史密斯圆图介绍
史密斯圆图的原理及应用
史密斯圆图的原理及应用一、史密斯圆图的概述史密斯圆图(Smith Chart)是一种常用的电路设计工具,广泛应用于微波电路的设计与分析。
它可以通过坐标变换的方式将复抗匹配器的阻抗表示在一个圆图上,方便工程师快速计算和优化电路。
二、史密斯圆图的原理史密斯圆图的构建基于复平面的坐标转换技术,将复抗匹配器的阻抗表示在一个单位圆上。
具体步骤如下:1.将复抗匹配器的阻抗表示为复平面上的点,以阻抗的实部和虚部作为横纵坐标。
2.将复抗匹配器的阻抗归一化到一个标准的单位圆上,使得阻抗归一化到圆上的点表示为单位圆上的点。
3.在单位圆上绘制一系列等效电阻德曼圆,并标记常用的阻抗值。
这些等效电阻德曼圆的半径是固定的,通过变换得到的阻抗点在不同等效电阻德曼圆上的位置。
4.通过在复平面上作圆的平移和旋转操作,将复抗匹配器的阻抗点转换成单位圆上的点。
5.将复抗匹配器转换后的阻抗点与等效电阻德曼圆上的点连接,得到史密斯圆图。
三、史密斯圆图的应用1. 阻抗匹配•利用史密斯圆图可以方便地进行阻抗匹配的计算和设计。
通过在史密斯圆图上移动阻抗点,可以得到与之匹配的负载阻抗或源阻抗。
工程师可以根据需要,选择合适的匹配器或变换线来实现阻抗的最大传输。
2. 反射系数的计算•史密斯圆图也可以方便地计算反射系数。
通过在史密斯圆图上读取阻抗点对应的反射系数,工程师可以快速了解电路中的反射情况,并根据需要进行相应的优化调整。
3. 变换线设计•史密斯圆图可以帮助工程师设计不同类型的变换线,如电阻性变换线、电容性变换线和电感性变换线。
通过在史密斯圆图上进行阻抗点的变换,可以得到满足特定要求的变换线参数。
4. 频率扫描分析•在频率扫描分析中,史密斯圆图可以帮助工程师分析电路在不同频率下的阻抗变化情况。
通过在史密斯圆图上绘制多个频率下的阻抗点,可以得到电路的频率响应特性。
5. 负载匹配•史密斯圆图也可以应用于负载匹配。
通过在史密斯圆图上绘制负载阻抗曲线和源阻抗曲线,可以找到使得负载与源之间产生最小干扰的最佳匹配点。
Smith圆图概述
一、Smith圆图概述Smith圆图(Smith chart)是用来分析传输线匹配问题的有效方法。
它具有概念明晰、求解直观、精度高等特点,因而被广泛应用于射频工程中分析传输线问题。
高频与微波电路设计中,最基本且重要的课题为阻抗匹配。
透过阻抗匹配的运用与设计,可以使信号有效率的由电源端传送到负载端。
现阶段,阻抗匹配须借重史密斯图的运用才能快速、有效的达成。
随着时间的流转,阻抗匹配的方式也由过去在史密斯图上以手绘计算结果,转而经由计算机化的史密斯图达成,其优点在于:(1)免除复杂计算过程中可能产生的人为错误,(2)透过计算机化史密斯图的运用可以进一步达到宽频带阻抗匹配的目的。
电子SMITH圆图软件能将计算结果以图形和数据并行输出,处理包括复数的矩阵运算。
且拥有良好的用户界面以及函数本身会绘制图形、自动选取坐标刻度等优点。
本设计即是利用vb6.0针对阻抗匹配设计的计算机化史密斯图。
其优点在于图面功能非常清楚,并且运用可视化的安排,使匹配电路直接显示,使设计者可以轻松的了解如何进行阻抗匹配工作也同时可以观察加入各项组件后的输入阻抗变化情形。
二、Smith圆图结构阻抗圆导纳圆阻抗圆导纳圆反射系数圆软件界面电抗圆电阻圆三、Smith圆图基本原理史密斯圆图是由很多圆周交织在一起的一个图。
正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。
史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。
反射系数也可以从数学上定义为单端口散射参数,即s11。
史密斯圆图是通过验证阻抗匹配的负载产生的。
这里我们不直接考虑阻抗,而是用反射系数ΓL,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时ΓL更加有用。
