《轴对称的基本性质》PPT课件2
合集下载
轴对称的基本性质(第1课时)课件
点A′就是点A关于直线l的对称点;
2.类似地,作出点B关于直线l
的对称点B′; 3.连接A′B′.
B
B′
所以线段A′B′即为所求.
【规律方法】 作已知图形关于某条直线对称的图形的一般步聚:
1.找点 (确定图形中的一些特殊点). 2.画点 (画出特殊点关于已知直线的对称点). 3.连线 (连接对称点).
【跟踪训练】
1.两个图形关于某直线对称,对称点一定在 ( D )
A.直线的两旁
B.直线的同旁
C.直线上
D.直线两旁或这直线上
2.轴对称图形沿对称轴对折后,对称轴两旁的
部分( A )
A.完全重合
B.不完全重合
C.两者都有
D. 没有关系
3.如果两个图形关于某条直线对称,那么对应点所连的线 段被__对__称__轴__垂直平分. 4.下图是轴对称图形,相等的线段是_A_B_=_C_D_,__B_E_=_C_E__, 相等的角__∠__B_=_∠__C___.
A
ED
B
C
共同探究
l
已知对称轴 l 和一个点A,如何
画出点A关于 l 的对称点A′?
A
O
A′
作法: 过点A作直线l的垂线,在垂线上
截取OA′=OA,垂足为点O,点A′就是 点A关于直线l 的对称点.
【例 题】
例2 如图,已知△ABC和直线l,怎样作出与△ABC关于直
线l对称的图形呢?
【解析】△ABC可以由三
(2)对应线段相等,对应角相等. 2.按要求作出一图形关于某条直线成轴对称的图形.
1.下面说法中,正确的是( C ) A.设A,B关于直线MN对称,则AB垂直平分MN. B.如果△ABC≌△DEF,则一定存在一条直线MN,使 △ABC与△DEF关于MN对称. C.如果一个三角形是轴对称图形,且对称轴不止一条, 则它是等边三角形. D.两个图形关于MN对称,则这两个图形分别在MN的两 侧.
《轴对称》PPT课件
轴对称
问题一: 你能从几何学的角度刻划画面中的 两个图形的特点吗
从大小 形状 位置去考虑
轴对称概念的准确描述
把一个图形沿着某一条直线折叠;如 果它能与另一个图形重合;那么就说 这两个图形关于这条直线对称 两个图形中的对应点叫做关于这条 直线的对称点
这条直线叫做对称轴 两个图形关于直线 对称也叫做轴对称
思维的延伸
1 已知:如图;CD是△ABC的外角平分 线;BD⊥CD;BD的延长线交AE于点F; 求证:点B与点F关于CD对称
FE
C D
B A
能力训练
如图:某同学打台球时想通过击主球A;使主 球A撞击桌边MN后反弹回来击中彩球B;请 画出主球A的运动路线
A B
M
N
ቤተ መጻሕፍቲ ባይዱ
H
B1
综合创新
设AD是△ABC的∠BAC的平分线;过A引直 线MN⊥AD;过B作BE⊥MN于E;求证: △EBC的周长大于△ABC的周长
概念理解与归纳
轴对称涉及两个图形;它们能完 全重合;因此;轴对称是指两个图 形之间的形状与位置关系
概念对两图形的重合有限制; 它们的位置关系必须满足沿 某一条直线对折后能重合
观察图形归纳特性
从两图形大小 形状来看:
定理1 关于某条直线对称的两 个图形是全等形
从两图形 位置来看:
定理2 如果两个图形关于某条直 线对称;那么对称轴是对应点连 线的垂直平分线
M EA
B D
C1 N
C
课后思考:
1 沿着等腰三角形底边上 的高对折;高两边的图形 完全重合吗 2 沿着直角三形斜边上的 高对折;高两边的图形完 全重合吗
小结
概念 定理 应用
轴 对 称 知 识 结
问题一: 你能从几何学的角度刻划画面中的 两个图形的特点吗
从大小 形状 位置去考虑
轴对称概念的准确描述
把一个图形沿着某一条直线折叠;如 果它能与另一个图形重合;那么就说 这两个图形关于这条直线对称 两个图形中的对应点叫做关于这条 直线的对称点
这条直线叫做对称轴 两个图形关于直线 对称也叫做轴对称
思维的延伸
1 已知:如图;CD是△ABC的外角平分 线;BD⊥CD;BD的延长线交AE于点F; 求证:点B与点F关于CD对称
FE
C D
