南航研究生矩阵论试卷(2011A)答案
矩阵论去年试题
![矩阵论去年试题](https://img.taocdn.com/s3/m/aea64364011ca300a6c390a4.png)
南昌航空大学硕士研究生 2009/2010 学年第 一 学期考试卷学生姓名: 所在学院: 学号: 课程名称: 矩阵论 班级: 成绩: 任课教师姓名: 艾小伟 任课教师所在学院: 数信学院一.设矩阵A=010110122---⎛⎫ ⎪ ⎪ ⎪⎝⎭,求A 的值域与核。
(10分)二.设1α=(1,1,1,0)T , 2α=(-1,-2,-1,-1)T , 1β=(2,1,3,-1)T , 2β=(1,-1,0,-2)T , V 1=span(1α,2α), V 2=span(1β,2β),分别求V 1∩V 2 ,V 1+V 2 的一组基和维数。
(12分)三.在22R ⨯中,定义线性变换Г(X) =1102X -⎛⎫ ⎪⎝⎭,求Г在基E 11=1000⎛⎫ ⎪⎝⎭, E 12=0100⎛⎫ ⎪⎝⎭, E 21=0010⎛⎫ ⎪⎝⎭, E 22=0001⎛⎫ ⎪⎝⎭下的矩阵。
(10分)四.求矩阵A=040140122----⎛⎫ ⎪ ⎪ ⎪⎝⎭的Smith 标准形和Jordan 标准形J ,并求可逆矩阵P ,使P -1AP=J 。
(18分)五.求矩阵A=123002111021-⎛⎫ ⎪ ⎪ ⎪⎝⎭的满秩分解。
(10分)六.设║•║是n n C ⨯上的矩阵范数,对于非零向量n C α∈,定义:T ,n x x x C αα=∀∈,证明:x α是n C 上的向量范数(8分)七.求正规矩阵A=010100000⎛⎫ ⎪ ⎪ ⎪⎝⎭的谱分解式。
(10分)八.设‖•‖是n nC⨯上的相容矩阵范数,A是n阶可逆矩阵,λ为A的任一特征值,证明:‖A-1‖-1≤|λ|≤‖A‖。
(10分)九.已知A=100100⎛⎫⎪⎪⎪⎝⎭,求A的奇异分解和广义逆矩阵A+。
(12分)。
2011_814高等代数(试题)
![2011_814高等代数(试题)](https://img.taocdn.com/s3/m/23c0d92e7375a417866f8fff.png)
南京航空航天大学2011年硕士研究生入学考试初试试题A 卷科目代码: 814科目名称:高等代数满分: 150 分注意: ①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无效;③本试题纸须随答题纸一起装入试题袋中交回!一、(20分)设矩阵⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=5263803b a A 可逆,T )1,1,2(−=α是A 的伴随矩阵*A 的特征向量,特征值是λ(这里"T "表示转置,以下各题相同). 1.求参数b a ,和特征值λ;2.问A 能否相似于对角矩阵?如能,求出A 的相似标准形;如不能,求出A 的Jordan 标准形.二、(20分)设),(),,(212211ββααL V L V ==是4维实向量空间4R 的两个子空间,其中.)1,4,1,4(,)1,0,1,1(;)1,0,0,1(,)0,1,0,1(2121T T T T ==−==ββαα1.求一个42×矩阵A ,使得1V 是方程组0=AX 的解空间,其中T x x x x X ),,,(4321=; 2.在4R 中求出满足条件1V ∉γ且2V ∉γ的全部向量γ,并说明理由. 三、(20分)设二次型)(2)(),,(323121232221321x x x x x x b x x x a x x x f +++++=经过正交变换CY X =化为二次型232233y y +,求参数,a b 的值及正交矩阵C .四、(20分)设有实系数线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000)1(221122221211212111n sn s s nn n n x a x a x a x a x a x a x a x a x a """"""""""""" 和n 维实向量0),,,(21≠=T n b b b "β.记),,2,1(),,,(21s i a a a T in i i i ""==α,证明: 1.如果β是方程组(1)的解向量,则β不可以由s ααα,,,21"线性表出;2.如果方程组(1)的解全是方程02211=+++n n x b x b x b "的解,则β可以由s ααα,,,21"线性表出.五、(15分)设A 是n 阶可逆矩阵,α和β是两个n 维列向量,证明: 1.T A αβ+的秩不小于1−n ;2.T A αβ+可逆的充分必要条件是11−≠−αβA T .六、(20分)设A 是数域P 上n 维线性空间V 的线性变换,A 满足条件0,01=≠−k k A A ,其中2≥k 是正整数,证明:1.A 在V 的任何一组基下的矩阵不可能是对角矩阵; 2.如果A 的秩是r ,则1+≤r k ;3.如果n k =,则A 在V 的某组基下的矩阵是⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛011010%%%%.七、(20分)设n ααα,,,21"是n 个线性无关的n 维实列向量,矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=n Tn T n T n n TT Tn TT T A αααααααααααααααααα"""""""212221212111,证明:1.A 是正定矩阵;2.0),,,(21Tn X XAx x x f ="是负定二次型,其中T n x x x X ),,,(21"=; 3.存在可逆的n 阶实对称矩阵S ,使得2S A =.八、(15分)设)(x f 是首项系数为1的n 次整系数多项式,证明:如果有两两不相等的整数n a a a ,,,21",使得n i a f i ,,2,1,1)("=−=,则)(x f 在有理数域上不可约.。
矩阵理论 (A-B卷)及答案
![矩阵理论 (A-B卷)及答案](https://img.taocdn.com/s3/m/25c8892cbd64783e09122b6a.png)
