《排列、组合与二项式定理》中职数学(拓展模块)3.1ppt课件1【人教版】
最新语文版中职数学拓展模块3.1排列、组合1课件PPT.ppt
动 脑 思 考
= n(n 1)(n 2) (n m 1) 21 (n m) 21
(n
n! m)!
探
索 新
即
Pnm
(n
n! m)!
知
例2 计算 P52 和 P44.
解 P52 =5×4=20, P44 4! 4 3 2 1 24.
巩
例3 小华准备从7本世界名著中任选3本,分别送给甲、乙、丙
第三章 概率与统计
3.1 排列与组合
基础模块中,曾经学习了两个计数原理.
一般地,完成一件事,有n类方式.第1类方式有 k1种方法, 第2类方式有 k2 种方法,……,第n类方式有 kn 种方法,那么完 成这件事的方法共有
创
N k1 k2 kn(种).
设
上面的计数原理叫做分类计数原理.
导
北京→重庆,北京→上海, 重庆→北京,
入
重庆→上海,上海→北京, 上海→重庆.
我们将被取的对象(如上面问题中的民航站)叫做元素,那么上面的
动
问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以
脑
得到多少种不同的排列.
思
考
一般地,从n个不同元素中任取m (m≤n)个不同元素,按照一定的顺
北京、重庆、上海3个民航站之间的直达航线,要准备多少种不同的机票?
创
这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起
设 点在前,终点在后的顺序排列,求不同的排列方法的总数.
情
境
首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然
兴 后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法. 趣 根据分步计数原理,有3×2=6种不同的方法,即需要准备6种不同的飞机票:
排列、组合、二项式定理精选教学PPT课件
数有多少?
5×5=25
练习2
1.某段铁路上有12个车站,共需准备多少种普通客票?
P122
2.某段铁路上有12个车站,问有多少种不同的票价?
C122
3.用3,5,7,9四个数字,一共可组成多少个没有重 复数字的正整数
P41 P42 P43 P44
练习3
1.在(1+x)10的展开式中,二项式系数最大为 C150 ;
名称
排列
组合
一个~ ~~数
从n个不同元素中取出m个元 素,按一定的顺序排成一列
所有排列的个数
从n个不同元素中取出m个元 素,把它并成一组
所有组合的个数
符号
种数 公式 关系
性质
Pnm
C
m n
Pnm
Pnm
n(n 1) (n m
n! (n m)! Pnn n!
1)
0!
1
排列、组合、二项式定理
知识结构网络图:
排列与组合
二项式定理
中职数学拓展模块课件-二项式定理
所以
= (2) 在二项式定理中,令a=1,b=x,可得
.
a b 7 =C07a7 C17a6b C72a5b2 C37a4b3 C74a3b4 +C57a2b5 +C67ab6 +C77b7
8.3.1 二项式定理
例2
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
8.3.2 二项式系数的性质
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
可以看出二项式系数具有如下性质:
(1)每一行的两端都是1,其余的每一个数都等于它“肩上”两 个数
的和,事实上,假设表中任一不为1 的数为 可知:
.
(2)每一行中与首末两端“等距离”的两个二项式系数相等.事实上,
8.3.2
二项式系数的性质
8.3.2 二项式系数的性质
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
某代表队参加校内拔河比賽,需要与其他7个代表 队各赛一场.不难发现,比赛结果可分为8类:赢0场,赢 1场,…,赢7场. 而赢0场有1(记作 )种情况,赢1场 有 种情况 (即在7场中赢1场),赢2场有 种情况,… 赢7场有 种情况.那么,该班比赛7场,比赛结果共有 多少种?
这一性质可以直接由 8.2节组合数的性质 1 得到:
.
(3)如果二项式(a+b)n的幂指数n是偶数,那么它的展开式正中间一
项的二项式系数最大;如果二项式(a+b)n的幂指数n是奇数,那么它的
展开式中间两项的二项式系数最大并且相等.
