八年级数学三角形辅助线大全(精简、全面)
初中几何辅助线大全(很详细哦)
初中几何辅助线—克胜秘籍等腰三角形1、作底边上的高,构成两个全等的直角三角形,这就是用得最多的一种方法;2、作一腰上的高;3 、过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1、垂直于平行边2、垂直于下底,延长上底作一腰的平行线3、平行于两条斜边4、作两条垂直于下底的垂线5、延长两条斜边做成一个三角形菱形1、连接两对角2、做高平行四边形1、垂直于平行边2、作对角线——把一个平行四边形分成两个三角形3、做高——形内形外都要注意矩形1、对角线2、作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD、、、、这类的就就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折瞧,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试瞧。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往就是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点与一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试瞧。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
苏科版八年级数学上册1.2《全等三角形》中常见辅助线
全等三角形⑴----常见辅助线一.已知中点D1.线段倍长(或作平行线)A模型:如图,已知OA=OC,再倍长DO,使OB=OD,则△AOB≌△COD(SAS) C⑴.如图,在△ABC中,D是BC边的中点. BB A①.求证:AB+AC>2AD;②.若AB=5,AC=7,AD的取值范围为.CD1⑵如图,CE是△ACD中线,点B在AD的延长线上,BD=AC,∠ACD=∠ADC,求证:CE= BC.2CA BDEE⑶.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM.DAB CME⑷.如图,四边形BEFC中,D为BC中点,∠EDF=90 ,求证:BE+FC>EF.FB CD2.作垂线(知中点作垂线;证中点作垂线)C模型:如图,OA=OB,BC⊥CD,AD⊥CD,则△AOD ≌△BOC(AAS) A⑴.如图,△ABC 中,D 为 BC 的中点.BO①在图中作出 CM⊥AD,BN⊥AD,垂足分别为点 M,N; D②⑵求证:DM=DN; ③若 AD=3,求 AM+AN 的值.A DBC⑵.如图,CD 为△ABC 的角平分线,E,F 分别在 CD,BD 上,且 DA=DF,EF=AC.求证:EF ∥BC.C EBADFE⑶.如图,BC⊥CE,BC=CE,AC⊥CD,AC=CD,DE 交 AC 的延长线于点 M,M 是 DE 的中点. ①求证:AB⊥AC;②若 AB=8,求 CM 的长.BAC MD⑷.如图,已知 A(-2,1),C(0,2),且 C 为线段 AB 的中点,求点 B 的坐标.y BCAxO3.证中点【方法技巧】证线段的中点,常过线段的端点构造一组平行线,或过线段的两端点向过中点的线段作垂线,根据AAS或ASA构造全等三角形,证题关键往往是证明一组对应边相等.【作平行证中点】⑴.如图,在△ABC中,∠ABC=∠ACB,D,E分别是AC和AC的延长线上的点,连接BD,BE,若AB=CE,∠DBC=∠EBC.求证:D是AC的中点.ADCBE⑵.如图,AB⊥AE,AB=AE,AC⊥AD,AC=AD,AH⊥DE于点H,延长AH交BC于点M.求证:M是BC的中点.ADHCB ME【作垂线证中点】⑶.如图,AB⊥AC,AB=AC,D是AB上一点,CE⊥CD,CE=CD,连接BE交AC于点F,求证:F是BE的中点.EAFDB C⑷如图,A,B,C三点共线,D,C,E三点共线,∠A=∠DBC,EF⊥AC于点F,AE=BD.①求证:C是DE的中点;②求证:AB=2CF. ABFD E二、线段的和差处理1.等线段代换法C⑴如图,CD为△ABC的中线,M,N分别为直线CD上的点,且BM∥AN.①求证:AN=BM;②求证:CM+CN=2CDMA BDN⑵如图,△ABC中,∠BAC=90︒,AB=AC,AN是过点A的一条直线,且BM⊥AN于点M,CN⊥AN于点N.①求证:AM=CN;②求证:MN=BM-CN.AMCBN⑶如图,在△ABC中,AD⊥BC于D,且AD平分∠BAC,CE⊥AB于点E,交AD于点F.①求证:BD=CD; A②若AF=BC,求证:AC-CE=EF.E FB CD⑷.如图,△ABC中,AC=BC,∠ACB=90︒,D为BC延长线上一点,BF⊥AD于点F,交AC于点E. A①求证:BE=AD;②过C点作CM∥AB交AD于点M,连接EM,求证:BE=AM+EM. FEMB DC2.截长补短法(直接和间接)如图,△ABC 中,∠CAB=∠CBA=45 ,CA=CB,点 E 为 BC 的中点,CN ⊥AE 交 AB 于点 N. ①求证:∠1=∠2;②求证:AE=CN+EN. (用多种方法) 方法 1:直接截长BN E12CA方法 2:间接载长BN E12CA方法 3:直接补短BN E12C AAB方法 4:间接补短N E12C三、角平分线模型 A1.作垂线1 P模型:如图,∠1=∠2,PA⊥OA,PB⊥OB,则PA=PB. 2O B⑴如图,△ABC中,CD是角平分线,AC=3,BC=5,求S△ACD∶S△BCD的值.CBA D⑵.如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且∠B+∠D=180︒,求证:AE=AD+BE.CDBA E⑶.如图,△ABC中,AC>AB,F为BC的中点,FD⊥BC,交∠BAC的平分线于点D,DE⊥AC于点E.A C-A B①求证:BD=CD;②求证:AB+AC=2AE;③直接写出的值C EA是.EFB CD⑷如图,△ABC中,AB=AC,D为△ABC外一点,且∠1=∠2,AB⊥BD于点M.①求证:AD平分△BDC的B D-CD A外角;②求的值.D M B 1M2C D2.截长补短 A模型:如图,若∠AOP=∠BOP,OA=OB,则△OAP≌△OBP P ⑴.如图,四边形ABCD中,AC平分∠DAB,∠B+∠D=180 ,求证:CD=CB. O BCD12B B⑵.△ABC中,AB>AC,AD平分∠BAC,AE=AC,连DE.①求证:∠C>∠B;②若AB-AC=2,BC=3,求△BED的周长.AB CD⑶.如图,AD∥BC,E是CD上一点,且∠1=∠2,∠3=∠4,求证:AB=AD+BCCED12 43A B⑷.如图,BC>AB,AD=CD,∠1=∠2,探究∠BAD与∠C之间的数量关系.(多种方法)D DA A1 12 2B C CB3.角平分线+垂线:延长法 AC 模型:如图,若∠1=∠2,AC⊥OC,延长AC交OB于点B,则△OCA≌△OCB.⑴.如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,探究∠ACE,∠B,O B∠ECD之间的数量关系.AEB CD⑵.如图,在△ABC中,AB<BC,BP平分∠ABC,AP⊥BP于P点,连接PC,若△ABC的面积为4,求△BPC 的面积.APB C⑶.如图,在△AOB中,AO=OB,∠AOB=90 ,BD平分∠ABO交AO于点D,AE⊥BD交BD的延长线于点E,求证:BD=2AE.AEDBO⑷.如图,四边形ABCD中,AD∥BC,AE,BE分别平分∠DAB,∠CBA.①求证:AE⊥BE;②求证:DE=CE;③若AE=4,BE=6,求四边形ABCD的面积.DAEBC四、半角与倍角模型⑴如图,已知 AB=AC,∠BAC=90°,∠MAN=45°,过点 C 作 NC⊥AC 交 AN 于点 N,过点 B 作 BM⊥AB 交 AM 于点 M ,连接 MN.①当∠MAN 在∠BAC 内部时,求证:BM+CN=MN.MBNCA②如图,在①的条件下,当 AM 和 AN 在 AB 同侧时,①的结论是否成立?请说明理由.NCMBA⑵如图,在△ABC 中,CA=CB,∠ACB=120°,E 为 AB 上一点,∠DCE=60°,∠DAE=120°,求证: DE-AD=BE.CABED⑶如图,在△ABC 中,CA=CB,∠ACB=120°,点 E 为 AB 上一点,∠DCE=∠DAE=60°,求证:AD+DE=BE.DCBAE1 ⑷.①如图 1,在四边形 ABCD 中,AB=AD,∠B+∠D=180°,E,F 分别是 BC,CD 上的点,且∠EAF= ∠2 DBAD,求证:EF=BE+DF;AFCBE②如图 2,在①条件下,若将△AEF 绕点 A 逆时针旋转,当点 E,F 分别 FD运动到 BC,CD 延长线上时,则 EF,BE,DF 之间的数量关系是.A。
