0-1背包问题-贪心法和动态规划法求解

合集下载

数据结构 背包问题

数据结构 背包问题

数据结构背包问题背景介绍:数据结构是计算机科学中非常重要的一门学科,它研究的是数据组织、存储和管理的方式。

背包问题是数据结构中的一个经典问题,它涉及到在给定的一组物品中选择一些物品放入背包中,使得背包的总重量或总价值达到最大化。

在本文中,我们将详细介绍背包问题的定义、解决方法和应用领域。

一、问题定义背包问题可以被描述为:给定一个背包,它能容纳一定的重量,再给定一组物品,每个物品有自己的重量和价值。

我们的目标是找到一种方式将物品放入背包中,使得背包的总重量不超过其容量,同时背包中物品的总价值最大化。

二、解决方法1. 贪心算法贪心算法是一种简单而有效的解决背包问题的方法。

它基于贪心的思想,每次选择当前具有最大价值重量比的物品放入背包中。

具体步骤如下:- 计算每个物品的价值重量比,即物品的价值除以其重量。

- 按照价值重量比从大到小对物品进行排序。

- 依次将物品放入背包中,直到背包的总重量达到容量限制或所有物品都放入背包。

贪心算法的优点是简单快速,但它并不能保证一定能找到最优解。

2. 动态规划动态规划是解决背包问题的一种经典方法。

它将问题划分为若干子问题,并通过求解子问题的最优解来求解原问题的最优解。

具体步骤如下:- 定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。

- 初始化dp数组的第一行和第一列为0,表示背包容量为0或物品数量为0时的最大价值都为0。

- 逐行填充dp数组,对于每个物品,考虑将其放入背包或不放入背包两种情况,选择价值最大的方案更新dp数组。

- 最终dp数组的最后一个元素dp[n][m]即为问题的最优解,其中n为物品数量,m为背包容量。

动态规划方法能够保证找到最优解,但其时间复杂度较高,对于大规模的问题可能会耗费较长的计算时间。

三、应用领域背包问题在实际生活和工程领域中有着广泛的应用,以下是一些常见的应用领域:1. 物流配送在物流配送中,背包问题可以用来优化货车的装载方案,使得货车的装载量最大化,从而减少运输成本。

用蛮力法、动态规划法和贪心法求解0 1背包问题

用蛮力法、动态规划法和贪心法求解0 1背包问题
}
printf("\n");
}

以下要依次判断每个子集的可行性,找出可行解:
voidpanduan(inta[][4],intcw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0
{
int i,j;
int n=16;
int sw,sv;
for(i=0;i<16;i++)
用蛮力法解决0/1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。
所以蛮力法解0/1背包问题的关键是如何求n个物品集合的所有子集,n个物品的子集有2的n次方个,用一个2的n次方行n列的数组保存生成的子集,以下是生成子集的算法:void force(int a[][4])//蛮力法产生4个物品的子集
{
int i,j;
int n=16;
int m,t;
for(i=0;i<16;i++)
{t=i;
for(j=3;j>=0;j--)
{
m=t%2;
a[i][j]=m;
t=t/2;
}
}
for(i=0;i<16;i++)//输出保存子集的二维数组
{
for(j=0;j<4;j++)
{
printf("%d",a[i][j]);
i++;
}
return maxprice;
}
#include<stdio.h>
#include<stdlib.h>

用动态规划法求解0-1背包问题

用动态规划法求解0-1背包问题

0 — 1背包 问题 的解 决 方法 多 种 多样 ,常用 的算法 有贪 心算 法 、 回溯法 、 分 枝一限界法 等 。本文 采用 动态
规 划 原理 来 求 解 0 一 l背 包 问题 也不 失 为 一 种 简单 明 了、 清 晰 易懂 的方法 。 参考 文献 :
[ 1 ] 王 晓东. 计算机 算法设计与分析 [ M] . 北京: 电子 工业 出版社
w h i l e( m【 i Ⅱ c 】 = = m[ i 一 1 ] [ c ] ) i - - ; w h i l e( i > 0 ) { j = i 一 1 ; w h i l e( m『 j 1 [ c ] 一 m [ j 】 【 c ] != v i i - 1 ] & &- j > 0 )
[ i ] [ j 】 是 下 面两 个 量 的最 大值 : m[ i + 1 ] [ j ] 和 m【 i + 1 】 【 j — w [ i 】
] + V 嘲


