教科版物理 必修一 第四章 物体的平衡6 应用相似三角形法解决动态平衡问题(同步练习)

合集下载

教科版物理 必修一 第四章 物体的平衡6 应用相似三角形法解决动态平衡问题(讲义)

教科版物理 必修一 第四章 物体的平衡6 应用相似三角形法解决动态平衡问题(讲义)

重点:掌握利用相似三角形法解决动态平衡问题的方法。

难点:图解法和相似三角形法使用条件的区别。

1. 相似三角形法则概述相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例,求出三角形中力的比例关系,从而达到求未知量的目的。

2. 适用条件往往涉及三个力,其中一个力为恒力,另两个力的方向均发生变化,则此时用相似三角形分析。

相似三角形法是解平衡问题时常用到的一种方法,解题的关键是正确地进行受力分析,寻找力的三角形和几何三角形的相似关系。

3. 和图解法的区别图解法:三个力,一力为恒力,一力大小方向变,一力仅大小变。

相似三角形法:三个力,一力为恒力,其余两个力方向都变。

例题1 半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A. N 变大,T 变小B. N 变小,T 变大C. N 变小,T 先变小后变大D. N 不变,T 变小思路分析:如图2所示,对小球:由于缓慢地拉绳,所以小球运动缓慢,视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图2中小阴影三角形)。

由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其他条件。

实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:可得:mg Rh L T += 运动过程中L 变小,所以T 变小。

mg Rh R N += 运动中各量均为定值,所以支持力N 不变。

正确答案为D 。

(word完整版)高一物理动态平衡,相似三角形,正交分解练习(2021年整理)

(word完整版)高一物理动态平衡,相似三角形,正交分解练习(2021年整理)

(word完整版)高一物理动态平衡,相似三角形,正交分解练习(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高一物理动态平衡,相似三角形,正交分解练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高一物理动态平衡,相似三角形,正交分解练习(word版可编辑修改)的全部内容。

力的正交分解专项练习1.如图所示,用绳AO和BO吊起一个重100N的物体,两绳AO、BO与竖直方向的夹角分别为30o和40o,求绳AO和BO对物体的拉力的大小。

2.如图6所示,θ=370,sin370=0。

6,cos370=0。

8。

箱子重G=200N,箱子与地面的动摩擦因数μ=0.30。

要匀速拉动箱子,拉力F为多大?3。

如图,位于水平地面上的质量为M的小木块,在大小为F、方向与水平方向成a角的拉力作用下沿地面作匀速直线运动。

求:(1)地面对物体的支持力?(2)木块与地面之间的动摩擦因数?4。

长为20cm的轻绳BC两端固定在天花板上,在中点系上一重60N的重物,如图11所示:当BC的距离为10cm时,AB段绳上的拉力为多少?5。

质量为m的物体在恒力F作用下,F与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少?6.如图所示重20N的物体在斜面上匀速下滑,斜面的倾角为370,求:(1)物体与斜面间的动摩擦因数。

(2)要使物体沿斜面向上匀速运动,应沿斜面向上施加一个多大的推力?(sin370=0。

6,cos370=0。

8 )7。

高中物理必修一动态平衡

高中物理必修一动态平衡

大,所以船的浮力减小.故
A、C正确
【变式训练】如图所示,质量分别为m、M的两个物体,系在一
根绕过定滑轮的轻绳两端,M放在水平地板上,m悬在空中,若
将M沿水平地面向右移动少许(仍保持平衡状态),则( )
A.绳中张力变大
BC B.M对地面的压力变大
C.M所受的静摩擦力变大
D.滑轮轴所受的压力变大
总结
(1)受力分析 (2)构建力的三角形(通过平移) (3)确定大小方向都不变的力(边),确定方 向不 变、大小变化的力(边) (4)通过活动大小方向都可变的力(边),得 到该力的变化情况 注意:进行第4步的时候不能改变3中的结论
【典例2】 右图所示为半圆形支架BAD,两细绳OA和OB结于圆 心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆 形支架从水平位置逐渐移至竖直位置C的过程中,分析OA绳和OB
动态平衡
动态平衡
定义:物体受到几个变力的作用而处于平衡态,我们把 这类问题叫做共点力的动态平衡。 处理方法:图解法、解析法、相似三角形法(极少)
基本思路:化“动”为“静”,“静”中求“动”
图解法
1、图解法特点: (1)物体受三个力 (2)有一个力大小方向都不变 (3)物体受三个力;有一个力大小方向始终不变 (一般是重力);还有一个力的方向不变 (2)做辅助圆:开始时两力的夹角是90°,其中一个力大 小方向都不变,另外两个力方向改变,但动态平衡时两力夹 角不变。 (3)相似三角形:一个力大小方向都不变,另外两个力方 向改变,且无二力保持垂直。 2、解析法 (1)变力用恒力和三角函数表示出来 (2)四个力用正交分解 3、极值法
BC 程中,下列说法正确的是(
)
A.F1逐渐增大
B.F1先增大后减小

动态平衡问题(含解析)

动态平衡问题(含解析)

