∠CAE=∠BAD=180°-∠B-∠ACB=150°, ∴旋转角度是150°.(2)由(1)可知:∠BAE=360°-150°×2=60°, 由旋转可知△ABC≌△ADE, ∴AB =AD ,AC =AE.又∵C 为AD 中点,AB =4 cm , ∴AE =AC =12AB =2 cm.18.(8分)某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).解:如图所示.19.(8分)如图,在△ABC 中,∠CAB =70°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.解:∵CC′∥AB,∴∠ACC ′=∠CAB=70°. ∵△ABC 绕点A 旋转到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C=70°.∴∠CAC′=180°-70°-70°=40°.∴∠BAB′=40°.20.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标;(2)连接BC′,B′C,求四边形BCB′C′的面积.解:(1)如图,△A′B′C′即为所求,A′(4,0),B′(3,3),C′(1,3).(2)∵B′(3,3),C′(1,3),∴B′C′∥x轴,B′C′=2.∵B(-3,-3),C(-1,-3),∴BC∥x轴,BC=2.∴BC∥B′C′,BC=B′C′.∴四边形BCB′C′是平行四边形.∴S▱BCB′C′=2×6=12.21.(10分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)解:(1)画出下列一种即可:(2)画出下列一种即可:(3)画出下列一种即可:22.(10分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,将△APB绕点B逆时针旋转一定角度后,可得到△CQB.(1)求点P与点Q之间的距离;(2)求∠APB的度数.解:(1)连接PQ,由旋转性质有:BQ=BP=8,QC=PA=6,∠QBC=∠ABP,∠BQC=∠BPA,∴∠QBC+∠PBC=∠ABP+∠PBC,即∠QBP=∠ABC.∵△ABC是正三角形,∴∠ABC=60°.∴∠QBP=60°.∴△BPQ是等边三角形.∴PQ=BP=BQ=8,即点P与点Q之间的距离为8.(2)在△PQC中,PQ=8,QC=6,PC=10,∴PQ2+QC2=PC2.∴∠PQC=90°.∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°.23.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标;(3)若点P(a,b)是△ABC内任意一点,试写出将△ABC绕点O逆时针旋转90°后点P的对应点P2的坐标.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求,B2的坐标是(-2,4),C2的坐标是(-5,3).(3)点P2的坐标是(-b,a).24.(10分)如图,四边形ABCD 是正方形,E ,F 分别是DC 和CB 的延长线上的点,且DE =BF ,连接AE ,AF ,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90度得到; (3)若BC =8,DE =2,求△AEF 的面积.解:(1)∵四边形ABCD 是正方形, ∴AD =AB ,∠D =∠ABC=90°. 而F 是CB 的延长线上的点, ∴∠ABF =∠D=90°. 又∵AB=AD ,DE =BF , ∴△ADE≌△ABF(SAS). (3)∵BC=8,∴AD =8. 在Rt △ADE 中,DE =2,AD =8, ∴AE =AD 2+DE 2=217.∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到, ∴AE =AF ,∠EAF =90°. ∴S △AEF =12AE 2=12×4×17=34.25.(12分)在同一平面内,△ABC和△ABD如图1放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图2,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图3,求证:四边形CDFE是平行四边形.解:(1)四边形ABDF是菱形.理由如下:∵△ABD绕着边AD的中点旋转180°得到△DFA,∴AB=DF,BD=FA.∵AB=BD,∴AB=BD=DF=FA,∴四边形ABDF是菱形.(2)证明:∵四边形ABDF是菱形,∴AB∥DF,且AB=DF.∵△ABC绕着边AC的中点旋转180°得到△CEA,∴AB=CE,BC=EA.∴四边形ABCE为平行四边形.∴AB∥CE,且AB=CE.∴CE∥FD,CE=FD.∴四边形CDFE是平行四边形.。
九年级数学上册 第二十三章 旋转 单元测试卷及答案(2023年人教版)
![九年级数学上册 第二十三章 旋转 单元测试卷及答案(2023年人教版)](https://img.taocdn.com/s3/m/5c393f35591b6bd97f192279168884868662b841.png)