B A
能力训练
如图:某同学打台球时想通过击主球A;使主 球A撞击桌边MN后反弹回来击中彩球B;请 画出主球A的运动路线
A B
M
N
ቤተ መጻሕፍቲ ባይዱ
H
B1
综合创新
设AD是△ABC的∠BAC的平分线;过A引直 线MN⊥AD;过B作BE⊥MN于E;求证: △EBC的周长大于△ABC的周长
概念理解与归纳
轴对称涉及两个图形;它们能完 全重合;因此;轴对称是指两个图 形之间的形状与位置关系
概念对两图形的重合有限制; 它们的位置关系必须满足沿 某一条直线对折后能重合
观察图形归纳特性
从两图形大小 形状来看:
定理1 关于某条直线对称的两 个图形是全等形
从两图形 位置来看:
定理2 如果两个图形关于某条直 线对称;那么对称轴是对应点连 线的垂直平分线
M EA
B D
C1 N
C
课后思考:
1 沿着等腰三角形底边上 的高对折;高两边的图形 完全重合吗 2 沿着直角三形斜边上的 高对折;高两边的图形完 全重合吗
小结
概念 定理 应用
轴 对 称 知 识 结
《轴对称》PPT课件
关于这条直线对称, 简称轴对称,这条直线 叫对称轴
2. 两个图形中的对应点(即两图形 重合时互相重合的点)叫做关于这条 直线的对称点
注意:如果一点在对称轴上,它的对称点就是 它本身
1. △ABC和△A’ B ’ C ’是否关于直线l对称?为什么? 2. 线段AB与线段A ’ B ’否关于直线l对称?为什么?
练习:
一、判断 1. 轴对称图形必有对称轴
()
2. 轴对称图形至少有一条对称轴 ( )
3. 关于某直线成轴对称的两个图形必能互相重合( )
4. 两个完全互相重合的图形必是轴对称( )
二、选择 1. 符合下列哪个条件的图形是轴对称图形? ( D )
(A)能够互相重合的两个图形
(B)一个图形在某直线翻折,能与另一个图形重合
是
2条 对角线所在的直线
是
4条
两条邻边的中垂线和 对角线所在的直线
是
无数条 直径所在的直线
是
1条 一条底的中垂线
下列(1) (2)两个图形有什么区别?
(1)
(2)
两个图形 轴对称
一个图形 轴对称图形
二、轴对称和对称点的定义:
1. 平面上的两个图形,将其中一个图 形沿着某一条直线翻折过去,如果它能够 与另一个图形重合,那么就说这两个图形
BC与B ’ C ’ ,CA与C ’A ’呢? 3. 点A和B ’点关于直线l的对称点各是哪一点?
△ABC△ A ’ B ’ C ’关于直线l对称。 点A和点A ’,点B和点B ’ ,点C ’和点C ’分别是关于直线l的对称点
区别:
“轴对称图形”是指同一个图形的两部 分 沿某直线翻折时,两部分重合的图形。
线段是轴对称图形,它的对称轴是这条线段的垂直平分线 角是轴对称图形,它的对称轴是这个角的平分线所在的直线
2. 两个图形中的对应点(即两图形 重合时互相重合的点)叫做关于这条 直线的对称点
注意:如果一点在对称轴上,它的对称点就是 它本身
1. △ABC和△A’ B ’ C ’是否关于直线l对称?为什么? 2. 线段AB与线段A ’ B ’否关于直线l对称?为什么?
练习:
一、判断 1. 轴对称图形必有对称轴
()
2. 轴对称图形至少有一条对称轴 ( )
3. 关于某直线成轴对称的两个图形必能互相重合( )
4. 两个完全互相重合的图形必是轴对称( )
二、选择 1. 符合下列哪个条件的图形是轴对称图形? ( D )
(A)能够互相重合的两个图形
(B)一个图形在某直线翻折,能与另一个图形重合
是
2条 对角线所在的直线
是
4条
两条邻边的中垂线和 对角线所在的直线
是
无数条 直径所在的直线
是
1条 一条底的中垂线
下列(1) (2)两个图形有什么区别?
(1)
(2)
两个图形 轴对称
一个图形 轴对称图形
二、轴对称和对称点的定义:
1. 平面上的两个图形,将其中一个图 形沿着某一条直线翻折过去,如果它能够 与另一个图形重合,那么就说这两个图形
BC与B ’ C ’ ,CA与C ’A ’呢? 3. 点A和B ’点关于直线l的对称点各是哪一点?
