实验1单级放大电路

合集下载

单级放大电路实验

单级放大电路实验

单级共射放大电路实验报告一、实验目的1.熟悉常用电子仪器的使用方法。

2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。

3.掌握放大器动态性能参数的测试方法。

4.进一步掌握单级放大电路的工作原理。

二、实验仪器1.示波器2.信号发生器3.数字万用表4.交流毫伏表5.直流稳压源三、预习要求1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的正确使用方法。

2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。

3.估算电路的最大不失真输出电压幅值。

4.计算实验电路的输入电阻Ri和输出电阻Ro。

5.根据实验内容设计实验数据记录表格。

四、实验原理及测量方法实验测试电路如下图1-1所示:1.电路参数变化对静态工作点的影响:放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。

放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E极的直流电压UBEQ。

图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。

其工作原理如下。

○1用RB和RB2的分压作用固定基极电压UB。

由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。

○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。

具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓2.静态工作点的理论计算:图5-2-1电路的静态工作点可由以下几个关系式确定U B=R B2·V CC/(R B+R B2)I C≈I E=(U B-U BE)/R EU CE=V CC-I C(R C+R E)由以上式子可知,,当管子确定后,改变VCC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。

实验一实验报告单级放大电路的设计与仿真

实验一实验报告单级放大电路的设计与仿真

EDA设计(一) 实验报告——实验一单级放大电路的设计与仿真一.实验内容1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载电阻Ω,电压增益大于50。

2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。

在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和 、r be 、r ce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和f L、f H值。

二.单级放大电路原理图单级放大电路原理图三.饱和失真、截止失真和不失真1、不失真不失真波形图不失真直流工作点静态工作点:i BQ=, i CQ=, v CEQ=2、饱和失真饱和失真电路图饱和失真波形图饱和失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=3、截止失真截止失真电路图截止失真波形图截止失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=四.三极管输入、输出特性曲线和 、r be 、r ce值1、β值静态工作点:i BQ=,i CQ=,v CEQ=V BEQ=β=i C/i B=2、输入特性曲线及r be值:由图:dx=,dy=r be=dx/dy=输入特性曲线3、输出特性曲线及r ce值:由图dx=, 1/dy=r ce=dx/dy=输出特性曲线五.输入电阻、输出电阻和电压增益1、输入电阻测输入电阻电路图由图:v= ,i=μAR i=v/i=μA=Ω2、输出电阻测输出电阻电路图1测输出电阻电路图2 由图:v o’= v o=R o=(v o’/v o-1)R L==Ω3、电压增益测电压增益电路图由图可得A V=六.幅频和相频特性曲线、f L、f H值由图可得f L= f H=Δf= f H - f L=七.实验结果分析1、R iR i理论=[r be+(1+β)R E]//R b1//R b2 =[2976+(1+220)x10]//127k//110k=ΩE1=、R oR o理论=R c=3 kΩE2=/3=1%3、AvI E理论=V B/R E=[ V cc R5/(R2+R5)]/( R6+R1)=[10x110/(127+110)]/2010=r be理论=200+26(1+β)/ I E =2976ΩAv理论=β(R C//R L)/[ r be+(1+β)R E]=220(3kΩ//Ω)/[2976+(220+1)x10]= E3=、V1=10mV时,会出现失真,但加一个小电阻即可减少偏差。

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告晶体管单级放大电路实验报告引言:晶体管是一种重要的电子元件,广泛应用于各种电子设备中。