动态平衡问题 类型一 动态平衡问题1.动态平衡是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态.2.常用方法 (1)解析法对研究对象进行受力分析,画出受力示意图,根据物体的平衡条件列方程,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化. (2)图解法此法常用于求解三力平衡问题中,已知一个力是恒力、另一个力方向不变的情况.一般按照以下流程分析: 受力分析―――――――→化“动”为“静”画不同状态下的平衡图――――――→“静”中求“动”确定力的变化 (3)相似三角形法在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例求解(构建三角形时可能需要画辅助线).题型例析1 图解法例1 (多选)如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜面及挡板间均无摩擦,当挡板绕O 点逆时针缓慢地转向水平位置的过程中( )A.斜面对球的支持力逐渐增大B.斜面对球的支持力逐渐减小C.挡板对小球的弹力先减小后增大D.挡板对小球的弹力先增大后减小 题型例析2 解析法例2 (2020·广东中山市月考)如图,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,木板对球的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计一切摩擦,在此过程中( )A.F N1先增大后减小,F N2始终减小B.F N1先增大后减小,F N2先减小后增大C.F N1始终减小,F N2始终减小D.F N1始终减小,F N2始终增大题型例析3相似三角形法例3(2020·山西大同市开学考试)如图所示,AC是上端带光滑轻质定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重力为G的物体,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BCA>90°,现使∠BCA缓慢变小,直到∠BCA=30°.此过程中,轻杆BC所受的力()A.逐渐减小B.逐渐增大C.大小不变D.先减小后增大变式训练1(单个物体的动态平衡问题)(多选)(2020·广东惠州一中质检)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A的圆半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是()A.F1减小B.F1增大C.F2增大D.F2减小变式训练2(多个物体的动态平衡问题)(多选)(2019·全国卷Ⅰ·19)如图所示,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加类型二平衡中的临界、极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“恰能”“恰好”等.临界问题常见的种类:(1)由静止到运动,摩擦力达到最大静摩擦力.(2)绳子恰好绷紧,拉力F=0.(3)刚好离开接触面,支持力F N=0.2.极值问题平衡中的极值问题,一般指在力的变化过程中的最大值和最小值问题.3.解题方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,根据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例4(2020·广东茂名市测试)如图所示,质量分别为3m和m的两个可视为质点的小球a、b,中间用一细线连接,并通过另一细线将小球a与天花板上的O点相连,为使小球a和小球b均处于静止状态,且Oa 细线向右偏离竖直方向的夹角恒为37°,需要对小球b朝某一方向施加一拉力F.若已知sin 37°=0.6,cos 37°=0.8.重力加速度为g,则当F的大小达到最小时,Oa细线对小球a的拉力大小为()A.2.4mgB.3mgC.3.2mgD.4mg例5如图所示,质量为m的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.跟踪训练1.(2020·河南驻马店市第一学期期终)质量为m的物体用轻绳AB悬挂于天花板上,用水平力F拉着绳的中点O,使OA段绳偏离竖直方向一定角度,如图所示.设绳OA段拉力的大小为F T,若保持O点位置不变,则当力F的方向顺时针缓慢旋转至竖直方向的过程中()A.F先变大后变小,F T逐渐变小B.F先变大后变小,F T逐渐变大C.F先变小后变大,F T逐渐变小D.F先变小后变大,F T逐渐变大2.(多选)如图所示,质量均为m的小球A、B用劲度系数为k1的轻弹簧相连,B球用长为L的细绳悬挂于O 点,A球固定在O点正下方,当小球B平衡时,细绳所受的拉力为F T1,弹簧的弹力为F1;现把A、B间的弹簧换成原长相同但劲度系数为k2(k2>k1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时细绳所受的拉力为F T2,弹簧的弹力为F2.则下列关于F T1与F T2、F1与F2大小的比较,正确的是()A.F T1>F T2B.F T1=F T2C.F1<F2D.F1=F23.(多选)(2016·全国卷Ⅰ·19)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则()A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化4.(2020·安徽黄山市高三期末)如图所示,在水平放置的木棒上的M、N两点,系着一根不可伸长的柔软轻绳,绳上套有一光滑小金属环.现将木棒绕其左端逆时针缓慢转动一个小角度,则关于轻绳对M、N两点的拉力F1、F2的变化情况,下列判断正确的是()A.F1和F2都变大B.F1变大,F2变小C.F1和F2都变小D.F1变小,F2变大5.(2020·广东高三模拟)如图所示,竖直墙上连有细绳AB,轻弹簧的一端与B相连,另一端固定在墙上的C 点.细绳BD与弹簧拴接在B点,现给BD一水平向左的拉力F,使弹簧处于伸长状态,且AB、CB与墙的夹角均为45°.若保持B点不动,将BD绳绕B点沿顺时针方向缓慢转动,则在转动过程中BD绳的拉力F的变化情况是()A.变小B.变大C.先变小后变大D.先变大后变小6.(2020·河南信阳市高三上学期期末)如图所示,足够长的光滑平板AP与BP用铰链连接,平板AP与水平面成53°角固定不动,平板BP可绕水平轴在竖直面内自由转动,质量为m的均匀圆柱体O放在两板间,sin 53°=0.8,cos 53°=0.6,重力加速度为g.在使BP板由水平位置缓慢转动到竖直位置的过程中,下列说法正确的是()A.平板AP受到的压力先减小后增大B.平板AP受到的压力先增大后减小C.平板BP受到的最小压力为0.6mg7.(2020·黑龙江哈尔滨市三中高三模拟)如图所示,斜面固定,平行于斜面处于压缩状态的轻弹簧一端连接物块A,另一端固定,最初A静止.在A上施加与斜面成30°角的恒力F,A仍静止,下列说法正确的是()A.A对斜面的压力一定变小B.A对斜面的压力可能不变C.A对斜面的摩擦力一定变大D.A对斜面的摩擦力可能变为零8.(多选)如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜劈的斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的定滑轮1固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而物体a与斜劈始终静止,则()A.细线对物体a的拉力增大B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大9.(多选)(2019·河北唐山一中综合测试)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有()A.轻绳对小球的拉力逐渐增大B.小球对斜劈的压力先减小后增大C.竖直杆对小滑块的弹力先增大后减小D.对小滑块施加的竖直向上的拉力逐渐增大10.(多选)如图所示装置,两根细绳拴住一小球,保持两细绳间的夹角θ=120°不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力F1、CB绳的拉力F2的大小变化情况是()A.F1先变小后变大B.F1先变大后变小C.F2一直变小D.F2最终变为零11.倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5.现给A施加一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.512.(2020·山西“六校”高三联考)跨过定滑轮的轻绳两端分别系着物体A和物体B,物体A放在倾角为θ的斜面上,与A相连的轻绳和斜面平行,如图所示.已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(最大静摩擦力等于滑动摩擦力).参考答案类型一动态平衡问题题型例析1图解法例1【答案】BC【解析】对小球受力分析知,小球受到重力mg、斜面的支持力F N1和挡板的弹力F N2,如图,当挡板绕O 点逆时针缓慢地转向水平位置的过程中,小球所受的合力为零,根据平衡条件得知,F N1和F N2的合力与重力mg大小相等、方向相反,作出小球在三个不同位置力的受力分析图,由图看出,斜面对小球的支持力F N1逐渐减小,挡板对小球的弹力F N2先减小后增大,当F N1和F N2垂直时,弹力F N2最小,故选项B、C正确,A、D错误.故选BC。

