分式知识点与题型总结超好用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式知识点及题型

一、分式的定义:

一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B

A

叫做分式,A 为分子,B 为分母。 二、与分式有关的条件

①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨

⎧≠=0

B A )

④分式值为正或大于0:分子分母同号(⎩⎨

⎧>>00B A 或⎩⎨⎧<<00

B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨

⎧<>00B A 或⎩⎨⎧><0

B A )

⑥分式值为1:分子分母值相等(A=B )

⑦分式值为-1:分子分母值互为相反数(A+B=0)

三、分式的基本性质

分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:

C B C ••=A B A ,C

B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。 拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:

B

B A B B --

=--=--=A

A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件

B ≠0。

四、分式的约分

1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。 ◆约分时。分子分母公因式的确定方法:

1)系数取分子、分母系数的最大公约数作为公因式的系数. 2)取各个公因式的最低次幂作为公因式的因式.

3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.

五、分式的通分

1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。 (依据:分式的基本性质!)

2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 ◆通分时,最简公分母的确定方法:

1.系数取各个分母系数的最小公倍数作为最简公分母的系数. 2.取各个公因式的最高次幂作为最简公分母的因式.

3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母. 六、分式的四则运算与分式的乘方 ① 分式的乘除法法则:

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:

d

b c

a d c

b a ••=

• 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为:c

c ••=•=÷b d

a d

b a d

c b a

② 分式的乘方:把分子、分母分别乘方。式子表示为:n n n

b a b a =⎪⎭

⎝⎛

③ 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。式子表示为:

c b

a c

b ±=

±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为:bd

bc

ad d c ±=±b a

整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,

再通分。

④ 分式的加、减、乘、除、乘方的混合运算的运算顺序

先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。

注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对

有无错误或分析出错的原因。

加减后得出的结果一定要化成最简分式(或整式)。 七、整数指数幂

① 引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指

数幂一样适用。即:

n m n m a a +=⋅a ()

mn n

m

a a =()n n n

b b a a =n m n m a a -=÷a (0≠a )

n n b a b a =⎪⎭

⎫ ⎝⎛n

n a 1=-n a 0≠a ) 10

=a (0≠a ) (任何不等于零的数的零次幂都等于1)

其中m ,n 均为整数。

八、分式方程的解的步骤:

⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程) ⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

九、列分式方程——基本步骤: ① 审—仔细审题,找出等量关系。 ② 设—合理设未知数。

③ 列—根据等量关系列出方程(组)。 ④ 解—解出方程(组)。注意检验 ⑤ 答—答题。

分式典型例题

一、分式

(一)从分数到分式

题型1:考查分式的定义

例:下列式子中,y x +15、8a 2

b 、-239a 、y

x b a --25、

432

2b a -、2-a 2、

m 1

65xy x 1、2

1、212+x 、

π

xy 3、

y

x +3

、m

a 1

+

中分式的个数为()(A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .

⑴275

x x -+; ⑵123x -;⑶

25a a -;⑷

22

x x π

--;⑸2

2b b

-

;⑹

22

2xy x y +.

(2)下列式子,哪些是分式?

5a -;234x +;3y y

78x

π

+;

2x xy x y +-;145

b

-+.

题型2:考查分式有,无意义,总有意义

(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解;

注意:(12

+x

≠0)

例1:当x 时,分式51

-x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式1

2+x x

有意义

例5:x ,

y 满足关系时,分式

x y

x y

-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )

A .

122+x x B.12+x x C.133+x x D.25

x x -

例7:使分式2

+x x

有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2

例8:要是分式

)

3)(1(2

-+-x x x 没有意义,则x 的值为( ) A. 2 B.-1或-3 C. -1 D.3

题型3:考查分式的值为零的条件

相关文档
最新文档