晶体管的放大功能在电子技术中具有重要意义。

本次实验旨在通过搭建晶体管单级放大电路,探究晶体管在电路中的应用和性能。

一、实验目的通过搭建晶体管单级放大电路,了解晶体管的基本原理和工作特性,掌握晶体管的放大功能,研究晶体管在电路中的应用。

二、实验器材与原理1. 实验器材:- 晶体管:使用NPN型晶体管,如2N3904。

- 电源:提供电路所需的直流电源。

- 信号发生器:产生输入信号。

- 示波器:用于观测电路的输入输出波形。

2. 原理:晶体管是一种三极管,由发射极、基极和集电极组成。

晶体管的放大功能是基于PN结的导电特性。

当输入信号加到基极时,通过基极电流的变化,控制发射极与集电极之间的电流,从而实现信号的放大。

三、实验步骤1. 搭建电路:根据实验要求,按照电路图搭建晶体管单级放大电路,连接好晶体管、电源、信号发生器和示波器。

2. 调试电路:将信号发生器连接到输入端,示波器连接到输出端,调整信号发生器的频率和幅度,观察输出波形。

3. 测量电路参数:使用万用表测量电路中的电压和电流,记录下各个参数的数值。

四、实验结果与分析通过实验观察和测量,得到了晶体管单级放大电路的输入输出波形和电路参数。

根据实验数据,可以得出以下结论:1. 输入输出波形:通过示波器观察到输入信号和输出信号的波形。

输入信号经过晶体管的放大作用后,输出信号的幅度增大,但波形形状基本保持一致。

2. 电路参数:测量了电路中的电压和电流参数。

根据测量数据,可以计算出晶体管的放大倍数、输入输出阻抗等参数。

这些参数反映了晶体管在电路中的性能。

五、实验总结通过本次实验,我对晶体管的工作原理和放大功能有了更深入的了解。

通过搭建晶体管单级放大电路,我掌握了晶体管在电路中的应用方法,并通过实验数据分析了晶体管的性能。

这对于今后的电子技术学习和应用具有重要意义。

单级交流放大电路实验报告数据

单级交流放大电路实验报告数据

单级交流放大电路实验报告数据
引言:
单级交流放大电路是一种常见的电子电路,它可以将输入的微弱交流信号放大成为较大的输出信号。

在本次实验中,我们将学习如何设计和制作一个单级交流放大电路,并测试其性能。

实验原理:
单级交流放大电路由放大器管、直流偏置电路和耦合电容组成。

其中,放大器管是核心部件,它能够放大输入信号的电压或电流。

直流偏置电路可以提供稳定的工作电压,确保输出信号的稳定性。

耦合电容则用于将输入和输出信号隔离,防止直流信号干扰。

实验步骤:
1. 准备工作:准备所需元器件,包括晶体管、电阻、电容等,并根据电路图连接电路。

2. 调试电路:将电路连接好后,通过万用表检测电路中各个元器件的参数是否符合设计要求,如电阻值、电容值等。

3. 测试电路:将信号源的输出端连接到电路的输入端,测量电路的输出信号的电压值,并将其与输入信号的电压值比较,计算放大倍数。

4. 优化电路:根据测试结果对电路进行优化,如更换元器件、调整电阻、电容等。

实验结果:
经过多次调试和优化,我们成功地制作出了一台单级交流放大电路。

在测试中,我们发现该电路放大倍数为150,输出信号的失真率小于5%。

这说明该电路能够有效地放大输入信号,输出信号质量较高。

结论:
单级交流放大电路是一种基本的电子电路,它在各种电子设备中都有广泛的应用。

通过本次实验,我们深入地了解了单级交流放大电路的原理和制作方法,并获得了实践经验。

我们相信这将为今后的电子工程师之路奠定坚实的基础。

单级晶体管放大电路实验报告

单级晶体管放大电路实验报告

竭诚为您提供优质文档/双击可除单级晶体管放大电路实验报告篇一:晶体管单级放大器实验报告晶体管单级放大器一.试验目的(1)掌握multisium11.0仿真软件分析单级放大器主要性能指标的方法。

(2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。

(3)测量放大器的放大倍数,输入电阻和输出电阻。

二.试验原理及电路VbQ=Rb2Vcc/(Rb1+Rb2)IcQ=IeQ=(VbQ-VbeQ)/ReIbQ=IcQ/β;VceQ=Vcc-IcQ(Rc+Re)晶体管单级放大器1.静态工作点的选择和测量放大器的基本任务是不失真的放大信号。

为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。

若工作点选的太高会饱和失真;选的太低会截止失真。

静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流IcQ和管压降VceQ。

本试验中,静态工作点的调整就是用示波器观察输出波形,让信号达到最大限度的不失真。

当搭接好电路,在输入端引入正弦信号,用示波器输出。

静态工作点具体调整步骤如下:具有最大动态范围的静态工作点图根据示波器观察到的现象,做出不同的调整,反复进行。

当加大输入信号,两种失真同时出现,减小输入信号,两种失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。

去点信号源,测量此时的VcQ,就得到了静态工作点。

2.电压放大倍数的测量电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi3、输入电阻和输出电阻的测量(1)输入电阻。

放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图2.1-3(a)所示。

在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为(a)(b)oVo-电阻R值不宜取得过大,否则会引入干扰;但也不能取得过小,否则测量误差比较大。

通常取与Ri为同一数量级比较合适。

实验一 单级交流放大电路 实验报告

实验一 单级交流放大电路 实验报告

实验一单级交流放大电路实验报告一.实验目的本实验的目的是通过模拟电路的组装,进一步学习单级交流放大电路的构成、工作原理和性能指标性质。

同时,通过实验验证理论计算和模拟仿真,提高实验操作技能。

二.实验原理电路的目的是输入的交流信号进行放大。

单级交流放大电路是一个只含有一个三极管的放大器,其结构简单,性能较好,并且在各种电子设备中都被广泛地应用。

单级交流放大电路将交流信号分为两个部分:直流部分和交流部分。

其中,直流部分只负责将输入信号的直流分量放大,而且是每一级交流放大电路中的共同部分,它不仅决定了放大器直流的工作点,而且主宰了整个电路灵敏度的大小。

交流部分仅放大输入信号的交流成分,直流部分不参与放大工作,不影响交流信号的放大过程。

三.实验内容与步骤1.准备工作:将所需电子元器件和工具放齐,无噪声的直流电源、数字万用表等。

2.按照电路图中的元器件连接方式将电路图所示的电子元器件组装成电路体系。

3.电源接通,开关正常,调节调节旋钮从小到大,使VCE < VCC,调整VCE上升到预设值,然后再根据调节旋钮上下调整交流信号,以使输出电压的原则尽可能小,且输出信号达到最大值,同时使输入的直流电压保持0.6V。

4.记录实验所得数据,并照片记录实验现象。

5.电路断电,拆卸电子元器件。

四.实验仪器1.7603B数字多用表2.单通道正弦信号发生器3.2SB561 transistor4.100Ω, 10KΩ, 1μF等电子元器件5.电源6.万用表等。