高中物理解决动态平衡问题的五种方法(带答案)

高中物理解决动态平衡问题的五种方法(带答案)

第03讲解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

(二)结论法若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A、B两根电线杆之间。

由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力FT(两个拉力大小相等)及它们的合力F的大小变化情况为()A.FT 减小,F不变B.FT增大,F不变C.FT 增大,F减小D.FT增大,F增大3、如图所示,硬杆BC一端固定在墙上的B点,另一端装有滑轮C,重物D用绳拴住通过滑轮固定于墙上的A点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A点稍向下移,则在移动过程中( )A.绳的拉力、滑轮对绳的作用力都增大B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。

一般按照以下流程解题。

1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将( )A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。

图解法、相似三角形法解决动态平衡问题

图解法、相似三角形法解决动态平衡问题

.A. T、NC.小球作用于板的压力可能小于球所受的重力D.小球对板的压力不可能小于球所受的重力一个截面是直角三角形的木块放在水平地面上,在斜面上放一个光滑球,所示。

若在光滑球的最高点再施加一个竖直向下的力.保持静止,则在加入砂子的过程中A.球B对墙的压力减小C.地面对物体A的摩擦力减小..21.AB与BC所受的拉力大小;22.若将C点逐渐上移,同时将BC线逐渐放长,而保持AB的方向不变,在此过程中AB与BC中的张力大小如何变化?如图所示,有倾角为30°的光滑斜面上放一质量为2kg的小球,球被竖直挡板挡住,若斜面足够长,g取10m/s2,求:23.球对挡板的压力大小。

24.撤去挡板,2s末小球的速度大小。

25.如图1所示,电灯悬挂于两干墙之间,使连接点A上移,但保持O点位置不变,则在A点向上移动的过程中,绳OA、OB的拉力如何变化?图1.参考答案1. B【解析】以结点O为研究对象进行受力分析如图(a)。

由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a)。

由图可知水平拉力增大。

以环、绳和小球构成的整体作为研究对象,作受力分析图如图(b)。

由整个系统平衡可知:F N=(mA+mB)g;Ff=F。

即F f增大,F N不变,故B正确。

2.A【解析】3. BC【解析】本题考查受力分析及整体法和隔离体法.以两环和小球整体为研究对象,在竖直方向始终有FN=Mg+2mg,选项C对A错;设绳子与水平横杆间的夹角为θ,设绳子拉力为T,以小球为研究对象,竖直方向有,2Tsinθ=Mg,以小环为研究对象,水平方向有,Ff=Tcosθ,由以上两式联立解得Ff=(Mgcotθ)/2,当两环间距离增大时,θ角变小,则Ff增大,选项B对D错.4.D【解析】球形物体处于静止状态,故其合外力为零,以球形物体为研究对象,受力如图所示,本题中由于球形物体的重力是不变的,而斜面对球形物体的支持力的方向是不变的,由共点力的平衡条件可知:支持力与绳的拉力的合力与重力等大反向,则绳的拉力的变化如右图所示,故绳的拉力先减小后增大,故D对。