我们知道反射系数定义为反射波电压与入射波电压之比:图3. 负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。
反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数。
Smith 圆图—原理与分析
Smith 圆图—原理与分析
Smith 圆图是一种用于分析电路中的匹配网络的工具。
它由美国电气工程师Phillip H. Smith于1950年提出,并被广泛应用于射频电路设计和天线设计领域。
Smith 圆图的原理基于复阻抗的概念。
在Smith 圆图中,电路中的每个点都可
以表示为一个复阻抗,即由实部和虚部组成的复数。
这样,整个电路可以表示为一个复阻抗的集合。
Smith 圆图将复阻抗表示为一个圆形图形,其中圆心表示纯电阻,圆的边界表
示纯电抗。
圆的半径表示电阻的大小,而圆的位置表示电抗的大小和相位。
通过在Smith 圆图上绘制电路中的复阻抗,可以直观地分析电路的匹配情况。
当电路的复阻抗位于Smith 圆图的边界上时,表示电路是纯电抗的,即无功。
当电路的复阻抗位于Smith 圆图的圆心时,表示电路是纯电阻的,即有功。
通过分析Smith 圆图上的复阻抗,可以确定电路的匹配情况。
匹配是指电路中
的负载阻抗与发射源或传输线的特性阻抗相匹配。
在Smith 圆图中,当负载阻抗与特性阻抗相匹配时,负载阻抗位于Smith 圆图的边界上,此时电路的反射系数为零,表示无反射。
Smith 圆图还可以用于计算电路中的反射系数、驻波比、传输线的特性阻抗等
参数。
通过在Smith 圆图上测量复阻抗的位置,可以直接读取这些参数的数值。
总之,Smith 圆图是一种简单直观的工具,可以帮助工程师分析电路中的匹配
情况,并优化电路设计。
它在射频电路设计和天线设计中具有重要的应用价值。
史密斯圆图剖析
z点L 沿等Γ线旋转
20lg 20lg(|V |max / |V |min ) 0 (6)
2
电压驻波最小点距负载 | G | 1/ 3 圆
0.10m
0.2λ
0
zmin 1.55
以|V |m点in 沿ρ=2的圆反时针 (向负载)旋转0.2λ
0.5
zL
zL 1.55 j0.65
j0.65
例9 双导线的特性阻抗为250Ω,负载阻抗为500-j150Ω, 线长为4.8λ,求输入导纳。
解:K 1 1 0.4 s 2.5
zin r 0.4
找到A点
逆时针方向旋转
电刻度0.2 得B点 zl 1.67 j1.04
Zl zlZc (1.67 j1.04) 50 (83.5 j52)
例7:一传输线特性阻抗Zc为50Ω,终端负载Zl=(100-j75)Ω, 问:在距终端多么远处向负载看去输入阻抗为Zin=50+jX。
例3 在Z0为50Ω的无耗线上测得 VSWR为5,电压驻波最小点 出现在距负载λ/3处,求负 载阻抗值。
解:电压驻波最小点:
rmin K 1/VSWR 1/ 5 0.2 在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的 圆反时针旋转转λ/3得到 zL 0.77 j1.48 , 故得负载阻抗为 ZL 38.5 j74()
GIm GR x
2
1 x
2
GIm
上式为归一化电抗的轨迹
方程,当x等于常数时,
GRe
其轨迹为一簇圆弧;
圆心坐标 1, 1
x
在 Gre 的1直线上
半径 1
x
x =∞;圆心(1,0)半径=0
x =+1;圆心(1,1)半径=1
史密斯圆图
史密斯圆图
史密斯圆图(Smith chart)是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。
史密斯图的基本原理在于以下的算式:
反射系数Γ(reflection coefficient)和阻抗z L均为复数,z L是归一化负载值,即z L = ZL/ Z0。
ZL是电路的负载值,Z0是传输线的特性阻抗值,通常使用50Ω。
这是一双线性变换,属于复变函数中的保角变换。
它将z
复平面上实部r=常数和虚部x=常数的两族正交直线变换为Γ
复平面上的正交圆族。