△ABC△ A ’ B ’ C ’关于直线l对称。 点A和点A ’,点B和点B ’ ,点C ’和点C ’分别是关于直线l的对称点
区别:
“轴对称图形”是指同一个图形的两部 分 沿某直线翻折时,两部分重合的图形。
线段是轴对称图形,它的对称轴是这条线段的垂直平分线 角是轴对称图形,它的对称轴是这个角的平分线所在的直线
轴对称课件(60张PPT)
轴对称在解直角三角形中应用
在解直角三角形时,可以利用轴对称的 性质来构造全等或相似的直角三角形,
从而简化计算过程。
例如,如果一个直角三角形关于某条直 线对称,那么它的两个锐角相等,同时 它的两条直角边也相等。这样我们就可 以通过已知的一边和一角来求解其他未
知量。
另外,如果两个直角三角形关于某条直 线对称,那么它们一定是相似的。这样 我们就可以通过已知的相似比来求解未
知量。
05
绘制和分析轴对称图形方 法技巧
使用直尺和圆规绘制轴对称图形
确定对称轴
在平面上选择一条直线作为对 称轴。
找到对称点
使用直尺和圆规,按照轴对称 的定义,找到该点关于对称轴 的对称点。
选择一个点
在对称轴的一侧选择一个点。
绘制图形
连接原点和对称点,即可得到轴对 称图形的一部分。重复以上步骤,
可以得到完整的轴对称图形。
动物
一些动物的身体结构也具 有轴对称性,如蝴蝶的翅 膀、蜻蜓的复眼等。
晶体
晶体结构中的原子排列往 往呈现出轴对称性,如雪 花、钻石等。
科技产品中的轴对称设计
电子产品
手机、平板电脑等电子产品的外观设 计中,常采用轴对称元素,实现简洁、 时尚的视觉效果。
汽车设计
航空航天
飞机、火箭等航空航天器的设计中也 广泛应用轴对称性,以确保飞行稳定 性和安全性。
典型例题解析
解析
根据轴对称性质,我们知道 △ABC≌△A'B'C',所以 ∠BAC=∠B'A'C'。
例题2
已知点P(2,3)关于x轴对称的点为P', 求点P'的坐标。
解析
由于点P关于x轴对称,所以点P'的 横坐标不变,纵坐标取反。因此, 点P'的坐标为(2,-3)。
《轴对称完整》课件
对轴对称的未来展望
轴对称作为数学中的一个基础概念,仍有很大的研究和发展空间。随着数学和其 他学科的发展,轴对称的应用范围也将不断扩大。我们鼓励学生们在未来的学习 和研究中继续关注轴对称,探索它的更多应用和价值。
在《轴对称完整》ppt课件的最后,我们总结了轴对称的基本原理、方法和应用 ,并提出了进一步探索的问题和方向。我们希望学生们能够带着这些问题和思考 ,继续深入探索轴对称的奥秘,为未来的研究和应用打下坚实的基础。
轴对称是数学中的一个重要概念,它描述了一个图形通过某个直线折叠后与自身重合的性质。在《轴对称完整 》ppt课件中,我们深入探讨了轴对称的定义、性质和分类,帮助学生们更好地理解这一概念。
轴对称在几何学中有着广泛的应用,它不仅在平面几何中出现,还涉及到立体几何、解析几何等多个领域。通 过对轴对称的深入理解,学生们可以更好地掌握几何学的基本原理和方法。
05
轴对称的实践应用
在设计中的应用
对称美学的运用
设计作品中,轴对称的运用可以创造出平衡、和谐的感觉。例如,在服装设计中,设计师可以通过轴对称的裁 剪方式,使服装看起来更加优雅、庄重。
产品设计的指导
在产品设计中,轴对称的原理可以帮助设计师更好地布局产品的各个部分,使其更加符合人机工程学,提高使 用体验。
04
轴对称的意义
美学的意义
美学欣赏
轴对称的形状、图案和结 构常常被视为具有美感, 可以给人带来视觉上的享 受和满足感。
艺术创作
艺术家们经常利用轴对称 的原理来创作美丽的艺术 品,如建筑设计、绘画和 雕塑等。
平衡与和谐
轴对称能够给人带来平衡 和和谐的感觉,使整体效 果更加协调和完整。
科学的意义
自然界中的轴对称
轴对称课件ppt
具之一。
THANKS
感谢观看
04
轴对称的作图
轴对称作图的方法和步骤
确定对称轴
首先确定图形关于哪条直线对称,即对称轴的位 置。
绘制对称图形
根据对称轴,绘制出与原图形对称的图形。
检查完整性
确保新绘制的图形与原图形完全一致,没有遗漏 或多余的部分。
轴对称作图的实例解析
矩形
以矩形为例,其对称轴为其对角线,沿对称轴折叠后,两侧图形 完全重合。
轴对称的两个图形也是全等的,它们的对应点关于对称轴对称,且每个点到对称轴的距离等 于它到对称点的距离。
轴对称与旋转对称的关系