高一力学动态平衡—相似三角形、动态三角形

高一力学动态平衡—相似三角形、动态三角形

高一力学动态平衡—相似三角形、动态三角形在高一力学的学习中,动态平衡问题是一个重要且具有一定难度的知识点。

其中,相似三角形和动态三角形的方法在解决这类问题时常常能发挥关键作用。

我们先来理解一下什么是动态平衡。

简单来说,动态平衡就是指物体在运动过程中,其合力始终为零,保持平衡状态,但某些力的大小、方向在不断变化。

想象一个用绳子悬挂的物体,绳子的长度不变,但悬挂点在移动,这就是一种动态平衡的情况。

相似三角形法在处理动态平衡问题时,基于的原理是在力的矢量三角形与几何三角形相似的情况下,对应边成比例。

这意味着我们可以通过几何关系来确定力的变化情况。

比如说,有一个物体放在斜面上,用一个力 F 沿着斜面向上推,同时受到斜面的支持力 N 和重力 G 的作用。

我们可以分别画出力的矢量三角形和由物体、斜面构成的几何三角形。

如果这两个三角形相似,那么力之间的比例关系就与三角形边的比例关系相同。

举个具体的例子吧。

一个光滑的圆球放在一个斜面上,被一根细绳斜拉着处于静止状态。

我们画出圆球受到的重力 G、绳子的拉力 T 和斜面的支持力 N 所构成的矢量三角形。

同时,观察圆球、绳子与斜面接触点以及斜面顶点构成的几何三角形。

如果这两个三角形相似,那么我们就可以根据边的比例关系来判断力的大小变化。

再来看动态三角形法。

这种方法主要用于一个力的大小和方向不变,另一个力的方向不变,第三个力大小和方向都在变化的情况。

比如,还是一个物体放在斜面上,重力大小和方向不变,斜面的支持力方向不变,而施加在物体上的一个外力的大小和方向都在改变。

我们可以通过平移力的矢量,构建一个动态的三角形来分析力的变化。

具体来讲,我们先画出重力,然后根据支持力的方向画出支持力,再把外力的起始点与重力的末端连接起来,这样就构成了一个三角形。

随着外力的变化,这个三角形的形状也在改变,但我们可以通过其中一些不变的条件来分析力的变化规律。

比如说,当外力与支持力垂直时,外力取得最小值。

高中物理:动态平衡问题的几种解法

高中物理:动态平衡问题的几种解法

在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

下面就介绍几种动态平衡问题的解题方法。

方法一:三角形法则。

原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例1. 如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?图1解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。

因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。

挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。

由图可知,F2先减小后增大,F1随增大而始终减小。

图2说明:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。

方法二:解析法。

原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。

例2. 如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()图3A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力、水的阻力、绳子拉力F。

高一力学动态平衡—相似三角形、动态三角形

高一力学动态平衡—相似三角形、动态三角形

高一力学动态平衡—相似三角形、动态三角形在高一力学的学习中,动态平衡问题是一个重点也是一个难点。

其中,相似三角形和动态三角形的方法在解决这类问题时常常能发挥出奇妙的作用。

接下来,让我们一起深入探讨这两个重要的解题技巧。

首先,我们来了解一下什么是力学中的动态平衡。

简单来说,动态平衡就是指物体在运动过程中,其所受的合力始终为零,处于平衡状态,但某些力的大小、方向或者作用点在不断变化。

相似三角形法,其核心在于构建一个由力的矢量三角形和一个几何三角形相似的模型。

为什么能这样做呢?这是因为在很多情况下,当物体处于动态平衡时,力的矢量三角形与某个几何三角形存在着相似关系。

比如说,有一个用轻绳悬挂的小球,绳子一端固定在天花板上,另一端连着小球。

当小球在一个倾斜的光滑平面上缓慢移动时,我们就可以通过相似三角形来求解力的变化。

我们画出小球所受的重力、绳子的拉力以及平面的支持力,构成一个力的矢量三角形。

然后,再找到一个与之相似的几何三角形。

通过相似三角形对应边成比例的关系,我们就能得出各个力之间的比例关系,从而随着角度或者长度的变化,求出力的大小变化。

再来看动态三角形法。

动态三角形法主要是利用力的矢量三角形中,一个力的大小和方向不变,另一个力的方向不变,通过第三个力的变化来判断物体的平衡状态。

举个例子,一个物体放在粗糙斜面上,受到重力、斜面的支持力和摩擦力。

重力大小和方向不变,支持力方向不变。

当物体向上缓慢移动时,摩擦力逐渐增大。

我们通过画出力的矢量三角形,直观地看到第三个力的变化。

在实际解题过程中,怎么判断该用相似三角形法还是动态三角形法呢?这需要我们对题目中的条件进行仔细分析。

如果题目中给出了一些长度或者角度的关系,并且能够找到与之相似的几何图形,那么相似三角形法可能更合适。

而如果题目中明确有一个力大小方向不变,另一个力方向不变,那么动态三角形法往往能派上用场。

为了更好地掌握这两种方法,我们来做几道例题。

例题一:如图所示,一光滑小球放在固定的斜面上,用一竖直挡板挡住小球使其处于静止状态。

高中物理解决动态平衡问题的五种方法(带答案)

高中物理解决动态平衡问题的五种方法(带答案)

第03讲 解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

(二)结论法 若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A 、B 两根电线杆之间。

由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉力较大B .夏季,电线对电线杆的拉力较大C .夏季与冬季,电线对电线杆的拉力一样大D .夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变A CB(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。

一般按照以下流程解题。

1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。

(完整word版)高中物理力学图解动态平衡问题与相似三角形问题.doc

(完整word版)高中物理力学图解动态平衡问题与相似三角形问题.doc

图解法分析动态平衡问题所谓图解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,做一些较为复杂的定性分析,从图形上一下就可以看出结果,得出结论。

