测量学测量误差的基本知识
合集下载
测量学 测量误差基本知识

B 观测者的误差
C 测量误差
D 外界条件的变化
难度系数 c
若观测量的真值为X,观测值为li(i=1,2,…,n),其算术 平均值为L,则描述观测值的(真)误差的正确表达式是 (A )
A 观测值的(真)误差为 i= li -X; B 观测值的(真)误差为 i = X-L; C 观测值的(真)误差为 i = L-X; D 观测值的(真)误差为 i= li -X;
难度系数 A
L1、L2、L3为一组等精度观测值,其误差分别为-7mm, -2mm, +7mm,则它们的精度为( A )
A L1、L2、L3的精度相同; B L1最高、L3最低; C L3最高、L1最低; D L2最高、L1与L3相同 。
难度系数 B
丈量了D1、D2两段距离,其观测值及中误差分别为: D1=105.53m±0.05m,D2=54.60m±0.05m,这说明 ( A B ).
A D1和D2的中误差相同, B D1的相对精度高于D2的相对精度 C D1和D2的中误差不相同 D D1的相对精度低于D2的相对精度 E D1的相对精度与D2的相对精度相同。
难度系数 B
难度系数 B
精度指标
衡量精度的指标有:( A C D )
A 中误差
B 对中误差
C 相对误差
D 容许误差
E 偶然误差
难度系数 C
若水平角测量的中误差为6,则其极限误差可以取 值为( C E )
A 3
B 6
C 12
D 15
E 18
难度系数 C
观测值L1、L2为同一组等精度观测值,其含义是( C D E ) A L1、L2的真误差相等 B L1、L2的改正数相等 C L1、L2的中误差相等 D L1、L2的观测条件基本相同 E L1、L2服从同一种误差分布
测量学第5章测量误差的基本知识

果对函数f(Δ )求二阶导数等于零,可得曲线拐点的横坐标为:Δ 拐 = ±σ 。由于曲线f(Δ )横轴和直线Δ =-σ ,Δ =+σ 之间的曲边梯形面
之差称为真误差,用Δ 表示。设三角形内角和的观测值为li,真值为X,则
三角形的真误差可由下式求得
用式(5.1)算得358个三角形内角和的真误差,现将358个真误差按3″为一 区间,并按绝对值大小进行排列,按误差的正负号分别统计出在各区间的误
差个数k,并将k除以总个数n(本例n=358)误差来看,其误差的出现在数
值大小和符号上没有规律性,但观察大量的偶然误差就会发现其存在着一定 的统计规律性,并且误差的个数越多这种规律性就越明显。下面以一个测量
实例来分析偶然误差的特性。
某测区在相同的观测条件下观测了358个三角形的内角,由于观测值存在误 差,故三角形内角之和不等于理论值180°(也称真值)。观测值与理论值
值(有界性);
②绝对值较小的误差出现的概率大,绝对值大的误差出现的概率小(单峰性); ③绝对值相等的正、负误差出现的概率大致相等(对称性);
④当观测次数无限增加时,偶然误差算术平均值的极限为零(补偿性)。即
式中,“[]”为总和号,即
为了更直观地表达偶然误差的分布情况,还可以用图示形式描述误差分布, 图5.1就是按表5.1的数据绘制的。其中以横坐标表示误差正负与大小,纵坐
1)仪器及工具由于测量仪器制造和仪器校正不完善,都会使测量结果产生测
量误差。 2)观测者由于观测者的技术水平和感觉器官鉴别能力的限制,使得在安置仪
器、瞄准目标及读数等方面都会产生误差。
3)外界条件观测过程所处的外界条件,如温度、湿度、风力、阳光照射等因 素会给观测结果造成影响,而且这些因素随时发生变化,必然会给观测值带
之差称为真误差,用Δ 表示。设三角形内角和的观测值为li,真值为X,则
三角形的真误差可由下式求得