五.实验结果及分析1.量取输入、输出交流信号的幅度和相位,并计算其增益和相位差。

2.电路实验结果:图中的输入信号频率为1KHz,如图,当输入信号的幅值较小时,输出偏离了零点,因为它的漂移的结果。

随着输入信号的增强,输出波形向心移动,直到输入信号的峰值约为600mV时,在不失真、条件稳定和能力的范围内输出约为3.3 V。

当增益为27.71,相位差约为90度,这样的结果符合实际预期。

实验一、晶体管单级放大电路

实验一、晶体管单级放大电路
输出电压的值用交流毫伏表监测函数发生器的输出值为便于调整可在0db的位置使其读数为5v输出大小由幅度旋钮手动调解控制先使函数发生器的输出读数为5v422在保持测量信号5v不变的情况下按一下信号源的衰减器的按键衰减60db后得到准确的5毫伏的输入信号观察此时交流毫伏表的测量值并由幅度旋钮手动调解到正好5mv423信号调好后把信号加入实验电路中
三. 实验电路参考图
21
Rb3
200k
RC1
1.5k
+6V
17-18
EC
RP2
470K 9-14
+
5mV 1KHz
3
+
C1
6-7 b
c V1 e
+ C2 10uf RL1 3k
20
+ uo -
信号发生器
u i 10uf
-
4
10-13
图1
四、实验原理
在电子技术中,被传递、加工和处理的信号可以分为两大类:模 拟信号和数字信号。 模拟信号:在时间上和幅度上都是连续变化的信号,称为模拟信号。 数字信号定义:在时间和幅度上均不连续的信号,称为数字信号。 晶体管放大电路,我们在输入端加入模拟小信号ui,放大器的输出端 可得到一个与ui相位相反,幅值被放大了的输出信号uo,这样实现了模 拟电压信号被放大的作用,可用图1表示。我们在实验中要测这个试放 大器的放大倍数等参数。
IC,)填入表格1中。并与理论计算进行比较。用万用表直流电压档测试并调节 R 使 U
b1
C
=3V;
2. 1 测量静态参数与计算公式 这些内容是对应图1的参数测量
VCC U B IB Rb3 RP 2
2.2 表格 1
VCC U C IC RC1

实验一单级交流放大电路有数据

实验一单级交流放大电路有数据

实验一单级交流放大电路(有数据) 实验一:单级交流放大电路一、实验目的1.掌握单级交流放大电路的基本原理和组成。

2.学习使用示波器和电压表测量放大电路的输入输出电压。

3.通过实验数据分析放大电路的性能指标,如电压放大倍数、输入电阻、输出电阻等。

二、实验原理单级交流放大电路是模拟电子技术中最基本的放大电路之一,它由一个晶体管、一个交流电源、一个负载电阻和一对输入输出端口组成。

通过适当的选择晶体管和电阻等元件的参数,可以实现对交流信号的放大作用。

三、实验步骤1.搭建单级交流放大电路,确保电路连接正确无误。

2.接通电源,调整输入信号源,使输入信号源的幅度适中。

3.使用示波器和电压表分别测量输入输出电压,记录数据。

4.改变输入信号源的幅度,重复步骤3,记录数据。

5.改变负载电阻,重复步骤3和4,记录数据。

6.分析实验数据,计算放大倍数、输入电阻和输出电阻等性能指标。

7.根据实验结果,分析单级交流放大电路的性能特点。

四、实验数据分析等性能指标与输入信号幅度无关。

这是因为单级交流放大电路只包含一个晶体管和几个电阻元件,其性能指标主要由元件参数决定,而非输入信号幅度。

此外,实验数据还表明,单级交流放大电路的输入电阻和输出电阻都很大,这有利于减小信号源内阻对放大电路性能的影响,同时也有利于减小信号在传输过程中的损失。

然而,单级交流放大电路的放大倍数较大,可能会导致输出信号失真。

因此,在实际应用中需要根据具体需求选择合适的放大倍数。

五、结论总结通过本次实验,我们验证了单级交流放大电路的基本原理和组成,掌握了使用示波器和电压表测量放大电路的输入输出电压的方法。

通过数据分析发现,单级交流放大电路的性能指标主要由元件参数决定,而非输入信号幅度。

此外,我们还了解到单级交流放大电路具有较大的输入电阻和输出电阻,有利于减小信号源内阻对放大电路性能的影响以及减小信号传输过程中的损失。

然而,由于放大倍数较大可能导致输出信号失真,因此在实际应用中需要根据具体需求选择合适的放大倍数。

实验1-单级放大电路

实验1-单级放大电路

实验1 单级放大电路1.实验目的1)学习使用电子仪器测量电路参数的方法。

2)学习共射放大电路静态工作点的调整方法。

3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。

2.实验仪器示波器、信号发生器、交流毫伏表、数字万用表。

3.预习内容1)三极管及共射放大器的工作原理。

2)阅读实验内容。

4.实验内容实验电路为共射极放大器,常用于放大电压。

由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。

1)联接电路(1)用万用表判断实验箱上的三极管的极性和好坏。

由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。

改用万用表测量二极管档测量。

对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。

这说明该三极管是好的。

用万用表判断实验箱上电解电容的极性和好坏。

对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。

这说明该电解电容是好的。

⑵按图1.1联接电路。

⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。

若正常,则将12V 电源接至图1.1的Vcc。

图1.1 共射极放大电路⑷ 测量电阻R C 的阻值。

将V i 端接地。

改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。

建议使用以下方法。

bB cc2b B B R V V R V I -=+p 1b b R R R += B C I I=β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。

单级共射放大电路实验报告.doc

单级共射放大电路实验报告.doc

单级共射放大电路实验报告.doc本实验通过搭建单级共射放大电路并进行测试和分析,加深了我们对基本电路的理解和实践技能的提升。

本文将从实验原理、实验步骤、实验结果及分析等方面进行阐述。

一、实验原理1、单级共射放大器的原理共射放大器即输人输出均在晶体管的基极和发射极之间,因此在放大系数上面具有一定的增益,其输入电阻比共集(电流随输入电阻的变化而变化)放大器高,输出电阻比共射(输出电阻不随输入电阻的变化而变化)放大器要低得多,因此同时具有输入输出阻抗都比较好的特点,也就是可以适用于各种电阻范围内的负载。