矩阵理论矩阵理论 2006-2007 学年第 一 学期末考试试题(A 卷)及答案一、 填空题(共20分,每空2分)1、 在欧氏空间4R 中,与三个向量(1,1,1,1),(1,1,1,1),(2,1,1,3)---都正交的单位向量为:)3,1,0,4(261-±2、 已知122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭, 则12__________;__________;__________;F A A A A ∞====3、 已知三阶方阵A 的初等因子为()()21,1λλ--,则A 的约当标准形为:⎪⎪⎪⎭⎫⎝⎛1100100014、 已知cos sin ()sin cos t t A x t t ⎛⎫=⎪-⎝⎭,则1()______________;()______________;|()|______________;|()|______________.d dA t A t dt dtd dA t A t dt dt-====.1,0,s i n c o s c o s s i n ,s i n c o s c o s s i n ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛---t t t t t t t t 二、解答下列各题((共48分,每小题8分)1. 用最小二乘法求解线性方程组121312312312021x x x x x x x x x x +=⎧⎪+=⎪⎨++=⎪⎪+-=-⎩解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121111101011A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=1021,111021011111b A T,-------------(3’) 所以b A x x x Ax A TT =⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=312311164144321-----------------------(7’)求得最小二乘解为.64,613,617321-=-==x x x -------------------------------------(8’) 2. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试计算43()322A A A A E φ=-++。
南京航空航天大学试卷及答案.doc
![南京航空航天大学试卷及答案.doc](https://img.taocdn.com/s3/m/6dd06ea3a8114431b80dd893.png)
1求行列式值。
=CI +1b b h + 2b南京航空航天大学试卷及答案一、填空1设五阶行列式D = a i}的展开式中有一项。
24。
53。
41。
32。
15此项前面应带的符号为12 3 42 3 4 1'1 1 -4 3、[1三、设线性方程组 2 1-97X二 t0 1 10 11/,问当,取何值时,方程组有解,并在此时求'3四、设A = 1-1\ 对角标准形。
k k 、‘2 1 -5、2. 三阶矩阵A= 1 31 ,矩阵X 满足A*X=2AT + X ,化简此矩阵方程并求矩阵J) 1 2,X O3. 设三阶矩阵A = (%%%), B = (%2%”),其中%,%,%,”均为三维列向量,且1 2 ,当A 取何值时,矩阵A 能与对角形矩阵相似,并写出矩阵A 的2 1」五、 二次型/(X],x 2,x 3) = 2玉2 + + 2X 32 + 2X }X 2 + 2x }x 3 + 2x 2x 3(1) 写出二次型的矩阵A,并求。
满足什么条件时,此二次型正定。
(2) 当a = 2时,此二次型在正交变换X=TY 下化为标准形求该正交变换。
六、 证明题1. 己知A 、B 均为4x3矩阵,证明不是可逆矩阵。
2. 设A%n 阶方阵,A 3=A, A 为可逆矩阵。
证明A 的所有特征值为1或者-1。
凤=2, |B| = 1,计算\A-B\, \A + B 出方程组的通12 3 4 1 2 3 4‘3 -4 2、1111 0 -1 -2 -3Oo2. x = 二 3, OC\«(X^i o 3 • T, 6-8 43 4 5 1 0 -2 -4 -9 -12 62 3 4 40 -1 -2-4\ /,10 8、<0 2、4. r(A) = r(A) ,〃一尸。
5. 0 1 9 1 0 。
6. 4, 27/2o7. 1, -1/2,・6。
1, -4, <2 2><2 2,二.1, 9■2y ; + 3/2y ;, z 《 + z ; - z h c d +6b c + 3 d D =a /? + 2 c d■ + 1h c d a b c d + 6 a b c d + 6 - 6。
南航矩阵论课后习题答案
![南航矩阵论课后习题答案](https://img.taocdn.com/s3/m/646b329181eb6294dd88d0d233d4b14e85243eea.png)
南航矩阵论课后习题答案南航矩阵论课后习题答案矩阵论是数学中的一个重要分支,广泛应用于各个领域,包括物理学、工程学、计算机科学等等。
南航的矩阵论课程是培养学生数学思维和解决实际问题的重要环节。
在课后习题中,学生需要运用所学的矩阵理论知识,解答各种问题。
下面是南航矩阵论课后习题的一些答案和解析。
1. 已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求A的逆矩阵。
解析:要求一个矩阵的逆矩阵,需要先判断该矩阵是否可逆。
一个矩阵可逆的充要条件是其行列式不为零。
计算矩阵A的行列式,得到det(A) = -3。
因此,矩阵A可逆。
接下来,我们可以使用伴随矩阵法求解逆矩阵。
首先,计算矩阵A的伴随矩阵Adj(A),然后将其除以行列式的值,即可得到逆矩阵。
计算得到A的伴随矩阵为Adj(A) = [-3 6 -3; 6 -12 6; -3 6 -3]。
最后,将伴随矩阵除以行列式的值,即可得到矩阵A的逆矩阵A^-1 = [-1 2 -1; 2 -4 2; -1 2 -1]。
2. 已知矩阵A = [2 1; 3 4],求A的特征值和特征向量。
解析:要求一个矩阵的特征值和特征向量,需要先求解其特征方程。
特征方程的形式为|A - λI| = 0,其中A为给定矩阵,λ为特征值,I为单位矩阵。
计算得到特征方程为|(2-λ) 1; 3 (4-λ)| = (2-λ)(4-λ) - 3 = λ^2 - 6λ + 5 = 0。
解这个二次方程,得到特征值λ1 = 1,λ2 = 5。
接下来,我们可以求解对应于每个特征值的特征向量。
将特征值代入(A - λI)x = 0,即可求解出特征向量。
对于特征值λ1 = 1,解得特征向量x1 = [1; -1];对于特征值λ2 = 5,解得特征向量x2 = [1; 3]。
3. 已知矩阵A = [1 2; 3 4],求A的奇异值分解。
解析:奇异值分解是将一个矩阵分解为三个矩阵的乘积:A = UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。
研究生矩阵论试题及答案与复习资料大全
![研究生矩阵论试题及答案与复习资料大全](https://img.taocdn.com/s3/m/e8f1dbdabceb19e8b8f6ba81.png)
B.