八年级数学三角形辅助线大全(精简、全面)
三角形作辅助性方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN= DC 在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMA BC D E F12345 12E DC B AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
(完整)八年级数学上册几何添辅助线专题
DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全
全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全一、角平分线类辅助线作法角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有以下四种.1、角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、截取构全等利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、延长垂线段题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.图四图三图二图一QPONMPONM BAAB MNOP PONM BA典型例题精讲【例1】 如图所示,BN 平分∠ABC ,P 为BN 上的一点,并且PD ⊥BC 于D ,2AB BC BD =+.求证:180BAP BCP ∠∠=︒+.【解析】过点P 作PE ⊥AB 于点E .∵PE ⊥AB ,PD ⊥BC ,BN 平分∠ABC ,∴PE PD =. 在Rt △PBE 和Rt △PBC 中, BP BPPE PD =⎧⎨=⎩, ∴Rt △PBE ≌Rt △PBC (HL ),∴BE BD =.∵2AB BC BD +=,BC CD BD =+,AB BE AE =-,∴AE CD =. ∵PE ⊥AB ,PD ⊥BC ,∴90PEB PDB ∠=∠=︒. 在△P AE 和Rt △PCD 中, ∵PE PD PEB PDC AE DC =⎧⎪∠=∠⎨⎪=⎩, ∴△P AE ≌Rt △PCD ,∴PCB EAP ∠=∠.∵180BAP EAP ∠+∠=︒,∴180BAP BCP ∠+∠=︒.【答案】见解析.【例2】 如图,已知:90A ∠=︒,AD ∥BC ,P 是AB 的中点,PD 平分∠ADC ,求证:CP 平分∠DCB .【解析】因为已知PD 平分∠ADC ,所以我们过P 点作PE ⊥CD ,垂足为E ,则PA PE =,由P 是AB的中点,得PB PE =,即CP 平分∠DCB .【答案】作PE ⊥CD ,垂足为E ,∴90PEC A ∠=∠=︒,∵PD 平分∠ADC ,∴PA PE =, 又∵90B PEC ∠=∠=︒,∴PB PE =, ∴点P 在∠DCB 的平分线上, ∴CP 平分∠DCB .【例3】 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 有怎样的数量关系是__________. (2)请你证明(1)得出的结论.PDCBA A BCDPE【解析】(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒, ∴290FPD ∠+∠=︒,∴12∠=∠, 在△CFP 和△DEP 中12CPF DEPPF PE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CFP ≌△DEP ,∴PC PD =. 【答案】见解析.【例4】 如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,60B ∠=︒,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ,请你判断并写出FE 与FD 之间的数量关系(不需证明); (2)如图③,在△ABC 中,60B ∠=︒,请问,在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【解析】如图①所示;(1)FE FD =.(2)如图,过点F 作FG ⊥AB 于G ,作FH ⊥BC 于H ,作FK ⊥AC 于K , ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴FG FH FK ==, 在四边形BGFH 中,36060902120GFH ∠=︒-︒-︒⨯=︒, ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,60B ∠=︒, ∴()118060602FAC FCA ∠+∠=︒-︒=︒. 在△AFC 中, ()180********AFC FAC FCA ∠=︒-∠+∠=︒-︒=︒, ∴120EFD AFC ∠=∠=︒,∴EFG DFH ∠=∠, 在△EFG 和△DFH 中,EFG DFH EGF DHF FG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFG ≌△DFH ,∴FE FD = 【答案】见解析.【例5】 已知120MAN ∠=︒,AC 平分∠MAN ,点B 、D 分别在AN 、AM 上.(1)如图1,若90ABC ADC ∠=∠=︒,请你探索线段AD 、AB 、AC 之间的数量关系,并证明之;(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【解析】(1)得到30ACD ACB ∠=∠=︒后再可以证得12AD AB AC ==,从而,证得结论; (2)过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ,证得△CED ≌△CFB后即可得到AD AB AE ED AF FB AE AF +=-++=+,从而证得结论.【答案】(1)关系是:AD AB AC +=.证明:∵AC 平分∠MAN ,120MAN ∠=︒ ∴60CAD CAB ∠=∠=︒ 又90ADC ABC ∠=∠=︒, ∴30ACD ACB ∠=∠=︒ 则12AD AB AC ==(直角三角形一锐角为30°,则它所对直角边为斜边一半) ∴AD AB AC +=; (2)仍成立.证明:过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ∵AC 平分∠MAN∴CE CF =(角平分线上点到角两边距离相等) ∵180ABC ADC ∠+∠=︒,180ADC CDE ∠+∠=︒ ∴CDE ABC ∠=∠ 又90CED CFB ∠=∠=︒, ∴△CED ≌△CFB (AAS ) ∵ED FB =,∴AD AB AE ED AF FB AE AF +=-++=+ 由(1)知AE AF AC +=, ∴AD AB AC +=.【例6】 如图,在△ABC 中,2C B ∠=∠,AD 平分∠BAC ,求证:AB AC CD -=.【解析】在AB 上截取点E ,使得AE AC =.