(4) (a+b)n的展开式的各个二项式系数之和为 . 根据二项式定理,
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
排列、组合 和二项式定理幻灯片PPT
组合
组合数的概念和推导 组合数公式 组合数性质
CnmCnnm C n m 1C n mC n m 1
kCnk nCnk1
C k k C k k 1 C k k 2 C n k C n k 1 1
计数综合问题
先选后排
7.从3名男生和3名女生中,选出3名分别担 任语文、数学、英语的课代表,要求至少 有1名女生,则选派方案共有( )
其中能被5整除的四位数共有
个
二维:有5有0,有5无0,无5有0
主元:个位为0,个位为5(再根据需要细 分,选0与不选0)
在6名内科医生和4名外科医生中,内科主 任和外科主任各一名,现在要组成人医疗 小组送医下乡,依下列条件各有多少种方 法:
既有内科医生又有外科医生(间接考察)
既有主任又有外科医生
排列数应用
组合 组合数
组合数应用
二项式定理
教学内容
不仅有着许多直接应用,还是学习概率理 论的准备知识,而且由于其思维方法的新 颖性与独特性,因此它也是培养学生思维 能力的不可多得的好素材;作为初中多项 式乘法公式的推广——二项式定理,不仅 使前面组合等知识的学习得到强化,而且 与后面概率中的二项分布有着密切联系。
排列、组合 和二项式定理 幻灯片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
知识结构
分类计数原理、分步计数原理
排列 排列数
3.展开式的每一项由若干个a和若干个b的乘积 构成,a和b的个数之和等于n,它可以表示为ankbk.
人教版中职数学(拓展模块)3.1《排列、组合与二项式定理》word教案
排列组合教案第一部分基本内容一.课标要求:1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。
二.命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。
排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。
考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测20XX年高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大。
三.要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。
3.排列(1)排列定义,排列数(2)排列数公式:系mn A =)!(!m n n -=n·(n-1)…(n-m+1);(3)全排列列:nn A =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 4.组合(1)组合的定义,排列与组合的区别; (2)组合数公式:C n m=)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n ;(3)组合数的性质 ①C n m=C nn-m;②rn r n r n C C C 11+-=+;③rC n r=n·C n-1r-1;④C n 0+C n 1+…+C n n =2n;⑤C n 0-C n 1+…+(-1)nC n n=0,即 C n 0+C n 2+C n 4+…=C n 1+C n 3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=C n 0a n+C n 1a n-1b+…+C n k a n-k b k+…+C n n b n; (2)通项公式:二项式展开式中第k+1项的通项公式是:T k+1=C n k a n-k b k; 6.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性。
高中数学第三章排列组合与二项式定理3.1.2.1排列与排列数课件新人教B版选择性必修第二册
3.5A!××33××22×1=15.
4.由 1,2,3 这三个数字组成的三位数分别是 _1_2_3_,_1_3_2_,2_1_3_,_2_3_1_,3_1_2_,_3_2_1______. 解析:用树形图表示为
由“树形图”可知组成的三位数为 123,132,213,231,312,321, 共 6 个.
[基础自测]
1.判断(正确的打“√”,错误的打“×”) (1) 两 个 排 列 的 对 象 相 同 , 则 这 两 个 排 列 是 相 同 的 排 列.( ) × 因为相同的两个排列不仅对象相同,而且对象的排列顺 序相同.
(2)从六名学生中选三名学生参加数学、物理、化学竞赛, 共有多少种选法属于排列问题.( )
2.由 1 知 A24 =4×3 =12,A34 =4×3×2 =24,你能否 得出 A2n的意义和 A2n的值?
[提示] A2n的意义:假定有排好顺序的 2 个空位,从 n 个对 象 a1,a2,…,an 中任取 2 个对象去填空,一个空位填一个对象, 每一种填法就得到一个排列;反过来,任一个排列总可以由这样
题型三 排列数公式的推导及应用
状元随笔 1.两个同学从写有数字 1,2,3,4 的卡片中选取卡
片进行组数字游戏.从这 4 个数字中选出 2 个或 3 个分别能构成 多少个无重复数字的两位数或三位数?
[提示] 从这 4 个数字中选出 2 个能构成 A24 =4×3 =12 个无重复数字的两位数;若选出 3 个能构成 A34 =4×3×2 =24 个无重复数字的三位数.
题型一 排列的概念
例 1 判断下列问题是否为排列问题. (1)北京、上海、天津三个民航站之间的直达航线的飞机票 的价格(假设来回的票价相同); (2)选 2 个小组分别去植树和种菜; (3)选 2 个小组去种菜; (4)选 10 人组成一个学习小组; (5)选 3 个人分别担任班长、学习委员、生活委员; (6)某班 40 名学生在假期相互通信.