单级共射放大器是一种常见的基本放大电路,其基本结构如图1所示。

在正常工作状态下,晶体管的基极极间电位为0.6V时,为了使集电极端的电压维持在5V左右,必须给共射电路提供至少5.6V的电压。

为了让信号能够被放大,必须在基极端加上一个交流信号,造成基极到发射极的直流偏置电压波动,而这种交流电压就是引入的输入信号。

3、放大器的放大性能指标放大器的放大性能指标主要包括频率响应、幅度与相位特性、增益、输入输出电阻、噪声系数等多项指标,其中增益是一项非常关键的指标。

二、实验步骤1、实验所需器材和材料(1) C945B三极管1颗(2)1kΩ电阻4个(4)10μf电解电容1个(6)调码器一个(7)万用表(8)示波器(9)直流电源(10)信号发生器2、实验操作流程(1)根据电路图搭建实验电路。

(2)用万用表测出电路中各个元件的参数值。

(3)连接示波器和信号发生器,使信号发生器输出一个1kHz正弦波。

(4)打开直流电源,调节电源电压为5V.(5)显示器显示开始显示信号曲线,用示波器观察信号波形和增益。

(6)通过调节信号源和示波器来得到最佳的放大性能。

三、实验结果及分析搭建完实验电路并进行调试后,我们得到了以下数据:信号频率 | 10kHz | 100kHz | 1MHz |输入电压 | 200mV | 200mV | 200mV |输出电压 | 1.05V | 1.02V | 390mV |增益(Vout/Vin) | 5.25 | 5.1 | 1.95 |从表格数据中可以看出,在低频范围内,输出电压随着输入电压的增加而增加,实现了较好的信号放大效果。

单级放大电路实验心得(通用4篇)

单级放大电路实验心得(通用4篇)

单级放大电路实验心得(通用4篇)单级放大电路实验心得篇1单级放大电路实验心得1.实验目的通过本次实验,我们旨在探究单级放大电路的基本原理,了解其各个参数的测量方法,并能够分析电路的性能指标,如增益、输入电阻、输出电阻等。

此外,我们还将学习如何使用示波器、电压表和电流表测量电路的输出波形,从而更好地理解放大电路的工作过程。

2.实验原理单级放大电路是一种基本的电子放大器,其原理基于电信号的放大。

通过将输入信号与一个晶体管相连,我们可以实现信号的放大。

晶体管具有放大电流的能力,其输出电流的大小取决于输入信号的大小和晶体管的特性。

3.实验过程实验开始时,我们先搭建了一个单级放大电路。

在测量电路参数时,我们使用电压表和电流表测量电路的输入电阻和输出电阻,使用示波器观察输出波形。

在调整电路时,我们不断尝试不同的电路参数,直到找到最佳的电路配置。

4.实验结果在实验过程中,我们记录了不同输入信号下的输出波形,并使用示波器测量了输出信号的幅值和频率。

通过测量,我们发现输出信号的幅值比输入信号增加了许多,从而证实了放大电路的放大效果。

此外,我们还测量了输入电阻和输出电阻,并记录了它们的大小。

5.实验分析在实验过程中,我们发现输入电阻和输出电阻的大小与理论值非常接近。

同时,我们观察到输出波形具有良好的对称性,说明电路具有良好的稳定性。

此外,我们还发现当输入信号较大时,输出波形会出现失真现象。

这可能是由于晶体管的非线性特性所导致的。

6.实验结论通过本次实验,我们验证了单级放大电路的基本原理和放大效果。

同时,我们还学会了如何使用示波器、电压表和电流表测量电路参数和输出波形。

在实验过程中,我们发现了一些问题,如晶体管的非线性特性可能导致输出波形的失真。

为了改善放大电路的性能,我们可以在实验的基础上进一步研究其他类型的放大器,如差分放大器和集成电路。

这些电路具有更好的线性特性和稳定性,可以提供更高的放大倍数。

此外,我们还可以将放大电路应用到实际的电子设备中,如音频放大器、无线电接收器等,从而更好地理解放大电路在实际应用中的作用。

单级交流放大电路实验报告

单级交流放大电路实验报告

单级交流放大电路实验报告一、实验目的1、掌握单级交流放大电路的工作原理和基本结构。

2、学习使用电子仪器测量电路的性能参数,如电压放大倍数、输入电阻、输出电阻等。

3、熟悉放大器静态工作点的调试方法,了解静态工作点对放大器性能的影响。

4、观察放大器输出信号的失真情况,分析产生失真的原因及解决方法。

二、实验原理单级交流放大电路是由一个晶体管(如三极管)组成的基本放大电路。

它的主要作用是将输入的小信号进行放大,输出一个较大的信号。

在三极管放大器中,要使三极管能够正常放大信号,必须给三极管设置合适的静态工作点。

静态工作点是指在没有输入信号时,三极管的基极电流、集电极电流和集电极发射极电压的值。

通过调节基极电阻和集电极电阻的大小,可以改变静态工作点的位置。

放大器的电压放大倍数是衡量其放大能力的重要指标,它等于输出电压与输入电压的比值。

输入电阻是从放大器输入端看进去的等效电阻,输出电阻是从放大器输出端看进去的等效电阻。

三、实验仪器1、示波器2、函数信号发生器3、直流稳压电源4、数字万用表四、实验电路本次实验采用的单级交流放大电路如下图所示:在此处插入实验电路图五、实验内容及步骤(一)静态工作点的调试1、按照实验电路图连接好电路,将直流稳压电源的输出电压调整到合适的值(如 12V),接入电路。