旋转对称是指图形绕某一点旋转一定角度后与自身重合,而轴对称则是 图形关于某一直线对称。
旋转对称和轴对称可以同时存在于一个图形中,例如正三角形既具有旋 转对称性(绕中心点旋转120度与自身重合),又具有轴对称性(关于中
轴对称的几何意义
点关于对称轴的对称
对于直线上的任意一点,关于对称轴都有另一个点与之对称,且 两点连线与对称轴垂直。
直线关于对称轴的对称
对于直线上的任意一段线段,关于对称轴都有另一段线段与之对称 ,且两段线段平行于对称轴。
平面图形关于对称轴的对称
对于平面图形中的任意部分,关于对称轴都有另一部分与之对称, 且两部分形状和大小完全相同。
01
首先需要确定两个图形之间的对称轴。
寻找对应点
02
在两个图形上寻找关于对称轴对称的对应点。
判断是否满足判定定理
03
检查对应点连线是否被对称轴垂直平分,以及对应线段是否关
于对称轴对称。
判定轴对称的实例解析
01
02
03
等腰三角形
等腰三角形是轴对称的, 其对称为底边的中垂线 。
THANKS
感谢观看
04
轴对称的作图
轴对称作图的方法和步骤
确定对称轴
首先确定图形关于哪条直线对称,即对称轴的位 置。
绘制对称图形
根据对称轴,绘制出与原图形对称的图形。
检查完整性
确保新绘制的图形与原图形完全一致,没有遗漏 或多余的部分。
轴对称作图的实例解析
矩形
以矩形为例,其对称轴为其对角线,沿对称轴折叠后,两侧图形 完全重合。
轴对称的两个图形也是全等的,它们的对应点关于对称轴对称,且每个点到对称轴的距离等 于它到对称点的距离。
轴对称与旋转对称的关系
旋转对称是指图形绕某一点旋转一定角度后与自身重合,而轴对称则是 图形关于某一直线对称。
旋转对称和轴对称可以同时存在于一个图形中,例如正三角形既具有旋 转对称性(绕中心点旋转120度与自身重合),又具有轴对称性(关于中
轴对称的几何意义
点关于对称轴的对称
对于直线上的任意一点,关于对称轴都有另一个点与之对称,且 两点连线与对称轴垂直。
直线关于对称轴的对称
对于直线上的任意一段线段,关于对称轴都有另一段线段与之对称 ,且两段线段平行于对称轴。
平面图形关于对称轴的对称
对于平面图形中的任意部分,关于对称轴都有另一部分与之对称, 且两部分形状和大小完全相同。
01
首先需要确定两个图形之间的对称轴。
寻找对应点
02
在两个图形上寻找关于对称轴对称的对应点。
判断是否满足判定定理
03
检查对应点连线是否被对称轴垂直平分,以及对应线段是否关
于对称轴对称。
判定轴对称的实例解析
01
02
03
等腰三角形
等腰三角形是轴对称的, 其对称为底边的中垂线 。
《轴对称》精品课件
转变换的。
旋转变换可以看作是特殊的轴对称变换,即轴对称变换加上一个旋转操 作。
轴对称在解析几何中的应用
解析几何是研究几何图形在坐标系中 的表示和性质的一门学科,轴对称在 解析几何中有着广泛的应用。
在立体解析几何中,轴对称可以将一 个三维图形关于某条直线对称,从而 得到一个新的三维图形。
在平面解析几何中,轴对称可以将一 个平面图形关于某条直线对称,从而 得到一个新的图形。
轴对称在解析几何中可以用于解决一 些几何问题,例如求图形的面积、体 积等。
05
轴对称的习题与解析
基础习题及解析
基础习题1
判断下列图形是否为轴 对称图形,如果是,找
出对称轴。
基础习题2
找出下列图形关于给定 直线对称的点。
基础习题3
判断下列给出的点是否 关于给定直线对称。
基础习题4
找出下列图形的对称中 心。
轴对称在建筑设计中的应用
总结词
建筑设计的基础
详细描述
轴对称是建筑设计的基础之一,它可以增加建筑物的稳定性和美观度。许多著名的建筑物都采用了轴 对称的设计,如埃及的金字塔、中国的故宫等。在现代建筑中,轴对称也被广泛应用,如上海东方明 珠电视塔、广州塔等。
轴对称在建筑设计中的应用
总结词
建筑的功能和结构
轴对称的性质
轴对称图形具有对称性,即图形关于 对称轴对称,其对应点距离对称轴的 距离相等。
轴对称的数学变换
平移变换
将图形沿对称轴平移,使 得对称点重合,形成新的 图形。
旋转变换
将图形绕对称轴旋转180 度,使得对称点重合,形 成新的图形。
镜像变换
将图形关于对称轴进行镜 像反射,使得对称点重合 ,形成新的图形。
旋转变换可以看作是特殊的轴对称变换,即轴对称变换加上一个旋转操 作。
轴对称在解析几何中的应用