题型特点:( 1)物体受三个力。

( 2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。

解题思路:( 1)明确研究对象。

( 2)分析物体的受力。

( 3)用力的合成或力的分解作平行四边形(也可简化为矢量三角形)。

( 4)正确找出力的变化方向。

(5)根据有向线段的长度变化判断各个力的变化情况。

注意几点:( 1)哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。

(2)正确判断力的变化方向及方向变化的范围。

(3)力的方向在变化的过程中,力的大小是否存在极值问题。

【例 1】如图 2- 4- 2 所示,两根等长的绳子 AB 和 BC 吊一重物静止,两根绳子与水平方向夹角均为 60° .现保持绳子 AB 与水平方向的夹角不变,将绳子 BC 逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC 的拉力变化情况是()A .增大B .先减小,后增大C.减小 D .先增大,后减小解析:方法一:对力的处理 (求合力 )采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法 ).作出力的平行四边形,如图甲所示.由图可看出,FBC 先减小后增大.方法二:对力的处理 (求合力 )采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将 FAB、 FBC 分别沿水平方向和竖直方向分解,由两方向合力为零分别列出:FABcos 60°= FB Csin θ,FABsin 60°+ FB Ccos θ= FB ,联立解得 FBC sin(30 °+θ )= FB/2,显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大.答案: B变式 1- 1 如图 2- 4-3 所示,轻杆的一端固定一光滑球体,杆的另一端O 为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ.且θ+β <90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力 F 的大小及轻杆受力T 和地面对斜面的支持力 N 的大小变化情况是()A.F 逐渐增大, T 逐渐减小, FN 逐渐减小B.F 逐渐减小, T 逐渐减小, FN 逐渐增大C.F 逐渐增大, T 先减小后增大, FN 逐渐增大D. F 逐渐减小, T 先减小后增大,FN 逐渐减小解析:利用矢量三角形法对球体进行分析如图甲所示,可知T 是先减小后增大.斜面对球的支持力FN′逐渐增大,对斜面受力分析如图乙所示,可知 F =FN″ sinθ,则 F逐渐增大,水平面对斜面的支持力FN= G+ FN ″ ·cos θ,故 FN 逐渐增大.答案: C利用相似三角形相似求解平衡问题2.相似三角形法:当物体受三个共点力作用处于平衡状态时,若三力中有二力的方向发生变化,而无法直接用图解法得出结论时,可以用表示三力关系的矢量三角形跟题中的其他三角形相似对应边成比例,建立关系求解。

高一教科版物理必修一:第四章+物体的平衡6+应用相似三角形法解决动态平衡问题(同步练习)+Word版含解析

高一教科版物理必修一:第四章+物体的平衡6+应用相似三角形法解决动态平衡问题(同步练习)+Word版含解析

(答题时间:20分钟) 1. 如图所示,有一质量不计的杆AO ,长为R ,可绕A 自由转动。

用绳在O 点悬挂一个重为G 的物体,另一根绳一端系在O 点,另一端系在以O 点为圆心的圆弧形墙壁上的C 点。

当点C 由图示位置逐渐向上沿圆弧CB 移动过程中(保持OA 与地面夹角θ不变),OC 绳所受拉力的大小变化情况是( )A. 逐渐减小B. 逐渐增大C. 先减小后增大D. 先增大后减小 2. 如图所示,不计重力的轻杆OP 能以O 为轴在竖直平面内自由转动,P 端挂一重物,另用一根轻绳通过滑轮系住P 端,当OP 和竖直方向的夹角a 缓慢增大时(π<<a 0),OP 杆所受作用力的大小( )A. 恒定不变B. 逐渐增大C. 逐渐减小D. 先增大后减小3. 两个大小相同的小球带有同种电荷(可看作点电荷),质量分别为m 1和m 2,带电量分别是q 1和q 2,用两等长的绝缘线悬挂后,因静电力而使两悬线张开,分别与竖直方向成夹角1α和2α,如图所示,若21αα=,则下列结论正确的是( )A. q 1一定等于q 2B. 一定满足2211m q m q =C. m 1一定等于m 2D. 必定同时满足q 1=q 2,m 1=m 24. 某欧式建筑物屋顶为半球形,一警卫人员为执行特殊任务,必须冒险在半球形屋顶上向上缓慢爬行(见下图),他在向上爬的过程中( )A. 屋顶对他的支持力变大B. 屋顶对他的支持力变小C. 屋顶对他的摩擦力变大D. 屋顶对他的摩擦力不变5. 如图所示,固定的半球面右侧是光滑的,左侧是粗糙的,O点为球心,A、B为两个完全相同的小物块(可视为质点),小物块A静止在球面的左侧,受到的摩擦力大小为F1,对球面的压力大小为N1;小物块B在水平力F2作用下静止在球面的右侧,对球面的压力大小为N2,已知两小物块与球心连线和竖直方向的夹角均为θ,则()A. F1:F2=cosθ:1B. F1:F2=sinθ:1C. N1:N2=cos2θ:1D. N1:N2=sin2θ:16. 半圆柱体P放在粗糙的水平面上,有一挡板MN,其延长线总是过半圆柱体的轴心O,但挡板与半圆柱体不接触,在P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于静止状态,下图是这个装置的截面图,若用外力使MN绕O点缓慢地逆时针转动,在Q 到达最高位置前,发现P始终保持静止,在此过程中,下列说法中正确的是()A. MN对Q的弹力大小保持不变B. MN对Q的弹力先增大后减小C. P、Q间的弹力先增大后减小D. P所受水平面的作用力一直增大7. 如图所示,上表面光滑的半圆柱体放在水平面上,小物块从靠近半圆柱体顶点O的A 点,在外力F作用下沿圆弧缓慢下滑到B点,此过程中F始终沿圆弧的切线方向且半圆柱体保持静止状态。

高一教科版物理必修一:第四章+物体的平衡4+巧用图解法解决动态平衡问题(同步练习)+Word版含解析.docx

高一教科版物理必修一:第四章+物体的平衡4+巧用图解法解决动态平衡问题(同步练习)+Word版含解析.docx

(答题时间:20分钟)1. 如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙壁,A与竖直墙壁之间放一光滑圆球B,整个装置处于静止状态。

若把A向右移动少许后,它们仍处于静止状态,则()A. B对墙的压力增大B. A与B之间的作用力增大C. 地面对A的摩擦力减小D. A对地面的压力减小2. 如图所示,桌面上固定一个光滑竖直挡板,现将一个重球A与截面为三角形垫块B叠放在一起,用水平外力F可以缓缓向左推动B,使球慢慢升高,设各接触面均光滑,则该过程中()A. A和B均受三个力作用而平衡B. B对桌面的压力越来越大C. A对B的压力越来越小D. 推力F的大小恒定不变3.如图所示,两个质量都是m的小球A、B用轻杆连接后斜放在墙上处于平衡状态,已知墙面光滑,水平地面粗糙。