1 2 1
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E
1 1
0 2
1 1
2 1
1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
令 g n n2 2 1 n2 2 1 2 1
2 1 n2 1 2 1 1 n3 n4 1 3
由 Hamilton-Cayley 定理知 gA 0
et e 2t
a0 a0
a1 2a1
于是解得:
a0 a1
2et e2t
e 2t et
从而:
f A e At gA a0 E a1 A
矩阵论试题参考答案(2011年)
![矩阵论试题参考答案(2011年)](https://img.taocdn.com/s3/m/d7cf6207f78a6529647d5345.png)
cos Atdt
0
1
3t sin t 3t sin t cos t 2sin1 3cos1 3sin1 3cos1 dt . 0 3t sin t 3t sin t cos t 3sin1 3cos1 4sin1 3cos1
A b 0,
故 A 0. 2) C, A C 3) A, B C
n n
n n
,
A
A a A b
2
2
2
Aa
2
2
Ab A .
2
,记 x
A a B a , y A B , 则 A x 2 , b b
k k k
证法 3.由 A A 可得:k 1 有 A A ,故 lim A A 0 ,因而 A 不是收敛矩 阵,从而 A 1, 三、(20 分) 设 A
A a A 1 .
4 3 . 3 2
1.(6 分) 求
dF x x1 T ,其中 x , F x x A ; T dx x2
的实轴上, G1 , G2 , G3 的半径依次为
'
'
'
2 3 17 1 3 11 1 2 17 ' ' . , R2 2 , R3 2 2 3 4 12 2 4 16 2 3 36 综合前面的结论可知 A 的 3 个特征值所在的 3 个实数区间分别为
从而 A 只有实特征值, 它们分别位于 A 的 3 个 1 知 A 的每个盖尔圆中只有 A 的一个特征值, 盖尔圆的实轴上,由此得到 A 的 3 个特征值所在的 3 个实数区间分别为
南航07-14矩阵论试卷
![南航07-14矩阵论试卷](https://img.taocdn.com/s3/m/56f3c34d793e0912a21614791711cc7930b77852.png)
南航07-14矩阵论试卷南京航空航天大学07-14硕士研究生矩阵论试题2007 ~ 2008学年《矩阵论》课程考试A 卷一、(20分)设矩阵-----=111322211A ,(1)求A 的特征多项式和A 的全部特征值;(2)求A 的行列式因子、不变因子和初等因子;(3)求A 的最小多项式,并计算I A A 236-+;(4)写出A 的Jordan 标准形。
二、(20分)设22?R 是实数域R 上全体22?实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。
(1)求22?R的维数,并写出其一组基;(2)设W 是全体22?实对称矩阵的集合,证明:W 是22?R的子空间,并写出W 的维数和一组基;(3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基;(4)给出22?R 上的线性变换T :22,)(?∈?+=R A A A A T T写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。
三、(20分)(1)设-=121312A ,求1A ,2A ,∞A ,F A ;(2)设nn ij C a A ?∈=)(,令ijji a n A ,*max ?=,证明:*是n n C ?上的矩阵范数并说明具有相容性;(3)证明:*2*1A A A n ≤≤。
四、(20分)已知矩阵-=100100011111A ,向量=2112b ,(1)求矩阵A 的QR 分解;(2)计算+A ;(3)用广义逆判断方程组b Ax =是否相容?若相容,求其通解;若不相容,求其极小最小二乘解。
五、(20分)(1)设矩阵=????? ??=15.025.011210,2223235t t B t t A ,其中t 为实数,问当t 满足什么条件时, B A >成立?(2)设n 阶Hermite 矩阵022121211>=A A A A A H,其中k k C A ?∈11,证明:0,012111122211>->-A A A A A H。
矩阵论真题讲解题(含解答)
![矩阵论真题讲解题(含解答)](https://img.taocdn.com/s3/m/93113fd37f1922791688e810.png)
2011年《矩阵论》习题解答 一、 掌握线性空间的定义及判断是否为线性空间。
二、 在4R 中有两组基,()()()()12341,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1αααα====()()()()12342,1,1,1,0,3,1,0,5,3,2,1,6,6,1,3ββββ=-===求 (1)由基1234,,,αααα到基1234,,,ββββ的过渡矩阵;(2)向量()1234,,,x ξξξξ=在基1234,,,ββββ之下的坐标;(3)在两组基下有相同坐标的非零向量。
