小学五年级数学知识思维导图(无水印)
西师大版小学数学五年级上册知识点思维导图(可打印)
认识 特点 ,
作法
平移
沿 线
- 叫
条 做
酗 凶
三
够 完 全 垂 合 泪 ` 斤 所 在 的 百
称轴
,上
曰
认识
二
忖 称点
称点
特点
宫
对称轴
关于对称轴对称的两个点到对称轴的距离相等
西师大版小学数学五年级上册知识点思维导图
x lOO 11. 2 6
1126
X
5
X
5
丑 00
56.3~, ...:...==..- 5630
J小数乘整数
转
` 末尾的 “O"
化
可以划掉
\
为
整
数
0 . S 6一 2位小数
乘 整 数
x
+
0 . 0 4- 2位小数
0.0224 -. 4II 位小数
t
添 “0“ 补位
合 运 算
=40.8 + 20.3 =61 .1
顺
序 相
有店号的,优先计算括号里面的
同
(先算小括号, 再算中括号 )
举例 6.4+[(4.3 + 2.1)+0.8)
=6 .4+(6.4+0.8) =6.4+8
=O .S
整数中的运算律在小数运算中同样 适用,可以用于简便运算
举例 8.3X4.8 + l.7X4.8 =4.Sx (S.3 +1.7) = 4.Sx IO =48
苏教版小学数学五年级上册单元思维导图
苏教五年级数学上册第一单元:负数的初步
认识
在直线上表示数
正数都大于0,负数都小于0如果直升机的高度为+80m,那
么潜水艇的高度为-50m。
如果向东行驶200m记着+200m,
那么与向西行驶300m,记着-300m。
负数
-20读作负二十
0的
特殊性0是正数与负数的分界点位置
距离
-2和2到0的距离相等
三角形面积等于等底等高的平
梯形
的面积S=(4+8)x3÷2=18(c㎡)不规则图
形的面积
举例
每个小方格表示1公
册第三单元:小数的意义和性质
小数的大小比较
小数的意义和读写方法
小数的计数单位和数位顺序
用“万”或“亿”作单位的小数表示大数
小数的性质
分母是10、100、1000·······小数的末尾添上“0”或去小数的近似数
册第四单元:小数的加法和减法小数加减法的验算
小数加法
小数减法用计算器算小数加减法
先把小数点对齐,再按照整数加法的方法进行计算,最
小数的近似数保留几位小数或精确到哪一位,要看那一位的下一位上的数字,
被减数的小数位数不够时,
苏教五年级数学上册第五单元:小数乘法
和除法
商的近似值
小数乘整数
一个数除以小数
除数是整数的小数除法
小数乘小数
小数四则混合运算
39.5÷10=3.95
苏教五年级数学上册第六单元:统计图和
条形统计图(二)复式
统计表复式条形统计图
找出不同的围法
找出比赛的场数
苏教五年级数学上册第八单元:用字母表示数。
人教版小学数学各单元知识点思维导图
人教版小学数五年级下册各单元知识点导图1.根据从一个方向看到的图形,用给定因数倍数2的倍数特征5的倍数特征3的倍数特征末位是0或5的数都是5的倍数各个数位数字之和是3的倍数A.长方体:4x(长+宽+高)棱长之和B.正方体:12x棱长一个数的分母是几,它的分数单位就是几分之一A.关系:被除数÷除数=B.求一个数是另一个数的几分之几真分数D.质数与互质数的区别:质数针对一类数,互质数是两个数A.含义:把分数化成和它相等,但是分子分母都比较小的数a.逐步约分(2)求最小公倍数的方法写成分母是10,100,100....的分数分子除以分母判断分数能否化成有限小数(1)确认是最简分数(2)分母只含有质因数2和5就能化成有限小数,含有2和5以外的其他质因数,不能化成有限小数1.面积含义物体表面或者封闭图形的大小1平方厘米大约为一个指甲盖大小1平方分米大约为一个开关盒大小1平方米大约一张方桌的桌面面积1.长方形面积=长x宽2.正方形面积=边长x边长长方形周长=(长+宽)x2正方形周长=边长x42.相邻两个单位转化方法A.高级单位---低级单位B.低级单位---高级单位高级单位的数末尾加2个0低级单位的数末尾减2个0高级单位的数x进率低级单位的数÷进率A.分数加法:拆分法找规律同整数运算定律运算性质A.交换律B.结合律a-b-c=a-(b+c)喝牛奶一个合唱队共有15人,暑假期间有一个紧急演出,老师需要尽快通知到每一个队员。
如果用打电话的方式,每分钟通知一个人,请帮助老师设计一个打电话的方案。
行程问题的折线统计图便于比较两组或多组数据的变化趋势折线统计图既能反应数量的多少,A.折线上升--向目的地运动B.折线水平--在某一地停留C.折线下降--向出发地运动。
五年级上册数学思维导图(共7张PPT)
初步体会 数形结合
的思想
位 置
受到辩证唯物 主义的启蒙教
育
在方格纸上用 数对确定物体
的位置
人教版五年级数学上册第二单元知识树
四舍五入法
一看二移三算 小数除以小数
实际应用
求积的近似值
实际应用
区分循环小数、
有限小数、无限小数ຫໍສະໝຸດ 小数除法商的近似值
循环小数
表示循环小数 求近似值
小数除以整数
解决问题
用循环小数 表示除法的商
用字母表示运算定律
和计算公式,并会计算
实际应用
用字母表示数
用字母表示数的意义
解简易方程
解稍复杂的方程