中职数学5--排列组合和二项式定理二项式定理_
fient ),式中的Cknankbk叫做二项展开式的通项,用Tk1
表示,即通项为展开式的第k 1项 : Tk1 Cknankbk.
x
1
6
2x
16
x x
1 x3
2x
16
1 x3
2x6
C16 2x5
C26 2x4
C36 2x3
C64 2x2 C56 2x C66
1
x3
64x6 6 32x5 15 16x4 20 8x3
n N .如何证明这个猜想呢?
证明 由于a bn是n个a b相乘,每个a b在相乘 时有两种选择,选取a或b,而且每个a b中的a或b都选
定后,才能得到展开式的一项,因此 ,由分步乘法计数原
理可知,在合并同类项之前,a bn的展开式共有 2n 项,
35 8x3 280x3,
所以展开式的第4项的系数是280.
1 2x7 的展开式的第4 项的二项式系数是
C37 35.一个二项式展开式的某一项的二项 式系数与这一项的系数是两个不同的概念.
2求
x
1
9
的展开式中x3的系数.
x
2
x
1
9
的展开式的通项是
其中每一项都是ankbk (k 0,1, ,n)的形式.
对某个kk 0,1,2, n ,对应的项ankbk 是由n k 个a b中选a,k个a b中选b得到的.由于b选定
排列组合二项式定理PPT教学课件(1)
(2)从书架上任取数学书语文书各1本,可以分成两个步骤 完成。第一步,取1本数学书有6种方法。第二步,取1语文 书有5种方法。根据乘法原理得到不同的取法种数为: N=m1.m2=6×5=30
答:从书架上任取数学书语文书各1本有30种不同的取法。
作业
棱锥、圆锥的体积
定理三:如果一个锥体(棱锥、圆锥)的底面积
是S,高是h,那么它的体积是
1
V锥体= 3 Sh 推论:如果圆锥的底面半径是r,高是h,
那么它的体积是
V圆锥=
1 3
πr2h
作业:
1、四面体O-ABC中,除OC外其余的棱长均为1,且OC与 平面ABC所成的角的余弦值为,求此四面体的体积。
2、三棱锥P-ABC中,已知PA⊥BC,PA=BC=a,PA,BC的 公垂线段为EF(E、F分别在PA、BC上),且EF=h,求 三棱锥的体积。
甲
乙
甲 丙
乙
思考?
不 可 以 重 复 的 三 位 数 ?
可 以 组 成 多 少 个 各 位 数 字
由 数 字 1 、 2 、 3 、 4 、
5
练习1
从甲地到乙地,可以乘火车,也可以乘轮 船,还可以乘汽车。一天中火车有4班,汽 车有2班,轮船有3班。问:一天中乘坐这 些交通工具从甲地到乙地共有多少种不同 走法?
A’
C’
B’
A
C
B
与三棱柱相对照,请猜想三棱锥体积公式。
A’
C’
B’
A
C
B
与三棱柱相对照,请猜想三棱锥体积公式。
A’ A’ A’ A’ A’A’ A’ A’ A’ A’ A’ C’ C’ C’ C’ C’ C’ B’ B’ B’ B’ B’ B’
排列组合与二项式定理PPT课件
(1)C0n+Cn1
+
…+
Crn+…
+
Cnn= 2n;
C0n+
Cn2
+
…=
Cn1
+
C
3 n
+…=2n-1.
(2) 应 用 “ 赋 值 法 ” 可 求 得 二 项 展 开 式 中 各项 系 数 和 为
f(1).“奇数(偶次)项”系数和为12[f(1)+f(-1)],“偶数(奇次)
项”系数和为12[f(1)-f(-1)].