2、调节电位器 Rb,使三极管的基极电压 Vb 达到预定的值(例如2V)。

3、用万用表测量三极管的集电极电流 Ic 和集电极发射极电压 Vce,计算静态工作点的参数。

(二)测量电压放大倍数1、将函数信号发生器的输出端连接到放大器的输入端,设置输入信号的频率为 1kHz,峰峰值为 10mV。

2、用示波器同时观察输入信号和输出信号的波形,测量输出信号的峰峰值 Vopp。

3、计算电压放大倍数 Av = Vopp / 10mV。

(三)测量输入电阻1、在放大器的输入端串联一个已知电阻 Rs(例如1kΩ)。

2、测量输入信号的电压 Vi 和电阻 Rs 两端的电压 Vs。

单级晶体管放大电路实验报告

单级晶体管放大电路实验报告

竭诚为您提供优质文档/双击可除单级晶体管放大电路实验报告篇一:晶体管单级放大器实验报告晶体管单级放大器一.试验目的(1)掌握multisium11.0仿真软件分析单级放大器主要性能指标的方法。

(2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。

(3)测量放大器的放大倍数,输入电阻和输出电阻。

二.试验原理及电路VbQ=Rb2Vcc/(Rb1+Rb2)IcQ=IeQ=(VbQ-VbeQ)/ReIbQ=IcQ/β;VceQ=Vcc-IcQ(Rc+Re)晶体管单级放大器1.静态工作点的选择和测量放大器的基本任务是不失真的放大信号。

为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。

若工作点选的太高会饱和失真;选的太低会截止失真。

静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流IcQ和管压降VceQ。

本试验中,静态工作点的调整就是用示波器观察输出波形,让信号达到最大限度的不失真。

当搭接好电路,在输入端引入正弦信号,用示波器输出。

静态工作点具体调整步骤如下:具有最大动态范围的静态工作点图根据示波器观察到的现象,做出不同的调整,反复进行。

当加大输入信号,两种失真同时出现,减小输入信号,两种失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。

去点信号源,测量此时的VcQ,就得到了静态工作点。

2.电压放大倍数的测量电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi3、输入电阻和输出电阻的测量(1)输入电阻。

放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图2.1-3(a)所示。

在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为(a)(b)oVo-电阻R值不宜取得过大,否则会引入干扰;但也不能取得过小,否则测量误差比较大。

通常取与Ri为同一数量级比较合适。

单级交流放大电路实验报告

单级交流放大电路实验报告

单级交流放大电路实验报告实验名称:单级交流放大电路实验报告实验教材:《电子技术基础》实验目的:1. 了解单级交流放大电路的工作原理和基本构成;2. 学会测量单级交流放大电路的放大倍数和频率响应;3. 培养实验操作能力和分析问题的能力。

实验器材:1. 电压表;2. 万用表;3. 信号发生器;4. 示波器;5. 电阻、电容等元件;6. 晶体管等半导体器件。

实验步骤:1. 按照图1的电路连接,调节信号发生器的频率为1kHz,输出电压为0.1Vrms,用万用表测量输入信号的电压和输出信号的电压,并计算电路的放大倍数;2. 调节信号发生器的频率,依次测量该电路在10Hz、100Hz、1kHz、10kHz、100kHz、1MHz时的输出电压,并画出该电路的频率响应曲线;3. 改变电路中电容的容值,重复步骤1和步骤2,比较不同电容容值对电路的影响。

实验结果:1. 在1kHz时,电路的输入电压为0.1Vrms,输出电压为0.8Vrms,电路的放大倍数为8;2. 该电路的频率响应曲线如图2所示;3. 当电容值增大时,电路的低频响应增强,放大倍数增大。

实验分析:1. 在实验过程中,我们通过测量电路的输入和输出电压,以及计算电路的放大倍数,了解了单级交流放大电路的基本工作原理;2. 通过绘制频率响应曲线,我们发现该电路在低频和高频时放大倍数较小,在中频时放大倍数较大;3. 改变电容的容值可以改变电路的频率响应特性,这对于设计一个满足特定要求的放大电路具有重要意义。

实验结论:本次实验通过实验操作和分析数据,深入掌握了单级交流放大电路的工作原理、性能参数和频率特性,同时也培养了我们实验操作和数据分析的能力。

该电路在电子技术中应用广泛,研究和设计该电路对于我们掌握电子技术有很大帮助。

单级放大电路实验总结

单级放大电路实验总结

单级放大电路实验总结简介:单级放大电路是电子学中常见的一种电路结构,其主要作用是将输入信号进行放大,以增加信号的强度。

通过实验,我们可以深入了解单级放大电路的工作原理、特性以及应用。

一、实验目的本次实验的目的是通过搭建和研究单级放大电路,理解其放大过程、频率响应以及输出特性,并进一步探索该电路在实际应用中的潜力。

二、实验所需材料和设备1. 功率放大电路实验箱2. 电阻箱、电容箱和电感箱3. 示波器4. 信号发生器5. 多用表三、实验步骤1. 准备工作:首先,按照电路图连接所需元件,注意正确连接极性。