f o r ( j = 0 ; j < = c ; j + + ) p r i n t f ( ” %3 d . t , m f i 1 【 j 】 ) ; p i f n f ( ” \ I 1 ” ) ;}
等于 v 『 n 1 ;
k n a p s a c k ( ) ;d i s p O ; p r i n t f ( ” 最 大价值= %d \ n ” , m 【 n ] [ c 】 ) ;
o f r ( i _ 0 ; i < = n ; i + + )
②当前的背包容量 J 大于等于物品重量 w [ i ] 时, m
2 0 07 .
i n t n , C , w [ M A X ] , v [ MA X ] , m [ MA x】 [ MA x 】 = { 0 } ; v o i d k n a p s a c k 0 {i n t i ;

贪心算法之背包问题

贪心算法之背包问题

贪⼼算法之背包问题贪⼼算法之背包问题1.与动态规划的区别通过研究解决经典的组合优化问题,来说明⼆者的差别。

即0-1背包问题与背包问题0-1背包问题:给定n中物品和⼀个背包。

物品i的重量为W i,其价值为V i,背包的容量为C。

应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?对于每种物品i只有俩种选择,即装⼊背包或不装⼊背包背包问题:与0-1背包问题类似,不同在于选择物品i装⼊背包时,可以选择物品i的⼀部分,⽽不⼀定要全部装⼊背包,1≤i≤n。

这2类问题都具有最优⼦结构性质,极为相似。

背包问题可以⽤贪⼼算法求最优解,0-1背包不能使⽤贪⼼求解。

2.贪⼼解决背包问题步骤贪⼼策略:每次选择单位重量价值最⾼的物品装⼊背包计算每种物品单位重量的价值V iW i,按单位重量的价值从⼤到⼩将n中物品排序。

以排序后的次序依次将物品装⼊背包。

直⾄全部物品都装⼊或者因背包容量不⾜不能装⼊为⽌如果背包尚有容量,将最后不能完全装⼊物品切割⼀部分装满背包算法结束3.代码实现/*** n 物品数* M 背包容量* v[] 物品价值数组* w[] 物品重量数组* x[] 保存最优解路径数组,为1则表⽰该物品完全装⼊,否则装⼊该物品的⼀部分**/void Knapsack(int n, float M, float v[], float w[], float x[]) {// 按照物品单位重量的价值递减排序Sort(n, v, w);int i;for (i = 1; i <= n; i++)x[i] = 0;float c = M;for (i = 1; i <= n; i++) {if (w[i] > c)break;x[i] = 1;c -= w[i];}if (i <= n)x[i] = c / w[i];}Processing math: 100%。

01背包问题的数学逻辑

01背包问题的数学逻辑

01背包问题的数学逻辑1.引言1.1 概述01背包问题是一类经典的组合优化问题,它是数学逻辑中的一个重要问题之一。

在实际生活中,我们经常会面对资源有限的情况,而如何在有限的资源下做出最佳决策,已经成为一个重要的研究领域。

01背包问题就是在给定总容量和一组物品的情况下,选取其中的一些物品放入背包中,使得背包中物品的总价值最大化,而不超过背包的总容量。

这个问题由G. Dantzig在1957年首次提出,并且成为组合优化中的一个经典问题。

它的名字来源于背包只能放入0或1个同样特性的物品。

虽然问题看似简单,但由于问题的解空间庞大,是一个NP完全问题,因此求解过程通常使用一些近似算法。

1.2 目的本文的目的是探究01背包问题的数学逻辑,并介绍一些常用的求解方法。

通过深入研究01背包问题,我们可以更好地理解其数学模型,在实际应用中解决类似的优化问题。

具体目标包括:1. 分析01背包问题的数学模型,并介绍相关的定义和术语;2. 探讨01背包问题的求解方法,包括动态规划、贪心算法和近似算法等;3. 介绍优化问题的评价指标,包括背包的总价值、总重量和可行性等;4. 分析不同情况下的算法复杂性,讨论解决01背包问题的时间和空间复杂性;5. 举例说明01背包问题在实际生活中的应用,如旅行行李、采购决策等。

