第七章遗传算法应用举例
遗传算法及其应用实例
遗传算法及其应用实例遗传算法搜索最优解的方法是模仿生物的进化过程,即通过选择与染色体之间的交叉和变异来完成的。
遗传算法主要使用选择算子、交叉算子与变异算子来模拟生物进化,从而产生一代又一代的种群X (t )。
1.遗传算法的简单原理遗传算法(Genetic Algorithm, GA)是一种基于自然群体遗传演化机制的高效探索算法,它摒弃了传统的搜索方式,模拟自然界生物进化过程,采用人工进化的方式对目标空间进行随机化搜索。
它将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码成符号串形式,模拟达尔文的遗传选择和自然淘汰的生物进化过程,对群体反复进行基于遗传学的操作(遗传,交叉和变异),根据预定的目标适应度函数对每个个体进行评价,依据适者生存,优胜劣汰的进化规则,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,求得满足要求的最优解。
遗传算法主要是用来寻优,它具有很多优点:它能有效地避免局部最优现象,有及其顽强的鲁棒性,并且在寻优过程中,基本不需要任何搜索空间的知识和其他辅助信息等等。
利用遗传算法,可以解决很多标准优化算法解决不了的优化问题,其中包括目标函数不连续、不可微、高度非线性或随机的优化问题。
(1)选择算子:是模拟自然选择的操作,反映“优胜劣汰”原理。
它根据每一个个体的适应度,按照一定规则或方法,从t代种群X (t )中选择出一些优良的个体(或作为母体,或让其遗传到下一代种群X (t 1))。
(2)交叉算子:是模拟有性繁殖的基因重组操作,它将从种群X (t )所选择的每一对母体,以一定的交叉概率交换它们之间的部分基因。
(3)变异算子:是模拟基因突变的遗传操作,它对种群X (t )中的每一个个体,以一定的变异概率改变某一个或某一些基因座上的基因值为其他的等位基因。
交叉算子与变异算子的作用都在于重组染色体基因,以生成新的个体。
遗传算法的运算过程如下:步 1(初始化)确定种群规模 N ,交叉概率 P c ,变异概率 P m 和终止进化准则;随机生成 N 个个体作为初始种群 X (0);置 t ← 0。
第七章遗传算法应用举例
第七章遗传算法应用举例遗传算法是一种模拟自然选择和遗传机制的计算方法,它可以用来解决很多实际问题。
以下是几个遗传算法应用的实例。
1.旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到最短路径来访问一系列城市并返回原始城市。
遗传算法可以通过编码城市序列,并使用交叉、变异和选择操作进行优化。
通过进行迭代,遗传算法可以更优的路径,并得到近似最优的解。
2.机器学习特征选择:在机器学习中,特征选择是一种减少特征集合维度的方法,以提高模型的性能和泛化能力。
遗传算法可以用来选择最佳的特征子集,通过优化目标函数(例如分类准确率或回归误差)来评估子集的优劣,并通过交叉和变异操作不断改进。
3.组合优化问题:遗传算法也广泛应用于组合优化问题,如背包问题、任务调度、物流路径规划等。
通过定义适应度函数和优化目标,遗传算法可以最优的组合并提供近似解。
4.神经网络训练:神经网络是一种模拟人脑神经元相互连接和传递信息的计算模型。
训练神经网络需要调整网络权重和参数,以最小化损失函数。
遗传算法可以用作优化算法,通过定义染色体编码网络参数,并通过交叉和变异操作对网络进行进化,以找到更好的网络结构和参数。
5.机器调参:机器学习算法通常包含许多超参数需要调优,例如决策树的深度、神经网络的学习率等。
遗传算法可以用来超参数的最佳组合,并通过交叉和变异操作对超参数进行优化。
6.图像处理:遗传算法被广泛应用于图像处理领域,如图像增强、目标检测、图像分割等。
通过定义适应度函数和优化目标,遗传算法可以优化图像处理算法的参数和参数组合,以提高图像质量和算法效果。
7.电力系统优化:电力系统优化包括电力负荷优化、电力设备配置优化、电力网路规划等。
遗传算法可以用来优化电力系统的各种参数和变量,以提高电力系统的效率和可靠性。
总之,遗传算法是一种强大而灵活的优化算法,在许多领域都可以应用。
它通过模拟生物进化过程,通过选择、交叉和变异操作,问题的解空间,并找到最优或近似最优的解。
遗传算法的实例ppt课件.ppt
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
遗传算法的一些实例
引言概述遗传算法是一种启发式优化算法,其灵感来源于生物进化理论,主要用于解决复杂的优化问题。
通过模拟生物进化的过程,遗传算法能够通过遗传变异和适应度选择来优秀的解决方案。
本文将通过一些实例来说明遗传算法的应用。
正文内容一、机器学习中的遗传算法应用1.基因选择:遗传算法可以用于寻找机器学习模型中最佳的特征子集,从而提高模型的性能。
2.参数优化:遗传算法可以用于搜索机器学习模型的最佳参数组合,以获得更好的模型效果。
3.模型优化:遗传算法可以用于优化机器学习模型的结构,如神经网络的拓扑结构优化。
二、车辆路径规划中的遗传算法应用1.路径优化:遗传算法可以应用于车辆路径规划中,通过遗传变异和适应度选择,寻找最短路径或者能够满足约束条件的最优路径。