解稍复杂的方程
解决实际问题
简 易 方 程
人教版五年级数学上册第五单元知识树
h=2S÷a
a=2S÷h
计算公式
S=ah÷2
实际应用
实际应用
a=S÷h
计算公式
S=ah
平行四边形
面积
h=S÷a
三角形
面积
多 边 形 的 面 积
商的小数点与被除数
的小数点对齐
有余数添0再除
小 数
解决实际问题
进一法、去尾法
除
用计算器 探索规律
法
人教版五年级数学上册第三单元知识树
可能性 的大小
事件的确定性 和不确定性
可 能 性
人教版五年级数学上册第四单元知识树
等式的基本性质
方程的意义
解简易方程
±a=b 和 a =b
用含字母的式子 表示数量关系
五年级上册数学思维导图
四舍五入法
实际应用
求积的近似值
实际应用
人教版小学数学五年级上册第1-7单元知识点汇总思维导图
人教版小学数学五年级上册第17单元知识点汇总思维导图一、第1单元:小数乘法1. 小数乘以整数2. 小数乘以小数3. 小数乘法竖式计算4. 小数乘法应用题二、第2单元:小数除法1. 小数除以整数2. 小数除以小数3. 小数除法竖式计算4. 小数除法应用题三、第3单元:观察物体1. 观察物体的形状2. 观察物体的位置3. 观察物体的运动4. 观察物体的特征四、第4单元:简易方程1. 方程的概念2. 方程的解法3. 方程的应用4. 方程与不等式的关系五、第5单元:观察物体(二)1. 观察物体的角度2. 观察物体的方向3. 观察物体的距离4. 观察物体的速度六、第6单元:简易方程(二)1. 方程的变形2. 方程的简化3. 方程的解法4. 方程的应用七、第7单元:观察物体(三)1. 观察物体的颜色2. 观察物体的纹理3. 观察物体的光线4. 观察物体的空间关系人教版小学数学五年级上册第17单元知识点汇总思维导图一、第1单元:小数乘法1. 小数乘以整数理解小数乘以整数的概念掌握小数乘以整数的计算方法解决实际问题中的应用2. 小数乘以小数理解小数乘以小数的概念掌握小数乘以小数的计算方法解决实际问题中的应用3. 小数乘法竖式计算理解小数乘法竖式计算的概念掌握小数乘法竖式计算的方法解决实际问题中的应用4. 小数乘法应用题理解小数乘法应用题的概念掌握小数乘法应用题的解题方法解决实际问题中的应用二、第2单元:小数除法1. 小数除以整数理解小数除以整数的概念掌握小数除以整数的计算方法解决实际问题中的应用2. 小数除以小数理解小数除以小数的概念掌握小数除以小数的计算方法解决实际问题中的应用3. 小数除法竖式计算理解小数除法竖式计算的概念掌握小数除法竖式计算的方法解决实际问题中的应用4. 小数除法应用题理解小数除法应用题的概念掌握小数除法应用题的解题方法解决实际问题中的应用三、第3单元:观察物体1. 观察物体的形状理解观察物体形状的概念掌握观察物体形状的方法解决实际问题中的应用2. 观察物体的位置理解观察物体位置的概念掌握观察物体位置的方法解决实际问题中的应用3. 观察物体的运动理解观察物体运动的概念掌握观察物体运动的方法解决实际问题中的应用4. 观察物体的特征理解观察物体特征的概念掌握观察物体特征的方法解决实际问题中的应用四、第4单元:简易方程1. 方程的概念理解方程的概念掌握方程的表示方法解决实际问题中的应用2. 方程的解法理解方程的解法掌握方程的求解方法解决实际问题中的应用3. 方程的应用理解方程的应用掌握方程在解决问题中的应用解决实际问题中的应用4. 方程与不等式的关系理解方程与不等式的关系掌握方程与不等式的转换方法解决实际问题中的应用五、第5单元:观察物体(二)1. 观察物体的角度理解观察物体角度的概念掌握观察物体角度的方法解决实际问题中的应用2. 观察物体的方向理解观察物体方向的概念掌握观察物体方向的方法解决实际问题中的应用3. 观察物体的距离理解观察物体距离的概念掌握观察物体距离的方法解决实际问题中的应用4. 观察物体的速度理解观察物体速度的概念掌握观察物体速度的方法解决实际问题中的应用六、第6单元:简易方程(二)1. 方程的变形理解方程的变形掌握方程变形的方法解决实际问题中的应用2. 方程的简化理解方程的简化掌握方程简化的方法解决实际问题中的应用3. 方程的解法理解方程的解法掌握方程的求解方法解决实际问题中的应用4. 方程的应用理解方程的应用掌握方程在解决问题中的应用解决实际问题中的应用七、第7单元:观察物体(三)1. 观察物体的颜色理解观察物体颜色的概念掌握观察物体颜色的方法解决实际问题中的应用2. 观察物体的纹理理解观察物体纹理的概念掌握观察物体纹理的方法解决实际问题中的应用3. 观察物体的光线理解观察物体光线的概念掌握观察物体光线的方法解决实际问题中的应用4. 观察物体的空间关系理解观察物体空间关系的概念掌握观察物体空间关系的方法解决实际问题中的应用人教版小学数学五年级上册第17单元知识点汇总思维导图一、第1单元:小数乘法1. 小数乘以整数掌握小数乘以整数的计算方法理解小数乘以整数的意义应用小数乘以整数解决实际问题2. 小数乘以小数掌握小数乘以小数的计算方法理解小数乘以小数的意义应用小数乘以小数解决实际问题3. 小数乘法竖式计算掌握小数乘法竖式计算的方法理解小数乘法竖式计算的步骤应用小数乘法竖式计算解决实际问题4. 