通过对01背包问题的研究,我们能够更好地理解和应用数学逻辑,提高问题求解的能力。

了解背包问题的求解方法和评价指标,对我们在实际生活中面对资源有限的情况下做出最佳决策具有重要意义。

无论是在物流管理、金融投资还是其他领域,都可以通过对01背包问题的研究,提高决策的效率和准确度。

在接下来的文章中,将会详细介绍01背包问题的数学逻辑,分析不同求解方法的优劣,并给出实际应用的例子,以便读者更好地理解和应用该问题。

2.正文2.1 01背包问题的定义和背景介绍01背包问题是运筹学中的一个经典问题,在算法和动态规划中有重要的应用。

该问题的核心是在给定的背包容量和一组物品的情况下,如何选择物品放入背包中,使得背包中的物品总价值最大化。

用贪心法求解0-1背包问题

用贪心法求解0-1背包问题

算法设计与分析期末论文题目用贪心法求解“0-1背包问题”专业计算机科学与技术班级09计算机一班学号0936021姓名黄帅日期2011年12月28日一、0-1背包问题的算法设计策略分析1.引言对于计算机科学来说,算法的概念是至关重要的,例如,在一个大型软件系统的开发中,设计出有效的算法将起决定性的作用。

算法是解决问题的一种方法或一个过程。

程序是算法用某种设计语言具体实现描。

计算机的普及极大的改变了人们的生活。

目前,各行业、各领域都广泛采用了计算机信息技术,并由此产生出开发各种应用软件的需求。

为了以最小的成本、最快的速度、最好的质量开发出适合各种应用需求的软件,必须遵循软件工程的原则。

设计一个高效的程序不仅需要编程小技巧,更需要合理的数据组织和清晰高效的素算法,这正是计算机科学领域数据结构与算法设计所研究的主要内容。

2. 算法复杂性分析的方法介绍算法复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要的空间资源的量称为空间复杂性。

这个量应该只依赖于算法要解的问题的规模、算法的输入和算法本身的函数。

如果分别用N 、I 和A 表示算法要解问题的规模、算法的输入和算法本身,而且用C 表示复杂性,那么,应该有C=F(N,I,A)。

一般把时间复杂性和空间复杂性分开,并分别用T 和S 来表示,则有: T=T(N,I)和S=S(N,I) 。

(通常,让A 隐含在复杂性函数名当中最坏情况下的时间复杂性:最好情况下的时间复杂性:平均情况下的时间复杂性:其中DN 是规模为N 的合法输入的集合;I*是DN 中使T(N, I*)达到Tmax(N)的合法输入; 是中使T(N, )达到Tmin(N)的合法输入;而P(I)是在算法的应用中出现输入I 的概率。

算法复杂性在渐近意义下的阶:渐近意义下的记号:O 、Ω、θ、o 设f(N)和g(N)是定义在正数集上的正函数。

O 的定义:如果存在正的常数C 和自然数N0,使得当N ≥N0时有f(N)≤Cg(N),则称函数f(N)当N 充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N))。

5.5动态规划求解01背包问题

5.5动态规划求解01背包问题
xn-1: 若xn=0,则判断(Pl,Wl)∈ Sn-2?,以确定Xn-1的值 若xn=1,则依据(Pl-pn,Wl-wn)∈ Sn-2?,以判断Xn-1的值
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理