然后,接通电源,确保电路正常工作。

最后,使用多用表测量电阻、电容和电感的值,确保实验的准确性。

2. 输入信号设置:通过信号发生器提供一个正弦波信号作为输入信号,并通过示波器观察波形的变化。

3. 确定放大倍数:调节电阻箱的阻值,观察输出信号的变化,并记录不同输入信号下的输出电压。

4. 频率响应分析:改变信号发生器的频率,观察波形的变化,并记录频率与输出信号幅值之间的关系。

5. 稳定性和失真分析:在一定输入信号下,观察电路的输出信号是否稳定,以及是否有失真现象。

记录相关数据,进行后续分析。

四、实验结果与分析通过实验数据的整理与分析,我们得到了以下结论:1. 单级放大电路的放大倍数与输入信号的幅值成正比关系,可以通过改变电阻的阻值来控制放大倍数。

2. 单级放大电路的频率响应曲线呈现带通滤波器的特性,即在一定频率范围内放大幅度较大,而在其他频率下放大幅度较小。

3. 当输入信号过大或过小时,单级放大电路会出现失真现象,使输出信号不再与输入信号相似。

五、实验中遇到的问题及解决方法在实验过程中,我们遇到了一些问题。

例如,输出信号的幅度不稳定,频率响应不理想等。

通过实验数据的分析,我们发现这些问题主要是由于电路参数的选择以及电源的稳定性等原因造成的。

针对这些问题,我们可以调整电路参数,选择合适的元件,并采取稳压措施来提高电路的稳定性。

实验一-单级交流放大电路-实验报告

实验一-单级交流放大电路-实验报告

实验一单级交流放大电路一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。

3.学习测量放大电路Q点,AV ,ri,ro的方法,了解共射极电路特性。

4.学习放大电路的动态性能。

二、实验仪器1.示波器2.信号发生器3.数字万用表三、实验原理1.三极管及单管放大电路工作原理。

以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理:三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。

如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

2.放大电路静态和动态测量方法。

放大电路良好工作的基础是设置正确的静态工作点。

因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。

放大电路的动态特性指对交流小信号的放大能力。

因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。

四、实验内容及步骤1.装接电路与简单测量图1.1 工作点稳定的放大电路(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。

测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。

三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。

(2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。

2.静态测量与调整接线完毕仔细检查,确定无误后接通电源。

改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。

实验一单级交流放大电路实验报告

实验一单级交流放大电路实验报告

实验一单级交流放大电路实验报告一、实验目的:1.学习单级交流放大电路的基本原理;2.了解交流放大电路的放大特性;3.熟悉实验仪器的使用。

二、实验仪器和材料:1.函数发生器;2.直流电压源;3.双踪示波器;4.两只电压表;5.电阻、电容等被测元件。

三、实验原理:1.交流放大电路交流放大电路是指对输入信号的交流成分进行放大处理的电路,常用的有单级放大电路、共射放大电路等。

2.单级交流放大电路单级交流放大电路是对输入信号的交流成分进行放大处理的电路,由输入电容、输出电容、输入电阻、输出电阻以及放大元件(如三极管)等组成。

四、实验步骤:1.搭建单级交流放大电路,连接电阻、电容元件,使用函数发生器输入信号;2.调整函数发生器的频率和幅度,观察输出信号的变化;3.使用示波器观察输入信号和输出信号的波形,测量输入信号和输出信号的幅度;4.更改电阻、电容元件的数值,观察输出信号的变化。

五、实验结果和数据处理:在实验中我们尝试了不同的频率和幅度的输入信号,并观察了输出信号的变化。

通过测量输入信号和输出信号的幅度,我们得到了如下数据:输入信号频率:1kHz输入信号幅度:2V输出信号幅度:4V输入信号频率:10kHz输入信号幅度:1V输出信号幅度:3V输入信号频率:100kHz输入信号幅度:0.5V输出信号幅度:2V从数据可以看出,随着输入信号频率的增加,输出信号的幅度逐渐减小。

这是因为交流放大电路具有一定的截止频率,超过该频率时放大效果逐渐减弱。

六、实验讨论:1.交流放大电路的截止频率是通过电路元件的数值进行调节的,可通过改变电容和电阻的数值来改变截止频率;2.在实验中我们没有考虑到放大器的失真问题,实际应用中要考虑到放大器的失真程度,例如非线性失真、相位失真等。

七、实验总结:通过本次实验,我们学习了单级交流放大电路的基本原理,了解了交流放大电路的放大特性。

实验中我们使用了函数发生器、示波器等仪器,熟悉了这些仪器的使用方法。

单级放大电路实验.

单级放大电路实验.
最大集电 极电流
最大集电极耗散功率 PCM=iCuCE
安全工作区
晶体管主要参数
极间反向电流
(1) 集电极基极间反向饱和电流 ICBO O —— (发射极)开路 (2) 集电极发射极间的
-
ICBO
uA +
b
c e
VCC
Ie=0
反向饱和电流 ICEO
I CEO (1 ) I CBO
b
c e
B ib + ube -
ic
C + uce -
B + ube - ib rbe
β ib
ic
C + uce -
E (a) 三极管
E (b) 三极管的微变等效电路
集电极和发射极之间可等效为一个受ib控制的电流源
晶体管特性的图形表示(极限参数)
ICM ---最大允许集电极电流 饱和区
PCM
iC ICM
安全区
晶体管特性的图形表示(极限参数)
ICM ---最大允许集电极电流 饱和区
PCM
---最大允许集电极耗散功率
iC ICM
安全区
PCM
放大区 V BR CEO ---集电极反向击穿电压
晶体管安全工作区域
0
V(BR)CEO vCE
vCE VBRCEO且iC ICM 且P C P CM
晶体管主要参数 •直流参数: 、 、ICBO、 ICEO I C I E iC iE 1 •交流参数:β、α、fT(使β=1的信号频率) c-e间击穿电压 • 极限参数:ICM、PCM、U(BR)CEO
1 2
画出放大电路的交流通路
C1 、C2对交流分量视为短路; 直流电源UCC的内阻很小,对交流视为短路;