现将A球向上移动一小段距离,两球再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,地面对B球的支持力N和轻杆上的压力F的变化情况是()A. N不变,F变大B. N变大,F变大C. N不变,F变小D. N变大,F变小4. 如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是()A. F1增大,F2减小B. F1减小,F2减小C. F 1增大,F 2增大D. F 1减小,F 2增大5. 如图所示,两根细绳拉住一个小球,开始时AC 水平。

现保持两细线间的夹角不变,而将整个装置顺时针缓慢转过90°,则在转动过程中,AC 绳的拉力1T F 和BC 绳的拉力2T F 大小变化情况是( )A. 2T F 先变大后变小,1T F 一直变小B. 1T F 先变大后变小,2T F 一直变小C. 1T F 先变小后变大,2T F 一直变小D. 2T F 先变小后变大,1T F 一直变大6. 如图所示,用与竖直方向成θ角的倾斜轻绳子a 和水平轻绳子b 共同固定一个小球,这时绳b 的拉力为F 1。

相似三角形法 解决动态平衡问题

相似三角形法  解决动态平衡问题

相似三角形法 解决动态平衡问题首先选定研究对象,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。

例题1 如图所示,杆BC 的B 端铰接在竖直墙上,另一端C 为一滑轮,重力为G 的重物上系一绳经过滑轮固定于墙上A 点处,杆恰好平衡,若将绳的A 端沿墙向下移,再使之平衡(BC 杆、滑轮、绳的质量及摩擦均不计),则( )A. 绳的拉力增大,BC 杆受压力增大B. 绳的拉力不变,BC 杆受压力增大C. 绳的拉力不变,BC 杆受压力减小D. 绳的拉力不变,BC 杆受压力不变思路分析:选取滑轮为研究对象,对其受力分析,如图所示。

绳中的弹力大小相等,即T 1=T 2=G ,T 1、T 2、F 三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC段绳子与竖直墙壁间的夹角为θ,则根据几何知识可得,杆对绳子的支持力F =2G sin θ2,当绳的A 端沿墙向下移时,θ增大,F 也增大,根据牛顿第三定律,BC 杆受压力增大。

图中,矢量三角形与几何三角形ABC 相似,因此F mg BC AB ,解得F =AB BC ·mg ,当绳的A 端沿墙向下移,再次平衡时,AB 长度变短,而BC 长度不变,F 变大,根据牛顿第三定律,BC 杆受压力增大。

例题2 如图所示,固定在竖直平面内的光滑圆环的最高点处有一个光滑的小孔,质量为m 的小球套在圆环上,一根细线的下端拴着小球,上端穿过小孔用手拉住。

现拉动细线,使小球沿圆环缓慢上移,在移动过程中,手对线的拉力F 和轨道对小球的弹力N 的大小的变化情况是( )A. F 大小将不变B. F 大小将增大C. N 大小将不变D. N 大小将增大对小球受力分析,其受到竖直向下的重力G ,圆环对小球的弹力N 和线的拉力F 作用,小球处于平衡状态,G 大小方向恒定,N 和F 方向不断在变化,如图所示,可知矢量三角形AGF 1与长度三角形BOA 相似,得出:ABF OA N OBG 1==,又因为在移动过程中,OA 与OB 的长度不变,而AB 长度变短,所以N 不变,F 1变小,即F 变小,故C 选项正确。

高中物理必修一动态平衡课件

高中物理必修一动态平衡课件

C
• C. N大小将不变
• D. N大小将增大
22
正弦定理法
• 例:两个可视为质点的小球a和b,用质量可忽略
的刚性细杆相连,放置在一个光滑的半球面内, 如图所示。己知小球a和b的质量之比为 ,细杆长
度是球面半径的 倍。两球处于平衡状态时,细杆 与水平面的夹角θ是( )
• A.450
B.300
• C.22.50 D D.150
极值法没找到例题
19
跟踪训练:一轻杆BO,其O端用光滑铰链铰于固定 竖直杆AO上,B端挂一重物,且系一细绳,细绳跨 过杆顶A处的光滑小滑轮,用力F拉住,如图所示. 现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ 逐渐减少,则在此过程中,拉力F及杆BO所受压力 FN的大小变化情况是( )
A、FN先减小,后增大
小变化情况是( ) A.F不变,FN增大 B.F不变,FN减小 C.F减小,FN不变 D.F增大,FN减小
14
3.解析法解题步骤
1 明确研究对象。 2 分析物体的受力。 3 找一个大小和方向不变的力作为另外两个力的合 力(也可简化为矢量三角形)。 4 三力构成的矢量角函数表示 6 由角的变化判断变力的变化情况
AC ( )
A. 绳子的拉力F不断增大 B. 绳子的拉力F不变 C. 船所受的浮力不断减小 D. 船所受的浮力不断增大
注意:四个力只能用正
Fcosθ=f…①
交分解解析法
Fsinθ+F浮=mg…②
船在匀速靠岸的过程中,θ
增大,阻力不变,根据平衡
方程①知,cosθ减小,绳子
的张力增大,根据平衡方程
②知,拉力F增大,sinθ增
BC 过程中,下列说法正确的是 (
)

高中物理解决动态平衡问题的五种方法(带答案)

高中物理解决动态平衡问题的五种方法(带答案)

第03讲解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

(二)结论法若合力不变,两等大分力夹角变大,则分力变大.*若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A、B两根电线杆之间。

由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地面的压力较大:2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T(两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( )A.'B.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大 C.绳的拉力不变,滑轮对绳的作用力增大 D.绳的拉力、滑轮对绳的作用力都不变A C B(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。

一般按照以下流程解题。

{1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大】3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。