九年级数学上册第二十三章旋转单元测试卷及答案(人教版)一、选择题(每题3分,共30分)1.【教材P69习题T2拓展】垃圾混置是垃圾,垃圾分类是资源.下列可回收物、有害垃圾、厨余垃圾、其他垃圾四种垃圾回收标识中,既是轴对称图形又是中心对称图形的是()2.【教材P60例题变式】如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是()3.【教材P69练习T2改编】点(-1,2)关于原点的对称点坐标是() A.(-1,-2) B.(1,-2) C.(1,2) D.(2,-1) 4.如图,四边形ABCD为正方形,O为对角线AC,BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA?()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°(第4题)(第5题)(第6题)(第7题)5.【教材P77复习题T7变式】如图,点O是▱ABCD的对称中心,EF是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABOE和四边形CDOF 的面积分别记为S1,S2,那么S1,S2之间的关系为()A. S1>S2B. S1<S2C.S1=S2 D. 无法确定6.如图,将Rt△ABC(∠B=25°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C ,A ,B 1在同一条直线上,那么旋转角等于( )A .65°B .80°C .105°D .115°7.如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE绕点A 顺时针旋转到与△ABF 重合,则EF =( ) A.41 B.42 C .5 2 D .2138.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ′,则点P ′的坐标为( )A .(3,2)B .(3,-1)C .(2,-3)D .(3,-2)(第8题) (第9题) (第10题)9.如图,点P 是等腰直角三角形ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP′B =135°,P ′A ∶P ′C =1∶3,则P ′A ∶PB 等于( )A .1∶ 2B .1∶2 C.3∶2 D .1∶ 310.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1;依此方式,绕点O 连续旋转2 022次得到正方形OA 2 022B 2 022C 2 022,那么点A 2 022的坐标是( )A.⎝ ⎛⎭⎪⎫22,-22 B .(-1,0) C.⎝ ⎛⎭⎪⎫-22,-22 D .(0,-1) 二、填空题(每题3分,共24分)11.【教材P 63习题T 5变式】如图,风车图案围绕着旋转中心至少旋转________度,会和原图案重合.(第11题) (第12题) (第13题)12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.13.如图所示,图形①经过________变换得到图形②;图形①经过________变换得到图形③;图形①经过________变换得到图形④.(填“平移”“旋转”或“轴对称”)14.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.(第14题)(第15题)(第16题)(第17题) 15.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M的坐标是__________,点N的坐标是__________.16.如图,在Rt△OAB中,∠OAB=90°,O A=AB=6,将△O AB绕点O按逆时针方向旋转90°得到△OA1B1.连接AA1,则四边形OAA1B1的面积为________.17.如图,将△ABC在平面内绕点A逆时针旋转40°到△AB′C′的位置,若CC′∥AB,则∠CAB′的度数为________.18.如图,将一个45°角的顶点与正方形ABCD的顶点A重合,在正方形的内部绕着点A旋转,角的两边分别与CD,CB边相交于F,E两点,与对角线BD交于N,M两点,连接EF,则下列结论:①AE=AF;②EF=BE+DF;③△CEF的周长等于正方形ABCD周长的一半;④S△AEF =S△ABE+S△ADF.其中正确的结论有____________(填序号).三、解答题(19~22题每题8分,23题10分,其余每题12分,共66分) 19.如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转角的度数;(2)求∠BAE的度数和AE的长.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2,C2的坐标.21.【教材P70习题T4拓展】平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.22.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图①中涂黑一个小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图②中涂黑一个小正方形,使涂黑的四个小正方形组成一个中心对称图形.23.如图,△BAD是由△BEC在平面内绕点B旋转60°得到的,且AB⊥BC,BE =CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.25.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,试判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α.答案一、1.B 2.C 3.B 4.C 5.C 6.D7.D8.D9.B10.B点规律:2022=252×8+6,则点A2022在点A6的位置,点A6与点C重合.二、11.6012.π13.轴对称;旋转;平移14.215.(-1,-3);(1,-3)16.3617.30°18.②③④点思路:将△ADF绕点A顺时针旋转90°,点D与点B重合,利用全等的知识判断.三、19.解:(1)旋转中心是点A.∵∠CAB=180°-∠B-∠ACB=150°,∴旋转角是150°.(2)∠BAE=360°-150°×2=60°.由旋转的性质得△ABC≌△ADE,∴AB=AD,AC=AE.