小数乘法应用题掌握小数乘法应用题的解题方法理解小数乘法应用题的背景应用小数乘法解决实际问题二、第2单元:小数除法1. 小数除以整数掌握小数除以整数的计算方法理解小数除以整数的意义应用小数除以整数解决实际问题2. 小数除以小数掌握小数除以小数的计算方法理解小数除以小数的意义应用小数除以小数解决实际问题3. 小数除法竖式计算掌握小数除法竖式计算的方法理解小数除法竖式计算的步骤应用小数除法竖式计算解决实际问题4. 小数除法应用题掌握小数除法应用题的解题方法理解小数除法应用题的背景应用小数除法解决实际问题三、第3单元:观察物体1. 观察物体的形状掌握观察物体形状的方法理解观察物体形状的意义应用观察物体形状解决实际问题2. 观察物体的位置掌握观察物体位置的方法理解观察物体位置的意义应用观察物体位置解决实际问题3. 观察物体的运动掌握观察物体运动的方法理解观察物体运动的意义应用观察物体运动解决实际问题4. 观察物体的特征掌握观察物体特征的方法理解观察物体特征的意义应用观察物体特征解决实际问题四、第4单元:简易方程1. 方程的概念掌握方程的概念理解方程的意义应用方程解决实际问题2. 方程的解法掌握方程的解法理解方程求解的步骤应用方程求解解决实际问题3. 方程的应用掌握方程的应用理解方程在解决问题中的作用应用方程解决实际问题4. 方程与不等式的关系掌握方程与不等式的关系理解方程与不等式的转换方法应用方程与不等式的关系解决实际问题五、第5单元:观察物体(二)1. 观察物体的角度掌握观察物体角度的方法理解观察物体角度的意义应用观察物体角度解决实际问题2. 观察物体的方向掌握观察物体方向的方法理解观察物体方向的意义应用观察物体方向解决实际问题3. 观察物体的距离掌握观察物体距离的方法理解观察物体距离的意义应用观察物体距离解决实际问题4. 观察物体的速度掌握观察物体速度的方法理解观察物体速度的意义应用观察物体速度解决实际问题六、第6单元:简易方程(二)1. 方程的变形掌握方程的变形方法理解方程变形的意义应用方程变形解决实际问题2. 方程的简化掌握方程的简化方法理解方程简化的意义应用方程简化解决实际问题3. 方程的解法掌握方程的解法理解方程求解的步骤应用方程求解解决实际问题4. 方程的应用掌握方程的应用理解方程在解决问题中的作用应用方程解决实际问题七、第7单元:观察物体(三)1. 观察物体的颜色掌握观察物体颜色的方法理解观察物体颜色的意义应用观察物体颜色解决实际问题2. 观察物体的纹理掌握观察物体纹理的方法理解观察物体纹理的意义应用观察物体纹理解决实际问题3. 观察物体的光线掌握观察物体光线的方法理解观察物体光线的意义应用观察物体光线解决实际问题4. 观察物体的空间关系掌握观察物体空间关系的方法理解观察物体空间关系的意义应用观察物体空间关系解决实际问题。
小学数学五年级上册知识点总结(可编辑可打印思维导图)
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0 占位。
3、规律:
一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
⑴四舍五入法;
4、求近似数的方法一般有三种:
⑵进一法;
⑶去尾法
5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、循环小数:
一个数的小数部分,从某一位起,一个数字或者 几个数字依次不断重复出现,这样的小数叫做循
环小数。
@ 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
7、小数部分的位数是有限的小数,叫做有限小数 。小数部分的位数是无限的小数,叫做无限小数
。
第四单元可能性
@计算方法:
先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就 从积的右边起数出几位点上小数点。
@意义——就是求这个数的几分之几是多少。 如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
2、小数乘小数:
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几 位小数,就从积的右边起数出几位点上小数点。
行计算。
注意:如果被除数的位数不够,在被除数的末尾 用0补足。
4、在实际应用中,小数除法所得的商也可以根据 需要用“四舍五入”法保留一定的小数位数,求
出商的近似数。
5、除法中的变化规律:
①商不变:被除数和除数同时扩大或缩小相同的 倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
第七单元数学广角——植树问题 第六单元多边形的面积 第五单元简易方程
人教版五年级数学下册各单元思维导图
人教版五年级数学下册各单元思维导图一、认识负数1. 负数的概念:负数是小于0的数,用“”号表示。
例如:1,2,3等。
2. 正数与负数的比较:正数是大于0的数,用“+”号表示。