解:(1)因为()()()12341234123420561336,,,,,,,,,1121113C ββββαααααααα⎛⎫ ⎪ ⎪== ⎪- ⎪⎝⎭ 所以由基123,,,αααα到基123,,,ββββ的过渡矩阵20561********13C ⎛⎫ ⎪⎪= ⎪- ⎪⎝⎭(2) ()()()112211234123412343344,,,,,,,,,x C ξξξξξξξξααααββββξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以向量()1,0,1,0在基1234,,,ββββ之下的坐标为12134C ξξξξ-⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭或解 非齐次线性方程组的解11223344k k C k k ξξξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)由 (2)式有112213344C ξξξξξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则有()12340C E ξξξξ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭,该方程组的通解为()1,1,1,1Tk -,对两个基有相同坐标的非零向量为()1234k x xx x ++-,k 非零常数。
二、已知线性空间V 是矩阵空间22R ⨯,(1)证明:123410010000,,00001001E E E E ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦是V 的一组基;(2) 求向量1223A ⎡⎤=⎢⎥⎣⎦在基1234,,,E E E E 下的坐标。
矩阵论试卷及答案(2011A)
![矩阵论试卷及答案(2011A)](https://img.taocdn.com/s3/m/99a974bed1f34693daef3e59.png)
三(20分)设
(1) 证明: 是 的线性子空间,并求 的基和维数;
(2) 在 中定义变换 ,其中 为 的伴随矩阵, 证明: 为线性变换;
(3) 求 在(1)中所取基下的矩阵表示;
(4) 求(2)中线性变换 的值域 和核 ,并确定它们的维数.
(1)因为 ,则 非空。对任意 都有 则 是 的子空间.
(iii)写出 的Jordan标准形;
(2)设 ,试问A和B是否相似?并说明原因。
(1) , ;………5分
行列式因子
不变因子
初等因子 ……...8分
A的Jordan标准形为 ……..3分
(2)矩阵A,B的行列式因子均为 , A,B相似.
………4分
或A,B 的特征值均为-1和2,有两个互异的特征值,所以A,B均相似于 ,所以,A,B相似。
………3分
共5页第5页
五(20分)(1)设 , .
(i)求A的奇异值分解;
(ii)计算广义逆矩阵 ;
(iii)用广义逆矩阵判定线性方程组 是否相容。若相容,求其通解;若不相容,求其极小最小二乘解;
(2)设 ,判定矩阵级数 是否收敛。若收敛,求其和。
(1)(i) , 的奇异值为 , 对应于特征值3和2的标准正交特征向量为 , 对应于特征值3和2,0的标准正交特征向量分别为 , ,则 的奇异值分解为
Ni南京航空航天大学2010级硕士研究生
共5页第1页
2010~ 2011学年第1学期《矩阵论》课程考试A卷答案
考试日期:2011年1月12日,课程编号:A000003,命题教师:阅卷教师:
学院专业学号姓名成绩
一(20分)(1)设 。
(i)求 的特征多项式和 的全部特征值;
矩阵论试题(2011)精选全文完整版
![矩阵论试题(2011)精选全文完整版](https://img.taocdn.com/s3/m/e3e053f1dc88d0d233d4b14e852458fb770b3821.png)
可编辑修改精选全文完整版矩阵论试题(2011)一.(18分)填空:设.1111,0910⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=B A 1. A -B 的Jordan 标准形为J =2. 是否可将A 看作线性空间V 2中某两个基之间的过渡矩阵( )。
3. 是否可将B 看作欧式空间V 2中某个基的度量矩阵。
( )4. ()p vec B =( ),其中+∞<≤p 1。
5 .若常数k 使得kA 为收敛矩阵,则k 应满足的条件是( )。
6. A ⊗B 的全体特征值是( )。
7. =⊗2BA ( )。
8. B 的两个不同秩的{1}-逆为⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=)1()1(,B B 。
二.(10分)设n m C A ⨯∈,对于矩阵的2-范数2A 和F -范数F A ,定义实数222F A A A +=,(任意n m C A ⨯∈) 验证A 是n m C ⨯中的矩阵范数,且与向量的2-范数相容。
三.(15分)已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=011)0(,0)(,11120211133x e e t b A t t 。
1. 求At e ;2. 用矩阵函数方法求微分方程)()()(t b t Ax t x dtd+=满足初始条件x (0) 的解。
四.(10分)用Householder 变换求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4021030143010021A 的QR 分解。
五.(10分)用Gerschgorin 定理隔离矩阵⎪⎪⎪⎭⎫⎝⎛=i A 116864120的特征值。
(要求画图表示)六. (15分)已知⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=3131,1212010121211010b A 。
1. 求A 的满秩分解;2. 求A +;3. 用广义逆矩阵方法判断线性方程组 Ax =b 是否有解;4. 求线性方程组Ax =b 的极小范数解,或者极小范数最小二乘解x 0。