∵AD 平分∠BAC ,∴EAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ).∴AED C ∠=∠,ED CD =. ∵2C B ∠=∠,∴=2AED B ∠∠.∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠,∴BE DE =. ∴CD BE AB AE AB AC ==-=-.【答案】见解析.【例7】 如图,△ABC 中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.【解析】在BC 上截取E 点使BE BA =,连结DE .∵BD 平分ABC ∠,∴ABD EBD ∠=∠. 在ABD ∆与EBD ∆中∵AB EB =,ABD EBD ∠=∠,BD BD = ∴ABD EBD ∆∆≌,∴A DEB ∠=∠∵AB AE =, ∴BAD BED ∠=∠,∴72DEC ∠=︒. 又∵361854ADB ∠=︒+︒=︒,∴72CDE ∠=︒ABCDE DCBAAB CD∴CDE DEC ∠=∠,∴CD CE = ∵BC BE EC =+,∴BC AC CD =+【答案】见解析.【例8】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】在BC 上截取一点F 使得BF BE =,易证BOE BOF ∆∆≌,在根据120BOC ∠=︒推出60BOE COF ∠=∠=︒,再证明OCF OCD ∆∆≌即可.【答案】BC BE CD =+.【例9】 如图:已知AD 为△ABC 的中线,且12∠=∠,34∠=∠,求证:BE CF EF +>.【解析】在DA 上截取DN DB =,连接NE ,NF ,则DN DC =,在△DBE 和△DNE 中:E DCB AOED CBAFOED CBA∵12DN DB ED ED =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△DNE (SAS ),∴BE NE = 同理可得:CF NF =在△EFN 中,EN FN EF +>(三角形两边之和大于第三边) ∴BE CF EF +>.【答案】见解析.【例10】 已知:在四边形ABCD 中,BC BA >,180A C ∠+∠=︒,且60C ∠=︒,BD 平分∠ABC ,求证:BC AB DC =+.【解析】在BC 上截取BE BA =,∵BD 平分∠ABC ,∴ABD EBD ∠=∠, 在△BAD 和△BED 中, BA BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△BED ,∴AD DE =,A BED ∠=∠. ∵180BED DEC ∠+∠=︒,180A C ∠+∠=︒. ∴C DEC ∠=∠,∴DE DC =.∴DC AD =.∵60∠=︒,∴△CDE是等边三角形,C∴DE CD CE=+=+.==,∴BC BE CE AB CD【答案】见解析.【例11】观察、猜想、探究:在△ABC中,2∠=∠.ACB B(1)如图①,当90=+;C∠=︒,AD为∠BAC的角平分线时,求证:AB AC CD (2)如图②,当90∠≠︒,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量C关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【解析】(1)过D作DE⊥AB,交AB于点E,理由角平分线性质得到ED=CD,利用HL得到直角三角形AED与直角三角形ACD全等,由全等三角形的对应边相等,对应角相等,得到AE AC=,A CB B∠=∠,利用等量代换及外角性质得到一对角相等,利用等角对等∠=∠,由2AED ACB边得到BE DE=+,等量代换即可得证;=,由AB AE EB(2)AB CD AC=+,理由为:在AB上截取AG AC=,如图2所示,由角平分线定义得到=,利用SAS得到三角形AGD与三角形ACD全等,接下来同(1)一对角相等,再由AD AD即可得证;(3)AB CD AC=,如图3所示,同(2)即可得证.=-,理由为:在AF上截取AG AC【答案】(1)过D作DE⊥AB,交AB于点E,如图1所示,∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,∴DE DC=,在Rt △ACD 和Rt △AED 中,AD AD =,DE DC =, ∴Rt △ACD ≌Rt △AED (HL ),∴AC AE =,ACB AED ∠=∠, ∵2ACB B ∠=∠,∴2AED B ∠=∠, 又∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠, ∴BE DE DC ==,则AB BE AE CD AC =+=+; (2)AB CD AC =+,理由为: 在AB 上截取AG AC =,如图2所示, ∵AD 为∠BAC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG ACGAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS ),∴CD CG =,AGD ACB ∠=∠, ∵2ACB B ∠=∠,∴2AGD B ∠=∠, 又∵AGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BE DG DC ==,则AB BG AG CD AC =+=+; (3)AB CD AC =-,理由为: 在AF 上截取AG AC =,如图3所示, ∵AD 为∠F AC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ADC (SAS ), ∴CD GD =,AGD ACD ∠=∠,即ACB FGD ∠=∠,∵2ACB B ∠=∠,∴2FGD B ∠=∠,又∵FGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BG DG DC ==,则AB BG AG CD AC =-=-.【例12】 如图所示,在△ABC 中,3ABC C ∠=∠,AD 是∠BAC 的平分线,BE ⊥AD 于F .求证:()12BE AC AB =-.【解析】延长BE 交AC 于点F .则AD 为∠BAC 的对称轴,∵BE ⊥AD 于F ,∴点B 和点F 关于AD 对称, ∴12BE EF BF ==,AB AF =,ABF AFB ∠=∠. ∵3ABF FBC ABC C ∠∠=∠=∠+,ABF AFB FBC C ∠=∠=∠∠+, ∴3FBC C FBC C ∠∠∠=∠++, ∴FBC C ∠=∠,∴FB FC =,∴()()111222BE FC AC AF AC AB ==-=-,∴()12BE AC AB =-. 【答案】见解析.【例13】 如图,已知:△ABC 中AD 垂直于∠C 的平分线于D ,DE ∥BC 交AB 于E .求证:EA EB =.【解析】由AD 垂直于∠C 的平分线于D ,可以想到等腰三角形中的三线合一,于是延长AD 交BC 与点F ,得D 是AF 的中点,又因为DE ∥BC ,由三角形中位线定理得EA EB =.【答案】延长AD 交BC 与点F ,∵CD 平分∠ACF ,∴12∠=∠,又AD ⊥CD , ∴ΔADC ≌ΔFDC ,∴AD FD =, 又∵DE ∥BC ,∴EA EB =.【例14】 已知:如图,在△ABC 中,3ABC C ∠=∠,12∠=∠,BE ⊥AE .求证:2AC AB BE -=.【解析】延长BE 交AC 于M ,∵BE ⊥AE ,∴90AEB AEM ∠=∠=︒ 在△ABE 中,∵13180AEB ∠+∠+∠=︒, ∴3901∠=︒-∠ 同理,4902∠=︒-∠∵12∠=∠,∴34∠=∠,∴AB AM =∵BE ⊥AE ,∴2BM BE =, ∴AC AB AC AM CM -=-=, ∵∠4是△BCM 的外角,∴45C ∠=∠+∠ ∵3ABC C ∠=∠,∴3545ABC ∠=∠+∠=∠+∠ ∴34525C C ∠=∠+∠=∠+∠,∴5C ∠=∠ ∴CM BM =,∴2AC AB BM BE -==【答案】见解析.