用式(5.1)算得358个三角形内角和的真误差,现将358个真误差按3″为一 区间,并按绝对值大小进行排列,按误差的正负号分别统计出在各区间的误
差个数k,并将k除以总个数n(本例n=358)误差来看,其误差的出现在数
值大小和符号上没有规律性,但观察大量的偶然误差就会发现其存在着一定 的统计规律性,并且误差的个数越多这种规律性就越明显。下面以一个测量
实例来分析偶然误差的特性。
某测区在相同的观测条件下观测了358个三角形的内角,由于观测值存在误 差,故三角形内角之和不等于理论值180°(也称真值)。观测值与理论值
值(有界性);
②绝对值较小的误差出现的概率大,绝对值大的误差出现的概率小(单峰性); ③绝对值相等的正、负误差出现的概率大致相等(对称性);
④当观测次数无限增加时,偶然误差算术平均值的极限为零(补偿性)。即
式中,“[]”为总和号,即
为了更直观地表达偶然误差的分布情况,还可以用图示形式描述误差分布, 图5.1就是按表5.1的数据绘制的。其中以横坐标表示误差正负与大小,纵坐
1)仪器及工具由于测量仪器制造和仪器校正不完善,都会使测量结果产生测
量误差。 2)观测者由于观测者的技术水平和感觉器官鉴别能力的限制,使得在安置仪
器、瞄准目标及读数等方面都会产生误差。
3)外界条件观测过程所处的外界条件,如温度、湿度、风力、阳光照射等因 素会给观测结果造成影响,而且这些因素随时发生变化,必然会给观测值带
测量学第六章 测量误差及数据处理的基本

第6章
测量误差及数据处理的基本知识
第6章
测量误差及数据处理的基本知识
6.1 概述
6.1.1 测量与观测值
通过一定的仪器和方法在一定的环境下游操作人员 对某量进行量测,称为观测,获得的数据称为观测值。 6.1.2 观测与观测值的分类
1.同精度观测和不同精度观测
构成测量工作的要素包括观测者、测量仪器和外界条 件,通常将这些测量工作的要素统称为观测条件。
在实际测量工作中,以三倍中误差作为偶然误差的 容许值,称为容许误差。
6.4.4 相对误差
相对误差是中误差与观测值之比.是个无量纲数,在测 量上通常将其分子化为1,即用K=1/N的形式来表示。 如:1/1000,1/5000等。 显然.相对中误差愈小(分母越大).说明观测结果的精 度愈高,反之愈低。 相对中误差的分子也可以是闭合差或容许误差,这时分别称 为相对闭合差及相对容许误差。
该曲线称为高斯偶然误差分布曲线。 在概率论中,称为正态分布曲线。 在一定的观测条件下,对应着一个 确定的误差分布。 曲线的纵坐标y=概率/间距,它是 偶然误差⊿的函数,记为f(⊿)。
f(⊿ i)d⊿是偶然误差出现在微小区间(⊿ i + d⊿/2, ⊿ i +-d⊿/2) 内的概率,记为
p(⊿ i)= f(⊿ i)d⊿
6.1.3 测量误差及其来源
1.测量误差的定义 测量中的被观测量,客观上都存在着一个真实 值.简称真值。 对该量进行观测得到观测值。观测值与真值之差, 称为真误差.即
真误差=观测值-真值
2.测量误差的反映
“必要观测”:为确定某一个被观测量或几何形体 所需要的最少的观测。
“多余观测”:在确定某一个被观测量或几何形体 所进行的观测过程中超过必要观测的观测。
测量误差及数据处理的基本知识
第6章
测量误差及数据处理的基本知识
6.1 概述
6.1.1 测量与观测值
通过一定的仪器和方法在一定的环境下游操作人员 对某量进行量测,称为观测,获得的数据称为观测值。 6.1.2 观测与观测值的分类
1.同精度观测和不同精度观测
构成测量工作的要素包括观测者、测量仪器和外界条 件,通常将这些测量工作的要素统称为观测条件。
在实际测量工作中,以三倍中误差作为偶然误差的 容许值,称为容许误差。
6.4.4 相对误差