又∵点C是AD的中点,∴AC=12AD=12AB=12×4=2.∴AE=2.20.解:(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.点B2的坐标为(4,-2),点C2的坐标为(1,-3).21.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.解得x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.22.解:(1)如图①所示:①、②、③、④处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图②所示:①、②处涂黑都可以使涂黑的四个小正方形组成一个中心对称图形.23.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°得到的,∴DB=CB,∠ABE=∠DBC=60°.∵AB⊥BC,∴∠ABC=90°.∴∠CBE=30°.∴∠DBE=30°.∴∠DBE=∠CBE.在△BDE和△BCE中,DB=CB,∠DBE=∠CBE,BE=BE,∴△BDE≌△BCE(SAS).(2)解:四边形ABED为菱形.理由:由(1)得△BDE≌△BCE,∴EC=ED.∵△BAD是由△BEC旋转得到的,∴△BAD≌△BEC.∴BA=BE,AD=EC.又∵BE=CE,EC=ED,∴BA=BE=AD=ED.∴四边形ABED为菱形.24.点方法:(1)可以用观察法初步判断AE和DB的数量、位置关系,通过边长DB交AE于点M,利用全等的知识进行验证.解:(1)AE=DB,AE⊥DB.理由:如图①,延长DB交AE于点M.由题意可知,CA=CB,CE=CD,∠ACE=∠BCD=90°,∴△ACE≌△BCD(SAS).∴AE=DB,∠AEC=∠BDC.∵∠ACE=90°,∴∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°.∴在△AMD 中,∠AMD =180°-90°=90°.∴AE ⊥DB .(2)DE =AF ,DE ⊥AF .理由:如图②,设ED 与AF 相交于点N ,由题意易知BE =AD .∵∠EBD =∠C +∠BDC =90°+∠BDC ,∠ADF =∠BDF +∠BDC =90°+∠BDC ,∴∠EBD =∠ADF .又∵DB =DF ,∴△EBD ≌△ADF (SAS).∴∠E =∠FAD ,DE =AF .∵∠E =45°,∴∠FAD =45°.又∵∠EDC =45°,∴∠AND =90°.∴DE ⊥AF .25.解:(1)∠ABD =30°-12α.(2)△ABE 为等边三角形.证明如下:连接AD ,CD .∵线段BC 绕点B 逆时针旋转60°得到线段BD ,∴BC =BD ,∠DBC =60°.∴△BCD 是等边三角形.∴BD =CD .∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 和△ACD 中,AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD (SSS).∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-12α150°=12α.∴∠BAD =∠BEC .在△ABD 和△EBC 中,∠BAD =∠BEC ,∠ABD =∠EBC ,BD =BC ,∴△ABD ≌△EBC (AAS).∴AB =BE .又∵∠ABE =60°,∴△ABE 为等边三角形.(3)由(2)可知△BCD 为等边三角形,∴∠BCD =60°.∵∠BCE =150°,∴∠DCE =150°-60°=90°.∵∠DEC =45°,∴△DCE 为等腰直角三角形,∴DC =CE =BC .∴∠CBE =∠BEC .∵∠BCE =150°,∴∠EBC =180°-150°2=15°.而由(2)知∠EBC =30°-12α,∴30°-12α=15°.∴α=30°.。
(期末复习)人教版九年级上《第23章旋转》单元试卷有答案(PDF版)-(数学) (2)
![(期末复习)人教版九年级上《第23章旋转》单元试卷有答案(PDF版)-(数学) (2)](https://img.taocdn.com/s3/m/a0ef1cf5daef5ef7ba0d3c87.png)
上一动点,将线段 AB 绕原点 O 旋转一周,点 P 的对应点为 P′,则 P′C 的
最大值为
,最小值为
.
12.如图,将 Rt△ABC 绕直角顶点 C 顺时针旋转 90°,得到△A′B′C′,若
∠B=60°,则∠1=
.
13.如图,正方形 ABCD 的边长为 ,P 在 CD 边上,DP=1,△ADP 旋转后能
②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为:
.
22.如图,在△ABC 中,∠BAC=64°,∠C=36°.将△ABC 绕点 A 按逆时针 方向旋转后得△ADE,AE 与 BD 相交于点 F.当 DE∥AB 时,求∠AFD 的度 数.
23.如图,在所给的方格纸中,每个小正方形的边长都是 1,点 A,B,C 位于 格点处,请按要求画出格点四边形.
且∠l=104°,∠2=87° ∴∠2 多了 11°,或∠1 多了 11° ∴将 l1 绕点 P 逆时针旋转 11°或 将 l2 绕点 Q 顺时针旋转 11° 故选:C. 7.【解答】解:如图,过 C 作 CD⊥AB 于 D,过 P 作 PH⊥AB 于 H, ∵AC=6 ,∠A=45°,∠B=30°, ∴AD=CD=6,BC=2CD=12, 设 CP=x=PC',则 BP=12﹣x,PH= (12﹣x),
15.如图,将 Rt△ABC 绕直角顶点 A 按顺时针方向旋转 180° 得△AB1C1,写
出旋转后 BC 的对应线段
.
16.如图,数轴上点 A 对应实数 ,线段 AB 垂直于数轴,线段 AB 的长为 2,
现将线段 AB 绕点 A 旋转 90°,得到线段 AB',则 B'对应的实数是
.