【例15】 如图,已知AB AC =,90BAC ∠=︒,BD 为∠ABC 的平分线,CE ⊥BE ,求证:2BD CE =.【解析】延长CE ,交BA 的延长线于点F .∵BD 为∠ABC 的平分线,CE ⊥BE , ∴△BEF ≌△BEC ,∴BC BF =,CE FE =. ∵90BAC ∠=︒,CE ⊥BE ,∴ABD ACF ∠=∠,又∵AB AC =,∴△ABD ≌△ACF ,∴BD CF =.∴2BD CE =.【答案】见解析.EDCBAFEDCBA课后复习【作业1】如图所示,在△ABC 中,BP 、CP 分别是∠ABC 的外角的平分线,求证:点P 在∠A 的平分线上.【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =. 同理可证PF PG =. 所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上,【答案】见解析.【作业2】已知:如图,2AB AC =,BAD CAD ∠=∠,DA DB =,求证:DC ⊥AC .PCBAPABCD【解析】在AB 上取中点E ,连接DE ,则12AE BE AB ==. ∵DA DB =,∴DE ⊥AB ,90AED ∠=︒. 又∵2AB AC =,∴AE AC =.∵BAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ). ∴90AED ACD ∠=∠=︒,即DC ⊥AC .【答案】见解析.【作业3】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【解析】如图,在BC 上截取BE BD =,连接DE ,过D 作DF BC ∥,交AB 于F ,于是32∠=∠,ADF ECD ∠=∠. 又∵12∠=∠,∴13∠=∠,故DF BF =.显然FBCD 是等腰梯形. ∴BF DC =,DF DC =.∵()111218010020222ABC ∠=∠=⨯︒-︒=︒,()11802802BED BDE ∠=∠=︒-∠=︒, ∴180100DEC BED ∠=︒-∠=︒,∴100FAD DEC ∠=∠=︒,∴AFD EDC ∆∆≌,AD EC =. 又∵BE BD =,∴BC BD EC BD AD =+=+.【答案】见解析.EDCBAABCD【作业4】如图,已知在△ABC 中,AD 、AE 分别为△ABC 的内、外角平分线,过顶点B 作BF ⊥AD ,交AD 的延长线于F ,连接FC 并延长交AE 于M .求证:AM ME =.【解析】延长AC ,交BF 的延长线于点N .∵AD 平分∠BAC ,BF ⊥AD ,∴△AFB ≌△AFN ,∴BF NF =. ∵AD 、AE 分别为△ABC 的内、外角平分线,∴EA ⊥F A . ∵BF ⊥AF ,∴BF ∥AE .∴::BF ME CF CM =,::FN AM CF CM =. ∵BF NF =,∴AM ME =.【答案】见解析.ECMF EDCBAN MFEDCBA。
初中几何辅助线大全(最全版)
三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。
证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE (AAS )∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。
(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。
)二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。
三、有和角平分线垂直的线段时,通常把这条线段延长。
分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与∠ABC 的平分线垂直,想到要将其延长。
证明:分别延长BA ,CE 交于点F 。
∵BE ⊥CF (已知)∴∠BEF =∠BEC =90° (垂直的定义)在△BEF 与△BEC 中,19-图DCBAEF 12ABCDE17-图O∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE=21CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知)∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE四、取线段中点构造全等三有形。
初中几何辅助线大全(很详细哦)
初中几何辅助线大全(很详细哦)初中几何辅助线―克胜秘籍等腰三角形1.作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2.作一腰上的高;3.将底边的一端作为底边的垂直线交叉,并与另一条腰部的延长线相交,形成直角三角形。
梯形1.垂直于平行边2.垂直于下底,将上底延伸为一条平行于两条斜边的腰部3的平行线4使两条垂直于底部的垂直线5延伸两条斜边,形成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.按对角线将平行四边形分成两个三角形,高度为3-注意形状内外的矩形1.对角线2.作垂线很简单。
无论是哪一个主题,第一个都应该考虑主题的要求,例如Ab= AC+BD,这样的方法是找到另一个与AB长度相同的线段的方法,然后证明A+BD=另一个AB。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形的中点连接成一条中线。
三角形中有中线、延长中线和其他中线。
解几何题时如何画辅助线?① 在中点处看到中线,并将中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
② 在证明比例线段时,通常使用平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③ 对于梯形问题,添加辅助线的常用方法有:1。
穿过上底的两个端点用作下底的垂直线;2.穿过上底的一个端点用作一条腰部的平行线;3.穿过上底部的一个端点用作对角线的平行线;4.穿过一根腰部的中点用作另一根腰部的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形的平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
浙教版八年级上全等三角形中常见辅助线添加方法最全(无答案版)
依米书院个性化辅导教案
知识结构图
一.中点类辅助线作法
见到中线(中点),我们可以联想的内容无非是倍长中线或者是与中点有关的一条线段,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见,常见添加方法如下图(是底边的中线).
二.角平分线类辅助线作法
有下列三种作辅助线的方式:
1.由角平分线上的一点向角的两边作垂线;
2.过角平分线上的一点作角平分线的垂线,从而形成等腰三角形;
3.,这种对称的图形应用得也较为普遍.
三.截长补短类辅助线作法
版本编号:YIMIK12-JX03-2016 编制部门:教学运营部编制人:来旭峰批准人:周祚运
、如图,已知,,,求证:.
,,求证:.
A
版本编号:YIMIK12-JX03-2016 编制部门:教学运营部编制人:来旭峰批准人:周祚运。
浙教版八年级数学上册等三角形问题中常见的辅助线的作法(有答案)
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂D C BAED F CB A线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
北师大版八年级下册数学:等腰三角形常见辅助线作法总结(超详细,经典!!!)