相对误差是中误差与观测值之比.是个无量纲数,在测 量上通常将其分子化为1,即用K=1/N的形式来表示。 如:1/1000,1/5000等。 显然.相对中误差愈小(分母越大).说明观测结果的精 度愈高,反之愈低。 相对中误差的分子也可以是闭合差或容许误差,这时分别称 为相对闭合差及相对容许误差。
该曲线称为高斯偶然误差分布曲线。 在概率论中,称为正态分布曲线。 在一定的观测条件下,对应着一个 确定的误差分布。 曲线的纵坐标y=概率/间距,它是 偶然误差⊿的函数,记为f(⊿)。
f(⊿ i)d⊿是偶然误差出现在微小区间(⊿ i + d⊿/2, ⊿ i +-d⊿/2) 内的概率,记为
p(⊿ i)= f(⊿ i)d⊿
6.1.3 测量误差及其来源
1.测量误差的定义 测量中的被观测量,客观上都存在着一个真实 值.简称真值。 对该量进行观测得到观测值。观测值与真值之差, 称为真误差.即
真误差=观测值-真值
2.测量误差的反映
“必要观测”:为确定某一个被观测量或几何形体 所需要的最少的观测。
“多余观测”:在确定某一个被观测量或几何形体 所进行的观测过程中超过必要观测的观测。
08结63-测量学-章6-测量误差及数据处理的基本知识

加权算术平均值 相应观测值的权
三、最可靠值(最或是值)的精度评定 单位权中误差
权为1的观测值 中误差
m0
pvv
n 1
vi=li-x
测回数
最可靠值的中误差
Mx
加权平均值 的中误差
m0 p
pvv p n 1
举例
在水准测量中,已知从三个已知高程点A、B、C 出发,测得E点的三个高程观测值及各水准路线
偶然误差 – 在一定的观测条件下,单个误差的出现没有一定的规律性, 其数值大小和符号都不固定,大量的误差有统计规律的误差 – 偶然误差决定了观测结果的精密度; – 研究测量误差主要是针对偶然误差而言
二、研究目的
(1) 求取最可靠值(最或是值) (2) 衡量精度(结果的可靠性) 三、研究误差的出发点或原则: (1)根据不同的测量目的,允许在测量结果中含有一定程度 的测量误差 (2)目标并不是简单地使测量误差越小越好,而是要设法将 误差限制在与测量目的相适应的范围内 (3)分析测量误差,制定出衡量观测成果质量的标准,并求 得未知量的最合理最可靠的结果
等精度直接观测值的最可靠值
观测值
一、求最可靠值(最或是值)
最可靠值 证明
l1 l2 ln l x n n
观测次数
∵
△1=l1-X △2=l2-X
0 lin
n l X n
Hale Waihona Puke n ……… … △n=ln-X
l nX
n n n
§6.2
举例 : b a c
偶然误差特性
一、偶然误差的四个特性
△i=ai+bi+ci-180°
(i=1,2, ··· ··· ··358)
三、最可靠值(最或是值)的精度评定 单位权中误差
权为1的观测值 中误差
m0
pvv
n 1
vi=li-x
测回数
最可靠值的中误差
Mx
加权平均值 的中误差
m0 p
pvv p n 1
举例
在水准测量中,已知从三个已知高程点A、B、C 出发,测得E点的三个高程观测值及各水准路线
偶然误差 – 在一定的观测条件下,单个误差的出现没有一定的规律性, 其数值大小和符号都不固定,大量的误差有统计规律的误差 – 偶然误差决定了观测结果的精密度; – 研究测量误差主要是针对偶然误差而言
二、研究目的
(1) 求取最可靠值(最或是值) (2) 衡量精度(结果的可靠性) 三、研究误差的出发点或原则: (1)根据不同的测量目的,允许在测量结果中含有一定程度 的测量误差 (2)目标并不是简单地使测量误差越小越好,而是要设法将 误差限制在与测量目的相适应的范围内 (3)分析测量误差,制定出衡量观测成果质量的标准,并求 得未知量的最合理最可靠的结果
等精度直接观测值的最可靠值
观测值
一、求最可靠值(最或是值)
最可靠值 证明