解析几何是研究几何图形在坐标系中 的表示和性质的一门学科,轴对称在 解析几何中有着广泛的应用。
在立体解析几何中,轴对称可以将一 个三维图形关于某条直线对称,从而 得到一个新的三维图形。
在平面解析几何中,轴对称可以将一 个平面图形关于某条直线对称,从而 得到一个新的图形。
轴对称在解析几何中可以用于解决一 些几何问题,例如求图形的面积、体 积等。
05
轴对称的习题与解析
基础习题及解析
基础习题1
判断下列图形是否为轴 对称图形,如果是,找
出对称轴。
基础习题2
找出下列图形关于给定 直线对称的点。
基础习题3
判断下列给出的点是否 关于给定直线对称。
基础习题4
找出下列图形的对称中 心。
轴对称在建筑设计中的应用
总结词
建筑设计的基础
详细描述
轴对称是建筑设计的基础之一,它可以增加建筑物的稳定性和美观度。许多著名的建筑物都采用了轴 对称的设计,如埃及的金字塔、中国的故宫等。在现代建筑中,轴对称也被广泛应用,如上海东方明 珠电视塔、广州塔等。
轴对称在建筑设计中的应用
总结词
建筑的功能和结构
轴对称的性质
轴对称图形具有对称性,即图形关于 对称轴对称,其对应点距离对称轴的 距离相等。
轴对称的数学变换
平移变换
将图形沿对称轴平移,使 得对称点重合,形成新的 图形。
旋转变换
将图形绕对称轴旋转180 度,使得对称点重合,形 成新的图形。
镜像变换
将图形关于对称轴进行镜 像反射,使得对称点重合 ,形成新的图形。
《轴对称的基本性质》2精品 课件
3、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为__________.
4、点M(a, -5)与点N(-2, b)关于y轴对称,则a=_____, b =_____.
5、已知点P(2a+b,-3a)与点Q(8,b+2). 若点p与点Q关于x轴对称,则a=_____ b=_______. 若点p与点Q关于y轴对称,则a=_____ b=_______.
5
4
C(-3,2)
3
2
B`(-1,1)
A(-4,1)
1
· C``(3,2) ·A``(4,1)
· -4 -3 -2 -1 0 1 2 3 4 5
A`(-4,-1)
-1 B(-1,-1)
B``(1,-1)
C`(-3,-2)
-2
-3
-4
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
A关于X轴对称
B关于Y轴对称
C关于原点对称
D以上各项都不对
8、已知点M(3,-2),点N(a,b)是M点关于Y轴的对称点,
则 a= -3 b= -2
9、已知点P(a-1,5)和点Q(2,b-1)关于X轴对称,则
a= 3 b= -4
如图,利用关于坐标轴对称的点的坐标的特点,分别作出 △ABC关于X轴和y 轴对称的图形。
(2)关于y轴对称的点的
O
坐标有什么特征?
关于y轴对称的点
横坐标互为相反数, 纵坐标相同。
B (–3, –5)
D(3, 5) x
C (3, –5)
归纳:关于y轴对称的点的坐标的特 点是: 横坐标互为相反数,纵坐标相等.
13.1.1 轴对称 课件(共23张PPT)
①
②
③
④
⑤
√
√
√
×
√
实战演练
2.下图中,左边图形和右边图形成轴对称的有( ). A.1组 B.2组 C.3组 D.4组
C
①
②
③
实战演练
4.如图,Rt△ABC中,∠ABC=90°,∠C=60°,将其折叠,使点A落在边AB上C′处,折痕为BD,则∠C′DA的度数为_______.
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形分成两个图形,这两个图形关于这条轴对称.
合作探究
轴对称图形
两个图形成轴对称
图形
区别
联系
一个图形具有的特殊形状
两个全等图形的特殊的位置关系
1.都是沿着某条直线折叠后能重合.
2.可以互相转化.
比一比
合作探究
思考:如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN有什么关系?
A′
B′
C′
N
M
AA′⊥MN,BB′⊥MN,CC′⊥MN.
PA=PA′
QB=QB′
HC=HC′
P
Q
H
对称轴经过对称点所连线段的中点,并且垂直这条线段。
垂直平分线
合作探究
如图,MN⊥AA′,AP=A′P. 直线MN是线段AA′的垂直平分线.