等腰三角形常见辅助线做法总结一、常见辅助线添加方法Ⅰ利用等腰三角形“底边上的高、底边上的中线、顶角的平分线”相互重合解题.1.有底边中点时常连接底边上的中线⑴如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.求证:DE=DF.⑵如图,△ABC中,AB=AC,D是BC的中点,过A的直线EF∥BC,且AE=AF.求证:DE=DF.⑶如图,△ABC中,AB=AC,D、E、F分别在BC、AB、AC上,且BD=CF,BE=CD,G是EF的中点,求证:DG⊥EF.2.遇到等腰常作高⑷如图,△ABC中,2AB=AC,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.⑸如图,点D、E分别在BA、AC的延长线上,且AB=AC、AD=AE,求证:DE⊥BC.Ⅱ利用平行线构造等腰三角形3.遇到等腰常平移腰构造等腰三角形⑹如图,△ABC中,AB=AC,D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF.4.遇到等腰常平移底构造等腰三角形⑺如图,△ABC中,AB=AC,E在AC上,点D在BA的延长线上,且AD=AE,连DE,求证:DE⊥BC.5.利用“角平分线+平行线”构造等腰三角形⑻如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F,求证:AB=EF.Ⅲ折半加倍方法处理二倍角问题6.作二倍角的平分线构造筀等腰三角形7.将小角加倍成和大角相等构造等腰三角形8.构造等腰三角形,使二倍角是这个等腰三角形顶角的外角(9) 如图,在△ABC中,∠ACB=2∠ABC,求证:2AC>AB.(10)如图,在△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC (用两方法).Ⅳ线段的截长补短法9.当已知或求证中有一条线段大于另一条线段时可考虑截长补短法(11) 如图,在△ABC中,AB>AC,求证:∠ACB>∠B.10.当已知线段或求证中涉及线段的和(差)问题时可考虑截长补短法(12) 如图,△ABC是等边三角形,D是△ABC外一点,且∠BDA=∠ADC=60°,求证:BD+CD=AD.(13) 如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠D AB的度数.(用两种方法)(14) 如图在△ABC中,∠BAC=108°,AB=AC,BD平分∠ABC,交AC于D,求证:BC=CD+AB.(用两种方法)二、等腰三角形综合训练1.如图,点E为△ABC边AB上一点,AC=BC=BE,AE=EC,BD⊥AC于D,则∠CBD= 度.2.如图,已知等边△ABC,D在BC延长线上,CE平分∠ACD,且CE=BD,求证:△ADE是等边三角形.3.如图,已知AD 平分∠BAC ,CE ⊥AD 交AB 于D , EF ∥BC 交AC 于F ,求证:EC 平分∠DEF .4.如图,∠AOB =30°,OC 平分∠AOB ,P 为OC 上任一点,PD ∥OA 交OB 于D ,PE ⊥OA 于E ,OD =6,求PE 的长.5.如图,AB =AC ,AB 的垂直平分线交AC 于D 点,若AD =BC ,(1)求∠A BC ;(2)若点E 在BC 的延长线上,且CE=CD ,连AE ,求∠CAE .6.如图,已知等边△ABC ,D 在AC ,延长BC 至E ,使CE =CD ,若 DE =BD ,给出下列结论:①BD 平分∠ABC ;②AB AD 21=;③BC CE 21=;④∠A =2∠E .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个7.已知,AB =BC ,BD =BE ,∠ABC =∠DBE =α,M 、N 分别是AD 、CE 的中点.(1)如图①,若α=60°,求∠BMN ;(2)如图②,若α=90°,求∠BMN= ;(3)将图②的绕B 点逆时针旋转一锐角,在图③中完成作图,则∠BMN= .。
人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)
人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)本文介绍了全等三角形中的常见辅助线,包括角分线上点向角两边作垂线和截取法构全等两种方法。
第一种方法是过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。
举例来说,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,要求证∠BFP+∠BEP=180°。
另外,还有一些变式题,例如已知∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,要求解出PC和PD之间的数量关系。
第二种方法是利用对称性,在角的两边截取相等的线段,构造全等三角形。
例如,在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,要求证BC=AB+DC。
还有一些变式题,例如已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,要求判断BE,CD,BC的数量关系。
本文还提到了一些其他问题,例如在△ABC中,∠XXX是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,要求判断FE与FD之间的数量关系。
此外,还有一些类似的变式题,需要读者自行思考和解答。
需要注意的是,本文中有一些格式错误和明显有问题的段落需要删除,同时每段话也需要进行小幅度的改写,以使其更加准确、清晰和易于理解。
在△ABC中,通过截取AE=AC的方式,连接DE,得到△ADE≌△ADC。
因此,我们可以证明XXX。
对于图②,我们知道AD是△ABC的外角∠CAE的平分线,交BC的延长线于点D,且∠D=25°。
我们需要求解∠B的度数。
对于△XXX,我们可以通过以下方式求解∠B的度数:∠B+∠C+∠A=180°。
因为∠C=2∠B,所以∠A=180°-3∠B。
等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)(人教版)(教师版) 25学年八年级数学上册
专题13.14等腰三角形七种常见辅助线作法(方法梳理与题型分类讲解)第一部分【模型归纳与题型目录】题型目录【题型1】作等腰三角形底边上高线求值或证明 (1)【题型2】遇到中点作中线求值或证明 (6)【题型3】过一腰上的某一已知点作另一腰的平行线 (10)【题型4】过一腰上的某一已知点作底边的平行线 (14)【题型5】倍长中线构造等腰三角形 (20)【题型6】截长补短构造等腰三角形 (24)【题型7】延长相交构造或证明等腰三角形 (28)第二部分【题型展示与方法点拨】【题型1】作等腰三角形底边上高线求值或证明【例1】(2024·浙江·模拟预测)如图,ABC V 是等腰三角形,AB AC =.设BAC α∠=.(1)如图1,点D 在线段AB 上,若45ACD BAC ∠+∠=︒,求DCB ∠的度数(用含α的代数式表示).(2)如图2,已知AB AC BD ==.若180∠+∠=︒ABD BAC ,过点B 作BH AD ⊥于点H ,求证:12BH BC =.【答案】(1)452DCB ∠=+︒α(2)见解析【分析】本题主要考查了等腰三角形的判定和性质,角平分线的性质定理,(1)根据等腰三角形的性质可得B ACB ∠=∠,设ACD β∠=,DCB x ∠=,解出方程组,即可求解;(2)延长DB ,交AC 于点F ,过点A 作AE BC ⊥于点E .根据180∠+∠=︒ABD BAC ,可得ABF BAC α∠=∠=.再由等腰三角形的性质可得1122D DAB ABF α∠=∠=∠=,从而得到1122BAE BAF α∠=∠=,12BE BC =,进而得到DAB BAE ∠=∠,然后根据角平分线的性质定理,可得BH BE =,即可求证.解:(1)∵AB AC =,∴B ACB ∠=∠.