第18讲 │ 要点热点探究
要点热点探究
► 探究点一 计数原理及其应用
例1(1)在任意两个正整数m和n间定义某种运算,用⊗表 示运算符号,并规定,当m和n都为奇数或都为偶数时,m⊗n =m+n;当m和n中有一个为奇数,另一个为偶数时,m⊗n =mn,设集合M={(a,b)|a⊗b=36,a、b∈N+},则集合M 中共有________个元素;
第18讲 │ 要点热点探究
41 【解析】 一类:当 m、n 都为奇数时,由 m+n=36, 可知 m=1,3,5,…,35,相应的 n 随之确定,共有 18 个不同 数对(a,b);
二类:当 m 和 n 都为偶数时,由 m+n=36,可知 m= 2,4,6,…,34,相应的 n 随之确定,共有 17与D”看成一个整体,故有2A
3 4
=
48种涂法.
故不同的涂法共有24+48=72种,选A.
【点评】 本题的涂色问题是一类典型应用两个计数原理解决的 计数问题,在高考中多次出现这类问题,解决的基本思路有两条:一 是按照颜色的种类进行分类;二是按区域一个一个地涂色.在具体填 涂的过程中应用计数原理,找到问题的解决方案.
第18讲 │ 要点热点探究
【点评】 分清是分类还是分步,是决定用分类计算原理 还是分步计算原理的必要条件;分类时标准统一,做到不重不 漏.分步时程序清晰,做到独立、完整.如果题目中既要用到 分类计数原理,又要用到分步计数原理,一般应遵循“先分 类,再分步”的原则.
职中二项式定理ppt课件
二项式定理的应用场景
总结词
二项式定理在数学、物理、工程等多个领域都有广泛的应用。
详细描述
在数学中,二项式定理常用于解决一些代数问题,如因式分解、求根公式等。在物理中,二项式定理可以用于计 算一些物理量的近似值,如光的波长、电子的能量等。在工程中,二项式定理可以用于解决一些优化问题,如线 性规划、组合优化等。
03
二项式定理的扩展与推广
二项式定理的扩展形式
二项式定理的通项公式
通过组合数和幂运算,推导出二项式定理的通项公式,用于 计算特定项的值。
二项式定理的推广
将二项式定理的适用范围从两项扩展到多项,并推导出相应 的展开式。
二项式定理的几何意义
二项式定理与几何图形的关系
通过图形解释二项式定理的原理,如利用三角形和组合数的关系解释二项式系 数。
习题二及答案
习题二
$(a+b+c)^2$的展开式中,$a^2$的 系数是多少?
答案
根据二项式定理,$(a+b+c)^2$的展 开式中$a^2$的系数是 $C_2^1b^1c^0+C_2^0b^0c^2=2 c+2b$。
习题三及答案
习题三
$(a+b)^5$的展开式中,常数项是多少?
答案
根据二项式定理,$(a+b)^5$的展开式中常 数项是$C_5^4a^1b^4=5b定理简介 • 二项式定理的公式与证明 • 二项式定理的扩展与推广 • 二项式定理的实际应用 • 习题与解答
01
二项式定理简介
二项式定理的定义
总结词
二项式定理是数学中的一个基本定理 ,它描述了两个数的乘积的展开式的 特定规律。
详细描述
二项式定理指出,对于任何两个数a和 b(其中b不为0),它们的乘积可以 展开为(a+b),(a+b)^2,(a+b)^3等 幂次的各项,这些项的系数遵循特定 的规律。
排列组合二项式定理复习ppt中小学教学课件
闻,由同狱鲁思蒂谦笔录成书《马可.波
罗游记》, 此书盛道东方之富庶和文明,
深受大众喜爱和传诵. 后来,他获释后
回到威尼斯. 1324年,马可·波罗70岁。
当年去世,葬於威尼斯的圣.多雷玆教
堂
。
( 威尼斯) 帕米尔高原
波 斯
(大都)
河西走廊
吐鲁番
楼兰古城
玉门关
敦煌
秦陵兵马俑
大雁塔
真真假假
马可·波罗一行经过长途跋涉,来到了繁华的 楼兰城,见到了美丽的楼兰姑娘。
D 10
3.1 3 32 399 被4除所得的系数为( A )
A.0 B.1
C.2
D.3
二填空题
1(05湖南 ) (1 x) (1 x)2 (1 x)3 (1 x)6 展开式中x2 的系数是___3_5__________
2 20012000 被22除所得的余数为 1 。
3 已知 (x 1)6 (ax 1)2 展开式中的 x3 系数是56,
例1:1993年全国高考题:同室4人各写1张贺年卡,先集
中起来,然后每人从中各拿1张别人送出的贺年卡,则4张
贺年卡不同的分配方式有( )
A.6种
B.9种
C.11种
D.23种
解法1:设四人A,B,C,D写的贺年卡分别是a,b,c,d, 当A拿贺年卡b,则B可拿a,c,d中的任何一个,即B拿a, C拿d,D拿c或B拿c,D拿a,C拿d或B拿d,C拿a,D拿c, 所以A拿b时有三种不同分配方法.同理,A拿c ,d时也各
3×3×3×3=81
1.排列和组合的区别和联系:
名称
排列
组合
一个~
从n个不同元素中取出m个元 素,按一定的顺序排成一列
高中数学第三章排列组合与二项式定理3.1.1.1基本计数原理课件新人教B版选择性必修第二册
(4)错误,因为每个项目中的冠军都有 3 种可能的情况,根据分 步乘法计数原理共有 34 种不同的夺冠情况.