该图表是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。
史密斯也许不是图表的第一位发明者,一位名为Kurakawa的日本工程师声称早于其一年发明了这种图表。
史密斯曾说过,“在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣。
”
Smith 圆图
图表中的圆形线代表阻抗的实部,即等电阻圆;中间的横线与向上和向下散出的弧线则代表阻抗的虚部,即等电抗圆。
上半圆是正值,下半圆是负值。
在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。
有一些图表是以导纳值(admitt ance)来表示,把上面的阻抗圆图旋转180度即可导纳圆图。
自从有了计算机后,此种圆图的使用率随之而下,但仍常用来表示特定的资料。
对于就读电磁学及微波电子学的学生来说,在解决课本问题仍然很实用,因此史密斯图至今仍是重要的教学工具。
在学术论文里,结果也常会以史密斯图来表示。
史密斯圆图
例3 在Z0为50Ω 的无耗线上测得 VSWR为5,电压驻波最小点
出现在距负载λ /3处,求负
载阻抗值。 解:电压驻波最小点:
rmin = K = 1/ VSWR = 1/ 5 = 0.2
在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的
圆反时针旋转转λ /3得到 zL 0.77 j1.48 , 故得负载阻抗为 Z 38.5 j 74() L
解: / 2 0.25m
f 3 108 / 0.5 600(MHz)
20lg 20lg(| V |max / | V |min ) 0 (6)
2
电压驻波最小点距负载 0.10m 0.2λ 以| V |min 点沿ρ=2的圆反 时针(向负载)旋转0.2λ
0.028 j 0.15
yL
1.18
0.25
对应向电源波长数0.028
0.45
zL
yL 点沿等Γ线顺
时针旋转0.3λ,得
yin
j 0.6
j 0.9
0.328
?
yin 1.18 j 0.9
Gr
复平面上的反射系数圆
ZL
是一簇|G|≼1同心圆。
r圆
r 1 2 GRe GIm 1 r 1 r
2
2
上式为归一化电阻的轨迹方程, 当r等于常数时,其轨迹为一簇圆;
圆心坐标 r ,0 1 r 半径
GIm
1 1 r
8
例2 已知: Z 0 50
Z L 100 j50
0.24
ZL
求:距离负载0.24波长处的Zin.
解
ZL zL 2 j Z0
微波技术-史密斯圆图
具体应用
行阻抗匹配的设计和调整
包括确定匹配用短路支节的长度
和接入位置。
例2.5-1 已知: Z0 = 50W
Z L = 100 + j 50W
线上驻波比、
线上电压分布状态。
骣 1÷ 圆心坐标 ç1, ÷ 在 GRe = 1 的直线上 ç ç x÷ 桫
GRe
半径
1 x
x =∞:圆心(1,0)半径=0
x =+1:圆心(1,1)半径=1 x =-1:圆心(1,-1)半径=1
x =0:圆心(1, ∞ )半径= ∞
c.等驻波比圆
VSWR =
1+ G 1- G
驻波比:对应于反射系数也是一簇同心圆 (1,∞)
GIm
半径
1 1+ r
GRe
r =∞:圆心(1,0) 半径=0 r =1:圆心(0.5,0)半径=0.5
r =0:圆心(0,0) 半径=1
1 x 圆 (G - 1)2 + 骣 - 1 鼢= 骣 珑 Im G 鼢 珑 Re 珑 桫 x鼢 桫 x
2
2
GIm
为归一化电抗的轨迹方程, 当 x 等于常数时,其轨 迹为一簇圆弧;
) 的大圆周上,
r = 0,
开路点
z = jx
对应传输线上为纯驻波状态。 纯电抗圆与正实轴的交点A
G= 1,VSWR ,z
对应电压波腹点
短路点
电抗圆与负实轴的交点B G= - 1,VSWR , z = 0 对应电压波节点
Smith圆图简介
Smith圆图简介对于射频人员来讲,做的最多的,可能就是匹配。