l1 l2 ln l x n n
观测次数
∵
△1=l1-X △2=l2-X
0 lin
n l X n
Hale Waihona Puke n ……… … △n=ln-X
l nX
n n n
§6.2
举例 : b a c
偶然误差特性
一、偶然误差的四个特性
△i=ai+bi+ci-180°
(i=1,2, ··· ··· ··358)
第5章 测量误差的基本知识NEW

河海大学测绘科学与工程系
偶然误差的四个特性
1.有界性:
在一定的条件下,偶然误差的绝对值不会超过一定的限度;
2.集中性:
绝对值小的误差比绝对值大的误差出现的机会多;
3.对称性:
绝对值相等的正负误差出现的机会相等;
4.抵偿性:
偶然误差的算术平均值趋近于零,即:
lim 1 2 n lim 0
来源:这主要是由于粗心大意或各种干扰引起。如瞄错目标、读错大数,操作错 误、测量环境的异常变化、仪器故障等。 特点:无规律,单个误差具有离群的特征,粗差值大大超过系统误差或偶然误差。
如何处理粗差? Ⅰ 加强观测者的责任心,培养细致的业务作风 Ⅱ 闭合差检验,剔除孤值 Ⅲ 近代平差中的抗差估计、粗差探测方法等
当观测值真值已知时的中误差计算
--理论上可用标准差来计算
方差:中误差的平方
D
2
lim n
n
lim n
2 n
标准差:
D lim n
n
lim n
2 n
实际测量中,观测个数 n 是有限的,由有限个观测值的偶然误差 求得的标准差的近似值(估值)为中误差,用 m 表示。
m 1 2 2 2 ... n2 2
4.抵偿性:
偶然误差的算术平均值趋近于零,即:
lim 1 2 n lim 0
n
n
n n
频率直方图
误差概率分布曲线
直方图
k n
d△
(频率/组距)
k/n(频率)
-△
+△
-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 -1.4 -1.0 -0.6 -0.2 0.2 0.6 1.0 1.4
偶然误差的四个特性
1.有界性:
在一定的条件下,偶然误差的绝对值不会超过一定的限度;
2.集中性:
绝对值小的误差比绝对值大的误差出现的机会多;
3.对称性:
绝对值相等的正负误差出现的机会相等;
4.抵偿性:
偶然误差的算术平均值趋近于零,即:
lim 1 2 n lim 0
来源:这主要是由于粗心大意或各种干扰引起。如瞄错目标、读错大数,操作错 误、测量环境的异常变化、仪器故障等。 特点:无规律,单个误差具有离群的特征,粗差值大大超过系统误差或偶然误差。
如何处理粗差? Ⅰ 加强观测者的责任心,培养细致的业务作风 Ⅱ 闭合差检验,剔除孤值 Ⅲ 近代平差中的抗差估计、粗差探测方法等
当观测值真值已知时的中误差计算
--理论上可用标准差来计算
方差:中误差的平方
D
2
lim n
n
lim n
2 n
标准差:
D lim n
n
lim n
2 n
实际测量中,观测个数 n 是有限的,由有限个观测值的偶然误差 求得的标准差的近似值(估值)为中误差,用 m 表示。
m 1 2 2 2 ... n2 2
4.抵偿性:
偶然误差的算术平均值趋近于零,即:
lim 1 2 n lim 0
n
n
n n
频率直方图
误差概率分布曲线
直方图
k n
d△
(频率/组距)
k/n(频率)
-△
+△
-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 -1.4 -1.0 -0.6 -0.2 0.2 0.6 1.0 1.4
第5章 误差基本知识

②仪器构造本身也有一定误差。
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
第六章 测量误差

倾斜角度α=15°00„00“,其中误差m