设ACD β∠=,DCB x ∠=,则()452180x βαβα+=︒⎧⎨++=︒⎩解得:452x α=+︒,即452DCB ∠=+︒α;(2)如图,延长DB ,交AC 于点F ,过点A 作AE BC ⊥于点E .∵180∠+∠=︒ABD BAC ,180ABD ABF ∠+∠=︒.∴ABF BAC α∠=∠=.又∵AB BD =,∴1122D DAB ABF α∠=∠=∠=∵AB AC =,∴1122BAE BAF α∠=∠=,12BE BC =∴DAB BAE ∠=∠.又∵BH AD ⊥,BE AE ⊥,∴BH BE =,∴12BH BC =.【变式1】(24-25八年级上·全国·课后作业)如图,在ABC V 中,2AC AB =,AD 平分BAC ∠交BC 于点D ,E 是AD 上一点,且EA EC =.求证:EB AB ⊥.【分析】本题主要考查了等腰三角形的性质,角平分线的定义,全等三角形的判定和性质,正确作出辅助线,构建全等三角形是解题的关键.作EF AC ⊥于点F ,根据等腰三角形的性质得出12AF FC AC ==,再证明 ≌ABE AFE 即可得出结论.证明:如图,作EF AC ⊥于点F.EA EC = ,12AF FC AC ∴==.2AC AB = ,AF AB ∴=.AD 平分BAC ∠,BAD CAD ∴∠=∠.在BAE 和FAE 中,AB AF BAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABE AFE ∴ ≌,90ABE AFE ∴∠=∠=︒,EB AB ∴⊥.【变式2】(22-23八年级上·江苏泰州·阶段练习)在ABC V 中,AB AC =,过点C 作射线CB ',使ACB ACB '∠=∠(点B '与点B 在直线AC 的异侧)点D 是射线CB '上一动点(不与点C 重合),点E 在线段BC 上,且90DAE ACD ∠+∠=︒.(1)如图1,当点E 与点C 重合时,AD 与CB '的位置关系是,若BC a =,则CD 的长为;(用含a 的式子表示)(2)如图2,当点E 与点C 不重合时,连接DE ,①若30DAE ∠=︒,求BAC ∠的度数;②用等式表示BAC ∠与DAE ∠直间的数量关系,并证明.【答案】(1)互相垂直;12a (2)①60︒;②2BAC DAE∠=∠【分析】(1)根据三角形内角和定理可得AD 与CB '的位置关系是互相垂直,过点A 作AM BC ⊥于点M ,根据等腰三角形性质得到1122CM BM BC ===,利用AAS 证明ACD ACM ≌ ,根据全等三角形性质即可得出12CD CM a ==;(2)当点E 与点C 不重合时,①求解60ACD ∠=︒,可得60ACB ACB '∠=∠=︒,由AB AC =,可得60ABC ACB ∠=∠=︒,可得60BAC ∠=︒;②过点A 作AM BC ⊥于点M 、AN CB '⊥于点N ,利用AAS 证明ACD ACM ≌ ,根据全等三角形性质即可得到2BAC DAE ∠=∠;解:(1)当点E 与点C 重合时,DAE DAC ∠=∠,∵90DAE ACD ∠+∠=︒,∴90DAC ACD ∠+∠=︒,∴90ADC ∠=︒,∴AD CB '⊥,即AD 与CB '的位置关系是互相垂直,若BC a =,过点A 作AM BC ⊥于点M ,如图:则90AMC ADC ∠∠=︒=,∵AB AC =,∴1122CM BM BC a ===,在ACD 与ACM △中,ADC AMC ACD ACM AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ACD ACM ≌,∴12CD CM a ==,即CD 的长为12a ,(2)解:①∵90DAE ACD ∠+∠=︒,30DAE ∠=︒,∴60ACD ∠=︒,∴60ACB ACB '∠=∠=︒,∵AB AC =,∴60ABC ACB ∠=∠=︒,∴60BAC ∠=︒;②当点E 与点C 不重合时,用等式表示BAC ∠与DAE ∠之间的数量关系是:2BAC DAE ∠=∠,证明如下:过点A 作AM BC ⊥于点M 、AN CB '⊥于点N,如图:则90AMC ANC ∠=∠=︒,∴90CAN ACB '∠+∠=︒,∵90DAE ACD ∠+∠=︒,即90DAE ACB '∠+∠=︒,∴DAE CAN ∠=∠,∵AB AC =,AM BC ⊥,∴22CA B C A A M B M ∠∠=∠=,在ACN △与ACM △中,ANC AMC ACN ACM AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ACN ACM ≌,∴CAN CAM ∠=∠,∴222BAC CAM CAN DAE ∠=∠=∠=∠;【点拨】本题是三角形综合题,考查了等腰三角形的性质、全等三角形的判定与性质、三角形内角和定理、垂直定义等知识,熟练掌握等腰三角形的性质、全等三角形的判定与性质并作出合理的辅助线是解题的关键.【题型2】遇到中点作中线求值或证明【例3】(23-24七年级下·四川成都·阶段练习)在Rt ABC △中,AB AC =,45DEF ∠=︒且DEF ∠的顶点E 在边BC 上移动,在移动过程中,边DE ,EF 分别与AB ,AC 交于点M ,N ,(1)当BE CN =且M 与A 重合时,求证:ABE ECN△≌△(2)当E 为BC 中点时,连接MN ,求证:NC AM MN=+【分析】本题考查等腰三角形的性质、全等三角形的判定与性质、三角形外角的性质,(1)根据等腰直角三角形的性质可得==45ABE ECN ∠∠︒,利用三角形外角的性质与等量代换可得BAE CEN =∠∠,在根据全等三角形的判定即可证明;(2)连接AE ,在AC 上截取AM CG =,根据等腰直角三角形的性质可得AE EC =,===45MAE CAE ACE ∠∠∠︒,证得()AME CGE SAS ≌,可得=ME GE ,=MEA GEC ∠∠,利用等量代换可得==45MEN GEN ∠∠︒,证得()MEN GEN SAS ≌,可得MN GN =,即可得证.解:(1)证明:∵AB AC =,90BAC ∠=︒,∴==45ABE ECN ∠∠︒,∵==45AEC AEN CEN CEN ∠∠+∠︒+∠,又∵==45AEC ABE BAE BAE ∠∠+∠︒+∠,∴BAE CEN =∠∠,又∵BE CN =,∴()ABE ECN AAS ≌;(2)证明:连接AE ,在AC 上截取AM CG =,∵AB AC =,90BAC ∠=︒,E 为BC 中点,∴AE BC ⊥,AE EC =,∴===45MAE CAE ACE ∠∠∠︒,在AME △和CGE 中,AM CG MAE GCE AE CE =⎧⎪∠=∠⎨⎪=⎩,∴()AME CGE SAS ≌,∴=ME GE ,=MEA GEC ∠∠,∵90AEG GEC ∠+∠=︒,∴=90MEA AEG ∠+∠︒,即90MEG ∠=︒,∵45DEF ∠=︒,∴==45MEN GEN ∠∠︒,又∵NE NE =,=ME GE ,∴()MEN GEN SAS ≌,∴MN GN =,∵=CN CG GN +,∴=CN AM MN +.【变式1】(23-24八年级上·广东汕头·期中)如图,ABC V 中,AB AC =,D 是BC 的中点,E 、F 分别是AB 、AC 上的点,且AE AF =,求证:DE DF =.【分析】本题考查了等腰三角形的性质和全等三角形的判定和性质,属于基础题目,熟练掌握上述知识是解题的关键.连接AD ,根据等腰三角形的性质可得∠∠EAD FAD =,然后即可证明AED AFD ≌,进而可得结论.证明:连接AD ,AB AC = ,D 是BC 的中点,∴∠∠EAD FAD =,在AED △和AFD △中,AE AF EAD FAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()AED AFD SAS ∴ ≌,DE DF ∴=.【变式2】(24-25八年级上·全国·课后作业)如图,在ABC 中,B C ∠∠=,过BC 的中点D 作DE AB ⊥,DF AC ⊥,垂足分别为点E ,F .(1)求证:DE DF =;(2)若40BDE ∠=︒,求BAC ∠的度数.【答案】(1)见解析;(2)80︒。
八年级全等三角形辅助线专题(经典)
D
A
C
B
E
如图,若 DA = DB ,则 D 在线段 AB 的垂直平分线上.