2.交通流优化:遗传算法可以优化交通系统中的交通流,通过调整信号灯的时序或者车辆的路径选择,减少拥堵和行程时间。
三、物流配送中的遗传算法应用1.车辆调度:遗传算法可用于优化物流配送的车辆调度问题,通过遗传变异和适应度选择,实现车辆最优的配送路线和时间安排。
2.货物装载:遗传算法可以用于优化物流运输中的货物装载问题,通过遗传变异和适应度选择,实现货物的最优装载方式。
四、生物信息学中的遗传算法应用1.序列比对:遗传算法可以用于生物序列比对问题,通过遗传变异和适应度选择,寻找最佳的序列匹配方案。
2.基因组装:遗传算法可以用于基因组装问题,通过遗传变异和适应度选择,实现基因组的最优组装方式。
五、电力系统中的遗传算法应用1.能源调度:遗传算法可用于电力系统中的能源调度问题,通过遗传变异和适应度选择,实现电力系统的最优能源调度方案。
2.电力负荷预测:遗传算法可以用于电力负荷预测问题,通过遗传变异和适应度选择,实现对电力负荷的准确预测。
总结遗传算法在机器学习、车辆路径规划、物流配送、生物信息学和电力系统等领域都有广泛的应用。
通过遗传变异和适应度选择的策略,遗传算法能够搜索到最优解决方案,从而优化问题的求解。
遗传算法的原理及其应用实例
遗传算法的原理及其应用实例遗传算法是一种受生物进化启发的优化算法。
它模拟了自然进化的过程,通过选择、交叉和变异等方式不断优化解决问题的方法。
遗传算法已经在很多领域得到了广泛应用,如机器学习、图像处理、数据挖掘、优化、智能控制等领域。
遗传算法的原理遗传算法的三个基本操作是选择、交叉和变异。
选择操作是基于适应度函数对个体进行评估,优秀的个体会有更大的概率被选中。
交叉操作是将两个或多个个体的部分基因进行互换,在新一代中产生更好的个体。
变异操作是根据一定的概率对个体的某些基因进行随机变异,以增加新的可能性。
遗传算法的应用实例1.优化问题遗传算法已成功应用于很多优化问题中。
例如,在工程设计领域中,遗传算法可以用来求解复杂的数学模型,以优化设计变量,如大小、材料和形状等,来满足特定的需求。
在机器学习和人工智能领域中,遗传算法被广泛用于模型优化和参数调整。
2.路径规划遗传算法还可以被用来解决复杂路径规划问题,如飞机航线规划、智能出租车路径规划等。
通过评估适应度函数,遗传算法可以找到一条最短或最优的路线,可以用于优化运输成本、提高效率等。
3.学习算法遗传算法还可用于生成人工神经网络的拓扑结构,进一步实现学习算法的优化。
遗传算法能够通过超参数的选择,使神经网络表现更好的能力,因此在很多领域中如自然语言处理、图像处理、语音识别等领域中被广泛应用。
总之,遗传算法不仅具有优化复杂问题的能力,而且还是一种可扩展,灵活,易用和高度可定制的算法。
随着计算力的增强和算法技术的提高,遗传算法在未来的发展中将会有更为广泛的应用。
遗传算法原理及其应用
遗传算法原理及其应用遗传算法原理及其应用《遗传算法原理及其应用》Chap1 序论一. 遗传算法的生物学基础1.1 遗传与变异基本概念 Cell:细胞Chromosome:染色体 Gene:基因 Locus:基因座 Allele:等位基因 Genotype:基因型Phenotype:表现型 Genome:基因组 Reproduction:复制 Crossover:交叉 Mutation:变异1.2 进化基本术语Evolution:进化 Population:群体 Individual:个体 Fitness:适应度1.3 遗传与进化的系统观1) 生物的所有遗传信息都包含在其染色体中,染色体决定了生物的性状;2) 染色体是基因及其有规律的排列所构成,遗传和进化过程发生在染色体上; 3) 生物的繁殖过程是由其基因的复制过程完成的;4) 通过同源染色体之间的交叉或染色体的变异会产生新的物种,使生物呈现新的性状;5) 对环境适应性好的基因或者染色体会经常比适应性差的基因或染色体有更多的机会遗传到下一代。
二. 遗传算法简介遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化概率2.1 遗传算法概要对于一个求函数最大值的优化问题(求函数最小值也类同),一般可描述为下述数学规t划模型:s..f(X)X∈R R⊆U式中,X=[x1,x2,...,xn] 为决策变量,f(X)为目标函数,第2,3式为约束条件,U是基本空间,R是U的一个子集。
满足约束条件的解X称为可行解,集合R表示由所有满足约束条件的解所组成的一个集合,叫做可行解集合。
对上述最优化问题,目标函数和约束条件种类繁多,由的是线性的,有的是非线性的;有的是连续的,有的是离散的;有点是单峰的,有的是多峰的。
求最优解或近似最优解的方法主要有三种:枚举法,启发式算法和搜索算法:枚举法:枚举出可行解集合内的所有的可行解,以求出精确最优解。
对于连续1)函数,首先要求对其进行离散化处理。
遗传算法原理与应用实例
遗传算法原理与应用实例遗传算法是一种模拟自然进化过程的优化算法,它通过模拟自然选择、交叉和变异等过程,不断优化解决问题的方案。
遗传算法具有全局搜索能力、并行计算能力和自适应性等优点,在许多领域得到了广泛应用。