求相应水平距离和中误差。
D s cos=48.296 m
D D dD ds d s
f f f dZ dx1 dx2 ...... dxn x1 x2 xn
函数的真误差和独立观测值的真误差之 间的关系式。
f f f Z x1 x2 ...... xn x1 x2 xn
f fi xi
Z f1x1 f 2 x2 ...... f n xn
特点:符号、大小相同或按一定规律变化;
重复观测难以发现。 尽可能消除或限制到最小程度。
处理方法:
1、检校仪器;
2、加改正数; 3、 采用适当的观测方法,使系统误差相互抵消 或减弱。
2、偶然误差:
定义:在相同的观测条件下进行一系列观测, 如果误差出现的符号和数值大小都表现出偶 然性,即从单个误差来看,该误差的大小及 符号没有规律,但从大量误差的总体来看, 具有一定的统计规律,这类误差称为偶然误 差或随机误差。
2
2
2
求任意函数中误差的方法和步骤:
1、列出独立观测值的函数式:
z f ( x1 , x2 ,... xn )
2、写出真误差关系式,对函数进行全微分:
f f f dz dx1 dx2 ... dxn x1 x2 xn
3、写出中误差的关系式:
f f f 2 2 m xn 2 mx1 mx2 ... mz x x x 1 2 n
2 2 2 2
几种简单函数的中误差计算式
1、倍函数:
z kx
z x1 x2
mz kmx
mz mx 1 mx 2
求相应水平距离和中误差。
D s cos=48.296 m
D D dD ds d s
f f f dZ dx1 dx2 ...... dxn x1 x2 xn
函数的真误差和独立观测值的真误差之 间的关系式。
f f f Z x1 x2 ...... xn x1 x2 xn
f fi xi
Z f1x1 f 2 x2 ...... f n xn
特点:符号、大小相同或按一定规律变化;
重复观测难以发现。 尽可能消除或限制到最小程度。
处理方法:
1、检校仪器;
2、加改正数; 3、 采用适当的观测方法,使系统误差相互抵消 或减弱。
2、偶然误差:
定义:在相同的观测条件下进行一系列观测, 如果误差出现的符号和数值大小都表现出偶 然性,即从单个误差来看,该误差的大小及 符号没有规律,但从大量误差的总体来看, 具有一定的统计规律,这类误差称为偶然误 差或随机误差。
2
2
2
求任意函数中误差的方法和步骤:
1、列出独立观测值的函数式:
z f ( x1 , x2 ,... xn )
2、写出真误差关系式,对函数进行全微分:
f f f dz dx1 dx2 ... dxn x1 x2 xn
3、写出中误差的关系式:
f f f 2 2 m xn 2 mx1 mx2 ... mz x x x 1 2 n
2 2 2 2
几种简单函数的中误差计算式
1、倍函数:
z kx
z x1 x2
mz kmx
mz mx 1 mx 2
测量-第六章 测量误差的基本知识 (1)

lim
n→ ∞
∆1 + ∆ 2 +L ∆ n n
= lim
[∆ ]
n
n→ ∞
=0
本章此处及以后“ 表示取括号中下标变量的代数和, 本章此处及以后“[ ]”表示取括号中下标变量的代数和, 表示取括号中下标变量的代数和 即∑∆i=[∆]
பைடு நூலகம்
§6.1 观测误差来源及其分类 6.1.3 观测误差的分类及其处理方法
土木工程测量
第六章 测量误差的基本知识
1
§6.1 观测误差来源及其分类 6.1.1 观测及观测误差
