重庆大学有限元分析技术大作业
重庆大学有限元第二次作业(刘静老师)
【有限元分析技术】第二次作业科 目: 有限元分析技术教 师: 姓 名: 学 号:班 级: 类 别: 学术型 上课时间: 2016 年 11 月至 2017 年 1 月考生 成 绩:卷面成绩 平时成绩课程综合成绩阅卷评语: 阅卷教师 (签名)大学研究生院第一章 题目概况1.1 原始数据矩形板尺寸如下图,板厚为5mm ,弹性模量为522.010/E N mm =⨯ ,泊松比为0.27μ=图1.1 原始计算简图1.2工况选择(1)试按下表的载荷约束组合,任选2种进行计算,并分析其位移、应力分布的异同。
表1 两种不同工况的载荷及约束序号 载荷约束 备注1 向下均布载荷P=5N/mm,作用于ab 边 c ,d 点固定2 向下均布载荷P=5N/mm,作用于ab 边 a ,b 点固定3 向下均布载荷P=5N/mm,作用于ab 边 a ,c 边固定 还可讨论a ,c 点固定4 向下均布载荷P=5N/mm,作用于cd 边 c ,d 点简支5 向下均布载荷P=5N/mm,作用于cd 边 a ,b 点简支6 向下均布载荷P=5N/mm,作用于cd 边 a ,c 边固定 还可讨论a ,c 点固定7 向下集中载荷F=1000N,作用于ab 边中点 c ,d 点简支 8 向下集中载荷F=1000N,作用于ab 边中点 a ,b 点简支9 向下集中载荷F=1000N,作用于ab 边中点 a ,c 边固定 还可讨论a ,c 点固定10 向下集中载荷F=1000N,作用于cd 边中点 c ,d 点简支 11 向下集中载荷F=1000N,作用于cd 边中点 a ,b 点简支12向下集中载荷F=1000N,作用于cd 边中点a ,c 边固定还可讨论a ,c 点固定1.3 工况选择结果及分析任务(1)工况选择结果根据表1的工况,选取工况1,2,8进行对比分析,选取结果如表2所示,为了方便下文中分别将序号1、2、8的工况称为工况一、工况二、工况三。
重庆大学有限元第一次作业
有限元分析技术课程大作业科 目:有限元分析技术 教 师:姓 名: 学 号: 专 业: 机械设计及理论 类 别: 学 术 上课时间: 2016 年 11 月至 2017 年 1 月 考 生 成 绩:阅卷评语:阅卷教师 (签名)重庆大学研究生院第一章 问题提出1.1工程介绍某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x 方向尺寸为1m ,y 方向尺寸为1m ;分格的列数(x 向分格)=学生序号的百位数值×10+十位数值+5,分格的行数(y 向分格)=学生序号的个位数值+4,如序号为041的同学分格的列数为9,行数为5,111号同学分格的列数为16,行数为5。
钢结构的主梁(图1中黄色标记单元)为高160宽100厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X 方向正中间,偏X 坐标小处布置)的次梁的两端,如图2中标记为UxyzRxyz 处。
玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷,如图4所示);试对在垂直于玻璃平面方向的22/KN m 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析.(每分格面载荷对于每一支撑点的载荷可等效于0.5KN 的点载荷)。
1.2 作业内容(1)屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图1-2;(2)该结构每个支座的支座反力;(3)该结构节点的最大位移及其所在位置;(4)对该结构中最危险单元(杆件)进行强度校核。
图1-1图1-2图1-3图1-41.3分格计算学生序号:096x向分格:9+5=14,即列数为13列;y向分格:6+4=10,即行数为10行;因此,学生作业任务是计算13×10分格的钢结构玻璃平面舞台。
重庆大学研究生有限元大作业教学内容
重庆大学研究生有限元大作业课程研究报告科目:有限元分析技术教师:阎春平姓名:色学号: 2专业:机械工程类别:学术上课时间: 2015 年 11 月至 2016 年 1 月考生成绩:阅卷评语:阅卷教师 (签名)有限元分析技术作业姓名: 色序号: 是学号: 2一、题目描述及要求钢结构的主梁为高160宽100厚14的方钢管,次梁为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间。
主梁和次梁之间是固接。
试对在垂直于玻璃平面方向的2kPa 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。
二、题目分析根据序号为069,换算得钢结构框架为11列13行。
由于每个格子的大小为1×1(单位米),因此框架的外边框应为11000×13000(单位毫米)。
三、具体操作及分析求解1、准备工作执行Utility Menu:File → Clear&start new 清除当前数据库并开始新的分析,更改文件名和文件标题,如图1.1。
选择GUI filter,执行Main Menu: Preferences → Structural → OK,如图1.2所示图1.1清除当前数据库并开始新的分析图1.2 设置GUI filter2、选择单元类型。