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
√
√
×
√
小试牛刀
2.如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出它们的对称轴,并找出一对对称点. (1) (2) (3)
②
③
④
⑤
√
√
√
×
√
实战演练
2.下图中,左边图形和右边图形成轴对称的有( ). A.1组 B.2组 C.3组 D.4组
C
①
②
③
实战演练
4.如图,Rt△ABC中,∠ABC=90°,∠C=60°,将其折叠,使点A落在边AB上C′处,折痕为BD,则∠C′DA的度数为_______.
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形分成两个图形,这两个图形关于这条轴对称.
合作探究
轴对称图形
两个图形成轴对称
图形
区别
联系
一个图形具有的特殊形状
两个全等图形的特殊的位置关系
1.都是沿着某条直线折叠后能重合.
2.可以互相转化.
比一比
合作探究
思考:如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN有什么关系?
A′
B′
C′
N
M
AA′⊥MN,BB′⊥MN,CC′⊥MN.
PA=PA′
QB=QB′
HC=HC′
P
Q
H
对称轴经过对称点所连线段的中点,并且垂直这条线段。
垂直平分线
合作探究
如图,MN⊥AA′,AP=A′P. 直线MN是线段AA′的垂直平分线.
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
√
√
×
√
小试牛刀
2.如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出它们的对称轴,并找出一对对称点. (1) (2) (3)
《轴对称》ppt
06
与轴对称相关的证明方法
综合法
总结词
通过已知条件和定理的逻辑推理,得出结论的方法。
详细描述
综合法是一种演绎推理方法,在数学中经常被使用。它 从已知条件和已经证明的定理出发,通过逻辑推理得出 结论。在轴对称中,综合法可以用来证明一些比较简单 的结论,如等腰三角形两底角相等、三角形三个内角之 和等于180度等。
角平分线定理
总结词
角平分线定理
详细描述
角平分线定理是关于轴对称的一个重要推论,它表明一个角的角平分线与这个角 的两条边所成两对对应点连线的中点所在的直线重合。
平行四边形定理
总结词
平行四边形定理
详细描述
平行四边形定理是关于轴对称的一个重要推论,它表明一个平行四边形经过 轴对称变换后,其对应点所连线段的中点所在的直线与原平行四边形对应线 段的中点所在的直线重合。
。
正方形
正方形是一种特殊的长方形,它的四条边都相等,四个角都为90°。
正方形的对角线相等且互相垂直平分。
正方形的对称轴是四条边的垂直平分线以及两条对角线的垂直平分线,共有六条 对称轴。
04
与轴对称相关的定理和推论
线段垂直平分线定理
总结词
中垂线定理
详细描述
线段垂直平分线定理是关于轴对称的一个重要定理,它表明一个线段的中垂 线与这个线段的两个端点所连线段的中点重合。
详细描述
三角形角平分线定理是轴对称中的又一项重要定理。它指出,三角形的三个内角平分线都在三角形的内部,且 相交于一点。这个定理可以用于证明和计算三角形中的一些性质,例如三个内角平分线的长度相等,以及它们 与三内角之间的关系等。
四边形中点连线定理
总结词
四边形中点连线定理
轴对称图形ppt课件
05
巧
教学方法:讲解、示范、实践
讲解
通过语言描述,向学生解释轴对称图形的定义、性质和特点,使学 生对轴对称图形有基本的认识。
示范
通过展示轴对称图形的制作过程或解题步骤,让学生直观地了解轴 对称图形的应用和操作方法。
实践
组织学生进行实践活动,如制作轴对称图形、解决与轴对称图形相关 的问题等,以提高学生的实际操作能力和问题解决能力。
几何学基础
轴对称图形是几何学中的基础概 念,对于理解几何学的基本原理
和性质至关重要。
对称性研究
在数学中,轴对称图形是研究对 称性的一个重要方面,对于理解 更复杂的对称概念有重要意义。
应用领域
轴对称图形在物理学、工程学、 计算机图形学等领域都有广泛的 应用,是解决实际问题的重要工
具。
04
轴对称图形的制作和创造
轴对称图形ppt课件
目录
• 轴对称图形的基本概念 • 轴对称图形的识别 • 轴对称图形的性质和特点 • 轴对称图形的制作和创造 • 轴对称图形的教学方法和技巧
01
轴对称图形的基本概念
轴对称图形的定义
01 轴对称图形
如果一个平面图形在某一条直线的两侧部分可以 完全重合,那么这个图形就被称为轴对称图形。
03 美学价值
轴对称图形在美学上具有很高的价值,被广泛应 用于建筑设计、图案设计等领域。
轴对称图形的分类
01
02
03
中心对称图形
如果一个图形关于某一点 旋转180度后与自身重合 ,则称为中心对称图形。
镜面对称图形
如果一个图形关于某一条 直线对称,则称为镜面对 称图形。
旋转对称图形
如果一个图形关于某一条 直线旋转一定角度后与自 身重合,则称为旋转对称 图形。
新青岛版八年级数学上册《轴对称的基本性质》精品课件
Y 5
4
3
·A (2,3)
2
1
-4 -3 -2 -1 0 -1 -2 -3
-4
123
·
A’(2,-3)
45 X
你能说出 点A与点 A’坐标的 关系吗?