17.如图,将直角三角形 AOB 绕点 0 旋转得到直角三角形 COD,若∠AOB=90°,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册第23章旋转单元测试卷2
(时间90分钟,满分120分)
一、选择题(每题3分,共24分)
1.平面图形的旋转一般情况下改变图形的()
A. 位置
B.大小
C.形状
D.性质
2. 9点钟时,钟表的时针与分针的夹角是()
A.30°
B.45°
C.60°
D.90°
3. 将□ABCD旋转到□A′B′C′D′的位置,下面结论错误的是()
A. AB=A′B′
B. AB∥A′B′
C. ∠A=∠A′
D.△ABC≌△A′B′C′
4.在下列图形中,既是中心对称又是轴对称的图形是()
5.如
图,图形旋转一定角度后能与自身重合,则旋转的角度可
能是()
A. 30°
B. 60°
C.90°
D. 120°
第5题图
6.如图,
在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的
度数为()
A. 10°
B. 15°
C. 20°
D. 25°
7.把一个正方形绕它的中心旋转一周和原来的图形重合()
A. 1次
B. 2次
C. 3次
D. 4次
8.如图,△ABC和△DEF关于点O中心对称,要得到△DEF,需要将△ABC旋转()
A.. 30°
B. 90°
C. 180°
D. 360°
二、填空题()
9.钟表上的时针随时间的变化而转动,这可以看做的数学上的 .
10.菱形ABCD绕点O沿逆时针方向旋转得到四边形A′B′C′D′,则四边形A′B′
C′D′是 .
11.钟表的分针经过20分钟,旋转了° .
12.等边三角形至少旋转°才能与自身重合.
13.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得到的△A B1B是
三角形。
F
E
D
C
B
A
O
F
E
D
C
B
A
第6题
图
第8题
图
14.如图,△ABC 绕着点C 顺时针旋转35°得到△1A 1B C ,若1A 1B ⊥AC ,则∠A 的度数是 。
15.如图,△ABC 绕点B 逆时针方向旋转
到△EBF 的位置 ,若∠A=15°,∠C=10°,E ,B ,C 在同一直线上,则∠ABC= ,旋转角是 。
16.如图,等腰△ABC 绕点A 旋转到△ACD 的位置。
已知∠ABC=80°,则在这个图中,点B 的对应点是 ,BC= ,∠ACD= ,旋转中心是 ,旋转角是 。
三、解答题(本大题共6个小题,共52分)
17.(本题8分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).
(1)试说明如何平移线段AC ,使其与线段ED 重合;
(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;
(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.
18.(本题6分) 如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能画出旋转前的图形吗?
13题图 C 1B 1C B A 14题图A 1B 1C B A 15题图F E C B A 16题图
D C
B A D'
A '
19如图,将扇形绕点O 按顺时针方向旋转,分别画出旋转下列角度后的图形:
(1)90° (2)180° (3)270°
你能发现将扇形旋转多少度后能与原图形重合吗?
答:旋转 后能与原图形重合。
20.(本题8分)
如图,Rt △ABC ,绕它的锐角顶点A 分别逆时针旋转90°,180°和顺时针旋转90°:
(1) 试作出Rt △ABC 旋转后的三角形;
(2) 将所得的所有三角形看成一个图形,你将得
到怎样的图形?
答:将所得的所有三角形看成一个图形,可以得 图形。
21.(本题10分)如图,四边形ABCD 的∠BAD=∠C=90°,AB =AD ,AE ⊥ BC 于E ,△BEA 旋转一定角度后能与△DFA 重合.
(1) 旋转中心是哪一点?
(2) 旋转了多少度? (3) 若AE=5cm ,求四边形ABCD 的面积.
22.(本题12分)
把两个全等的等腰直角三角板ABC 和EFG (其直角边长均为
4)叠放在一起,如图(1),且三角板EFG 的直角顶点G 与三角
板ABC 的斜边的中点O 重合,现将三角板EFG 绕点O 顺时针方向旋转(旋转角α满足的条件:0°<α<90°),四边形CHGK 是旋转过程中两个三角板的重叠部分,如图(2).
在上述旋转过程中,BH 与CK 有怎样的数量关系?四边形CHGK 的面积有何变化?证明你发现的结论。
O C
B A F
E D C B A (O)
G F E C B
A
(1) E B A
(2)
参考答案
一、1.A 2.D 3.B 4.C 5.C 6.B 7.D 8.C
二、9.旋转 10.菱形 11.120 12.120 13.等边 14.55°
15.155° 25° 16.点C CD 70° 点A 40°
三、解答题
17. 解:(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可以);
(2)根据A ,C 对应点的坐标即可得出F (-l ,-1);
(3)画出如图所示的正确图形
18—20略
21.(1)点A (2)90° (3)因为ADF ABE S S ∆∆=且易得四边形AECF 是正方形,所以
cm S S AECF 2552ABCD ===四边形四边形.
22.BH=CK ;因为△GBH ≌△GCK.此四边形的面积保持不变,总等于原直角三角形面积的一半.。