高一物理力学受力分析之动态平衡问题

高一物理力学受力分析之动态平衡问题

动态平衡一、三角形图示法(图解法)方法规律总结:常用于解三力平衡且有一个力是恒力,另一个力方向不变的问题。

例1、如图1-17所示,重G的光滑小球静止在固定斜面和竖直挡板之间。

若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1 、F2各如何变化?答案: F1逐渐变小,F2先变小后变大变式:1、质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示,用T表示OA段拉力的大小,在O点向左移动的过程中( A)A.F逐渐变大,T逐渐变大B.F逐渐变大,T逐渐变小C.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小2、如图所示,一个球在两块光滑斜面板AB、AC之间,两板与水平面间的夹角均为60°,现使AB板固定,使AC板与水平面间的夹角逐渐减小,则下列说法中正确的是(A)A.球对AC板的压力先减小再增大B.球对AC板的压力逐渐减小C.球对AB板的压力逐渐增大D.球对AB板的压力先增大再减小二、三角形相似法方法规律总结:在三力平衡问题中,如果有一个力是恒力,另外两个力方向都发生变化,且力的矢量三角形与题所给空间几何三角形相似,可以利用相似三角形对应边的比例关系求解.例2、如图所示,AC是上端带定滑轮的固定竖直杆,质量不计的轻杆AB一端通过铰链固定在A点,另一端B悬挂一重为G的重物,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BAC>90°,现使∠BAC缓慢变小,直到杆AB接近竖直杆AC.此过程中,杆AB所受的力( A )A.大小不变B.逐渐增大C.先减小后增大D.先增大后减小变式:1、如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移.在移动过程中手对线的拉力F和轨道对小球的弹力N的大小变化情况是(C)A.F不变,N增大B.F不变,N减小C.F减小,N不变D.F增大,N减小2、半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B的距离为h,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示,现缓慢地拉绳,在使小球由A到B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化的情况是(A)A.N不变,T变小B.N不变,T先变大后变小C.N 变小,T先变小后变大D.N变大,T变小三、整体隔离法方法规律总结:当研究对象由多个物体组成时,可以将多个物体看成一个整体,分析整体受力,叫做整体法;也可以将某个物体隔离开,单独分析,叫做隔离法.整体法、隔离法也可以组合使用.例3、一个截面是直角三角形的木块放在水平地面上,在斜面上放一个光滑球,球的一侧靠在竖直墙上,木块处于静止,如图所示.若在光滑球的最高点再施加一个竖直向下的力F,木块仍处于静止,则木块对地面的压力N和摩擦力f的变化情况是(A)A.N增大,f增大B.N增大,f不变C.N不变,f增大D.N不变,f不变变式:1、在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态.现对B加一竖直向下的力F,F的作用线通过球心,设墙对B的作用力为F1,B对A的作用力为F2,地面对A的作用力为F3.若F缓慢增大而整个装置仍保持静止,截面如图所示,在此过程中(A)A. F2缓慢增大,F3缓慢增大B. F1缓慢增大,F3保持不变C. F1保持不变,F3缓慢增大D. F2缓慢增大,F3保持不变2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(答题时间:20分钟)
1. 如图所示,有一质量不计的杆AO ,长为R ,可绕A 自由转动。

用绳在O 点悬挂一个重为G 的物体,另一根绳一端系在O 点,另一端系在以O 点为圆心的圆弧形墙壁上的C 点。

当点C 由图示位置逐渐向上沿圆弧CB 移动过程中(保持OA 与地面夹角θ不变),OC 绳所受拉力的大小变化情况是( )
A. 逐渐减小
B. 逐渐增大
C. 先减小后增大
D. 先增大后减小 2. 如图所示,不计重力的轻杆OP 能以O 为轴在竖直平面内自由转动,P 端挂一重物,另用一根轻绳通过滑轮系住P 端,当OP 和竖直方向的夹角a 缓慢增大时(π<<a 0),OP 杆所受作用力的大小( )
A. 恒定不变
B. 逐渐增大
C. 逐渐减小
D. 先增大后减小
3. 两个大小相同的小球带有同种电荷(可看作点电荷),质量分别为m 1和m 2,带电量分别是q 1和q 2,用两等长的绝缘线悬挂后,因静电力而使两悬线张开,分别与竖直方向成夹角1α和2α,如图所示,若21αα=,则下列结论正确的是( )
A. q 1一定等于q 2
B. 一定满足2
211m q m q = C. m 1一定等于m 2 D. 必定同时满足q 1=q 2,m 1=m 2
4. 某欧式建筑物屋顶为半球形,一警卫人员为执行特殊任务,必须冒险在半球形屋顶上向上缓慢爬行(见下图),他在向上爬的过程中( )
A. 屋顶对他的支持力变大
B. 屋顶对他的支持力变小
C. 屋顶对他的摩擦力变大
D. 屋顶对他的摩擦力不变
5. 如图所示,固定的半球面右侧是光滑的,左侧是粗糙的,O 点为球心,A 、B 为两个完全相同的小物块(可视为质点),小物块A 静止在球面的左侧,受到的摩擦力大小为F 1,对球面的压力大小为N 1;小物块B 在水平力F 2作用下静止在球面的右侧,对球面的压力大小为N 2,已知两小物块与球心连线和竖直方向的夹角均为θ,则( )
A. F 1:F 2=cosθ:1
B. F 1:F 2=sinθ:1
C. N 1:N 2=cos 2θ:1
D. N 1:N 2=sin 2θ:1
6. 半圆柱体P 放在粗糙的水平面上,有一挡板MN ,其延长线总是过半圆柱体的轴心O ,但挡板与半圆柱体不接触,在P 和MN 之间放有一个光滑均匀的小圆柱体Q ,整个装置处于静止状态,下图是这个装置的截面图,若用外力使MN 绕O 点缓慢地逆时针转动,在Q 到达最高位置前,发现P 始终保持静止,在此过程中,下列说法中正确的是( )
A. MN 对Q 的弹力大小保持不变
B. MN 对Q 的弹力先增大后减小
C. P 、Q 间的弹力先增大后减小
D. P 所受水平面的作用力一直增大
7. 如图所示,上表面光滑的半圆柱体放在水平面上,小物块从靠近半圆柱体顶点O 的A 点,在外力F 作用下沿圆弧缓慢下滑到B 点,此过程中F 始终沿圆弧的切线方向且半圆柱体保持静止状态。