实验报告一 单极放大电路的设计与仿真

实验报告一 单极放大电路的设计与仿真

实验报告一单极放大电路的设计与仿真1.实验目的(1)使用Multisim软件进行原理图仿真。

(2)掌握仿真软件调整和测量基本放大电路静态工作点的方法。

(3)掌握仿真软件观察静态工作点对输出波形的影响。

(4)掌握利用特性曲线测量三极管小信号模型参数的方法。

(5)掌握放大电路动态参数的测量方法。

2.实验内容1. 设计一个分压偏置的单管共射放大电路,要求信号源频率5kHz(峰值10mV),负载电阻5.1kΩ,电压增益大于50。

2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

3.调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。

在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和β、rbe、rce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和fL、fH值。

3.实验步骤单管共射放大电路示意图图1.1(1)非线性失真分析放大器要求输出信号和输入信号之间是线性关系,不能产生失真。

由于三极管存在非线性,使输出信号产生了非线性失真。

从三极管的输出特性曲线可以看出,当静态工作点处于放大区时,三极管才能处于放大状态;当静态工作点接近饱和区或截止区时,都会引起失真。

放大电路的静态工作点因接近三极管的饱和区而引起的非线性失真称为饱和失真,对于NPN管,输出电压表现为顶部失真。

不过由于静态工作点达到截止区,三极管几乎失去放大能力,输出的电流非常小,于是输出电压波形也非常小,因此有时候很难看到顶部失真的现象,而只能观察到输出波形已经接近于零。

①饱和失真由于饱和失真的静态工作点偏高,也就是IBQ的值偏大,所以调小滑动变阻器至0%时产生饱和失真,信号幅度最大时的输出信号波形图如下:图1.32.截止失真调节滑动变阻器,增加基极偏置电阻,那么基极的电流IB逐渐减小,同时集电极电流也逐渐减小并趋于零,从而使得集电极的电位越发接近直流电源VCC,三极管近似于短路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 单级放大电路1.实验目的1)学习使用电子仪器测量电路参数的方法。

2)学习共射放大电路静态工作点的调整方法。

3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。

2.实验仪器示波器、信号发生器、交流毫伏表、数字万用表。

3.预习内容1)三极管及共射放大器的工作原理。

2)阅读实验内容。

4.实验内容实验电路为共射极放大器,常用于放大电压。

由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。

1)联接电路(1)用万用表判断实验箱上的三极管的极性和好坏。

由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。

改用万用表测量二极管档测量。

对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。

这说明该三极管是好的。

用万用表判断实验箱上电解电容的极性和好坏。

对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。

这说明该电解电容是好的。

⑵按图联接电路。

⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。

若正常,则将12V 电源接至图的Vcc。

图共射极放大电路⑷ 测量电阻R C 的阻值。

将V i 端接地。

改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为、1mA 、时三极管的β值。

建议使用以下方法。

b B cc 2b B B R V V R V I -=+p 1b b R R R += BC I I =β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。

本实验用测电阻值、电压值来计算电流值,而不是直接测量电流,是因为本实验电路的电流较小,测量电流的测量误差较测量电压、电阻的误差大。

同时还因为测量电流时万用表的内阻趋于零,使用不当很可能损坏万用表。

Vcc= V图是示意图。

它示意i C 并不严格等于βi B , 只是近似等于βi B ;或者说β并不是一个常数。

通常,β随i B 增大而增大。

对于一个三极管,β随i B 的变化越小越好。

用图解法表示共发射极放大器放大小信号的原理可知,β随i B 变化而变化是正弦波小信号经共发射极放大器放大后产生非线性谐波失真的原因。

若表中β的数 值较接近,则表中的非线性谐波失真应较小。

使 在制作小信号放大器时,若要求其非线性谐波失真尽可能小,则应挑选β值随i B 变化而变化尽可能小的三极管。

2) 调整静态电压放大器的主要任务是使失真尽可能小地放大电压信号。

为了使输出电压失真尽可能小,一般地说,静态工作点Q 应选择在输出特性曲线上交流负载线的中点。

若工作点选得太高,放大器在加入交流信号后容易引起饱和失真;若选得太低,容易引起截止失真。

对于小信号放大器而言,若输出交流信号幅度较小,电压放大器的非线性失真将不是主要问题,因此Q 点不一定要选在交流负载线的中点,而可根据其他要求来选择。

例如,希望放大器耗电省、噪声低,或输入阻抗高,Q 点可选得低一些。

将V i 端接地。

调整R P ,使V C =6V ,测量计算并填写表,绘制直流负载线,估算静态工作点和放大电路的动态范围;分析发射极直流偏置对放大器动态范围的影响。

3) 动态特性分析保持上述静态不变,做以下动态测量。

在本实验电路中,在交流信号输入端有一个由R1、R2组成的1/101的分压器。

这是因为,信号源是有源仪器,当其输出电压较小时,其输出的信噪比随输出信号的减小而降低,所以输出信号电压幅值有下限。

例如,目前使用的Agilent33210A数字式信号源输出正弦电压的最小幅值为50mV。

若直接将其作为输入,本实验用的放大器将严重限幅。

电阻是无源元件,而且阻值较小,由分压器增加的噪声甚少。

所以用电阻分压器得到信噪比较高的小信号。

若要对放大倍数做精确测量,也常用电阻做输入分压器。

具体的做法和原因可试述如下。

若要求放大器的放大倍数为A V,用电阻做1/A V的分压器,信号源输出电压可为几百mV,调整放大器的参数,使输出电压等于输入电压,这样对输入、输出测量的仪器在测量过程中就不用换挡。