状元随笔 根据题意,必须依次在每个拨号盘上拨号,全 部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数 原理.
方法归纳
1.应用分步乘法计数原理时,完成这件事情要分几个步骤, 只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.
2.利用分步乘法计数原理解题的一般思路 (1)分步:将完成这件事的过程分成若干步; (2)计数:求出每一步中的方法数; (3)结论:将每一步中的方法数相乘得最终结果.
跟踪训练 2 张涛大学毕业参加工作后,把每月工资中结余 的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买 国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买 国债则可以从一年期、二年期和三年期中选择一种.问:张涛共 有多少种不同的理财方式?
解析:由题意知,张涛要完成理财目标应分步完成. 第 1 步,将一部分钱用来定期储蓄,从一年期和二年期中任意 选择一种理财方式; 第 2 步,用另一部分钱购买国债,从一年期、二年期和三年期 三种国债中任意选择一种理财方式. 由分步乘法计数原理,得共有 2×3=6 种不同的理财方式.
答案:A
2.下列说法不正确的是( ) (1)在分步乘法计数原理中,每个步骤中完成这个步骤的方 法是各不相同的.
(2)在分步乘法计数原理中,事情是分两步完成的,其中任 何一个单独的步骤都能完成这件事.
(3)已知 x∈{2,3,7},y∈{-3,-4,8},则 x·y 可表示不同的 值的个数为 9 个.
《排列、组合》中职数学拓展模块3.1ppt课件3【语文版】
其中2,1,3是元素的重复数。当元素可以无限多次使 用时,重复数为无穷。 多重集S中选出r个元素进行有序排放,构成一个 多重集的r-排列。
acbc,cbcc,abac都是S个元素4 –排列。
定理3.4.1 设 多 重 集S有k个 不 同 元 素 , 每 个 元 素有
定理3.2.2
环形r - 排列数 = P(n, r) = n! r r(n - r)!
环形n - 排列数 = P(n, n) = (n - 1)! n
证明: r个r-线性排列对应1个r-环形排列.
例5 将12种记号标在旋转的圆鼓上,有多少种 标法?
n=P(12,12)/12=11!
例6 10个人为圆桌任意就坐,求指定的两个人 A与B不相邻的概率。
去 除a : 去 除b :
na
8! 2!2!4!
420
8! nb 3!1!4! 280
420 280 560 1260
去 除c :
8! nc 3!2!3! 560
例4 8*8棋盘上,非攻击车的放法。
8个 颜 色相 同 的 车: n 8! 8个颜色各不相同的车n: 8!8!
第三章 排列与组合
§3.1 加法原理与乘法原理
1.加法原理
设集合S剖分成S1,,Sn ,则 S S1 Sn
A到B有三种交通方式: 空:m 种选择
陆:n 种选择
A
海:k 种选择
则共有 m+n+k 种走法
m
n
B
k
§3.1 加法原理与乘法原理
2、乘法原理
设集合S {(a, b),a A, b B},则 S A B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以
C
1 x
2
=
C
4 x
2
,
所以5=x+2,x=3,经检验知x=3.
点评 凡遇到解排列、组合的方程,
不等式问题时,应首先应用性质和 排列、组合的计算公式进行变形与 化简,并注意有关解排列、组合的 方程、不等式问题,最后结果都需 要检验.