对未知量进行测量的过程,称为观测。 对未知量进行测量的过程,称为观测。 观测 测量所获得的数值称为观测值。 测量所获得的数值称为观测值。 观测值 进行多次测量时, 进行多次测量时,观测值之间往往存在差异。这种差异实 观测值与其真实值(简称为真值) 质上表现为观测值与其真实值(简称为真值)之间的差异,这种 差异称为测量误差 观测误差。 差异称为测量误差 或 观测误差。 代表观测值, 代表真值, 用Li代表观测值,X代表真值,则有 Δi=Li-X (6-1) 式中Δ 就是观测误差, 真误差,简称误差 误差。 式中Δi就是观测误差,通常称为 真误差,简称误差。 一般情况下,只要是观测值必然含有误差。 一般情况下,只要是观测值必然含有误差。
§6.1 观测误差来源及其分类 6.1.3 观测误差的分类及其处理方法
根据性质不同, 根据性质不同,观测误差可分为系统误差和偶然误差 符号和大小保持不变或按一定规律变化。 1、系统误差——符号和大小保持不变或按一定规律变化。 系统误差 符号和大小保持不变或按一定规律变化 系统误差具有积累性,对测量结果影响很大。 系统误差具有积累性,对测量结果影响很大。 尽量设法消除和减小系统误差,方法有: 尽量设法消除和减小系统误差,方法有: 在观测方法和观测程度上采用必要的措施, ①在观测方法和观测程度上采用必要的措施,限制或削弱系 统误差的影响。 统误差的影响。 ②找出产生系统误差的原因和规律,对观测值进行系统误差 找出产生系统误差的原因和规律, 的改正。 的改正。 ③将系统误差限制在允许范围内。 将系统误差限制在允许范围内。 经纬仪照准部管水准器轴不垂直于仪器竖轴的误差对水 不垂直于仪器竖轴 如,经纬仪照准部管水准器轴不垂直于仪器竖轴的误差对水 平角的影响,将其影响减小到允许范围内。 平角的影响,将其影响减小到允许范围内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢绝对值相等的正误差与负误差出现的机会相等;
➢同一量的等精度观测,其偶然误差的算术平均 值,随着观测次数的增加而趋近于零
二、衡量精度的标准
中误差 相对误差
1.中误差
设在等精度条件下对某未知量进行了n次观 测,其观测值为L1,L2, ……,Ln,真误差 相应为Δ1,Δ2, ……,Δn,则观测精度可 用下式来表示
系统误差具有累积性,对测量结果影响甚 大,但它的符号和大小有一定的规律,可 统误差影响的措施: (1)校正仪器 (2)采用适当的观测方法 (3)计算改正 (4)系统误差补偿
3.偶然误差
在相同的观测条件下,对某量进行一系列 的观测,如误差出现的符号和大小均不一 致,且从表面上看没有任何规律性,这种 误差称为偶然误差。
其中[ΔΔ]= Δ12+Δ22+ ……+Δn2,m 称为观测值的中误差,亦称均方误差。
2.相对误差
相对误差就是绝对误差的绝对值与相应测量 结果之比,通常以分子为1的分式来表示。
三、容许误差的确定
常以三倍中误差作为偶然误差的极限值(称 为极限误差)。
在实际工作中,常以两倍中误差为误差的 容许值,称为容许误差。 如果观测值中出 现了超过2m的误差,就可以认为该观测值 不可靠。
由于偶然误差本身的特性,不能用计算改 正或改变观测方法的办法来简单地加以消 除,只能根据偶然误差的理论来改进观测 方法和合理地处理观测数据,以减小偶然 误差对测量成果的影响。
偶然误差的特性:
➢在一定的观测条件下,偶然误差的绝对值不会 超过一定的限度;
➢绝对值小的误差比绝对值大的误差出现的机会 要多;
测量误差的基本知识
一、误差的分类
➢粗差 ➢系统误差 ➢偶然误差
1.粗差
粗差是一种大量级的观测误差,是由于观 测者疏忽大意,操作不当;或受外界干扰 等原因造成的,例如读错、记错、测错等。
粗差实际上是一种错误,在观测成果中是 不允许存在的。
2.系统误差
在相同的观测条件下,对某量进行一系列 的观测,若误差出现的符号和数值大小均 相同,或按一定的规律变化,这种误差称 为系统误差。