放大倍数本来就是输出/输入的相对关系。

虽然仪器测量示数往往有绝对误差,用同一挡测量两个量,使其相等,这就避免了仪器测量示数具有的绝对误差。

这种测量的误差仅仅包含对两个分压电阻测量的误差,通常可很小。

若直接用小信号做输入,则测量输入、输出将使用不同的挡位,即使用了仪器中的不同电路,而仪器中不同电路的测量精度是有差别的,由此而来的误差通常比上述用电阻分压器的要大。

(1)取输入信号Vi的频率为10KHz、有效值为3mV,观察V s和V o的波形,比较两者的相位。

相位差为180°(2)保持信号频率不变,不接负载R L,用交流毫伏表测量电压,填写表,观察V o不严重失真时的最大输入值V i,将其填入表的最后一行。

(3)保持信号V i的频率f=10KHz、有效值3mV不变,接入负载R L,测量并填写表。

在绘制直流负载线的同一张图上绘制交流负载线,分析负载对放大器动态范围的影响。

⑷ 不接负载,测量绘制放大器的空载幅频特性曲线。

请注意,幅频特性图的横坐标是常用对数刻度,建议幅频特性图的纵坐标使用20lg|A V /A Vo |为刻度。

当然也可以使用其它为纵坐标刻度,例如,20lg|A V |(dB)。

但不应使用线性刻度坐标。

建议用以下方法绘制幅频特性图。

取幅值为几mV 的正弦波为输入V i ,输出接示波器、交流毫伏表,。

保持信号源输出信号幅值不变,改变输入信号频率,观察示波器,当输出信号幅值最大时,调整输入信号幅值,将交流毫伏表示数置为“dB ”,这时放大器的放大倍数为20lg|A Vo |。

再将交流毫伏表示数置为“RE L”,这时交流毫伏表示数为“0dB ”。

记此时的频率为f 0。

然后减小频率,使交流毫伏表的示数为dB 3-,称此时的频率为放大器的下限频率,记为f L 。

再减小频率,在此过程中记录若干个“dB 数—频率”,以使幅频特性曲线能反映出每减小十倍频程,幅频特性下降多少dB 。

然后再增大频率,使交流毫伏表的示数为dB 3-,称此时的频率为放大器的上限频率,记为f H 。

再增大频率,在此过程中记录若干个“dB 数—频率”,以使幅频特性曲线能反映出每增加十倍频程,幅频特性下降多少dB 。

将测量到的数据记入表,由表可绘制出所要求的幅频特性曲线。

接负载R L =5K1,测量绘制放大器的接载后的幅频特性。

建议幅频特性图的纵坐标使用20lg|A V /A Vo |为刻度。

分析负载对放大器幅频特性的影响。

注:测量时要注意交流毫伏表的测量带宽限制,若频率超过其频宽,应采用示波器进行测量。

无负载时的幅频特性曲线:接负载时的幅频特性曲线:⑸ 利用数字式示波器测量放大器的非线性谐波失真。

取输入信号f=10KHz ,V i =6mV ,R L =5K1。

对输入V i 做傅立叶变换,记%100d 2i ⨯=基波谱线幅值二次谐波谱线幅值(1-2)%100d 3i ⨯=基波谱线幅值三次谐波谱线幅值(1-3)以d i2为例说明具体的测量计算方法。

数字示波器给出的谱线幅值是对数幅值,其参考值为1V rms 。

示波器屏幕上显示的信号的谱线是其在示波器时域屏幕上波形的傅立叶变换,计及了示波器输入放大器的放大倍数。

输入信号的谱线的数值可由游标读出。

记基波谱线幅值为L 1(dB),二次谐波谱线幅值为L 2(dB),则%10010d 20L L 2i 12⨯=- (1-4)对输入o V 做傅立叶变换,记%100d 2o ⨯=基波谱线幅值二次谐波谱线幅值(1-5)%100d 3o ⨯=基波谱线幅值三次谐波谱线幅值(1-6)放大器的二次谐波失真2d 、三次谐波失真3d 为2i 2o 2d d d -= 3i 3o 3d d d -= (1-7)按表测量并填表。

有兴趣的实验者可测量空载时放大器的非线性失真。

使空载时输出电压幅值与有载时输出电压幅值相同,比较接载对放大器非线性谐波失真的影响。

在输出幅值相同的情况下,接载将使放大器的非线性谐波失真增大。

(6)保持信号i V 的频率f=10KHz 、有效值3mV 不变,接入负载R L ,改变R p ,观测V o 的波形并填写表。

分析直流偏置对放大器交流性能的影响。

4)测量放大器的输入、输出电阻 ⑴ 测量放大器的输入电阻将图中的R 2开路后,放大电路输入端等效电路如图,由图可计算出r i 。

应调整输入电压,使放大器输出失真尽可能小,因为希望测到的输入电阻是放大器微变等效电路的输入电阻,该电阻应是线性电阻。

建议将输出端接负载,以减小输出电压。

1)V /V (R r i S Si -=(1-8)⑵ 测量放大器的输出电阻放大电路输出端等效电路如图,此时应将输入端的R 1、R 2恢复为分压电路,V i 为3mV ,由图可计算出o r 。

L1K5ORlORLoR)1VV(r-==∞→(1-9)将输入、输出电阻填入表。

51欧姆的要去掉表测量输入输出电阻测输入电阻r i R s=5K1测输出电阻r o 测量值测量计算值理论估算值测量值测量计算值理论估算值V s(mV)V i(mV)irir V oR L→∞V oR L=5K1oror 10⒌思考题1) 若要求降低低频截止频率,可如何修改放大电路2) 若要求减小电路的非线性谐波失真,有哪些途径3) 此次实验有哪些体会。

图输入等效电路图输出等效电路。

相关文档
最新文档