例如:1,2,3等。
正数与负数可以通过数轴进行比较。
3. 负数的加减法:负数之间的加减法与正数相同,只是符号不同。
例如:1 + (2) = 3,3 (2) = 1。
4. 负数与正数的加减法:负数与正数相加,相当于负数减去正数;负数与正数相减,相当于负数加上正数。
例如:1 + 2 = 1,3 2 = 5。
二、分数的意义和性质1. 分数的概念:分数表示一个整体被平均分成若干份,其中的一份或几份。
分数由分子和分母组成,分子表示取的份数,分母表示平均分成的总份数。
2. 分数的性质:分数可以简化、约分、通分。
分数的加减法、乘除法与整数类似,只是要注意分母的处理。
3. 分数与小数的互化:分数可以转换为小数,小数也可以转换为分数。
例如:1/2 = 0.5,0.25 = 1/4。
4. 分数与百分数的互化:分数可以转换为百分数,百分数也可以转换为分数。
例如:1/2 = 50%,50% = 1/2。
三、分数的加减法1. 同分母分数的加减法:同分母分数相加,只需将分子相加,分母保持不变。
例如:1/3 + 2/3 = 3/3 = 1。
2. 异分母分数的加减法:异分母分数相加,需要先将分数通分,再进行加减。
例如:1/2 + 1/3 = 3/6 + 2/6 = 5/6。
3. 分数加减法的性质:分数加减法满足交换律、结合律和分配律。
四、长方体和正方体的表面积1. 长方体的表面积:长方体的表面积等于长、宽、高三个面的面积之和。
公式:表面积= 2×(长×宽 + 长×高 + 宽×高)。
2. 正方体的表面积:正方体的表面积等于六个面的面积之和。
公式:表面积= 6×(边长×边长)。
3. 表面积的应用:通过计算长方体和正方体的表面积,可以解决实际生活中的问题,如计算物体的表面积、涂漆面积等。
(最全)小学五年级数学思维导图
小学五年级数学思维导图一、数的认识1. 整数自然数:0、1、2、3、4、5、6、7、8、9、10……正整数:1、2、3、4、5、6、7、8、9、10……负整数:1、2、3、4、5、6、7、8、9、10……整数:包括正整数、负整数和02. 分数真分数:分子小于分母的分数假分数:分子大于或等于分母的分数分数的基本性质:分子分母同时乘或除以同一个数(0除外),分数的值不变分数的大小比较:同分母分数比较分子,分子大的分数大;同分子分数比较分母,分母小的分数大分数与小数的互化:将分数化成小数,分子除以分母;将小数化成分数,将小数点后的数字作为分子,分母为10的相应次方3. 小数小数的意义:表示整数与整数之间的数小数的性质:小数点后面的数字表示小数的精确度,小数点向右移动一位,数值扩大10倍;向左移动一位,数值缩小10倍小数的大小比较:先比较整数部分,整数部分大的数大;整数部分相同,比较小数点后的数字,从左到右依次比较,直到找到不同的数字,数字大的数大小数的四则运算:加法、减法、乘法、除法二、数的运算1. 加法加法的意义:将两个数合并成一个数加法的性质:交换律、结合律加法的计算方法:将两个数相加2. 减法减法的意义:从一个数中减去另一个数减法的性质:减法是加法的逆运算减法的计算方法:将被减数减去减数3. 乘法乘法的意义:求几个相同加数的和乘法的性质:交换律、结合律、分配律乘法的计算方法:将两个数相乘4. 除法除法的意义:求一个数是另一个数的几倍或几分之几除法的性质:除法是乘法的逆运算除法的计算方法:将被除数除以除数三、几何图形1. 线段、射线、直线线段:有两个端点,长度有限射线:有一个端点,长度无限直线:没有端点,长度无限2. 角角的分类:锐角、直角、钝角、周角角的度量:使用量角器角的计算:角度的加减乘除3. 三角形三角形的分类:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形三角形的性质:三角形的内角和为180度三角形的计算:使用勾股定理、海伦公式等4. 四边形四边形的分类:正方形、长方形、平行四边形、梯形、菱形、矩形四边形的性质:四边形的内角和为360度四边形的计算:周长、面积的计算5. 圆圆的性质:圆的周长、面积的计算公式圆的计算:使用圆的周长、面积公式进行计算四、计量单位1. 长度单位常用长度单位:毫米、厘米、分米、米、千米长度单位之间的换算:1千米=1000米,1米=100厘米,1厘米=10毫米2. 面积单位常用面积单位:平方毫米、平方厘米、平方分米、平方米、平方千米面积单位之间的换算:1平方千米=1000000平方米,1平方米=100平方分米,1平方分米=100平方厘米,1平方厘米=100平方毫米3. 体积单位常用体积单位:立方毫米、立方厘米、立方分米、立方米、立方千米体积单位之间的换算:1立方千米=1000000000立方米,1立方米=1000立方分米,1立方分米=1000立方厘米,1立方厘米=1000立方毫米4. 时间单位常用时间单位:秒、分、时、天、周、月、年时间单位之间的换算:1年=12个月,1个月=4周,1周=7天,1天=24时,1时=60分,1分=60秒5. 质量单位常用质量单位:克、千克、吨质量单位之间的换算:1吨=1000千克,1千克=1000克五、统计与概率1. 