遗传算法的原理遗传算法的基本原理是模拟自然进化过程,通过不断的选择、交叉和变异等操作,逐步优化解决问题的方案。
具体来说,遗传算法的过程包括以下几个步骤:1. 初始化种群:随机生成一组初始解作为种群。
2. 适应度评价:对每个个体进行适应度评价,即计算其解决问题的能力。
3. 选择操作:根据适应度大小,选择一部分个体作为下一代的父代。
4. 交叉操作:对父代进行交叉操作,生成新的子代。
5. 变异操作:对子代进行变异操作,引入新的基因。
6. 重复执行:重复执行2-5步,直到满足停止条件。
7. 输出结果:输出最优解。
遗传算法的应用实例遗传算法在许多领域都有广泛的应用,下面介绍几个典型的应用实例。
1. 机器学习遗传算法可以用于机器学习中的特征选择和参数优化等问题。
例如,在图像分类问题中,可以使用遗传算法选择最优的特征子集,从而提高分类准确率。
2. 优化问题遗传算法可以用于各种优化问题,如函数优化、组合优化和约束优化等。
例如,在工程设计中,可以使用遗传算法优化设计参数,从而降低成本或提高性能。
3. 人工智能遗传算法可以用于人工智能中的搜索和规划问题。
例如,在机器人路径规划中,可以使用遗传算法搜索最优路径,从而避免障碍物和优化路径长度。
4. 游戏设计遗传算法可以用于游戏设计中的智能体行为优化和关卡生成等问题。
例如,在游戏中,可以使用遗传算法优化智能体的行为策略,从而提高游戏体验。
总结遗传算法是一种强大的优化算法,具有全局搜索能力、并行计算能力和自适应性等优点,在许多领域得到了广泛应用。
通过模拟自然进化过程,遗传算法可以不断优化解决问题的方案,从而提高问题的解决能力。
遗传算法实例参考
05 遗传算法实例:其他问题
问题描述
旅行商问题
给定一系列城市和每对城市之间 的距离,要求找出一条旅行路线, 使得每个城市恰好经过一次并最 终回到起始城市,且总距离最短。
背包问题
给定一组物品和它们的价值、重 量,要求在不超过背包承重限制 的情况下,选择一些物品放入背 包,使得背包中物品的总价值最 大。
2
在调度问题中,常用的编码方式包括二进制编码、 整数编码和实数编码等。
3
二进制编码将每个任务表示为一个二进制串,串 中的每个比特代表一个时间点,1表示任务在该 时间点执行,0表示不执行。
适应度函数
01
适应度函数用于评估解的优劣程度。
02
在调度问题中,适应度函数通常根据总成本计算得出,总成 本越低,适应度越高。
旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题, 旨在寻找一条旅行路线,使得一个销售代表能够访问所有指定的城市,并最后返回 出发城市,且所走的总距离最短。
问题可以描述为:给定一个包含n个城市的集合,以及每对城市之间的距离,求 一条总距离最短的旅行路线。
函数优化
用于求解多峰函数、离散函数等复杂函数的 最大值或最小值问题。
机器学习
用于支持向量机、神经网络等机器学习模型 的参数优化。
组合优化
用于求解如旅行商问题、背包问题、图着色 问题等组合优化问题。
调度与分配问题
用于求解生产调度、车辆路径规划、任务分 配等问题。
02 遗传算法实例:旅行商问 题
问题描述
交叉操作
• 交叉操作是将两个个体的部分基因进行交换,以 产生新的个体。常用的交叉方法有单点交叉、多 点交叉等。在背包问题中,可以采用单点交叉方 法,随机选择一个交叉点,将两个个体的基因进 行交换。
遗传算法的应用
遗传算法的应用
遗传算法是一种模拟生物进化过程的优化算法,它模拟了自然选择、交叉、突变等过程,可以用来解决许多优化问题。
以下是一些遗传
算法的应用示例:
1. 旅行商问题:遗传算法可以用来优化旅行商问题中的路线,找到
最短的旅行路径。
2. 自动化设计:遗传算法可以用来设计复杂系统的参数,如电路设计、控制系统设计等。
3. 机器学习:遗传算法可以用来优化机器学习算法中的参数,例如
神经网络的权重和偏置值。
4. 配置优化:遗传算法可以用来优化计算机系统的配置,例如网络
拓扑结构、服务器资源分配等。
5. 排课问题:遗传算法可以用来解决学校排课问题,找到最优的课
程安排方案。
6. 资源调度:遗传算法可以用来优化资源调度问题,如车辆路径规划、作业调度等。
7. 组合优化:遗传算法可以用来解决组合优化问题,如背包问题、生产调度问题等。
这些只是遗传算法的一些应用示例,实际上,遗传算法可以应用于各种优化问题,尤其是那些无法通过传统的数学方法求解的问题。
第七章遗传算法应用举例
第七章遗传算法应⽤举例第七章遗传算法应⽤举例遗传算法提供了⼀种求解⾮线性、多模型、多⽬标等复杂系统优化问题的通⽤框架,它不依赖于问题具体的领域。
随着对遗传算法技术的不断研究,⼈们对遗传算法的实际应⽤越来越重视,它已经⼴泛地应⽤于函数优化、组合优化、⾃动控制、机器⼈学、图象处理、⼈⼯⽣命、遗传编码、机器学习等科技领域。
遗传算法已经在求解旅⾏商问题、背包问题、装箱问题、图形划分问题等多⽅⾯的应⽤取得了成功。
本章通过⼀些例⼦,介绍如何利⽤第五章提供的遗传算法通⽤函数,编写MATLAB 程序,解决实际问题。