0-1背包问题动态规划和贪心法实现

0-1背包问题动态规划和贪心法实现

算法设计与分析实验报告实验二 0-1背包问题院系:班级:计算机科学与技术学号:姓名:任课教师:成绩:湘潭大学2016年5月实验二0-1背包问题一. 实验内容分别编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法的时间复杂度并验证分析结果。

二.实验目的1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题;2、理解动态规划算法和贪心法的异同及各自的适用范围。

三. 算法描述/*动态规划 0-1背包问题算法如下*/Template<class Type>Void Knapsack(Type v,int w,int c,int n,Type ** m){int jMax = min(w[n] - 1,c);For(int j = 0;j <= jMax;j++){m[n][j] = 0;}For(int j = w[n];j <= c;j++){m[n][j] = v[n];}For(int i = n- 1;i > 1;i--){jMax = min(w[i] - 1,c);For(int j = 0;j <= jMax;j++) m[i][j] = m[i+1][j];For(int j = w[i];j <= c;j++) min[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c] = m[2][c];If(c >= w[1]) m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}Template<class Type>Void Traceback(Type**m,int w,int c,int n,int x){for(int i =1 ;i < n;i ++)If(m[i][c] == m[i+1][c]) x[i] = 0;Else{x[i] = 1;c -=w[i];}x[n] = (m[n][c]) ? 1:0;}按上述算法Knapsack计算后m[1][c]给出所要求的0-1背包问题的最优解。

背包问题

背包问题

(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。

设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。

这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。

一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。

然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。

算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。

if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

背包问题的贪心算法

背包问题的贪心算法

Wi Xi
16.5 20 20 20
Vi X i
24.25 28.2 31 31.5
先检验这四个为可行解*,即满足约束条件(4.2.2),(4.2.3).再比 较目标函数值,∑vixi .知④组解效益值最大.该组解是背包问题的最 优解。(见定理4.2)
6
例4.4 n=3,c=20, (V1,V2,V3) (25, 24,15) (W1,W2,W3) (18,15,10)
7
,且物品2的24/15 = v2/w2 较物品3的15/10= v3/w3效益值高。按 此选择策略,得②即(1, 2/15, 0),∑vixi=28.2 .此解是一个次优解。 显然,按物品效益值的非增次序装包不能得最优解。
原因:背包可用容量消耗过快。
(2)以容量作为量度。即按物品重量的非降次序将物
—选取最优的量度标准实为用贪心方法求解问题的核心.
16
4.3 贪心算法的基本要素
1.贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以 通过一系列局部最优的选择,即贪心选择来达到。这 是贪心算法可行的第一个基本要素,也是贪心算法与 动态规划算法的主要区别。
动态规划算法通常以自底向上的方式解各子问 题,而贪心算法则通常以自顶向下的方式进行,以迭 代的方式作出相继的贪心选择,每作一次贪心选择就 将所求问题简化为规模更小的子问题。
品装包。如例4.4中的解③(让背包尽可能慢被消耗)
排序 : (w3,w2,w1)= (10,15,18)
(V3,V2,V1) (15, 24, 25)
V3=15,x3=1,w3=10,背包剩余C-10=10;物品2有次大重量(w2=15), 但包装不下。使用x2=2/3,刚好装满背包且物品2装入2/3与物品1 装入5/9的容量均为10个单位。但前者的效益值24×2/3=16 >后者