统计数据的收集:调查、观察、实验等方法数据的整理:表格、图表等方法数据的分析:平均数、中位数、众数、方差等2. 概率概率的定义:事件发生的可能性概率的计算:使用公式、实验等方法概率的性质:概率的范围在0到1之间,包括0和1六、方程与不等式1. 方程方程的定义:含有未知数的等式方程的解:使方程成立的未知数的值方程的求解:使用代数方法求解方程,如移项、合并同类项、化简等2. 不等式不等式的定义:表示两个数之间大小关系的式子不等式的解集:满足不等式的所有解的集合不等式的求解:使用代数方法求解不等式,如移项、合并同类项、化简等七、数学应用1. 解决实际问题应用数学知识解决生活中的问题,如购物、测量、分配等使用数学方法分析问题,如比例、百分比、统计等2. 数学建模将实际问题转化为数学模型,如线性方程、不等式、函数等使用数学模型解决问题,如优化问题、预测问题等八、数学思维1. 逻辑思维通过逻辑推理得出结论,如归纳推理、演绎推理等分析问题,找出问题的因果关系,如因果推理2. 创新思维运用创造性思维解决问题,如逆向思维、类比思维等提出新的观点和方法,如创新算法、创新模型等九、数学学习策略1. 复习与预习复习已学知识,巩固记忆预习新知识,提前了解学习内容2. 做题与练习通过做题巩固所学知识通过练习提高解题能力3. 交流与合作与同学、老师交流学习心得,分享学习经验与同学合作完成学习任务,共同进步十、数学文化1. 数学历史了解数学的发展历程,如古代数学、现代数学等学习数学家的故事,如欧几里得、毕达哥拉斯、阿基米德等2. 数学趣闻探索数学的趣味知识,如数学谜题、数学游戏等了解数学在生活中的应用,如数学与艺术、数学与音乐等十一、数学竞赛1. 竞赛内容参加数学竞赛,如数学奥林匹克、数学联赛等学习竞赛技巧,如解题策略、时间管理等2. 竞赛准备备赛阶段,系统复习数学知识模拟竞赛,熟悉竞赛题型和时间分配十二、数学实验1. 实验目的通过实验加深对数学概念的理解培养学生的动手能力和观察能力2. 实验内容进行几何图形的拼装、测量等实验进行数学模型的制作、验证等实验十三、数学与科技1. 数学在科技中的应用学习数学与科技相关的知识,如算法、编程、数据分析等2. 科技对数学的影响探讨科技对数学发展的影响,如计算工具、计算方法等了解科技与数学的交叉领域,如信息论、密码学等十四、数学与艺术1. 数学在艺术中的应用了解数学在艺术领域的作用,如建筑设计、音乐创作等学习数学与艺术相关的知识,如黄金分割、对称性等2. 艺术对数学的影响探讨艺术对数学发展的影响,如艺术作品中的数学元素了解艺术与数学的交叉领域,如艺术史、艺术批评等。
人教版小学五年级数学下册思维导图(完整版)
奇数+偶数=奇数 奇数+奇数=偶数 偶数+偶数=偶数
三、长方体与正方体
(一)长方体与正方体 的认识
(二)长方体与正方体的表面积
长方体 正方体(立方
体)
面
棱
面和面相交的线段
顶点
棱和棱的交点
6个面(都是长方形,也有可能顶对面是正方形),12条棱,8个顶点 通过观察和讨论可知:长方体一般是由6个长方形围成的立体图形。 在一个长方体中,相对的面完全相同,相对的棱长度相等 相交于一个顶点的三条棱的长度分别叫长、宽、高
二、因数与倍数
(一)因数与倍数 (二)2、3、5的倍数的特征
意义
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的 倍数,除数是被除数的因数。例如:12÷2=6,我们就说12是2和6的 倍数,2和6是12的因数
注意 规律
因数与倍数是相互依存的 为了方便,在研究因数和倍数的时候,我们所说的数指的是自 然数(一般不包括0)
6个面(都是正方形),12条棱,8个顶点
正方体:是由6个完全相同的正方形围成的立体图形,所有的 棱长度相等
正方体是长、宽、高都相等的长方体
长方体或正方体6个面的总面积,叫做它的表面积(例题注意没有底面或没有盖的物体 的表面积计算) 长方体表面积:(长x宽+长x高+宽x高)x2——S=2(ab+ah+bh)
(三)质数和合数
4的倍数特征:末两位数是4的倍数
质数
一个数,如果只有1和它本身两个因数,那么这样的数叫做质数 (或素数)。例如2、3、5···
合数
样的数叫 做合数。例如4、6、15···
注意:最小的质数是2,最小的合数是4;1不是质数,也不是合数
人教版五年级上册数学全册思维导图
人教版五年级上册数学全册思维导图一、数与代数1. 整数的认识自然数、整数、正数、负数、绝对值、相反数、倒数2. 分数的认识分数、真分数、假分数、带分数、分数的基本性质、约分、通分3. 小数的认识小数、小数点、小数的基本性质、小数的加减乘除、小数的四则混合运算4. 比较大小整数、分数、小数的大小比较5. 数的估算整数、分数、小数的估算方法二、空间与图形1. 图形的认识点、线、面、体、平面图形、立体图形2. 图形的周长和面积线段、角的周长,正方形、长方形、平行四边形、梯形的面积,圆的周长和面积3. 图形的变换平移、旋转、对称、相似、放大与缩小4. 三角形三角形的定义、性质、分类、内角和、外角和、三角形的稳定性5. 