题型三 结合两个计数原理 求排列、组合问题的方法数
例3用 0,1,2,3,4 这 五 个 数 字 , 可 以 组
一、两个原理
3.分类和分步的区别 分类:完成一件事同时存在n类方法,每一类 都能独立完成这件事,各类互不相关.分步:完成一 件事须按先后顺序分n步进行,每一步缺一不可, 只有当所有步骤完成,这件事才完成.
一、两个原理
练习1: 书架上放有3本不同的数学书,5本 不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的
一、两个原理
(2)三角形的三边长均为整数,且最长的边 长为11,则这样的三角形的个数有( C )
A.25个 B.26个 C.36个 D.37个
(2)设另两边长为x、y,且1≤x≤y≤11 (x 、 y∈Z) , 构 成 三 角 形 , 则 x+y≥12 , 当 y 取 11 时 , x=1,2,3,…,11,有11个;当y取10时,x=2,3,…,10,有9个;当y取 9时,x=3,4,…,9,共7个;……;当y取6时,x也只能为6,有1 个,故满足题设的三角形共有:11+9+7+5+3+1=36个,故
分类时要做到不重不漏,也就是各类的并集是 全集,任意两类的交集是空集,在合理正确分 类的前提下,在每一类中,依据题目的要求进 行分步,分步要做到步步连续,各步之间相互 独立.
(2)用间接法.
当正面求解较为困难时,也可采用正难则 反的思想,用“间接法”求解,但要注意找准 对立面.
能力提高
球台上有4个黄球,6个红球,击 黄球入袋记2分,击红球入袋记1分.欲将 此10个球中的4个球击入袋中,但总分 不低于5分,则击球方法有几种?
4.注意排列数公式、组合数公式有连 乘形式与阶乘形式两种,
公式 Anm =n(n-1)·…·(n-m+1),
Cnm =
Hale Waihona Puke n(n 1)(n 2) (n m 1) 常用于计算,
m!
而公式 Anm
=
(n
n! m)!
,Cnm
= n! 常用于
m!(n m)!
证明恒等式.
一.特殊元素和特殊位置优先策略
成多少个满足下列条件的没有重复数 字的五位数: (1)比21034大的偶数; (2)左起第二位、第四位是奇数的偶数.
(1)(方法一)可分五类:
当末位数字是0,而首位数字是2, A21 A22+ A22=6(个); 当末位数字是0,而首位数字是3或4,有A21 A33=12(个); 当末位数字是2,而首位数字是3或4,有A21 A33=12(个); 当末位数字是4,而首位数字是2,有 A22 +A11 =3(个); 当末位数字是4,而首位数字是3,有 A33 =6(个). 故有6+12+12+3+6=39(个).
设击入黄球x个,红球y个符合要求,
x+y=4
则有 2x+y≥5 x,y∈N*,
解得 x=1 x=2 x=3 x=4 y=3, y=2 , y=1 , y=0.
故共有不同击球方法数为
C
1 4
C63
+C42 C62+
C43
C
1 6
+
C
4 4
C60
=195.
点评本题需运用不等式的知识,确
定击入黄球与红球的个数,有时则需 利用集合的运算等知识,确定相关元 素的个数,再利用排列或组合的知识 解决方法种数问题.
例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素 占了这两个位置
先排末位共有_C_31_ 然后排首位共有_C_41_
最后排其它位置共有_P4_3_C
1 4
P43
C31
由分步计数原理得
C31
C
1 4
P43
=288
一.特殊元素和特殊位置优先策略
例2 解下列方程:
(1)
P4 2 x1
=140
Px3;
(2)
C
x 1 x3
=
+ C x1 x 1
C
x x 1
+
C x2 x2
.
(1)根据排列的意义及公式得 4≤2x+1 3≤x (2x+1)2x(2x-1)(2x-2)=140x(x-1)(x-2),
x≥3 则有 (4x-23)(x-3)=0, 解之并检验得x=3.
=
Cnm
+ Cnm1
.
排列与组合的区别
排列与组合的共同点是“从n个不同元
素中,任取m个不同元素”;而不同点是
排列要“按照一定的顺序排成一列”,而
组合却是“只需组成一组(与顺序无
关)”.因此,“有序”与“无序”是排列
与组合的重有要序标志.⑨“
”为无排序列问题,
⑩“ ”为组合问题.