而做匹配,最常用到的就是Smith圆图。
当年在学校的时候,觉着Smith圆图好难;工作久了,再加上软件的帮助,觉着Smith圆图还是比较好理解的。
要用好Smith圆图,关键是熟悉它的构成。
主要包括等电阻圆,等电导圆,等Q线,等电抗圆,等电纳圆。
通常匹配的话,一般都采用电感和电容,所以用的最多的,是等电阻圆和等电导圆,如图1和图2所示。
图 1 等电阻圆图 2 等电导圆Smith圆图的上半部分代表感抗,下半部分代表容抗。
在等电阻圆上顺时针旋转,相当于串联电感;逆时针旋转,相当于串联电容。
在等电导圆上顺时针旋转,相当于并联电容;逆时针旋转,相当于并联电感(我一般这样记忆,从圆图中心点,沿着等电阻圆往上旋转为顺时针旋转,而一般串联电路用电阻来标称阻值,且圆图上半部分为感抗,所以顺时针旋转时,相当于串联电感;同理,沿着等电导圆往上旋转为逆时针,一般并联电路用电导来表示,且圆图上半部分为感抗,所以沿电导圆逆时针旋转时,相当于并联电感)。
具体如图3所示。
图 3 串并联电容电感如果想设计宽带匹配电路的话(适合于源阻抗和负载阻抗不随频率变化的情况),就需要用到等Q线了,如图4所示。
Q值越低,也就是等Q线越接近圆图横轴,越容易设计出宽带匹配电路。
而且,沿着低等Q线,规划匹配路线,也会使得匹配电路里的值有较大的容差范围,减少调试难度。
图 4 等Q线了解了这些知识,在已知源阻抗和负载阻抗的情况下,在现有Smith圆图软件的帮助下,很容易就能设计出匹配电路。
注意,设计时,要遵循‘往前看,向后退’的原则。
如图5所示。
图 5 往前看,向后退原则。
(完整word版)smith史密斯圆图(个人总结),推荐文档
smith chart史密斯圆图总结史密斯圆图(Smith chart)是一款用于电机与电子工程学的圆图,是最著名和最广泛的用于求解传输线问题的图解技术。
主要用于传输线的阻抗匹配上。
一条传输线(transmission line)的电阻抗力(impedance)会随其长度而改变,要设计一套匹配(matching)的线路,需要通过不少繁复的计算程序,史密斯圆图的特点便是省却一些计算程序。
Smith圆图的构成:等反射系数圆、阻抗圆图、导纳圆图。
史密斯圆图的基础在于以下的算式Γ= (Z - 1)/(Z+ 1)Γ代表其线路的反射系数(reflection coefficient),即S-parameter里的S11,Z是归一负载值,即ZL / Z0。
当中,ZL是线路的负载值Z0是传输线的特征阻抗值,通常会使用50Ω。
圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。
圆形线代表等电阻圆,每个圆的圆心为1/(R+1),半径为R/(R+1).R为该圆上的点的电阻值。
中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为1/X,半径为1/X.由于反射系数是小于等于1的,所以在等电抗圆落在单位圆以外的部分没有意义。
当中向上发散的是正数,向下发散的是负数。
圆图最中间的点(Z=1+j0, Γ=0)代表一个已匹配(matched)的电阻数值(此ZL=Z0,即Z=1),同时其反射系数的值会是零。
圆图的边缘代表其反射系数的幅度是1,即100%反射。
在图边的数字代表反射系数的角度(0-180度)。
有一些圆图是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。
圆图中的每一点代表在该点阻抗下的反射系数。
该电的阻抗实部可以从该电所在的等电阻圆读出,虚部可以从该点所在的等电抗圆读出。
同时,该点到原点的距离为反射系数的绝对值,到原点的角度为反射系数的相位。
由反射系数可以得到电压驻波比和回波损耗。
smith圆图的原理和应用
Smith圆图的原理和应用1. 前言Smith圆图是一种用于分析和解决电路中匹配问题的有效工具。
它由英国电气工程师Philip H. Smith于1939年创造,被广泛应用于射频电路、微波电路和天线设计等领域。