(要求指出所求的是哪种解)七.(15分)已知欧式空间R 2⨯2 的子空间,0032414321⎭⎬⎫⎩⎨⎧=-=-⎪⎪⎭⎫ ⎝⎛==x x x x x x x x X V R 2⨯2中的内积为,,),(222112112121⎪⎪⎭⎫ ⎝⎛==∑∑==a a a a A b a B A ij i j ij ,22211211⎪⎪⎭⎫ ⎝⎛=b b b b B V 中的线性变换为T (X )=XP +XT , 任意X ∈V ,.0110⎪⎭⎫⎝⎛=P 1. 给出子空间V 的一个标准正交基; 2. 验证T 是V 中的对称变换;3. 求V 的一个标准正交基,使T 在该基下的矩阵为对角矩阵.八. (7分) 设线性空间V n 的线性变换T 在基n x x x ,,,21 下的矩阵为A ,T e 表示V n 的单位变换,证明:存在x 0≠0,使得T (x 0)=(T e -T )(x 0)的充要条件是21=λ为A 的特征值.矩阵论试题(07,12)一.(18分)填空:1. 矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=2101120100102201A 的Jordan 标准形为J =2. 设,4321,1001021001201001⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=x A 则⎪⎩⎪⎨⎧===∞Ax A A F 2 3. 若A 是正交矩阵,则cos(πA )=4. 设n m C A ⨯∈,A +是A 的Moore -Penrose 逆,则(-2A , A )+=5. 设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--=300220111,4221B A ,则A ⊗B +I 2⊗I 3的全体特征值是( )。
南京航空航天大学2007-2014硕士研究生矩阵论matrixTheory试题
![南京航空航天大学2007-2014硕士研究生矩阵论matrixTheory试题](https://img.taocdn.com/s3/m/e677c5f8102de2bd96058852.png)
2 3 4 A 4 6 8 6 7 8 。 一(20 分) (1)设
2010 ~ 2011 学年《矩阵论》 课程考试 A 卷
(i)求 A 的特征多项式和 A 的全部特征值; (ii)求 A 的行列式因子,不变因子和初等因子; (iii)写出 A 的 Jordan 标准形;
1 A* A2 A* (3)证明: n 。
1 1 1 1 A 0 0 0 0 四、 (20 分)已知矩阵
(1)求矩阵 A 的 QR 分解;
1 2 0 1 b 1 1 2 1 ,向量 ,
(2)计算 A ;
17 6 14 60 A , B 45 16 3 13 ,试问 A 和 B 是否相似?并说明 (2)设
原因。
2 1 A 1 2 3 1 ,求 A 1 , A 2 , A , A F ; 二(20 分) (1)设
(3)用广义逆判断方程组 Ax b 是否相容?若相容,求其通解;若不相容,求其极小最小二乘解。
五、 (20 分)
(1)设矩阵
问当 t 满足什么条件时, A B 成立?
5 3 2 0 1 A 3 2 t , B 1 1 2 t 2 2 0 .5 t
五(20 分)设
A ( a ij )
为 n 阶 Hermite 矩阵,证明:
3
存在唯一 Hermite 矩阵 B 使得 A B ;
2
(2)
(3) 如果 A 0 ,则 tr ( A)tr ( A ) n 。
1
如果 A 0 ,则 tr ( A ) (tr ( A)) ;
2
南航07-14矩阵论试卷
![南航07-14矩阵论试卷](https://img.taocdn.com/s3/m/08a5c2194a7302768e993963.png)
南京航空航天大学07-14硕士研究生矩阵论试题2007 ~ 2008学年《矩阵论》 课程考试A 卷一、(20分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛-----=111322211A , (1)求A 的特征多项式和A 的全部特征值; (2)求A 的行列式因子、不变因子和初等因子;(3)求A 的最小多项式,并计算I A A 236-+;(4)写出A 的Jordan 标准形。
二、(20分)设22⨯R 是实数域R 上全体22⨯实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。
(1)求22⨯R的维数,并写出其一组基;(2)设W 是全体22⨯实对称矩阵的集合, 证明:W 是22⨯R的子空间,并写出W 的维数和一组基;(3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基;(4)给出22⨯R 上的线性变换T : 22,)(⨯∈∀+=R A A A A T T写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。
三、(20分)(1)设⎪⎪⎭⎫⎝⎛-=121312A ,求1A ,2A ,∞A ,F A ; (2)设nn ij C a A ⨯∈=)(,令ijji a n A ,*max ⋅=,证明:*是n n C ⨯上的矩阵范数并说明具有相容性;(3)证明:*2*1A A A n ≤≤。
四、(20分)已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=100100011111A ,向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=2112b , (1)求矩阵A 的QR 分解;(2)计算+A ;(3)用广义逆判断方程组b Ax =是否相容?若相容,求其通解;若不相容,求其极小最小二乘解。