题型二 排列、组合数方程问题
位置分析法和元素分析法是解决排列组合问 题最常用也是最基本的方法,若以元素分析为 主,需先安排特殊元素,再处理其它元素.若以 位置分析为主,需先满足特殊位置的要求,再处 理其它位置。若有多个约束条件,往往是考 虑一个约束条件的同时还要兼顾其它条件。
练习题
1.7种不同的花种在排成一列的花盆里,若
两种花不种在中间,也不种在两端的花
所有组合的个数叫做组合数,用符号 Cnm表示.
组合与组合数
(3)组合数计数公式.
Cnm =⑥
Anm Amm
=⑦ n(n 1)(n 2) (n m 1) .
m!
n!
=⑧ m!(n m)! .
规定 Cn0 =1. (4)组合数的两个性质.
(ⅰ)
Cnm
=
C nm n
;
(ⅱ)
Cm n 1
(方法二)不大于21034的偶数可分为三类: 1为万位数字的偶数,有 A31A33 =18(个); 2为万位数字,而千位数字是0的偶数,有
A21 =2(个); 还有21034本身. 而由0,1,2,3,4组成的五位偶数共有
A44 + A21 A31 A33=60(个). 故满足条件的五位偶数共有
60- A31 A33 - A21 -1=39(个).
(2)由组合数的性质可得
+ C x1 x 1
C
+ x
x 1
= C x2 x2
C
2 x 1
+
C
1 x 1
+
C
4 x
2
=
C
2 x2
+
C x4
2
.
又C x1 x3
=
C2 x3
,
所以
C
2 x3
=
C2 x2
+
C4 x2
,
即
C
1 x
2
+
C2 x2
=
C2 x2
+
C x4 2,
位整数(各位上的数字允许重复)?
解:要组成一个三位数,需要分成三个步骤:
第一步确定百位上的数字,从1~4这4个数字中任选一个数 字,有4种选法; 第二步确定十位上的数字,由于数字允许重复,共有5种选 法;
第三步确定个位上的数字,仍有5种选法.根据乘法原理, 得到可以组成的三位整数的个数是 N=4×5×5=100.
方法提炼
1. 解 决 应 用 题 时 , 应 分 析 : ① 要 完 成做一件什么事;②这件事怎样做才可 以做好;③需要分类还是分步.运用分类 计数原理和分步计数原理,关键在于① ②两方面,认真分析题意,设计合理的 求解程序是求解问题的关键.
方法提炼
1. 解 决 应 用 题 时 , 应 分 析 : ① 要 完 成做一件什么事;②这件事怎样做才可 以做好;③需要分类还是分步.运用分类 计数原理和分步计数原理,关键在于① ②两方面,认真分析题意,设计合理的 求解程序是求解问题的关键.
答:可以组成100个三位整数.
一、两个原理
题型一 利用两个计数原理求方法 数 例1(1)现要排一份5天的值班表,每天
有一人值班,共有5人,每人可以多天值班 或不值班,但相邻两天不准由同一人值班, 问此值班表共有 1280 种不同排法.
一、两个原理
(1)值班表须依题设一天一天的分步 完成.第一天有5人可选,有5种排法,第二 天不能用第一天的人,有4种排法,同理, 第三天、第四天、第五天也有4种,故由分 步计数原理排值班表共有 5×4×4×4×4=1280种,应填1280.
盆里,问有多少不同的种法?
解一:分两步完成;
第一步选两葵花之外的花占据两端和中间的位置 有A53种排法
2.如果任何一类办法中的任何一种方 法都能完成这件事,即类与类之间是相互 独立的,即分类完成,则选用分类计数原 理;如果完成一件事要经历几个步骤(即 几步),且只有当这些步骤都做完,这件 事才能完成,即步与步之间是相互依存、 相互连续的,即分步完成,则选用分步计 数原理.
3.排列与组合的本质区别在于排列不 仅取而且排,即与顺序有关,而组合只取 出一组即可,与顺序无关.
选C.点评(1)是分步问题,用分步计数原
理;(2)是分类问题,用分类计数原理.
二、排列与排列数
从n个不同的元素中,任取M个元素, 按照一定的顺序排成一列,叫做从n个