第五部分:等腰三角形
一、等腰三角形
1、等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形
6
2、等腰三角形的性质: ⑴ 两腰相等. ⑵ 两底角相等. ⑶ “三线合一”,即顶角平分线、底边上的中线、底边上的高重合.
⑷ 是轴对称图形,底边的垂直平分线是它的对称轴.
是∠BAC、∠BCA 的平分线,AD、CE 相交于点 F,请你判断 FD 与 FE 的数量关系 (2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中条件不 变,则(1)中结论是否成立
25
18 如图,点 C 为线段 AB 上一点, ACM 、 CBN 都是等边三角形,AN 、 BM 交于点 O ,连结 OC , 求证: (1) AN = BM (2) AOB = 120 (3) OC 平分 AOB (4)连结 EF 后,则 CEF 是等边三角形 (5) EF / / AB 思考:当 AC、BC 不共线时,上述结论是否仍成立?
3、化繁为简原则:对一类几何命题,其题设条件与结论之间
在已知条件所给的图形中,其逻辑关系不明朗,通过添置适当辅助线,
4
把复杂图形分解成简单图形,从而达到化繁为简、化难为易的目的.
4、发挥特殊点、线的作用:在题设条件所给的图形中,对
尚未直接显现出来的各元素,通过添置适当辅助线,将那些特殊点、 特殊线、特殊图形性质恰当揭示出来,并充分发挥这些特殊点、线的 作用,达到化难为易、导出结论的目的.
A
E
C
D
O
F
B
如图,若射线 OC 是 AOB 的角平分线,则 DE = DF .
八年级数学上册几何添辅助线专题
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明DCBA全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(完整版)初二数学辅助线常用做法及例题(含答案)
DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
初中数学三角形辅助线大全(精简、全面)
三角形作辅助线方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMABC D E F12345 12E DB AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形作辅助性方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC∴∠BDC >∠BAC证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角,∴∠BDF >∠BAD同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF 证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中,BD = CD∠1 = ∠5ED = MD∴△BDE ≌△CDM∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180o4321NF E C B A∴∠3 +∠2 = 90o即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF∴EF = MF∵在△CMF 中,CF +CM >MFBE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线∴BD = CD在△ACD 和△EBD 中BD = CD∠1 = ∠2AD = ED ∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法:①a >b②a ±b = c③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中,AN = AC∠1 = ∠2AP = AP∴△APN ≌△APC∴PC = PN ∵△BPN 中有PB -PC <BN M A B C D E F12345∴PB-PC<AB-AC⑵补短法:延长AC至M,使AM = AB,连结PM在△ABP和△AMP中AB = AM∠1 = ∠2AP = AP∴△ABP≌△AMP∴PB = PM又∵在△PCM中有CM >PM-PC∴AB-AC>PB-PC练习:1.已知,在△ABC中,∠B = 60o,AD、CE是△ABC的角平分线,并且它们交于点O 求证:AC = AE+CD2.已知,如图,AB∥CD∠1 = ∠2 ,∠3 = ∠4.求证:BC = AB+CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
②若图中没有全等三角形,可以把求证线段用和它相等的线段代换,再证它们所在的三角形全等.③如果没有相等的线段代换,可设法作辅助线构造全等三角形.例:如图,已知,BE、CD相交于F,∠B = ∠C,∠1 = ∠2,求证:DF = EF证明:∵∠ADF =∠B+∠3∠AEF = ∠C+∠4又∵∠3 = ∠4∠B = ∠C∴∠ADF = ∠AEF在△ADF和△AEF中∠ADF = ∠AEF∠1 = ∠2AF = AF∴△ADF≌△AEF∴DF = EF7.在一个图形中,有多个垂直关系时,常用同角(等角)的余角相等来证明两个角相等. 例:已知,如图Rt△ABC中,AB = AC,∠BAC = 90o,过A作任一条直线AN,作BD⊥AN 于D,CE⊥AN于E,求证:DE = BD-CE证明:∵∠BAC = 90o, BD⊥AN∴∠1+∠2 = 90o∠1+∠3 = 90o∴∠2 = ∠3∵BD⊥AN CE⊥AN∴∠BDA =∠AEC = 90o在△ABD和△CAE中,∠BDA =∠AEC∠2 = ∠3AB = AC∴△ABD≌△CAE∴BD = AE且AD = CE∴AE-AD = BD-CE∴DE = BD-CE8.三角形一边的两端点到这边的中线所在的直线的距离相等.例:AD为△ABC的中线,且CF⊥AD于F,BE⊥AD的延长线于E 求证:BE = CF证明:(略)9.条件不足时延长已知边构造三角形.例:已知AC = BD,AD⊥AC于A,BCBD于B求证:AD = BC证明:分别延长DA、CB交于点E∵AD⊥AC BC⊥BD∴∠CAE = ∠DBE = 90o在△DBE和△CAE中∠DBE =∠CAEBD = AC∠E =∠E∴△DBE≌△CAE∴ED = EC,EB = EA∴ED-EA = EC-EB∴AD = BC10.连接四边形的对角线,把四边形问题转化成三角形来解决问题. 例:已知,如图,AB∥CD,AD∥BC求证:AB = CD证明:连结AC(或BD)∵AB∥CD,AD∥BC∴∠1 = ∠2在△ABC和△CDA中,∠1 = ∠2AC = CA∠3 = ∠4∴△ABC≌△CDA∴AB = CD练习:已知,如图,AB = DC,AD = BC,DE = BF,求证:BE = DF11.有和角平分线垂直的线段时,通常把这条线段延长。