五、(20分)(1)设矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=15.025.011210,2223235t t B t t A ,其中t 为实数,问当t 满足什么条件时, B A >成立?(2)设n 阶Hermite 矩阵022121211>⎪⎪⎭⎫⎝⎛=A A A A A H,其中k k C A ⨯∈11,证明:0,012111122211>->-A A A A A H。
南航线性代数期末考试试题2011-2012(2)A答案
![南航线性代数期末考试试题2011-2012(2)A答案](https://img.taocdn.com/s3/m/9cbfe801763231126edb117e.png)
T 1
五、证明题 1、证明:由条件知 A E 也为实对称矩阵, (A E)3 0 。-------(3 分) 从而 A E 0 , A E -------(5 分) T 2、证明 由 AB BT AT BA AB 知, AB 为实对称矩阵。------(1 分) 设 为 AB 的特征值,从而存在非零实向量 ξ 满足 ABξ ξ 。于是
又 E A 2 1 , 1 2 2, 3 1 ---------(6 分)
2
对于 1 2 2 时, r( 2 E A ) 2 ,所以只有一个线性无关的特征向量,不能与对角 形矩阵相似。-------------------(7 分) 2 1 1 1 2 1 1 1 0 0 1 a 1 1 2 a 2 三、 A 2 0 0 1 a --------(3 分) 1 4 a 4 2 a 1 1 2 3 a 1 0 0 0 (a 1)(a 2) 故 a 1或2 时 r ( A ) r ( A) ,方程组有解 当a 1 ---------(5 分)
Bξ T ABξ Bξ T ξ ξ T Bξ 。------(3 分)
T 由于 A, B 都是正定的, Bξ 0 , Bξ ABξ 0 ,ξ T Bξ 0 ,从而 0 。由于 AB 且 故 的特征值都是正数,故 AB 也正定。------(5 分)
1 7、-4; 。 6
二、计算题
矩阵论试卷(2012A)答案(1[1].5)
![矩阵论试卷(2012A)答案(1[1].5)](https://img.taocdn.com/s3/m/a30b5e8571fe910ef12df86e.png)
2
17 分
⇒ 由(1)的证明知,“=”成立时,有 A 酉相似于一对角阵,根据定理 4.5.2,A 为
正规阵 20 分
2× 2
三.(1) 对任意 X1 , X 2 ∈ W , k ∈ R, 都有 X1 + X 2 ∈ W , kX1 ∈ W , 所以, W 是 R ⎛ x11 线 性 子 空 间 , 设 X =⎜ ⎜x ⎝ 21 ⎛ x11 X =⎜ ⎜x ⎝ 21 0 ⎞ ⎟, x11 + x21 ⎟ ⎠
的
x12 ⎞ ⎟ ∈ W , 因 为 AX = XA, 所 以 , x22 ⎟ ⎠
⎛1 0⎞ ⎛0 0⎞ 5分 W 的一组基为 X1 = ⎜ ⎟ , X = ⎜ 2 ⎜0 1⎟ ⎜1 1 ⎟ ⎟, 维数是 2. ⎝ ⎠ ⎝ ⎠ ( 2 ) 对 任 意 X1 , X 2 ∈ W , k ∈ R, 都 有 T ( X 1 + X 2 ) = T ( X1 ) + T ( X 2 ) , 9分 T ( kX1 ) = kT ( X1 ) ,所以, T 为线性变换 ⎛1 0⎞ ⎛0 0⎞ (3)对于 W 的一组基为 X1 = ⎜ ⎜0 1⎟ ⎟, X 2 = ⎜ ⎜1 1 ⎟ ⎟, 有: ⎝ ⎠ ⎝ ⎠ ⎛ 0 0⎞ ⎛ − 1 0⎞ T ( X 1) = ⎜ ⎜ 0 0⎟ ⎟ = 0X1 + 0 X2 , T ( X 2 ) = ⎜ ⎜ 2 1⎟ ⎟ = −1 X1 + 2 X 2 , ⎝ ⎠ ⎝ ⎠ ⎛ 0 − 1⎞ ⎛ 0 −1⎞ T ( X 1 , X 2 ) = ( X 1 , X 2 )⎜ ⎜0 2 ⎟ ⎟ , T 在(1)中所取基下的矩阵是 A = ⎜ ⎜0 2 ⎟ ⎟ 14 分 ⎝ ⎠ ⎝ ⎠ ⎛1 0⎞ ⎛0 0⎞ (4)对于 W 的一组基为 X1 = ⎜ ⎜0 1⎟ ⎟, X 2 = ⎜ ⎜1 1 ⎟ ⎟, ⎝ ⎠ ⎝ ⎠ ⎛ − b 0⎞ ⎛ 0 0⎞ 若 T ( aX 1 + bX 2 ) = ⎜ ⎟ ⎜ 2b b ⎟ ⎟=⎜ ⎜ ⎟ ,则有: b = 0 , ⎝ ⎠ ⎝ 0 0⎠ 所以, Ker (T ) = {kI2 : k ∈ R )} ,维数为 1, 17 分 ⎛ −1 0⎞ R (T ) = {T ( X ) : X ∈ W } = span{T ( X 1 ), T ( X 2 )} = {k ⎜ ⎜ 2 1⎟ ⎟ : k ∈ R} , ⎝ ⎠
南航矩阵论考试试题
![南航矩阵论考试试题](https://img.taocdn.com/s3/m/20bdae8f0408763231126edb6f1aff00bed5701a.png)
南航矩阵论考试试题南航矩阵论考试试题南航矩阵论考试是一门重要的数学课程,旨在培养学生的逻辑思维和解决问题的能力。
本文将介绍一些典型的南航矩阵论考试试题,帮助读者更好地理解这门课程的内容和要求。
一、基础知识部分1. 请解释矩阵的定义和基本性质。
矩阵是由数个数按矩形排列而成的表格。
它的定义包括行数和列数两个维度,记作m×n。
矩阵有很多基本性质,如加法、数乘、转置等。
矩阵的加法满足交换律和结合律,数乘满足分配律。
矩阵的转置是将矩阵的行和列互换得到的新矩阵。
2. 什么是方阵和单位矩阵?方阵是行数等于列数的矩阵。
单位矩阵是一个对角线上全为1,其余元素全为0的方阵。
单位矩阵在矩阵运算中起到了重要的作用,类似于数学中的“1”。
二、矩阵运算部分1. 请计算以下矩阵的和:A = [1 2 3; 4 5 6],B = [7 8 9; 10 11 12]。