7.1 简单⼀元函数优化实例利⽤遗传算法计算下⾯函数的最⼤值:()sin(10) 2.0[1,2]f x x x x π=?+∈-,选择⼆进制编码,种群中个体数⽬为40,每个种群的长度为20,使⽤代沟为0.9,最⼤遗传代数为25。
下⾯为⼀元函数优化问题的MA TLAB 代码。
figure(1);fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线% 定义遗传算法参数NIND= 40; % 个体数⽬(Number of individuals)MAXGEN = 25; % 最⼤遗传代数(Maximum number of generations)PRECI = 20; % 变量的⼆进制位数(Precision of variables)GGAP = 0.9; % 代沟(Generation gap)trace=zeros (2, MAXGEN); % 寻优结果的初始值FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群gen = 0; % 代计数器variable=bs2rv(Chrom,FieldD); % 计算初始种群的⼗进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算⽬标函数值while gen < MAXGEN,FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择SelCh = recombin ('xovsp',SelCh,0.7); % 重组SelCh = mut(SelCh); % 变异variable=bs2rv(SelCh,FieldD); % ⼦代个体的⼗进制转换ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算⼦代的⽬标函数值[Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插⼊⼦代的新种群 gen = gen+1; % 代计数器增加% 输出最优解及其序号,并在⽬标函数图象中标出,Y 为最优解,I 为种群的序号[Y,I]=max(ObjV),hold on;plot (variable (I),Y , 'bo');trace (1,gen)=max (ObjV); %遗传算法性能跟踪trace (2,gen)=sum (ObjV)/length (ObjV);endvariable=bs2rv (Chrom,FieldD); %最优个体的⼗进制转换hold on,grid;plot (variable',ObjV','b*');figure (2);plot (trace (1,:)');hold on;plot (trace (2,:)','-.');grid;legend ('解的变化','种群均值的变化')使⽤基于适应度的重插⼊确保四个最适应的个体总是被连续传播到下⼀代。
遗传算法及其应用.ppt
第 7 章 遗传算法及其应用
第7章 遗传算法及其应用
7.1 遗传算法的产生与发展 7.2 遗传算法的基本算法 7.3 遗传算法的改进算法
7.4 基于遗传算法的生产调度方法
2
第7章 遗传算法及其应用
1 Fit ( f ( x)) 1 c f ( x) c 0,c f ( x) 0
c :目标函数界限的保守估计值。
23
7.2.3 适应度函数
2. 适应度函数的尺度变换
在遗传算法中,将所有妨碍适应度值高的个体产生,从 而影响遗传算法正常工作的问题统称为欺骗问题 (deceptive problem)。 过早收敛:缩小这些个体的适应度,以降低这些超级个 体的竞争力。 停滞现象:改变原始适应值的比例关系,以提高个体之 间的竞争力。
10
7.1.4 设计遗传算法的基本原则与内容
设计的基本内容:
编码方案:编码表示方式。 适应度函数:目标函数。 选择策略:优胜劣汰。
控制参数:种群的规模、算法执行的最大代数、执行 不同遗传操作的概率等。
遗 传 算 子: 选 择 (selection) ;交 叉 (crossover) ; 变异 (mutation)。 算法的终止准则:规定一个最大的演化代数,或算法 在连续多少代以后解的适应值没有改进。
(2)
p
i 1
M
p1 p2 pM
1
i
31
7.2.4 选择
2. 选择个体方法
(1)转盘赌选择(roulette wheel selection)
按个体的选择概率产生一个轮盘,轮盘每个区的角度与个 体的选择概率成比例。
《遗传算法实例参考》课件
遗传算法是一种模拟自然选择和遗传 机制的优化算法,通过模拟生物进化 过程中的基因遗传和变异过程来寻找 最优解。
特点
遗传算法具有全局搜索能力、隐含并 行性、自适应性、对初始条件要求不 高、鲁棒性强等优点。
遗传算法的基本原理
适应度函数
根据问题的目标函数来定义适 应度函数,用于评估每个个体 的适应度。
机器学习
用于支持向量机、神经网络等机器 学习模型的参数优化。
03
02
组合优化
用于求解如旅行商问题、背包问题 等组合优化问题。
调度与控制
用于生产调度、机器人路径规划等 控制系统的优化。
04
PART 02
遗传算法的实现步骤
初始化种群
初始解的产生