执行Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add→ select→ BEAM188,如图2.1。
之后点击OK(回到Element Types window)→Close图2.1 选择单元3、定义材料属性该钢结构材料为碳素结构钢Q235,其弹性模量为210GPa,执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear→Elastic →Isotropic,此处协调单位制为mmkgs,故EX设为2.1E8, PRXY设置为0.3。
有限元分析大作业报告
有限元分析大作业报告一、引言有限元分析是工程领域中常用的数值模拟方法,通过将连续的物理问题离散为有限个子区域,然后利用数学方法求解,最终得到数值解。
有限元分析的快速发展和广泛应用,为工程领域提供了一种强大的工具。
本报告将介绍在大作业中所进行的有限元分析工作及结果。
二、有限元模型建立本次大作业的研究对象是工程结构的应力分析。
首先,通过对结构进行几何建模,确定了结构的尺寸和形状。
然后,将结构离散为有限个单元,每个单元又可以看作一个小的子区域。
接下来,为了求解结构的应力分布,需要为每个单元确定适当的单元类型和单元属性。
最后,根据结构的边界条件,建立整个有限元模型。
三、材料属性和加载条件在建立有限元模型的过程中,需要为材料和加载条件确定适当的参数。
本次大作业中,通过实验获得了结构材料的弹性模量、泊松比等参数,并将其输入到有限元模型中。
对于加载条件,我们选取了其中一种常见的加载方式,并将其施加到有限元模型中。
四、数值计算和结果分析为了求解结构的应力分布,需要进行数值计算。
在本次大作业中,我们选用了一种常见的有限元求解器进行计算。
通过输入模型的几何形状、材料属性和加载条件,求解器可以根据有限元方法进行计算,并得到结构的应力分布。
最后,我们通过对计算结果进行分析,得出了结论。
五、结果讨论和改进方法根据计算结果,我们可以对结构的应力分布进行分析和讨论。
根据分析结果,我们可以得出结论是否满足设计要求以及结构的强度情况。
同时,根据分析结果,我们还可以提出改进方法,针对结构的特点和问题进行相应的优化设计。
六、结论通过对工程结构进行有限元分析,我们得到了结构的应力分布,并根据分析结果进行了讨论和改进方法的提出。
有限元分析为工程领域提供了一种有效的数值模拟方法,可以帮助工程师进行结构设计和分析工作,提高设计效率和设计质量。
【1】XXX,XXXX。
【2】XXX,XXXX。
以上是本次大作业的有限元分析报告,总结了在建立有限元模型、确定材料属性和加载条件、数值计算和结果分析等方面的工作,并对计算结果进行讨论和改进方法的提出。
有限元分析大作业
有限元大作业一题目要求:图1所示为一悬臂梁,在端部承受载荷,材料弹性模量为E,泊松比为1/3,悬臂梁的厚度(板厚)为t,若该粱被划分为两个单元,单元和节点编号如图所示,试按平面应力问题计算各个节点位移计支反力。
一、单元划分1.计算简图及单元划分如下所示:2.进行节点及单元编号节点i j m单元① 2 3 4② 3 2 13.节点坐标值节点号1 2 3 4坐标值X 2 2 0 0Y 1 0 1 0二、计算单元刚度矩阵1、计算每个单元面积△以及i b ,i c (m j i i ,,=) ①②单元的面积相等,即12121=⨯⨯=∆ 单元①的i b ,i c⎩⎨⎧=--==-=0)(1m j i m j i y x c y y b ⎩⎨⎧=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧-=--=-=-=2)(1j i mj i m y x c y y b 对平面应力问题,其表达式为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r sr s r s r s r s r s r b b uc c cb u b uc b c u c ub c c u b b u Et Krs 21212121)1(42 然后对单元①求解单元刚度子矩阵2==i r 2==i s []⎥⎦⎤⎢⎣⎡=3/1001329)1(22Et K 2==i r 3==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(23Et K2==i r 4==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(24Et K 3==j r 3==j s []⎥⎦⎤⎢⎣⎡=4003/4329)1(33Et K 3==j r 2==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(32Et K 3==j r 4==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(34Et K 4==m r 4==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)1(44Et K 4==m r 2==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(42Et K 4==m r 