下列说法中正确的是( )
A. 半圆柱体对小物块的支持力变大
B. 外力F 先变小后变大
C. 地面对半圆柱体的摩擦力先变大后变小
D. 地面对半圆柱体的支持力变大
8. 如下图所示,竖直绝缘墙壁上的Q 处有一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( )
A. T 变小
B. T 变大
C.T 不变
D. T 无法确定
1. C 解析:据题意,当细绳OC 的C 端向B 点移动的过程中,系统处于平衡状态,对点O 受力分析,受到悬挂物的拉力,该拉力为:T G =,受到杆的支持力N 和细绳OC 的拉力T C ,由力的三角形定则,即如上图所示中可以看出,随着C 点上移,代表细绳OC 的拉力T C 的对应边的长度先减小后增加,则该拉力的大小也是先减小后增加,故选项C 正确。

2. A 解析:在OP 杆和竖直方向夹角a 缓慢增大时(π<<a 0),结点P 在一系列不同位置处于静态平衡,以结点P 为研究对象,如图1所示,结点P 受向下的拉力G ,QP 绳的拉力T ,OP 杆的支持力N F ,三力中,向下的拉力恒定(大小、方向均不变),绳、杆作用力大小均变,绳PQ 的拉力T 总沿绳PQ 收缩的方向,杆OP 支持力方向总是沿杆而指向杆恢复形变的方向(方向变化有依据),作出处于某一可能位置时对应的力三角形图,如图2所示,则表示这两个力的有向线段组成的三角形与几何线段组成的三角形相似,根据相似三角形知识即可求得,由图可知,POQ ∆~PNM ∆得,
OP F PQ T OQ G N ==,式中G 、OQ 、OP 均不变,故N F 不变,正确答案为A 。

3. C 解析:题中电荷电量可能不同,也可能相同,但各自所受的电场力大小却相同,方向相反。

由于它们与竖直线所成的角度相等,且两球同处一水平线上,所以根据共点力平衡条件可确定,它们的质量一定相等,故ABD 错误,C 正确。

4. A 解析:以人为研究对象,分析受力可知,人受到重力、摩擦力、屋顶的支持力,其中屋顶支持力和摩擦力的方向都在变化,所以可以采用相似三角形的方法把物理问题转化为数学问题求解,如下图所示: ,即满足
G 、R 不变,h 增大,水平x 减小,故可知屋顶对人的支持力在变大,摩A 正确。

5. AC 解析:分别对A 、B 两个相同的小物块受力分析,如图所示,A 受到重力,沿球面斜向上的摩擦力F 1,垂直于球的斜向上的支持力,它的大小等于它对球面的压力N 1,故F 1=mgsinθ;N 1=mgcosθ;B 受到重力,作用力F 2及球面对它的支持力,其大小等于它对球面的压力N 2,故F 2=mgtanθ,N 2=
cos mg θ,所以F 1:F 2=sin cos tan 1θθθ=,故A 正确,B 错误;N 1:N 2=cosθ:1cos θ
= cos 2θ:1,C 正确,D 错误。

6. D 解析:对Q ,受重力mg 、MN 的弹力N 1和P 的弹力N 2作用,其受力示意图如下图所示,根据共点力平衡条件可知,三力必构成首尾相接的封闭三角形,且力矢量三角形与图中ΔOAB 相似,在MN 绕O 点缓慢地逆时针转动的过程中α角增大,因此OB 增大、AB
减小,所以N 2增大、N 1减小,故选项A 、B 、C 错误;对P ,受重力Mg 、Q 的弹力N 2′和桌面的作用力F 作用,如下图所示,在MN 绕O 点缓慢地逆时针转动的过程中β角增大,N 2′=N 2增大,根据余弦定理可知F 增大,故选项D 正确。

7. C 解析:以小物块为研究对象进行受力分析,如下图所示:
故有:cos sin N mg F mg θθ==、,由于θ角越来越大,所以可得知,支持力N 逐渐变小,拉力F 逐渐变大,所以A 、B 错误;以半圆柱体为研究对象进行受力分析,如图所示:
故有:sin cos N f Mg N N θθ'=+=、 联立解得1sin cos sin 22f mg mg θθθ==,1cos 22N Mg mg θ+⎛⎫'=+ ⎪⎝⎭
,由于θ角越来越大,所以可知,静摩擦力先变大后变小,支持力先变小后变大,故C 正确、D 错误。

8. C 解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。

对小球漏电前和漏电过程中进行受力分析有如图1所示,由于漏电过程缓慢进行,则任意时刻均可视为平衡状态。

三力作用构成动态的力的三角形,而对应的实物质点A 、B 及绳墙和P 点构成动态的几何三角形,且不同位置时有如图2阴影三角形的相似情况,则有如下相似比例: 可得:mg PQ
PB T ⋅=,变化过程中PB 、PQ 、mg 均为定值,所以T 不变。

故选C 。

相关文档
最新文档