矩阵的和等于对应位置元素相加得到的新矩阵。
根据题目给出的矩阵,可以计算得到A + B = [8 10 12; 14 16 18]。
2. 请计算以下矩阵的积:C = [1 2; 3 4],D = [5 6; 7 8]。
矩阵的乘法需要注意行列对应元素的乘积。
根据题目给出的矩阵,可以计算得到C × D = [19 22; 43 50]。
三、线性方程组部分1. 请解以下线性方程组:2x + 3y = 8,4x - 5y = 7。
线性方程组可以转化为矩阵的形式,即AX = B,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵。
根据题目给出的线性方程组,可以得到矩阵形式为:[2 3] [x] [8][4 -5] [y] = [7]通过矩阵的逆运算,可以解得x = 3,y = 2。
2. 请解以下线性方程组:x + 2y + 3z = 6,2x - y + z = 1,3x + 4y + 5z = 10。
同样地,将线性方程组转化为矩阵形式:[1 2 3] [x] [6][2 -1 1] [y] = [1][3 4 5] [z] [10]通过矩阵的逆运算,可以解得x = 1,y = 2,z = 1。
南京航空航天大学07-08矩阵论答案(B)
![南京航空航天大学07-08矩阵论答案(B)](https://img.taocdn.com/s3/m/73c1d765783e0912a2162aec.png)
∞
= 5; A
= 23 ;
T 1 2
∵ λ ( A A) = {3, 5,15} , ∴ A 2 = [λmax ( A A)] = 15 。
的特征向量, (2)设 x ∈ C 是 A 相应于特征值 λ 的特征向量,∴ Ax = λ x , x ≠ 0 , )
n
两 边 取 矩 阵 范 数 导 出 的 C 上 向 量 范 数 可 得 : λ x = λ x = Ax ≤ A x ,
Ik
0 , In−k
使得 PAP
H
A11 = 0
=B, A22 − A A A12 0
H 12 −1 11
H − ∵ A11 > 0, A22 − A12 A111 A12 > 0,∴ B > 0, 从而有 A > 0 。
5 ∆ 1 = 5 > 0, ∆ 2 = 1 > 0 , ∆ 3 = A − B = 1 − t 2 > 0 4
即−
2 2 成立。 <t< 时 A > B 成立。 5 5
H
矩阵, (2)∵ A 是 Hermite 矩阵,∴ 存在酉矩阵 U ,使得 U AU = diag{λ1 , λ2 ,⋯ , λn } , ) 由此可知: 由此可知: λmin ( A) I ≤ A ≤ λmax ( A) I ,
共 3 页 ∴ ∀x ∈ C n , x ≠ 0 ,有 λmin ( A) ≤ R( x ) =
−1
第 3 页
x H Ax ≤ λmax ( A) 。 xH x
− 存在,构造可逆矩阵 (3)∵ A11 > 0,∴ A11 存在,构造可逆矩阵 P = ) − A H A− 1 12 11
南京航空航天大学2009_矩阵论考试考题及答案
![南京航空航天大学2009_矩阵论考试考题及答案](https://img.taocdn.com/s3/m/70b4ad230066f5335a81217d.png)
二、 (1பைடு நூலகம் 分)设矩阵
考试试卷 A
(考试时间:2009 年 11 月?日 晚 7:00-9:00 考试方式:闭卷 A)
成绩:
一、 (15 分)在 R 4 中有两组基,
1 0 2 A 0 1 1 , 0 1 0
计算: 2 A8 3 A5 A4 A2 4E 。
1 1 4 4
(3) , 因 容 易 验 证 AA b b , 故 方 程 组 Ax b 相 容 , 最 小 范 数 解 为
1 1 3 3 y1 0 1 1 x A b E2 A A y 3 1 3 y 2 34 0 3 3 3 1 y3 4
个基有相同坐标的非零向量为 k x1 x2 x3 x4 , k 非零常数。
(5 分)
共 4 页,第 1 页
学院 年级 班 学号 姓名 ------------------------------线--------------------------------- ---------- -----------------------封--------------------------------------- --------------------------------------密--------------------------------
(3),判断方程组 Ax b 是否相容?若相容,求其最小范数解;若不相容,求其极小最小二乘 解。(4 分)
解:
2 0 0 8 1 0 0 4 行 (1): A 0 2 8 0 0 1 4 0 ,故矩阵 A 的满秩分解为: 2 2 8 8 0 0 0 0 2 0 2 0 1 0 0 4 1 0 0 4 A 0 2 CD, C 0 2 , D 。 0 1 4 0 0 1 4 0 2 2 2 2
南航矩阵论第一章作业答案与提示
![南航矩阵论第一章作业答案与提示](https://img.taocdn.com/s3/m/948f5a77ddccda38376bafc1.png)