本文将介绍Smith圆图的基本原理和其在电路设计中的应用。
2. Smith圆图的基本原理2.1 反射系数和阻抗的关系Smith圆图是基于反射系数和阻抗之间的关系来进行分析的。
在电路中,反射系数表示反射波与入射波之间的关系,它是一个复数,可以用幅值和相位角来表示。
而阻抗则表示电路的负载特性,是一个实数。
Smith圆图将反射系数和阻抗之间的关系以一种直观而又简洁的方式进行了可视化。
2.2 Smith圆图的表示方式Smith圆图以单位圆为基础,将纯虚轴表示为电阻为无穷大的点,将实轴表示为电抗为零的点。
反射系数的值可以通过在Smith圆图上找到相应的点来表示。
例如,反射系数为0时,点位于单位圆的中心,反射系数为1时,点位于单位圆的边缘。
3. Smith圆图的应用3.1 反射系数的测量Smith圆图可以用于测量电路中的反射系数。
通过将电路与信号源和负载连接,可以使用向电路中注入信号的方式来测量反射系数。
通过测量反射系数的幅值和相位角,并将其在Smith圆图上进行标记,可以得到电路的匹配情况。
3.2 阻抗匹配Smith圆图可以帮助我们进行阻抗匹配,即调整电路的参数,以使得电路的输入和输出阻抗相匹配。
在Smith圆图上,我们可以通过移动点的位置来调整电路的参数,直至反射系数最小化。
通过在Smith圆图上定位匹配的点,可以快速找到合适的参数设置。
3.3 确定失配的原因Smith圆图可以帮助我们确定电路中失配的原因。
当电路的反射系数不为零时,可以使用Smith圆图来定位反射点,并判断失配的原因。
例如,如果反射系数位于实轴上,则说明电路存在电抗失配;如果反射系数位于圆心,则说明电路存在电阻失配。
3.4 天线设计Smith圆图在天线设计中也有广泛的应用。
第3章 Smith圆图
量子力学中的波函数
电磁学中的麦克斯韦方程
光学中的干涉和衍射
量子力学中的薛定谔方程
确定化学键类型: 通过Smith圆图 可以确定分子中 的化学键类型, 如单键、双键和
三键等。
预测化学反应: Smith圆图可 以预测某些化 学反应能否发 生以及反应的 产物。
确定分子在分子中的排
添加文档副标题
目录
01.
02.
03.
04.
05.
06.
Smith圆图是一种用于表示复数平 面上的点的方法
Smith圆图是一种方便的图形化表 示方法,可以直观地展示复数的几 何意义
添加标题
添加标题
添加标题
添加标题
它通过极坐标形式将复数表示为点, 其中实部为极径,虚部为极角
在Smith圆图中,每个点都对应一 个唯一的复数,反之亦然
改进算法:优化 Smith圆图的算法, 提高计算效率和准 确性
拓展应用场景:将 Smith圆图应用于更 多场景,如数据分 析、可视化等领域
推广普及:加强 Smith圆图的推广和 普及工作,提高公众 认知度和应用水平
物理学:Smith圆图 可用于描述量子力学 中的波函数和角动量, 以及在量子计算中实 现量子门操作。
信号处理:Smith圆图 可用于分析信号的频率 和相位响应,以及在通 信系统中实现调制和解 调。
控制系统:Smith圆图 可用于分析和设计控制 系统,帮助工程师更好 地理解和优化系统的性 能。
直观性:Smith圆图以图形的方式表示了复数平面,使得数据的表示更加直观。
方便性:Smith圆图可以方便地表示复数的模和幅角,并且可以通过旋转和缩放等操 作来方便地观察和分析数据。
高效性:Smith圆图可以有效地利用空间,将多个复数数据以紧凑的方式表示在同一 个平面上。
史密斯圆图及应用课件
CONTENTS
目录
• 史密斯圆图简介 • 史密斯圆图的应用 • 如何绘制史密斯圆图 • 史密斯圆图的优缺点 • 史密斯圆图的发展趋势 • 史密斯圆图的实际应用案例
CHAPTER
01
史密斯圆图简介
史密斯圆图的起源
史密斯圆图起源于20世纪初,由英国 工程师罗伯特·史密斯(Robert Smith)发明。
THANKS
感谢观看
通过旋转和缩放史密斯圆图,可以方便地找到不同频率和阻抗条件下的匹配点。
史密斯圆图的特点
史密斯圆图具有直观、易用的 特点,使得阻抗匹配变得简单 快捷。