归纳:关于x轴对称的点的坐标的特点 是: 横坐标相等,纵坐标互为相反数.
练习:zxxkw
1、点P(-5, 6)与点Q关于x轴对称, 则点Q的坐标为_____(_-_5_,__-.6 )
Y
解:点A(-3,5),B(-4,1), C(-1,3),关于y轴对称 点的坐标分别为A’(3,5), B’(4,1),C’(1,3).依次连接 A’B’,B’C’,C’A’,就得到 △ABC关于y轴对称的
· A
5
·A’
· · c4 3 C’
·2
B
1
·B’
△A’B’C’.
-4 -3
归纳:对于这类问题,只要先求出已
知图形中的一些特殊点(如多边形
-2
-1-10
-2 -3
的顶点)的对应点的坐标,描出并连 接这些点,就可以得到这个图形的
-4
12345 X
轴对称图形.
探究3:如图,分别作出点P,M,N关于直线x=1的对 称点, 你能发现它们坐标之间分别有什么关系吗?
Y 5
P(-2,3) 4
·3 · M(-1,1)2
2、点M(a, -5)与点N(-2, b)关于 x轴对称,则a=__-_2__, b =__5___.
探究2:如图,你能在平面直角坐标系中画
出点A关于y轴的对称点吗?
Y
你能说出
5
点A与点 A’坐标的 关系吗?
· A’(-2,3) 4 3 2
4
3
·A (2,3)
2
1
-4 -3 -2 -1 0 -1 -2 -3
-4
123
·
A’(2,-3)
45 X
你能说出 点A与点 A’坐标的 关系吗?
归纳:关于x轴对称的点的坐标的特点 是: 横坐标相等,纵坐标互为相反数.
练习:zxxkw
1、点P(-5, 6)与点Q关于x轴对称, 则点Q的坐标为_____(_-_5_,__-.6 )
Y
解:点A(-3,5),B(-4,1), C(-1,3),关于y轴对称 点的坐标分别为A’(3,5), B’(4,1),C’(1,3).依次连接 A’B’,B’C’,C’A’,就得到 △ABC关于y轴对称的
· A
5
·A’
· · c4 3 C’
·2
B
1
·B’
△A’B’C’.
-4 -3
归纳:对于这类问题,只要先求出已
知图形中的一些特殊点(如多边形
-2
-1-10
-2 -3
的顶点)的对应点的坐标,描出并连 接这些点,就可以得到这个图形的
-4
12345 X
轴对称图形.
探究3:如图,分别作出点P,M,N关于直线x=1的对 称点, 你能发现它们坐标之间分别有什么关系吗?
Y 5
P(-2,3) 4
·3 · M(-1,1)2
2、点M(a, -5)与点N(-2, b)关于 x轴对称,则a=__-_2__, b =__5___.
探究2:如图,你能在平面直角坐标系中画
出点A关于y轴的对称点吗?
Y
你能说出
5
点A与点 A’坐标的 关系吗?
· A’(-2,3) 4 3 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、点P(-4, 7)与点Q关于x轴对称,则点Q
的坐标为__(_-_4__, _-7__)_.
2、点M(a, -5)与点N(-2, b)关于X轴对称,
则a=___-2__, b =__5___.
(1)点A与点D有什么位
y
置关系?点B与点C呢? 点A与点D关于y (–3,
A 5)
轴对称,点B与点C
关于y轴对称;
(2)关于y轴对称的点的
O
坐标有什么特征?
关于y轴对称的点
横坐标互为相反数, 纵坐标相同。
B (–3, –5)
D(3, 5) x
C (3, –5)
归纳:关于y轴对称的点的坐标的特 点是: 横坐标互为相反数,纵坐标相等.
练习: (简称:横反纵同)
1、点P(-5, 6)与点Q关于y轴对称,则点Q
的坐标为__(_5__,_6__)__.