四边形四边形的定义、性质、分类、平行四边形、矩形、菱形、正方形的性质和判定三、统计与概率1. 数据的收集与整理调查问卷、统计表、统计图(条形图、折线图、扇形图)2. 数据的分析与处理平均数、中位数、众数、方差、标准差3. 概率事件、必然事件、不可能事件、随机事件、概率的计算方法四、解决问题1. 问题解决的基本步骤提出问题、分析问题、制定计划、解决问题、回顾与反思2. 解决问题的策略图形法、列表法、树状图法、表格法、枚举法、方程法、逻辑推理法3. 解决问题的应用实际问题、数学问题、逻辑问题、趣味问题人教版五年级上册数学全册思维导图五、数学实践活动1. 数学实验通过实际操作,验证数学规律,如利用图形拼摆验证勾股定理、利用实验数据验证概率等2. 数学游戏设计与数学相关的游戏,如24点游戏、数独、数学谜题等,培养数学兴趣和思维3. 数学故事通过讲述数学故事,激发学生对数学的兴趣,如数学家的故事、数学趣闻等4. 数学竞赛组织数学竞赛,提高学生的数学素养和竞争意识,如口算比赛、解题比赛等六、数学文化1. 数学史了解数学发展的历史,如古代数学、现代数学、数学家的贡献等2. 数学名人认识数学领域的杰出人物,如欧几里得、阿基米德、高斯等3. 数学趣闻学习数学趣闻,如数学笑话、数学谜语、数学趣题等,增加学生对数学的了解和兴趣4. 数学与生活探讨数学在生活中的应用,如购物、旅游、理财等,让学生体会到数学的实用性七、数学与科技1. 数学与计算机了解计算机科学中的数学原理,如算法、数据结构、编程语言等2. 数学与物理探讨数学在物理学中的应用,如牛顿力学、电磁学、量子力学等3. 数学与生物了解数学在生物学中的应用,如遗传学、生态学、生物信息学等4. 数学与经济探讨数学在经济领域中的应用,如统计学、运筹学、博弈论等八、数学与艺术1. 数学与音乐了解音乐中的数学原理,如音阶、节奏、和声等2. 数学与绘画探讨绘画中的数学元素,如黄金分割、透视法、几何图形等3. 数学与建筑了解建筑中的数学原理,如比例、对称、结构稳定性等4. 数学与雕塑探讨雕塑中的数学元素,如几何形状、比例、空间关系等人教版五年级上册数学全册思维导图九、数学学习策略1. 预习与复习通过预习了解新知识,复习巩固已学知识,形成完整的知识体系2. 课堂笔记记录关键知识点、解题思路、易错点等,便于课后复习和查阅3. 作业与练习认真完成作业,及时巩固所学知识,通过练习提高解题能力4. 课外阅读阅读数学课外书籍、杂志、网络资源等,拓宽数学视野,增加知识储备5. 小组讨论与合作学习与同学一起讨论问题,分享学习心得,互相学习、互相帮助十、数学与思维1. 逻辑思维通过数学学习,培养逻辑思维能力,如归纳、演绎、推理等2. 空间想象通过几何图形的学习,培养空间想象力,如三维图形的构造、空间位置关系等3. 创新思维鼓励学生从不同角度思考问题,提出新颖的解题方法,培养创新意识4. 解决问题的能力通过数学问题的解决,提高学生分析问题、解决问题的能力5. 数学建模学习将实际问题转化为数学模型,培养学生的建模能力人教版五年级上册数学全册思维导图一、认识数学数学是研究数量、结构、变化以及空间等概念的学科。
五年级上册数学五四学制8、9单元思维导图
五年级上册数学五四学制8、9单元思维导图五年级上册数学五四学制8、9单元思维导图一、五四学制8、9单元概述1. 学习内容简介五年级上册数学五四学制8、9单元主要涵盖了小数的认识和运算、分数的认识和运算、面积和周长等方面的内容。
2. 学习目标通过学习本单元内容,学生应该能够:- 熟练掌握小数的基本概念和计算方法;- 掌握分数的基本概念和计算方法;- 熟练计算面积和周长;- 培养解决实际问题的能力。
3. 学习难点本单元学习的难点主要有以下几个方面:- 小数的认识和运算;- 分数的认识和运算;- 面积和周长的计算;- 解决实际问题的能力。
二、小数的认识和运算1. 小数的概念小数是介于整数之间的数,它由整数部分和小数部分组成。
2. 小数的读法和写法读一个小数时,先读整数部分,然后读小数点,最后读小数部分。
写小数时,小数点前面的数字表示为整数部分,小数点后面的数字表示为小数部分。
3. 小数的运算小数的加减乘除运算和整数的运算类似。
三、分数的认识和运算1. 分数的概念分数是用来表示一个整体被分成若干分之一的数。
2. 分数的读法和写法读分数时,先读分子,然后读“分之”,最后读分母。
写分数时,分子写在分数线上面,分母写在下面。
3. 分数的运算分数的加减乘除运算需要先进行通分或约分,然后按照整数的运算法则进行计算。
四、面积和周长1. 面积的概念面积是一个平面图形所占据的面积大小。
2. 面积的计算方法不同平面图形的面积计算方法不同,例如:矩形的面积等于长度和宽度之积。
3. 周长的概念和计算方法周长是一个平面图形的边缘长度之和,计算方法也因图形种类的不同而不同。
五、解决实际问题的能力1. 实际问题类型解决实际问题的能力包括对数学知识的应用能力和对解决实际问题的能力。
2. 解决实际问题的步骤- 把实际问题转化为数学式子;- 根据数学式子来进行计算;- 分析计算结果,回答问题。