通过在史密斯圆图上旋转和缩 放,可以快速找到最佳的阻抗 匹配点,提高信号传输效率。
史密斯圆图不仅可以用于阻抗 匹配,还可以用于分析信号的 频率、相位等特性。
射电信号处理
史密斯圆图在射电天文学中用于射电信号的处理和分析,通过圆图可以直观地 了解射电信号的频率、幅度和相位特性,为后续的天体物理研究提供重要依据 。
在其他领域的应用
微波测量
史密斯圆图在微波测量领域中也有广泛应用,可以用于测量微波元件的性能参数 和传输特性。
电子工程
史密斯圆图在电子工程领域中常用于分析ቤተ መጻሕፍቲ ባይዱ络的阻抗特性和匹配问题,是电子工 程师必备的工具之一。
CHAPTER
02
史密斯圆图的应用
在通信系统中的应用
信号传输
史密斯圆图用于通信系统中信号的传 输,通过圆图可以方便地调整信号的 幅度和相位,确保信号在传输过程中 的质量。
阻抗匹配
史密斯圆图在通信系统中用于阻抗匹 配,通过调整电路元件的参数,使得 信号源和负载之间的阻抗达到最佳匹 配状态,提高信号传输效率。
史密斯圆图
r
,
0
处
,半径为
1 的等r圆方程。 1 r
圆心+半径
由于
r 1 r
1 1 r
1 ,故电阻圆始终和
r
1
直线相切。不同
的电阻对应不同的圆,将这一系列圆族描绘在反射系数复平面
内就构成等电阻圆,如下图所示。
'
r 1
0 0.5 1 2
r
r 1
r 1
"
'
r 1
1. 等反射系数圆图(等 圆)
对无耗线,有: (z) F e j(F 2 z) F e j ' j'' 2.4.5
由式可见,可以将反射系数表示在复平面上,极坐标系内。
故由(式2.4F.5)zz式FF 表11示可的知是,极当坐负标载内阻的抗圆z方F 程一在定复时平,面F内是是一一个个常圆数。,
1 x
2
2.4.11
这是Γ平面上的两个圆的方程。
(a)等电阻圆
'
r 1
r
2
''2
1 1 r
2
2.4.10
z 式(2.4.10)表明, 平面的等r直线映射为Γ平面的等r圆,
是一个以归一化阻抗实部为参变量,其圆心在在实轴上,点
r 1
机屏幕上,能够快速直观地显示出阻抗或导纳随频率变化的轨
迹。一个实用的史密斯圆图附于本书末。
史密斯圆图(阻抗圆图)中参数用归一化参数:
归一化输入阻抗 归一化负载阻抗
归一化特性阻抗
zi (z)
构成史密斯阻抗导纳圆图课件
比例尺的确定
根据实际需要,选择合适 的比例尺,以便更好地表 示阻抗导纳值。
数据点的选择
在选择数据点时,应尽量 选择具有代表性的数据点 ,以便更好地反映实际情 况。
04 史密斯阻抗导纳圆图的分 析方法
阻抗导纳的转换分析
阻抗导纳转换公式
通过阻抗导纳转换公式,将阻抗 转换为导纳,或将导纳转换为阻 抗,以便在圆图上进行表示和分 析。
在其他领域的应用
音频处理
史密斯阻抗导纳圆图可以用于音频处理中,通过阻抗和导纳的分析,可以对音频信号进行更好的处理和传输。
生物医学工程
在生物医学工程中,史密斯阻抗导纳圆图可以用于生物电信号的分析和处理。通过阻抗和导纳的测量和分析,可 以对生物电信号进行更好的理解和应用。
03 史密斯阻抗导纳圆图的绘 制方法
转换方法
介绍如何使用阻抗导纳转换公式 进行转换,并说明转换过程中需 要注意的事项和可能出现的误差 。
圆图上的阻抗导纳分析
圆图上的阻抗导纳表示
介绍如何在圆图上表示阻抗和导纳,包括实部和虚部的表示方法,以及在圆图上的位置和大小。
圆图上的阻抗导纳分析方法
介绍如何通过观察圆图上的阻抗和导纳,分析电路的频率响应、输入输出阻抗以及电路的稳定性等。
作用
史密斯阻抗导纳圆图主要用于分析和设计射频和微波电路, 如滤波器、匹配网络、放大器等,通过观察圆图上的点可以 快速了解电路的性能,并进行相应的调整和优化。
圆图的基本构成
01
02
03
04
实部轴
表示阻抗或导纳的实部,单位 为欧姆(Ω)。
虚部轴
表示阻抗或导纳的虚部,单位 为欧姆(Ω)。
圆心
表示纯实数或纯虚数的点,即 阻抗或导纳值为0的点。
史密斯圆图
9.旋转方向:圆图还注明了顺时针旋转为向始端(信号源端)方向移
动,逆时针旋转为向终端(负载端)方向移动。 10.