在遗传算法的开始阶段,需要随机生成一组初始解,这组解被称为种群。每个解 都是问题的一个潜在解决方案。
交叉操作
单点交叉(One-Point Crossover)
随机选择一个交叉点,将两个父代解在该点后的部分进行交换,形成两个子代解。
优点
能够引入新的解,增加解的多样性。
变异操作
要点一
位反转变异(Bit-Flip Mutation )
随机选择解中的一个位进行取反操作,以增加解的随机性 。
要点二
优点
能够防止算法陷入局部最优解,提高全局搜索能力。
PART 05
遗传算法实例:求解约束 优化问题
问题描述
求解约束优化问题
遗传算法可以用于求解具有约束条件的优 化问题,例如在物流、生产计划、金融等
领域中常见的优化问题。
约束条件
限制决策变量取值的条件,可以是等式或 不等式约束。
目标函数
需要最小化或最大化的目标函数,通常是 一个数学表达式,代表了问题的优化目标 。
遗传算法及其应用实例
遗传算法及其应用实例遗传算法是一种模拟进化过程的算法,它基于生物进化的基本原理:选择、交叉和变异。
这种算法能够在复杂的问题中找到全局最优解或者近似最优解,因此在各种领域中得到了广泛的应用。
一、遗传算法的基本原理遗传算法是一种随机搜索算法,它通过对候选解进行选择、交叉和变异,寻找问题的最优解。
其基本过程如下:1.初始化种群在初始化种群的时候,我们需要定义每一个个体的基因型和表现型,以及计算每一个个体的适应度函数。
2.选择选择过程是根据个体的适应度函数进行选择,适应度高的个体有更大的概率被选择,而适应度低的个体则会被淘汰。
常见的选择方法有轮盘赌选择和竞赛选择。
3.交叉交叉是将两个个体的基因型随机组合生成一个新的个体。
交叉的位置和方式也是随机的。
4.变异变异是在某些个体的基因型中随机改变一个基因,以增加种群的多样性。
变异的操作按照一定概率来进行。
5.进化终止条件当达到预设的进化代数或者满足一定的适应度值时,进化过程就会停止,最终得到一个最优解或近似最优解。
二、遗传算法的应用实例1.寻路问题寻路问题是指在一个地图中,寻找一条从起点到终点的最短路径。
采用遗传算法来解决这个问题,可以将路径表示为一条染色体,交叉和变异的操作就可以将这条染色体不断变形,最终得到一条最短路径。
2.人工智能人工智能是利用计算机模拟人的智能行为。
遗传算法可以用来优化神经网络的拓扑结构和权值组合,以及选择最好的机器学习算法。
3.机器人控制对于机器人控制问题,可以通过遗传算法来优化控制器的参数。
这是因为控制参数的数量非常大,而用遗传算法来优化这些参数能够在短时间内找到最优解。
4.图像处理使用遗传算法来进行图像处理,可以通过寻找最优的图像过滤器和参数来增强图像。
其中图像过滤器的参数可以被编码成染色体序列,进而进行优化。
5.工程设计在工程设计中,可以利用遗传算法优化某些设计参数。
例如对于一座桥梁,可以将桥梁参数视为染色体,然后通过遗传算法来寻找最优组合,以提高桥梁的可靠性和安全性。
第7章 遗传算法
遗传算法问题举例:求 Max f (x) x2 , x [0,31]
(1)编码: x 00000 ~ 11111
此时取均长为5,每个染色体 {0,1}5
(2)初始群体生成:群体大小视情况而定,此处设
置为4,随机产生四个个体:
编码: 01101,11000,01000,10011
解码: 13
24 8
w1 w2 …… wn 由于是回路,记wn+1= w1。 要注意w1,w2 ,……,wn是互不相同的。
15
遗传算法的基本机理——适应度函数
2. 适应度函数
通过适应度函数来决定染色体的优劣程度,它体现了自然 进化中的优胜劣汰原则. 对于优化问题,适应度函数就是目标函数,要能够有效地反 映每一个染色体与问题最优解染色体之间的差距. 例如:TSP的目标是路径总长度为最短,路径总长度的倒数 就可以为TSP的适应度函数:
2) 优化目标不受目标函数解析表示的限制,不要求目标 函数连续可微,甚至不要求优化目标具有函数形式, 仅用适应度函数来评价个体。
3) SGA的处理过程具有内在的并行性。 4) SGA不采用确定性规则,而是采用概率变迁规则来指
f 1170
10011 361 0.31 10011
淘汰
24
转轮法
转轮法把种群中所有个体位串适值的总和看作一个轮子的圆 周,而每个个体位串按其适值在总和中所占的比例占据轮子 的一个扇区。上题中可绘制如图所示的转轮。 复制时,只要简单地转动这个按权重划分的转轮4次,从而
产生4个下一代的种群。 例如对于表中的位串1, 其适值为169,为总适值的14.4%。 因此,每旋转一次转轮指向该位串 的概率为0.144。每当需要下一个后 代时,就旋转一下这个按权重划分 的转轮,产生一个复制的候选者。 这样位串的适值越高,在其下代中 产生的后代就越多。
遗传算法在机器学习中的应用案例
遗传算法在机器学习中的应用案例近年来,随着人工智能技术的快速发展,机器学习作为其中的重要分支,逐渐成为各个领域的研究热点。
在机器学习中,遗传算法作为一种优化算法,被广泛应用于解决各类复杂问题。
本文将介绍几个遗传算法在机器学习中的应用案例,展示其在优化模型和算法方面的价值。