组合优化中的背包问题

组合优化中的背包问题

组合优化中的背包问题背景介绍:组合优化是一种数学领域的研究,它主要关注如何在给定的限制条件下,找到最佳的组合方式。

背包问题是组合优化中的经典问题之一,它在实际生活和工业领域中都有广泛的应用。

本文将重点探讨组合优化中的背包问题。

一、问题描述:背包问题是指在给定的一组物品中,选择一部分放入背包中,使得所选物品的总价值最大化,同时不超过背包的容量限制。

背包问题通常包括两种类型:0-1背包和分数背包。

1. 0-1背包问题:0-1背包问题是指每个物品要么完全装入背包,要么完全不装入背包。

每个物品的重量和价值可能不同,背包的容量限制固定。

2. 分数背包问题:分数背包问题允许物品被分割成若干部分,可以选择物品的一部分放入背包,以满足容量的限制。

每个物品的重量和价值可能不同,背包的容量限制也可能不同。

二、解决方法:1. 动态规划:动态规划是解决背包问题最常用的方法之一。

通过构建一个二维数组,其中行表示物品的选择,列表示背包的容量限制,数组中的每个元素表示当前状态下的最优解。

通过迭代计算,找到最优解并记录在数组中。

2. 贪心算法:贪心算法是另一种解决背包问题的方法。

贪心算法的基本思想是每次选择当前状态下最优的物品放入背包中,直到达到容量限制或者所有物品都被选择。

贪心算法可能并不一定能得到全局最优解,但在某些情况下可以得到较好的结果。

三、应用领域:背包问题在实际生活和工业领域中有广泛的应用,如以下几个例子:1. 物流配送问题:在物流配送中,背包问题可以用来决定每个物流车辆应该运输哪些货物,以最大化运输总价值,同时不超过车辆的运载能力。

2. 投资组合优化问题:在金融领域中,背包问题可以用来优化投资组合,选择哪些证券或资产应该包括在投资组合中,以最大化组合的收益,同时控制总投资金额。

3. 选课问题:在学校选课系统中,背包问题可以用来确定学生应该选择哪些课程,以满足学分要求,并尽可能选择喜欢的课程。

结论:以上是关于组合优化中的背包问题的介绍。

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析【摘要】0-1背包问题是一个经典的组合优化问题,在计算机领域有着广泛的应用。

本文将对0-1背包问题的算法决策进行深入分析。

首先介绍了背包问题的概述和算法决策的重要性,接着分别探讨了贪心算法、动态规划算法和回溯算法在0-1背包问题中的应用。

随后对比了不同算法在解决该问题时的表现,并讨论了影响算法选择的决策因素。

提出了最优算法选择的建议,并探讨了未来研究方向。

通过这篇文章的分析,读者可以更好地理解不同算法在0-1背包问题中的应用和选择合适算法的决策因素。

【关键词】0-1背包问题、算法决策、贪心算法、动态规划、回溯算法、算法表现对比、算法选择、最优算法、未来研究、决策因素、引言、正文、结论、总结1. 引言1.1 背包问题概述背包问题,即0-1背包问题,是一种经典的组合优化问题,通常用于描述在有限的容量下如何选择物品以获得最大的价值。

具体而言,给定一个背包的容量C和n个物品,每个物品有一个重量wi和一个价值vi,每个物品可以选择装入或不装入背包,但不能分割。

背包问题的目标是在不超过背包容量的前提下,选择物品使得背包中物品的总价值最大。

背包问题是一个NP难题,即没有多项式时间内的确定性算法可以解决。

研究者们为了寻找高效的解决方案,提出了各种算法并进行了比较和分析。

常见的解决背包问题的算法主要有贪心算法、动态规划算法和回溯算法。

每种算法都有其特点和适用情况,因此在选择算法时需要考虑问题的规模、性质和具体要求。

1.2 算法决策的重要性算法决策在解决0-1背包问题中扮演着至关重要的角色。

在面对限定容量下的物品选择时,选择适用的算法决策可以直接影响到问题的解决效率和解的质量。

不同的算法在解决背包问题时所需要的时间复杂度和空间复杂度各不相同,因此在选择算法时需要综合考虑问题的规模、约束条件和性能要求。

正确选择算法决策能够高效地解决问题,提高计算效率,降低计算成本。

贪心算法适用于一些简单情况下的背包问题,可以获得较快的解决速度;动态规划算法适用于大规模、复杂的背包问题,可以获得较优的解;回溯算法在一些特殊情况下也能发挥作用。

背包问题问题实验报告(3篇)

背包问题问题实验报告(3篇)