r 值的标注: r 值标注在纯电阻线上,开路点为 ,短路点为0,
匹配点为1。
11.X值的标注:标注在 1 大圆的内侧等X线与 1 大圆的交点处。
Zb zb Zc (105 j50)
作业:用Smith圆图完成以下作业
特性阻抗为 Z0 50 ,负载阻抗为Z L (50 j100) ,
l 0.2 ,求输入阻抗 Z in 。
1.等反射系数图
均匀无耗线上任一处的反射系数 ( z ) 可以表示为
( z) 2 e
j (2 2 z )
在极坐标中其曲线是一个以原点为圆心、 2 为半径的 圆。在一段终端接以某负载、无分支的无耗线上,其 的值由长线的特性阻抗 Z0 和负载阻抗 Z L 所决定,而沿 线各处的 2 与 是相同的,只是反射相位将随位置的 改变而改变,故称此圆为等反射系数图。因为反射系数 的模与驻波比 是一一对应的,故又称为等驻波比圆。
Smith圆图(极坐标圆图)
构成圆图的依据是长线理论中的一些基本公式(沿线Z坐标原点均选在终端)
Z in ( z ) 1 ( z ) Z (z) Z0 1 ( z)
L 1 2 Z 1 2
(z) 1 Z (z) (z) 1 Z
( z ) 2e
u
的直线上。圆心的纵坐标等于圆半径。故所有等 X 圆也全相切于点 (1,0)。
圆、等 将等 R X 圆绘制在同一复平面 u j v 上便得到如下所示的等 阻抗图。
史密斯圆图即为等反射系数圆与等阻抗圆的重叠图
史密斯圆图简介
史密斯圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。
在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。
Smith chart 就是其中最常用一种。
1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。
阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。
1.1 等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+ 其中00arctan(/)Lv u θ=ΓΓ。
图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000L j j z in u v in Z Z j e eZ Z θβ--Γ==Γ+Γ=Γ+ 其中220u v Γ=Γ+Γ,arctan(/)L v u θ=ΓΓ。
椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。
图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何用史密斯圆图进行阻抗匹配!!
----------------------------------------------------------------------------------------------
史密斯圆图红色的代表阻抗圆,蓝色的代表导纳圆!!
先以红色线为例!
圆中间水平线是纯阻抗线,如果有点落在该直线上,表示的是纯电阻!!
例如一个100欧的电阻,就在中间那条线上用红色标2.0的地方;15欧的电阻就落在中间红色标0.3的点上!
水平线上方是感抗线,下方是容抗线;落在线上方的点,用电路表示,就是一个电阻串联一个电感,落在线下方的点,是一个电阻串联一个电容。
图上的圆表示等阻抗线,落在圆上的点阻抗都相等,向上的弧线表示等感抗线,向下的弧线表示等容抗线!!
可以看出是感是容,是高是低
接着讲蓝色线。
因为导纳是阻抗的倒数,所以,很多概念都很相似。
中间的是电导线,图上的圆表示等电导圆,向上的是等电纳线,向下的是等电抗线!用该图进行阻抗匹配计算的基本原则是:
是感要补容,是容要加感,是高阻要想办法往低走,是低阻要想办法抬高。
无论在任何位置,均要向50欧(中点)靠拢。
进行匹配时候,在等阻抗圆以及等电导圆上进行换算。
下图表示的是变化趋势!
以图上B点为例,如何进行阻抗匹配!!
B点所在位置为40+50j,先顺着等电导圆,运动到B1点,再顺着等阻抗圆,运行到终点(50欧)。
按照上贴的运动规律,电路先并电容,再串电容。
由此完成阻抗匹配。
匹配方法讲完了,具体数值可通过RFSIM99计算!!