3. 实际问题的解决策略解决实际问题需要培养正确的解题策略,例如:找规律、分类讨论、画图解决等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无限不循环小数
无限不循环小数指小数部分有无限多个数字,且没有依次不断地重复出现的一个数字或 几个数字的小数叫做无限不循环小数,如圆周率π=3.14159265358979323……。无 限不循环小数也就是无理数,不能化成分数形式
小数混合运算(5上)
表面积:立体图形表面所有面的面积之和
体积:物体所占空间的大小
容积:容器所能容纳的物体的体积
立方毫米:棱长为1毫米的正方体的体积
立方厘米:棱长为1厘米的正方体的体积
主要概念
体积单位
立方米:棱长为1米的正方体的体积 1000立方毫米=1立方厘米
1000立方厘米=1立方分米
1000立方分米=1立方米
体积与表面积
棱柱的体积=底面积×测棱长
体积的计算
直棱柱的体积=底面积×侧棱长 长棱长×棱长×棱长
统计
复式条形统计图(5下)
条形统计图分为单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者 可以同时表示多个项目的数据
统计图
复式折线统计图(5下)
折线统计图分单式或复式。复式的折线统计图有图例,用不同颜色或形状的线条区别开 来
两个连续整数中必有一个奇数和一个偶数
公倍数
两个或多个整数公有的倍数叫做它们的公倍数 两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数
公因数
两个或多个整数公有的因数叫做它们的公因数 两个或多个整数的公因数里最大的那一个叫做它们的最大公因数
一个大于1的整数,除了1和它自身外,不能被其他自然数整除的数叫做质数
长方体
长方体有6个面。每组相对的面完全相同。长方体有12条棱,相对的四条棱长度相等。 按长度可分为三组,每一组有4条棱。长方体有8个顶点。每个顶点连接三条棱。三条 棱分别叫做长方体的长,宽,高。长方体相邻的两条棱互相垂直
正方体是特殊的长方体,正方体是六个面都是正方形的长方体(详见附录)
正方体有8个顶点,每个顶点连接三条棱。正方体有12条棱,每条棱长度相等。正方体 有6个面,每个面面积相等,形状完全相同
容积单位
棱长为1平方分米的正方体的容积是1升(L) 棱长为1平方厘米的正方体的容积是1毫升(mL)
相邻两个体积或容积单位的进率是1000
长方体的展开与折叠
直棱柱的侧面积=底面周长×侧棱长
表面积的计算
直棱柱的表面积=侧面积+底面积×2 长方体表面积的公式:(长×宽+长×高+宽×高)×2
正方体表面积的公式:棱长×棱长×6
点叫做棱柱的顶点;不在同一个面上的两个顶点的连线叫做棱柱的对角线;两个底面之
棱柱
间的距离叫做棱柱的高
棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等
侧棱与底面垂直的棱柱称为直棱柱
立体图形
直棱柱的侧面与对角面都是矩形 直棱柱相邻两条侧棱互相平行且相等
长方体是底面是长方形的直棱柱,长方体表面的每一个矩形都叫做长方体的面,面与面 相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点(详见附录)
质数和合数
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整数的数
概念:1既不是质数也不是合数
所有不为零的整数都是0的因数(还有争议)
小数除法
除数是整数的小数的除法:先按照整数除法的法则去除,除到被除数的末尾仍有余数 时,就在余数后面添0,再继续除
小数除法(5上)
小数除法竖式
小数除法竖式的格式和整数除法竖式的格式基本一样,注意商的小数点要和被除数的小 数点对齐,除到被除数的末尾仍有余数时,就在余数后面添0,再继续除
分数比大小(5上)
异分母分数比大小,先通分,再比较
约分:把分数化成最简分数的过程
约分和最简分数(5上)
约分也是利用分数的基本性质,过程和通分类似
最简分数:分子、分母只有公因数1的分数
异分母分数相加减,先通分再按同分母分数相加减法去计算,最后能约分的要约分
异分母分数加减法(5下)
分数运算律与运算顺序和整数的运算律与运算顺序相同
一个数的末尾是0,2,4,6,8,这个数就是2的倍数
一个数的各位数之和是3的倍数,这个数就是3的倍数
一个数的末两位是4的倍数,这个数就是4的倍数
一个数的末尾是0或5,这个数就是5的倍数
偶数是能够被2所整除的整数。正偶数也称双数
偶数与奇数
0是一个特殊的偶数。它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭 奇数指不能被2整除的整数
公顷和公亩(5上)
1公亩=100平方米
1公顷=100公亩
有两个面互相平行,其余各面都是四边形,并且这些四边形的公共边都互相平行,这些 面围成的几何体叫棱柱
在一个棱柱中:两个相互平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面;两个面