第1篇一、实验目的1. 理解背包问题的基本概念和分类。

2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。

3. 分析背包问题的复杂度,比较不同算法的效率。

4. 通过实验验证算法的正确性和实用性。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。

c. 返回dp[n][C],即为最大价值。

2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。

背包问题

背包问题

背包问题常州一中林厚从背包问题是信息学奥赛中的经典问题。

背包问题可以分为0-1背包和部分背包两种类型,0-1背包还可以再分为有限背包和无限背包(完全背包)。

背包问题的求解涉及到贪心、递归、递推、动态规划、搜索等多种算法。

熟练掌握各种背包问题及其变形试题的解法,是信息学奥赛选手从入门走向提高的必经之路。

先简单归纳一下涉及到的这几种重要算法:1、贪心:贪心法可以归纳为“每步取优”。

假设你的程序要走1~n共n步,则你只要保证在第i步(i=1..n)时走出的这一步是最优的。

所以,贪心法不是穷举,而只是一种每步都取优的走法。

但由于目光短浅,不考虑整体和全局,所以“步步最优”并不能保证最后的结果最优。

比如经典的“两头取数”问题、“n个整数连接成最大数”问题、“删数”问题等。

2、递归:递归算法可以归纳为将问题“由大化小”。

也就是将一个大问题分解为若干个“性质相同”的子问题,求解的的过程,一般是通过“函数的递归调用”,不断将大问题逐步细化、直至元问题(边界情况),最后通过递归函数的自动返回得到问题的解。

递归算法的关键是递归函数的构造,它的效率往往比较低,原因在于大量的“冗余”计算。

比如经典的“斐波那挈数列”问题,在递归实现时效率极低,存在着大量的冗余计算,可以采用“记忆化”的方法优化。

3、递推:递推问题往往有一个“递推公式”,其实和“递归公式”差不多,但是出发点不一样,递归的思想是“要想求什么就要先求出什么”。

而递推是从问题的边界情况(初始状态)出发,一步步往下走,直到走完n步,判断最后的解。

由于其中的每一步并不知道当前一步的哪一个值对后面的步骤有用,所以只能把所有情况(一步的所有走法)全部计算出来,也造成了很多的“冗余计算”。

时间上往往没有太多的优化余地,但空间上经常利用“滚动数组”等方式,把空间复杂度由O(n2)降到O(2n)。

比如经典的“杨辉三角形”问题、“判断n是否是斐波那挈数”问题等。

4、动态规划:本质上是一种克服了“冗余”的“递归”算法。

0-1背包问题求解方法综述

0-1背包问题求解方法综述

算法分析与设计大作业…实验题目:0-1背包问题求解方法综述组员:班级:指导老师:]%0-1背包问题求解方法综述【摘要】:0-1背包问题是一个经典的NP-hard组合优化问题,现实生活中的很多问题都可以以它为模型。

本文首先对背包问题做了阐述,然后用蛮力解法、动态规划算法、贪心算法和回溯解法对背包问题进行求解,分析了0-1背包问题的数学模型,刻划了最优解的结构特征,建立了求最优值的递归关系式。

最后对四种算法从不同角度进行了对比和总结。

【关键词】:0-1背包问题;蛮力解法;动态规划算法;贪心算法;回溯解法。

0.引言0-1背包问题是指给定n个物品,每个物品均有自己的价值vi和重量wi(i=1,2,…,n),再给定一个背包,其容量为W。

要求从n个物品中选出一部分物品装入背包,这部分物品的重量之和不超过背包的容量,且价值之和最大。

单个物品要么装入,要么不装入。

很多问题都可以抽象成该问题模型,如配载问题、物资调运[1]问题等,因此研究该问题具有较高的实际应用价值。

目前,解决0-1背包问题的方法有很多,主要有动态规划法、回溯法、分支限界法、遗传算法、粒子群算法、人工鱼群算法、蚁群算法、模拟退火算法、蜂群算法、禁忌搜索算法等。