再说点,S参数与SMITCH圆图的关系!!
高频三极管,特别是上GHz的,一般都会列出一堆S参数。
以下以C3355 400MHz时候S11参数为例,说明S参数
和圆图的关系。
频率|S11| 相位
400M 0.054 -77.0
根据S参数的定义可知,S11反射系数为0.054,也就是
输入功率为1,则反射功率约为0.003。
由于SMITCH图
是反射系数的极坐标,因此,可用公式表示,
r=0.054(cos(-77/360)+j*sin(-77/360)). r为圆图上的阻抗点。
根据Z/Z0=(1+r)/(1-r)要理解这个公式,得去翻传输线理论!
Z:所要求的阻抗,Z0:归一化阻抗,此处为50
由上面的公式,可以推算出Z,根据坐标即可找到对应点。
实际不用这么烦琐的计算,需要进行阻抗匹配,直接用RFSim99输入S参数,即可自动算出匹配网络!
没有想象的那么难
其实就相当于去理解工频交流电一样来理解这个东西就可以了. 数学上了解复数运算就够了. smith圆图现在的用途就是为了对理论的简化理解。
至于福利叶变换和拉斯变换大家不要追究具体的数学抽象模式,如果能形象化的了解就足够了。
如何形象化呢:福利叶变换就是一个频谱分析仪,频谱分析仪的原理就是用本振信号和被测量的信号作乘法,就是混频,让后滤掉高频成分,得到一个直流信号,如果本振是扫频变化的,那么把横轴作为扫频的频率值,把对应的每一个频点的直流电压作为纵轴的值,画一个曲线图就是频谱分析仪的图像了。
拉普拉斯变换是福利叶变换的数学扩展。
为什么要扩展呢?,因为有些理论上信号是无穷大的,这样呢两个无穷大的信号不可以做比较,怎么办呢,让这两个无穷大的信号乘以一个固定的无穷小,然后就可以比出高低了,拉普拉斯变换就是对被测量的信号乘上(1/e)^x 的无穷小因子,这样理论上的所有的信号函数就都可以做福利叶变换了。
其实我们的接收机就是一个单频点的福利叶变换。
再追根溯源的理解,那就要上升到哲学思想了,就要讨论思维的方法论了。
简单的说就是,我们人类要去了解我们现有的感官能感觉到的外界事物,并想把感知道的东西表达出来,往往都是把未知的拆解成已知的,用已知的去组合未知的,这就是解析法。
对于任何物质运动,无论是机械运动还是电运动,我们现在用两种最基本的运动去解析,即直线运动和圆周运动。
直线运动对应就是时间域分析法,圆周运动对应的就是频率域分析方法。
对我们高频信号来说,示波器,时域反射分析仪(TDR)是时间域分析法,扫频仪,频谱分析仪,矢量分析仪(VNA)是频率域分析方法。
如果用来解析的圆周运动的半径无穷大,那么这个圆也是直线,所以时间域分析和频率域分析可以互相转换,也就是VNA 和TDR的分析结果可以互相转换的。
无论哪种分析目的都是为了了解未知,只是分析的手段不同。
Smith圆图是频域分析的简化方法,也就是我们忽略了器件或信号的时间特性,取而代之的是这个器件或信号的在电运动的起始的副值和相位,但任何一个数值都对应的是某个固定的频点。
如何看图。
R2,R1,T1因为和阻抗没多大关系,象往常一样画!
实际上,在史密斯圆图上:圆心对应反射系数0;最外面的圆对应模为1的反射系数,圆上的点对应纯电抗、断路、开路;而如果做一个比外圆小一些的同心圆,这个圆上的各点反射系数的模也是相等的……
请问楼主:6楼所举的那个例子,是不是还有另外一种匹配方法?如贴图所示,先逆时针方向旋转到g=1的那个圆上,再顺时针反向旋转到匹配点,也就是先串一个电容,再并一个电容。
刚学会用ADS的史密斯圆图来作阻抗匹配,用楼主的例子试了下,觉得非常方便,尤其是在只有2个匹配元件时,软件会自动给出各种可能的匹配方案,楼主的例子只是其中的一种匹配方法,软件共给出了4种方法和每种方法中元件的参数,比手工寻找匹配路径快多了。
ADS太棒了!。