一、遗传算法在神经网络优化中的应用神经网络是机器学习中常用的一种模型,其性能的优化对于提高模型的准确性至关重要。
而遗传算法在神经网络优化中的应用,可以帮助找到更好的权重和偏置值,从而提高模型的性能。
遗传算法通过模拟生物进化的过程,使用种群、个体、基因等概念来表示神经网络的参数。
通过交叉、变异等操作,生成新的个体,并通过适应度函数来评估个体的适应度。
适应度高的个体将有更大的概率被选择为下一代的父代,并参与交叉和变异操作。
通过多代进化,遗传算法可以找到更好的参数组合,从而优化神经网络的性能。
二、遗传算法在特征选择中的应用在机器学习中,特征选择是一个重要的预处理步骤,可以帮助提高模型的准确性和效率。
而遗传算法可以通过优化特征子集的选择,帮助找到最佳的特征组合,从而提高模型的性能。
遗传算法在特征选择中的应用过程类似于神经网络优化。
首先,将每个特征看作一个基因,通过交叉和变异操作生成新的特征子集。
然后,通过适应度函数评估每个特征子集的性能,选择适应度高的特征子集作为下一代的父代,并参与交叉和变异操作。
通过多代进化,遗传算法可以找到最佳的特征子集,从而优化模型的性能。
三、遗传算法在聚类分析中的应用聚类分析是机器学习中常用的一种无监督学习方法,可以将数据集划分为不同的类别。
而遗传算法可以辅助聚类分析,帮助找到最佳的聚类结果。
遗传算法在聚类分析中的应用主要包括两个方面:聚类中心的初始化和聚类结果的优化。
首先,通过遗传算法生成初始的聚类中心,以提高聚类的准确性。
然后,通过遗传算法优化聚类结果,调整聚类中心的位置,从而使得聚类结果更加合理和稳定。
总结:遗传算法作为一种优化算法,在机器学习中有着广泛的应用。
第七讲遗传算法
四、遗传算法应用举例 1
于是,得第三代种群S3: s1=11100(28), s2=01001(9) s3=11000(24), s4=10011(19)
四、遗传算法应用举例 1
第三代种群S3中各染色体的情况
染色体
适应度 选择概率 估计的 选中次数
四、遗传算法应用举例 1
首先计算种群S1中各个体
s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011)
的适应度f (si) 。 容易求得
f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361
群体的染色体都将逐渐适应环境,不断进化,最后收敛到 一族最适应环境的类似个体,即得到问题最优解。
一、遗传算法概述
与传统的优化算法相比,遗传算法主要有以下几 个不同之处
遗传算法不是直接作用在参变量集上而是利用参变量集 的某种编码 遗传算法不是从单个点,而是从一个点的群体开始搜索; 遗传算法利用适应值信息,无须导数或其它辅助信息; 遗传算法利用概率转移规则,而非确定性规则。
否
结束程序
计算每个个体的适应值
以概率选择遗传算子
选择一个个体 选择两个个体进行 选择一个个体进行 复制到新群体 交叉插入到新群体 变异插入到新群体
得到新群体
四、遗传算法应用举例 1
例1 利用遗传算法求解区间[0,31]上的二次函数 y=x2的最大值。
Y
y=x2
31 X
四、遗传算法应用举例 1
分析
s1’’=11001(25), s2’’=01100(12) s3’’=11011(27), s4’’=10000(16)
遗传算法的应用实例
遗传算法的应用实例遗传算法(GeneticAlgorithm,GA)是一种基于自然选择和遗传的启发式搜索算法,它模拟了自然界的进化过程,结合了随机搜索和精确搜索的有效思想,源于两大领域:生物进化论和人工智能,过不断进化有效地找出给定问题的最优解。
GA够被广泛应用在复杂的优化问题中,如路径优化、资源优化、物流规划、工厂调度、程序测试等。
其中,最常见的应用实例是对最短路径优化,该问题在各个领域都能得到应用,如出行路线选择、物流布线、网络节点排布等。
在下面的案例中,主要利用GA找出了一条实现权重最小的最短路径,其中每条边都有一定的权重,整个任务的目标是找出路径权重和最小的路径。
首先,我们根据需求对这个问题进行抽象建模,无论所求路径是一条直线或是折线,我们都把它抽象为一个图结构,每一条边都有固定的权重,两两点之间存在一条边。
在这里,我们把每一条边都赋予一个权重,这样,每一条路径的权重就是所有边的权重和。
接下来,我们就可以开始使用GA寻找解法了。
在这里,首先要确定GA的参数,这就需要针对实际解决问题的需要灵活调整,比如种群大小、交叉概率、突变概率等等。
创建种群是GA遗传过程的第一步,它是根据GA参数随机生成的个体序列,每一个个体由多个基因编码而成,每个个体都有可能是最优解,对于我们本案例中,每个个体就会包含一条路径。
进行进化计算后,GA会在有限的迭代次数内收敛到最优的解,由于本案例的搜索空间较小,不需要太多的迭代次数,便可以得到最优解。
最后,GA得出的最优路径是这个:A->B->C->D->E->F->G->H->I->J,该路径的涉及的总权重和最小,符合我们的预期。
通过以上分析,GA的功能和可行性得到了验证,它不仅能够解决复杂的最短路径优化问题,还能在有限的时间内有效搜索出最优解。
它已被广泛应用于交通规划、航空路线优化等领域。