可归结为“角分垂等腰归”.例:已知,如图,在Rt△ABC中,AB = AC,∠BAC = 90o,∠1 = ∠2 ,CE⊥BD的延长线于E求证:BD = 2CE证明:分别延长BA、CE交于F∵BE⊥CF∴∠BEF =∠BEC = 90o在△BEF和△BEC中∠1 = ∠2BE = BE∠BEF =∠BEC∴△BEF≌△BEC∴CE = FE =CF∵∠BAC = 90o , BE⊥CF∴∠BAC = ∠CAF = 90o∠1+∠BDA = 90o∠1+∠BFC = 90o∠BDA = ∠BFC在△ABD和△ACF中∠BAC = ∠CAF∠BDA = ∠BFCAB = AC∴△ABD≌△ACF∴BD = CF∴BD = 2CE练习:已知,如图,∠ACB = 3∠B,∠1 =∠2,CD⊥AD于D,求证:AB-AC = 2CD12.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形.例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,求证:∠A = ∠D证明:(连结BC,过程略)13.当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件.例:已知,如图,AB = DC,∠A = ∠D求证:∠ABC = ∠DCB证明:分别取AD、BC中点N、M,连结NB、NM、NC(过程略)14.有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证题.例:已知,如图,∠1 = ∠2 ,P为BN上一点,且PD⊥BC于D,AB+BC = 2BD,求证:∠BAP+∠BCP = 180o证明:过P作PE⊥BA于E∵PD⊥BC,∠1 = ∠2∴PE = PD在Rt△BPE和Rt△BPD中BP = BPPE = PD∴Rt△BPE≌Rt△BPD∴BE = BD∵AB+BC = 2BD,BC = CD+BD,AB = BE-AE∴AE = CD∵PE⊥BE,PD⊥BC∠PEB =∠PDC = 90o在△PEA和△PDC中PE = PD∠PEB =∠PDCAE =CD∴△PEA≌△PDC∴∠PCB = ∠EAP∵∠BAP+∠EAP = 180o∴∠BAP+∠BCP = 180o练习:1.已知,如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,它们交于P,PD⊥BM于M,PF⊥BN于F,求证:BP为∠MBN的平分线2. 已知,如图,在△ABC中,∠ABC =100o,∠ACB = 20o,CE是∠ACB的平分线,D是AC上一点,若∠CBD = 20o,求∠CED的度数。
15.有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = ∠BAC又∵AB = AC∴AE⊥BC∴∠2+∠ACB = 90o∵BD⊥AC∴∠DBC+∠ACB = 90o∴∠2 = ∠DBC∴∠BAC = 2∠DBC(方法二)过A作AE⊥BC于E(过程略)(方法三)取BC中点E,连结AE(过程略)⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF证明:连结AD.∵D为BC中点,∴BD = CD又∵AB =AC∴AD平分∠BAC∵DE⊥AB,DF⊥AC∴DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF⊥BC证明:延长BE到N,使AN = AB,连结CN,则AB = AN = AC∴∠B = ∠ACB, ∠ACN = ∠ANC∵∠B+∠ACB+∠ACN+∠ANC = 180o∴2∠BCA+2∠ACN = 180o∴∠BCA+∠ACN = 90o即∠BCN = 90o∴NC⊥BC∵AE = AF∴∠AEF = ∠AFE又∵∠BAC = ∠AEF +∠AFE∠BAC = ∠ACN +∠ANC∴∠BAC =2∠AEF = 2∠ANC∴∠AEF = ∠ANC∴EF∥NC∴EF⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF证明:(证法一)过D作DN∥AE,交BC于N,则∠DNB = ∠ACB,∠NDE = ∠E,∵AB = AC,∴∠B = ∠ACB∴∠B =∠DNB∴BD = DN又∵BD = CE∴DN = EC在△DNF和△ECF中∠1 = ∠2∠NDF =∠EDN = EC∴△DNF≌△ECF∴DF = EF(证法二)过E作EM∥AB交BC延长线于M,则∠EMB =∠B(过程略)⑸常过一腰上的某一已知点做底的平行线例:已知,如图,△ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE求证:DE⊥BC证明:(证法一)过点E作EF∥BC交AB于F,则∠AFE =∠B∠AEF =∠C∵AB = AC∴∠B =∠C∴∠AFE =∠AEF∵AD = AE∴∠AED =∠ADE又∵∠AFE+∠AEF+∠AED+∠ADE = 180o∴2∠AEF+2∠AED = 90o即∠FED = 90o∴DE⊥FE又∵EF∥BC∴DE⊥BC(证法二)过点D作DN∥BC交CA的延长线于N,(过程略)(证法三)过点A作AM∥BC交DE于M,(过程略)⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形例:已知,如图,△ABC中,AB = AC,∠BAC = 80o,P为形内一点,若∠PBC = 10o ∠PCB = 30o求∠PAB的度数.解法一:以AB为一边作等边三角形,连结CE则∠BAE =∠ABE = 60oAE = AB = BE∵AB = AC∴AE = AC ∠ABC =∠ACB∴∠AEC =∠ACE∵∠EAC =∠BAC-∠BAE= 80o-60o = 20o∴∠ACE = (180o-∠EAC)= 80o∵∠ACB= (180o-∠BAC)= 50o∴∠BCE =∠ACE-∠ACB= 80o-50o = 30o∵∠PCB = 30o∴∠PCB = ∠BCE∵∠ABC =∠ACB = 50o, ∠ABE = 60o∴∠EBC =∠ABE-∠ABC = 60o-50o =10o∵∠PBC = 10o∴∠PBC = ∠EBC在△PBC和△EBC中∠PBC = ∠EBCBC = BC∠PCB = ∠BCE∴△PBC≌△EBC∴BP = BE∵AB = BE∴AB = BP∴∠BAP =∠BPA∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o∴∠PAB = (180o-∠ABP)= 70o解法二:以AC为一边作等边三角形,证法同一。