的公共边叫做棱柱的棱,其中两个侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶
代数
小数
有限小数
有限小数指小数部分后有有限个数位的小数。有限小数都属于有理数,可以化成分数形 式
小数分类(5上)
无限小数
无限循环小数
无限不循环小数指从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现 的小数叫做循环小数。循环小数亦属于有理数,可以化成分数形式 一个循环小数不断出现的数字叫做这个循环小数的循环节。循环小数可以只写一个循环
带分数
带分数写法为:
带分数的读法为:整数又分母分之分母
带分数与假分数转化:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘 积再加上原来的分子作分子。把假分数化成带分数,要用假分数的分子除以分母,所得 的商就是带分数的整数部分,余数是分数部分的分子,分母不变
在做分数乘除法时要把带分数化为假分数
小数和分数的换算
小数化分数:看小数点后面有几位小数,就在1后面添几个0作分母,同时把小数去掉小数 点作分子,然后能约分的要约分
分数化小数:可以直接用分子除以分母,得到的结果就是小数
分数乘整数,分母不变,分子乘整数,最后能约分的要约分
分数乘法(5下)
分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分
解二元一次方程的步骤:1.有分数先去分母(利用分数的基本性质,在等式两边同时乘 分母的倍数)。2.有括号就去括号。3.消元,得到一元一次方程组。4.如果需要的话, 合并同类项。5.系数化为1求得一个未知数的值,再求另一个未知数值。
几何
面积计算 立体几何
从三角形的一个顶点到其对边或对边的延长线做一条垂线段,这条垂线段就是三角形的 高,而高的垂足所在的边就是三角形的底
小数混合运算的运算顺序和整数混合运算的运算顺序一样 小数的运算律和整数混合运算的运算律一样
真分数:真分数是指分子小于分母的分数。真分数小于1
假分数:分子比分母大或者分子和分母相等的分数。假分数大于1或者等于1
分子与分母相等的分数的数值为1
整数和真分数合成的数通常叫做带分数,可以用来表示假分数
真分数和假分数(5上) 分数与除法的关系(5上)
底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比
三角形的任意一条中线将这个三角形分为两个面积相等的三角形
组合图形的面积(5上)
组合图形的面积计算的方法:将一个组合图形分割成已经学过的图形,将这些已经学过 的图形的面积加起来得到的就是这个组合图形的面积
公顷和公亩都是常用的面积单位
小学五年级数学知识思维导图 (北师大版)
图形认知
对称图形
绘制对称轴,通过对称轴的一边从而画出另一边(5上)
倍数与因数(5上)
一个整数能够被另一个整数整除,那么这个整数就是另一整数的倍数
不能把一个数单独叫做倍数,只能说谁是谁的倍数
两个正整数相乘,那么这两个数都叫做积的因数
倍数与因数定义及计算
整除:若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说 b能整除a)
复式折线统计图一般用于两者之间比较,主要作用是看两者之间的进度和增长
子主题
平均数的定义及计算方法
实用平均数(5下):一组数据中,因为有的数据太大或太小,去掉更有代表性,因此 实际应用中经常把最大和最小的数据去掉,再把剩下的数据相加,最后用数据的和除以 数据的总数量,得出平均数,例如比赛中的评分常用这种方法。
定义:只含有一个未知数,且未知数次数是一的整式方程叫二元一次方程,一个二元一 次方程可以有无数个解。
(拓展:由两个二元一次方程组成的方程组,叫二元一次方程组,二元一次方程组只有 一个解,并能满足两个方程)
拓展:二元一次方程
消元:将方程组中的未知数个数由多化少,逐一解决。消元的方法有两种: 代入消元 例:解方程组x+y=5① 6x+13y=89② 解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89,解得y=59/7 把y=59/7带入③,得x=5-59/7,即x=-24/7 x=-24/7,y=59/7 这种解法就是代入消元法。 加减消元 例:解方程组x+y=9① x-y=5② 解:①+②,得2x=14,即x=7 把x=7带入①,得7+y=9,解得y=2 x=7,y=2 这种解法就是加减消元法
扩展概念:倒数,乘积为1的两个数互为倒数,0没有倒数,1的倒数是1。
分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的 要约分
分数除法(5下)
分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒 数,最后能约分的要约分
分数除以分数,等于被除数乘除数的倒数,最后能约分的要约分
被除数除以除数等于除数分之被除数
a÷b=
分数的基本性质(5上):分数的分子与分母同时乘或除一个不为0的数,分数大小不 变