GA作为一种不同于传统算法的启发式搜索方法,也有一定的局限性,比如在求解路线最优化问题时,如果路径太复杂,导致分析困难,GA的性能就会受到影响;另外,GA的进化过程受到种群初始化的影响,若次优解所占比例过多,从而影响最终找到最优解,这也是GA最大的缺点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 遗传算法应用举例遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。
随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。
遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。
本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。
7.1 简单一元函数优化实例利用遗传算法计算下面函数的最大值:()sin(10) 2.0[1,2]f x x x x π=⋅+∈-,选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。
下面为一元函数优化问题的MA TLAB 代码。
figure(1);fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线% 定义遗传算法参数NIND= 40; % 个体数目(Number of individuals)MAXGEN = 25; % 最大遗传代数(Maximum number of generations)PRECI = 20; % 变量的二进制位数(Precision of variables)GGAP = 0.9; % 代沟(Generation gap)trace=zeros (2, MAXGEN); % 寻优结果的初始值FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群gen = 0; % 代计数器variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值while gen < MAXGEN,FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择SelCh = recombin ('xovsp',SelCh,0.7); % 重组SelCh = mut(SelCh); % 变异variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值[Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加% 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号[Y,I]=max(ObjV),hold on;plot (variable (I),Y , 'bo');trace (1,gen)=max (ObjV); %遗传算法性能跟踪trace (2,gen)=sum (ObjV)/length (ObjV);endvariable=bs2rv (Chrom,FieldD); %最优个体的十进制转换hold on,grid;plot (variable',ObjV','b*');figure (2);plot (trace (1,:)');hold on;plot (trace (2,:)','-.');grid;legend ('解的变化','种群均值的变化')使用基于适应度的重插入确保四个最适应的个体总是被连续传播到下一代。
这样在每一代中有36(NIND*GGAP )个新个体产生。
区域描述器FieldD 描述染色体的表示和解释,每个格雷码采用20位二进制,变量区间为[-1,2]。
程序段Chrom = crtbp (NIND, PRECI)表示一个初始种群Chrom 被函数crtbp 创建,它是由NIND 个均匀分布长度为PRECI 的二进制串矩阵构成。
基于排序的适应度分配计算由程序段FitnV = ranking (-ObjV)实现。
对这个等级评定算法的缺省设置是选择等差为2和使用线性评估,给最适应个体的适应度值为2,最差个体的适应度值为0,这里的评定算法假设目标函数是最小化的,所以ObjV 乘了一个负号,使目标函数为最大化。
适应度值结果被向量FitnV 返回。
选择层使用高级函数选择调用低级函数随机遍历抽样例程sus ,SelCh 包含来自原始染色体的GGAP *NIND 个个体,这些个体将使用高级函数recombin 进行重组,recombin 使个体通过SelCh 被选择再生产,并使用单点交叉例程xovsp ,使用交叉概率Px =0.7执行并叉。
交叉后产生的子代被同一个矩阵SelCh 返回,实际使用的交叉例程通过支持使用不同函数名字串传递给recombin 而改变。
为了产生一组子代,变异使用变异函数mut 。
子代再次由矩阵SelCh 返回,变异概率缺省值PM=0.7/Lind= 0.0017,这里Lind 是假定的个体长度。