其中动态规划、回溯法、分支限界法时间复杂性比较高,计算智能算法可能出现局部收敛,不一定能找出问题的最优解。

文中在动态规划法的基础上进行了改进,提出一种求解0-1背包问题的算法,该算法每一次执行总能得到问题的最优解,是确定性算法,算法的时间复杂性最坏可能为O(2n)。

背包问题描述0-1背包问题(KP01)是一个著名的组合优化问题。

它应用在许多实际领域,如项目选择、资源分布、投资决策等。

背包问题得名于如何选择最合适的物品放置于给定背包中。

本文主要研究背包问题中最基础的0/1背包问题的一些解决方法。

为解决背包问题,大量学者在过去的几十年中提出了很多解决方法。

解决背包问题的算法有最优算法和启发式算法[2],最优算法包括穷举法、动态规划法、分支定界法、图论法等,启发式算法包括贪心算法、遗传算法、蚁群算法、粒子算法等一些智能算法。

背包问题的解决算法

背包问题的解决算法

背包问题的解决算法在日常生活中,我们常常会遇到背包问题。

比如说,你需要出门远足,但是又不想背太多的东西,怎么办?这时候,你就需要一种背包算法,用以帮助你选出最好的装备。

当然,背包算法不仅仅局限于这种场景,还可以应用于计算机科学等领域。

背包问题可以定义为:在限定容量下,找到能够装下最大价值物品的选择方案。

在计算机科学中,背包问题又分为0/1背包和无限背包两种类型。

0/1背包指的是在数量有限的情况下,每种物品只能选择一次;无限背包则意味着每种物品可以重复选择。

现在,我们来讨论一下几种常见的背包算法。

1. 贪心算法贪心算法是一种常见的解决背包问题的方法。

首先,根据每个物品的价值大小来求解。

然后,将每个物品按照其价值排序。

按照顺序,从价值最高的开始选择,在能够装下的情况下,尽量选择多的物品。

这种方法容易理解,但是它并不一定能够获得最优解。

2. 动态规划算法动态规划是解决背包问题最常用的算法。

它将问题分解成多个子问题,并且利用已经求解过的子问题来递推求解更大的问题。

具体来说,动态规划算法需要在每个状态中维护当前已经选择的物品,以及它们的价值和总重量。

然后,根据每个物品的价值,计算出在当前重量下选择这个物品的最大价值,同时比较这个价值和不选择这个物品的价值大小,最终得出最优解。

3. 回溯算法回溯算法也是一种解决背包问题的方法。

它的基本思想是,从初始状态开始,考虑每种可能的选择,最终找到最优解。

相比其他算法,回溯算法需要考虑所有可能的解,因此在问题较大的时候,它的时间复杂度可能较高。

但是,回溯算法通常能够得到最优解。

4. 分支定界算法分支定界算法也是一种解决背包问题的方法。

它通过确定每种物品能否被选择,来缩小解空间并加速搜索。

具体来说,它会根据价值和重量来对物品进行排序,并尝试从价值最高的物品开始选择。

然后,将剩余的物品按选择顺序进行排序,并对每个物品进行深度优先搜索,直到搜索到了可行解或者不可行解为止。

在实际应用中,以上几种算法都有其优缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四“0-1”背包问题
一、实验目的与要求
熟悉C/C++语言的集成开发环境;
通过本实验加深对贪心算法、动态规划算法的理解。

