单片机系统抗干扰
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机系统的抗干扰
抗干扰问题是单片机控制系统工程实现中须解决的关键问题之一。对干扰产生的机理及其抑制技术的研究,受到国内外普遍重视。大约在50年代,就开始了对电磁干扰的系统研究,逐步形成了以研究干扰的产生、传播、抑制和使装臵在其所处电磁环境中既不被干扰又不干扰周围设备,从而都能长期稳定运行等为主要内容的技术学科—电磁兼容技术、EMC技术。
按国家军用标准GJB 72—85《电磁场干扰和电磁兼容性名词术语》其定义为:“设备(分系统、系统)在共同的电磁环境中能一齐执行各自功能的共存状态。即:该设备不会由于受到处于同一电磁环境中其它设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其它设备(分系统、系统),因受其电磁发射而导致或遭受不允许的降级。”
一、干扰的作用机制及后果
干扰对单片机系统的作用可分为三个部分,第一个部位是输入系统,它使模拟信号失真,数字信号出错,系统如根据该信号做出的反应必然是错误的。第二个部位是输出系统,使各输出信号混乱,不能正常反映系统的真实输出量,从而导致一系列严重后果。第三个部位是单片机的内核,干扰使三总线上的数字信号错乱,使CPU工作出错。
对单片机系统而言,抗干扰有硬件和软件措施,硬件如设臵得当,可将绝大多数的干扰拒之门外,但仍然有部分的干扰窜入系统,引起不良后果,因此,软件抗干扰也是必不可少的。但软件抗干扰是以CPU的开销为代价的,如果没有硬件措施消除大部分的干扰,CPU将忙于应付,会影响到系统的实时性和工作效率。成功的抗干扰系统是由硬件和软件相结合而构成的。硬件抗干扰具有效率高的优点,但要增加系统的成本和体积,软件抗干扰具有投资低的优点,但要降低系统的工作效率。
由于应用系统的工作现场,往往有许多强电设备,它们的启动和工作过程将对单片机产生强烈的干扰;也由于被控制对象和被测信号往往分布在不同的地方,即整个控制系统的各部分之间有较远的距离,信号线和控制线均可能是长线,这样电磁干扰就很容易以不同的途径和方式混入应用系统之中。如果上述来源于生产现场的干扰称为系统内部的干扰源的话,那么还有来源于现场以外的所谓外部干扰源,如外电源(如雷电)对电网的冲击,外来的电磁辐射等。
不管哪种干扰源,对单片机的干扰总是以辐射、电源和直接传导等三种方式进入的,其途径主要是空间、电源和过程通道。按干扰的作用形式分类,干扰一般有串模干扰和共模干扰两种。抗干扰的方法则针对干扰传导的源特征和传导方式,采取抑制源噪声,切断干扰路径,和强化系统抵抗干扰等三种方式。
控制干扰源的发射,除了从源的机理着手降低其产生电磁噪声的电平之外,广泛的应用着屏蔽(包括隔离)、滤波与接地技术。屏蔽主要用于切断通过空间的静电耦合、感应耦合或交变电磁场耦合形成的电磁噪声传播途径。此三种耦合分别对应于采取的静电屏
蔽、磁场屏蔽与电磁屏蔽。衡量屏蔽的质量采用屏蔽效能这一指标。屏蔽主要研究各种材料(例如:金属材料、磁性材料、复合材料等)、各种结构(例如:多层、单层、孔隙等)及各种形状的屏蔽体的屏蔽效能,研究屏蔽体的设计以及屏蔽与接地的关系等。
隔离是用于切断传导形式的电磁噪声的传播途径。例如应用继电器、隔离变压器或光电隔离器件等。其特点是可将两部分电路的地线系统分割开来,切断通过地阻抗进行耦合的可能性。
滤波是在频域上处理噪声的一种技术。其特点是将不需要的一部分频谱滤掉。例如对电源滤波器,只保留50Hz的电源频率,滤除所有其它频率的电磁噪声,而对于各种不同的信号滤波器,其保留的通带视其信号所需而定。
接地是提供有用信号或无用信号,电磁噪声的公共通路。包括安全地、信号地、电
源中线以及系统内的各种地线等等。其研究内容主要是如何正确地布臵地线,接地体的设计,地线在各种不同频率时的阻抗等等。
对于电气与电子产品,应该采用各种干扰抑制技术,使产品的电磁发射低于标准所
允许的限值。
单片机控制系统的抗干扰,包含两个部分,硬件抗干扰和软件抗干扰。
二、抗干扰的硬件措施
实践表明,在干扰中,电感性负载切投所产生的干扰是单片机控制系统最常见、最严重、最难克服的干扰之一。
1.抑制电感性负载切投所产生干扰的措施
(1)采用阻容(RC)网络,对电感性负载切投所产生干扰的抑制,可采用在负载两端并联RC网络的方法,其目的是降低干扰幅值,减少干扰频率。
(2)采用压敏电阻,压敏电阻是一种对电压敏感的非线性电阻器件,其特性就象双向稳压管一样,是一种无极性的非线性对称的抑制电感性负载反电势干扰和保护触头的器件,既实用于直流电路也实用于交流电路,可接在触点上也可接在线圈上。与RC网络相比,其参数选择较容易,且不会由于电容的充放电而损伤触点。压敏电阻还具有温度系数小,电压范围宽(几伏到上万伏),耐冲击性好,寿命长,体积小,重量轻,价格便宜,使用方便等优点。
电源的干扰很多,而交流电的质量不好,也会成为一个重要的干扰源,如下表所列,
2.接地的方式
(1)一点接地与多点接地的原则,一般而言,低频(1MHz以下)电路应一点接地,高频(10MHz以上)电路应多点就近接地。因为在低频电路中,布线和元件的电感较小,而接地电路形成的环路,对干扰的影响却较大,因此应一点接地;对高频电路,地线上具有电感,因而增加了地线阻抗,同时各地线之间又产生了电感耦合。当频率甚高时,特别是当地线长度等于1/4波长的奇数倍时,地线阻抗就会变得很高,这时地线变成了天线,可以向外辐射噪声信号。
单片机控制系统的频率较低,对其起作用的干扰频率也大多在1MHz以下,故宜采
用一点接地。在1MHz~10MHz之间,如果用一点接地,其地线长度不得超过波长的1/20。否则宜采用多点接地。一点接地方式有串联一点接地和并联一点接地,串联一点接地的每一个支路之间地线应尽可能缩短,线径应足够粗,电平较低的支路应安排在距电源最近。并联一点接地各支路电流在导线上所产生的压降互不影响,不会形成干扰,这是其优点,但实现较为麻烦。
(2)交流地与信号地不能共用,因为在一段电源地线的两点之间会有数毫伏,甚至几伏电压,对低电平信号电路来说,这是一个非常严重的干扰,所以交流地和信号地不能共用。
(3)数字地和模拟地,数字地通常具有很大的噪声,而且电平的跳跃会造成很大的电流尖峰。所有的数字公共导线地应该与模拟公共导线地分开走线,然后只是在一点汇在一起。特别是在ADC和DAC电路中,尤其要注意地线的正确连接,否则转换将不准确,且