复习巩固2:
2.画一个多边形关于一条直线的轴对称图形 的步骤:
(1).画出图形中关键点的对称点, (2).顺次连接各对称点。
注意:要保留虚线。
合作交流
1.如图,平面直角坐标系中有矩形ABCD:
(1)若点A与点B关于X
y
轴对称,B点的坐标 是什么?点C与点D
A (–3, 5)
关于X轴对称,D点坐
PPT背景:/beijing/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
范文下载:/fanwen/
试卷下载:/shiti/
教案下载:/jiaoan/
PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuwen/ 数学课件:/kejian/shuxue/
于y轴对称,则m= 3 ,n=__-_3_
6、已知点Q(m,3),P(-5,n),根据以下要求确定m,n的值
(1)Q,P两点关于x轴对称; (2)Q,P两点关于y轴对称; (3)PQ∥x轴; (4)PQ∥y轴;
练习: 1、点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为__________.
2、点M(a, -5)与点N(-2, b)关于x轴对称,则a=_____, b =_____.
英语课件:/kejian/yingyu/ 美术课件:/kejian/meishu/
科学课件:/kejian/kexue/ 物理课件:/kejian/wuli/
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
地理课件:/kejian/dili/
历史课件:/kejian/lishi/
标是什么呢?
D(3, 5)
(2)关于x轴对称的点的
O
坐标有什么特征?
关于x轴对称的点
横坐标相同,纵坐标 互为相反数。
B (–3, –5)
x C (3, –5)
归纳:关于X轴对称的点的坐标的特
点是: 横坐标相同,纵坐标互为相反数.
练习:
(简称:横同纵反) PPT模板:/moban/
PPT素材:/sucai/
A关于X轴对称
B关于Y轴对称
C关于原点对称
D以上各项都不对
8、已知点M(3,-2),点N(a,b)是M点关于Y轴的对称点,
则 a= -3 b= -2
9、已知点P(a-1,5)和点Q(2,b-1)关于X轴对称,则
a= 3 b= -4
如图,利用关于坐标轴对称的点的坐标的特点,分别作出 △ABC关于X轴和y 轴对称的图形。
1、完成下表.
已知点
(2,-3) (-1,2) (-6,-5) (0,-1.6) (4,0)
关于x轴的对称点 关于y轴的对称点
(2,3) (-1,-2) (-6, 5) (0,1.6) (4,0) (-2, -3) (1, 2) (6, -5) (0, -1.6) (-4,0)
2.将一个点的纵坐标不变,横坐标乘以-1,得到的点与原来 的点的位置关系是 关于y轴对称 ;将一个点的横坐标不变, 纵坐标乘以-1,得到的点与原来的点的位置关系是关__于__x轴对_ 称
{ { 2a+b=8
a=2
3a=b+2
b=4
{ { 2a+b=-8 -3a=b+2
a=6 b=-20
6、将平面直角坐标系内某个图形各个点的横坐标不变,纵 坐标都乘以-1,所得图形与原图形( A )
A 关于X轴对称.
B 关于Y轴对称
C 关于原点对称
D 无法确定
7、点A(-3,2)与点B(-3,-2)的关系是( A )
青岛版 《数学》八年级(上)
轴对称的基本性质
复习巩固1:
1.轴对称的性质:
(1)成轴对称的两个图形中, 对应点的连线被对称轴垂直平分,
(2)成轴对称的两个图形全等.
(3)对应线段相等,对应角相等。
(4)成轴对称的两个图形中,对称线段所在直线的交点 在对称轴上或对称线段所在直线互相平行。
(5)成轴对称的两个图形中,对称点的连线互相平行 或在同一条直线上.
3、分别写出下列各点关于x轴和y轴对称的
点的坐标.
(3,6) (-7,9) (6,-1)
(-3.-5) (0,10)
4、根据下列点的坐标的变化,判断它们进
行了怎样的变换:
⑴ (-1,3)
(-1,-3)
⑵ (-5,-4) (-5,4)
⑶ (3,4)
(-3,4)
⑷ (1,0)
(-1,0)
5、已知点A(m+2,3)、B(-5,n+6)关
5
4
C(-3,2)
3
2
B`(-1,1)
A(-4,1)
1
· C``(3,2) · A``(4,1)
· -4 -3 -2 -1 0 1B(-1,-1)
B``(1,-1)
3、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为__________.
4、点M(a, -5)与点N(-2, b)关于y轴对称,则a=_____, b =_____.
5、已知点P(2a+b,-3a)与点Q(8,b+2). 若点p与点Q关于x轴对称,则a=_____ b=_______. 若点p与点Q关于y轴对称,则a=_____ b=_______.
2、点M(a, -5)与点N(-2, b)关于y轴对称,
则a=___2__, b =__-_5__.
新知归纳
“关于坐标轴对称的点”的坐标特征: (1) 关于x轴对称的点的坐标:横同纵反; (2) 关于y轴对称的点的坐标:横反纵同。
在直角坐标系中, 点(a,b)关于X轴的对称点是(a,-b) 点(a,b)关于Y轴的对称点是(-a,b)