再次使用bs2rv ,将个体的二进制编码转换为十进制编码,计算子代的目标函数值ObjVSel 。
由于使用了代沟,所以子代的数量比当前种群数量要小,因此需要使用恢复函数reins 。
这里Chrom 和 SelCh 是矩阵,包含原始种群和子代结果。
这两个事件的第一个被使用单个种群和采用基于适应度的恢复,基于适应度的恢复用SelCh 中的个体代替Chrom 中最不适应的个体。
新种群中的个体是由原始种群中的优良个体和子代中新产生的个体组成。
原始种群中个体的目标函数值ObjV 随后又作为函数reins 的输入参数,子代中个体的目标函数值由ObjVSel 提供。
Reins 返回具有插入子代的新种群Chrom 和该种群中个体的目标函数值ObjV 。
每次迭代后的最优解和解的均值存放在trace 中。
这个遗传优化的结果包含在矩阵ObjV 中。
决策变量的值为variable (I)。
画出迭代后个体的目标函数值分布图和遗传算法性能跟踪图。
遗传算法的运行结果如下:(1)图7.1为目标函数()sin(10) 2.0[1,2]f x x x x π=⋅+∈-,的图象。
图7.1 目标函数图像(2)图7.2为目标函数的图像和初始随机种群个体分布图。
图7.2 初始种群分布图(3)经过1次遗传迭代后,寻优结果如图7.3所示。
x=1.6357,f(x)=3.4729。
图7.3 一次遗传迭代后的结果(4)经过10次遗传迭代后,寻优结果如图7.4所示。
x= 1.8518,f(x)=3.8489。
图7.4 经过10次遗传迭代后的结果(5)经过25次遗传迭代后,寻优结果如图7.5所示。
x =1.8505,f (x )=3.8503。
图7.5 经过25次遗传迭代后的结果(6)经过25次迭代后最优解的变化和种群均值的变化见图7.6。
图7.6 经过25次迭代后最优解的变化和种群均值的变化7.2 多元单峰函数的优化实例目标函数是De Jong 函数,是一个连续、凸起的单峰函数,它的M 文件objfun1包含在GA 工具箱软件中。
De Jong 函数的表达式为求解m i n ()51251i f x x -≤≤, 这里n 是定义问题维数的一个值。
这个例子中选取n =20。
由De Jong 函数的表达式可以看出,De Jong 函数是一个简单的平方和函数,只有一个极小点(0,0,…,0),理论最小值为f (0,0,…,0)=0。
程序的主要变量:个体的数量NIND 为40,最大遗传代数为MAXGEN=300,变量维数为NV AR=20,每个变量使用20位表示,即PRECI = 20,使用代沟GGAP=0.9。
下面为求解De Jong 函数最小值的MATLAB 代码。
% 定义遗传算法参数NIND = 40; % 个体数目(Number of individuals)MAXGEN =500; % 最大遗传代数(Maximum number of generations)21()512512==-≤≤∑, ni i i f x x xNV AR = 20; % 变量的维数PRECI = 20; % 变量的二进制位数(Precision of variables)GGAP = 0.9; % 代沟(Generation gap)trace=zeros (MAXGEN,2);% 建立区域描述器(Build field descriptor)FieldD = [rep ([PRECI],[1,NV AR]);rep ([-512;512],[1,NV AR]);rep ([1;0;1;1],[1,NV AR])];Chrom = crtbp (NIND, NV AR*PRECI); % 创建初始种群gen = 0; % 代计数器ObjV = objfun1(bs2rv (Chrom,FieldD)); % 计算初始种群个体的目标函数值while gen < MAXGEN, % 迭代FitnV = ranking (ObjV); % 分配适应度值(Assign fitness values)SelCh = select ('sus', Chrom, FitnV, GGAP); % 选择SelCh = recombin ('xovsp',SelCh,0.7); % 重组SelCh = mut (SelCh); % 变异ObjVSel = objfun1 (bs2rv (SelCh,FieldD)); %计算子代目标函数值[Chrom ObjV]=reins (Chrom,SelCh,1,1,ObjV,ObjVSel); % 重插入gen = gen+1; % 代计数器增加% 输出最优解及其对应的20个自变量的十进制值,Y为最优解,I为种群的序号trace (gen,1)=min (ObjV); % 遗传算法性能跟踪trace (gen,2)=sum (ObjV)/length (ObjV);endplot (trace (:,1));hold on;plot (trace (:,2),'-.');grid;legend ('种群均值的变化','解的变化')区域描述器的构建采用矩阵复制函数rep建立矩阵FieldD,描述染色体的表示和解释。