二、实验内容:
掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。

三、实验题
1.“0-1”背包问题的贪心算法
2.“0-1”背包问题的动态规划算法
说明:背包实例采用教材P132习题六的6-1中的描述。

要求每种的算法都给出最大收益和最优解。

设有背包问题实例n=7,M=15,,(w0,w1,。

w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。

,p6)=(10,5,15,7,6,18,3)。

求这一实例的最优解和最大收益。

四、实验步骤
理解算法思想和问题要求;
编程实现题目要求;
上机输入和调试自己所编的程序;
验证分析实验结果;
整理出实验报告。

五、实验程序
// 贪心法求解
#include<iostream>
#include"iomanip"
using namespace std;
//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序
void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量
float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);
int main(){
float w[7]={2,3,5,7,1,4,1}; //物品重量数组
float p[7]={10,5,15,7,6,18,3}; //物品收益数组
float avgp[7]={0}; //单位毒品的收益数组
float x[7]={0}; //最后装载物品的最优解数组
const float M=15; //背包所能的载重
float ben=0; //最后的收益
AvgBenefitsSort(avgp,p,w);
ben=GetBestBenifit(p,w,x,M);
cout<<endl<<ben<<endl; //输出最后的收益
system("pause");
return 0;
}
//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序
void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {
//求出物品的单位收益
for(int i=0;i<7;i++)
{
arry_avgp[i]=arry_p[i]/arry_w[i];
}
cout<<endl;
//把求出的单位收益排序,冒泡排序法
int exchange=7;
int bound=0;
float temp=0;
while(exchange)
{
bound=exchange;
exchange=0;
for(int i=0;i<bound;i++)
{
if(arry_avgp[i]<arry_avgp[i+1])
{
//交换单位收益数组
temp=arry_avgp[i];
arry_avgp[i]=arry_avgp[i+1];
arry_avgp[i+1]=temp;
//交换收益数组
temp=arry_p[i];
arry_p[i]=arry_p[i+1];
arry_p[i+1]=temp;
//交换重量数组
temp=arry_w[i];
arry_w[i]=arry_w[i+1];
arry_w[i+1]=temp;
exchange=i;
}
}
}
}
//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量
float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {
int i=0; //循环变量i
float benifit=0; //最后收益
while(i<7)
{
if(u-arry_w[i]>0)
{
arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组
benifit+=arry_p[i]; //收益增加当前物品收益
u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解
}
i++;
}
return benifit; //返回最后收益
}
//动态规划法求解
#include<stdio.h>
#include<math.h>
#define n 6
void DKNAP(int p[],int w[],int M,const int m); void main()
{
int p[n+1],w[n+1];
int M,i,j;
int m=1;
for(i=1;i<=n;i++)
{
m=m*2;
printf("\nin put the weight and the p:");
scanf("%d %d",&w[i],&p[i]);
}
printf("%d",m);
printf("\n in put the max weight M:");
scanf("%d",&M);
DKNAP(p,w,M,m);
}
void DKNAP(int p[],int w[],int M,const int m) {
int p2[m],w2[m],pp,ww,px;
int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];
F[0]=1;
p2[1]=w2[1]=0;
l=h=1;
F[1]=next=2;
for(i=1;i<n;i++)
{
k=l;
max=0;
u=l;
for(q=l;q<=h;q++)
if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i])
{
u=q;
max=w2[q]+w[i];
}
for(j=l;j<=u;j++)
{
pp=p2[j]+p[i];
ww=w2[j]+w[i];
while(k<=h&&w2[k]<ww)
{
p2[next]=p2[k];
w2[next]=w2[k];
next++;
k++;
}
if(k<=h&&w2[k]==ww)
{
if(pp<=p2[k])
pp=p2[k];
k++;
}
else if(pp>p2[next-1])
{
p2[next]=pp;
w2[next]=ww;next++;
}
while(k<=h&&p2[k]<=p2[next-1])
k++;
}
while(k<=h)
{
p2[next]=p2[k];
w2[next]=w2[k];
next=next+1;
k++;
}
l=h+1;
h=next-1;
F[i+1]=next;
}
for(i=1;i<next;i++)
printf("%2d%2d ",p2[i],w2[i]);
for(i=n;i>0;i--)
{
next=F[i];
next--;
pp=pk=p2[next];
ww=w2[next];
while(ww+w[i]>M&&next>F[i-1])
{
next=next-1;
pp=p2[next];
ww=w2[next];
}
if(ww+w[i]<=M&&next>F[i-1])
px=pp+p[i];
if(px>pk&&ww+w[i]<=M)
{
s[i]=1;
M=M-w[i];
printf("M=%d ",M);
}
else s[i]=0;
}
for(i=1;i<=n;i++)
printf("%2d ",s[i]);
}
六、实验结果
1、贪心法截图:
七、实验分析。

相关文档
最新文档