矩阵论作业答案与提示第一章(P41-P44)8提示:设044332211=+++ααααx x x x ,解得04321====x x x x ,因此4321,,,αααα线性无关.10(1)提示:考虑n 阶反对称矩阵构成的线性空间V .设ij α是处的元素为1,处的元素为-1,而其余元素均为零的n 阶反对称矩阵(),则),(j i ),(i j j i <n n n 2n ,123112,,,,,,,−ααααL L L A ij 线性无关.又若V a α∈=)(,则有∑≤<≤=nj i ijija A 1α,即A 可以由n n n n ,1223112,,,,,,,−αααααL L L 线性表示,因此.2)1(12)2()1()dim(−=+++−+−=n n n n V L 同理,若V 是n 阶对称矩阵构成的线性空间,则.2)1()dim(+=n n V 12提示:设A x x x x =+++44332211αααα,解得1,1,3,24321−===−=x x x x ,因此A 在基4321,,,αααα下的坐标是.)1,1,3,2(T −−18提示:(1)对任意P ,,∈∈k W Y X ,直接验证W kX Y X ∈+,.(2)在中取向量W )(i i e diag =α,其中表示第i 个分量为1,其余分量为零的n 维行向量,,则i e n i ,,2,1L =n ααα,,,21L 线性无关.又若,则由W x X n n ij ∈=×)(XA AX =得到,即)(0j i x ij ≠=),,,(2211nn x x x diag X L =.于是∑==ni i ii x X 1α,即X 可由n ααα,,,21L 线性表示.因此n ααα,,,21L 是的一组基,而.W n W =)dim(19(1)提示:设},{},,{212211ββααspan V span V ==,则},,,{212121ββααspan V V =+.由于121,,βαα是向量组2121,,,ββαα的极大线性无关组,所以,而3)dim(21=+V V 121,,βαα是21V V +的一组基.接下来,求的维数和基.设21V V I 21V V I ∈α,则有24132211ββαααk k k k −−=+=,从而024132211=+++ββααk k k k .解这个向量方程得到:,,3,4,4321k k k k k k k k =−=−==其中k 是任意常数.此时,)4,3,2,5()3()4(2121T k k k −−−=−=−=ββααα即.于是})4,3,2,5{(21T span V V −−−=I 1)dim(21=V V I ,而是的一组基. T )4,3,2,5(−−−21V V I 21提示:设,)1,,1,1(,)1,1,0,,0(,)0,,1,1,0(,)0,,0,1,1(121Tn T n T T L L L L =−=−=−=−αααα则},,,{},{},,,,{112121211n n n n span V V span V span V ααααααα−−=+==L L .由于n n ααα,,,11−L 线性无关,所以它们构成n R 的一组基,从而.注意到,于是. n R V V =+21}0{21=V V I n R V V =+⋅2124提示:在V 中取向量,1100,0010,0011321⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=ααα 则321,,ααα线性无关,且321αααc b a c c b a a ++=⎟⎟⎠⎞⎜⎜⎝⎛+, 从而,而3)dim(=V 321,,ααα是V 的一组基.定义映射如下:3:R V →σ,)(⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛+c b a c c b a a σ 由于是向量在基T c b a ),,(⎟⎟⎠⎞⎜⎜⎝⎛+=c c b a a α321,,ααα下的坐标,所以σ是V 到3R 的同构映射.27(1)提示:首先将321,,ααα化为标准正交向量组,得到.)2,1,1,2(101,)2,3,3,2(261,)1,2,2,1(101321T T T −−−=−=−=εεε其次,解方程组,求得基础解系,将其单位化,得0321===x x x TT T εεεT )3,2,2,3(4−=αT )3,2,2,3(2614−=ε,则4321,,,εεεε是V 的标准正交基.最后,直接计算,得到311010εεα+=. (2)解答:212321362),31(4103,26,21εεαεεε+=−===x x .。
矩阵论考试题和答案(详细)
![矩阵论考试题和答案(详细)](https://img.taocdn.com/s3/m/1559160f7cd184254b35354a.png)
页
第 1 页
课程编号: A000003 考试日期: 2009 年 1 月 13 日
λ I − A = λ (λ + 1)2
---------------3 ----------------3 -------------6 --------------2 ---------------2
= P −1 AP 满足相容矩阵范数的四个条件。
共 4 页
第 2 页
三、 (20 分)
(1) A 的满秩分解为 1 0 − 1 0 1 A = 0 1 0 1 0 − 1 0
A + = C T ( CC
T
-----------------5
1 4 0 1 − 4
(tr ( A))2 = (λ1 + L + λn ) 2 ≥ λ12 + L + λn2 = tr ( A2 ) 。 ---------------4
(3)因为 A > 0 ,则 A 可逆,并且 A−1 > 0 。由 I = AA−1 ,可得
n = tr ( I ) = tr ( AA−1 ) = tr ( AH A−1 ) ≤ tr ( AH A)tr ( A− H A−1 ) 2 = tr ( A2 )tr ( A−2 ) 2
由(2)知 tr ( A2 ) ≤ tr ( A), tr ( A−2 ) ≤ tr ( A−1 ) ,因此n ≤ tr ( A)tr ( A−1 ) 。 -则存在与 . 相容的向量范数 . a ,从而
| λ | x a = λ x a = Ax a ≤ A x a , | λ −1 | x a ≤ A−1 x