3==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(43Et K由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)1(Et K将单元①的单元刚度矩阵补零升阶变为单元刚度矩阵,其在总体刚度矩阵中的位置为:节点号→单元②的i b ,i c⎩⎨⎧=--=-=-=0)(1m j im j i y x c y y b ⎩⎨⎧-=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧=--==-=2)(1j i mj i m y x c y y b 然后对单元 求解单元刚度子矩阵:3==i r 3==i s []⎥⎦⎤⎢⎣⎡=3/1001329)2(33Et K 3==i r 2==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(32Et K 3==i r 1==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(31Et K 1 2 3 412[])1(22K[])1(23K[])1(24K3[])1(32K[])1(33K[])1(34K4[])1(42K[])1(43K[])1(44K2==j r 2==j s []⎥⎦⎤⎢⎣⎡=4003/4329)2(22Et K 2==j r 3==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(23Et K 2==j r 1==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(21Et K 1==m r 1==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)2(11Et K 1==m r 3==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(13Et K 1==m r 2==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(12Et K 由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)2(Et K将单元②的单元刚度矩阵补零升阶变为单元贡献矩阵,其在总体刚度矩阵中的位置为:节点号→1 2 3 41 [])2(11K[])2(12K[])2(13K2 [])2(21K[])2(22K[])2(23K3 [])2(31K [])2(32K [])2(33K 4三、计算总体刚度矩阵总体刚度矩阵是由各单元的贡献矩阵迭加而成)2()1(][][][][K K K K e +==∑四、进行节点约束处理根据节点约束情况,在总刚矩阵中可采用划行划列处理约束的方法,由题目易知,节点3和4的已知水平位移和垂直位移都为零,划去其相对应的行和列,则总刚矩阵由8阶变为4阶,矩阵如下:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2/02/03/13043/203/73/23/443/23/133/43/23/43/43/73292211p p v u v u Et329][Et K =1 2 3 413/133/43/43/743/23/23/4----3/13/23/21----000243/23/23/4----3/13003/73/43/403/13/23/21----33/13/23/21----3/43/403/13003/743/23/23/4----40003/13/23/21----43/23/23/4----3/133/43/43/7化简⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------Et p Et p v u v u 3/1603/160130122072412213424472211 五、求解线性方程组方法:采用LU 分解法 1.求解矩阵[]U 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------75/10775/640075/6475/353007/767/27/7502447~7/877/87/7607/87/337/207/767/27/7502447~13012207241221342447⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----353/44900075/6475/353007/767/27/7502447~ 得到的[]U 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=353/44900075/6475/353007/767/27/7502447U 2.求解矩阵[]L 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----13012207241221342447353/44900075/6475/353007/767/27/75024471353/6475/767/20175/27/40017/40001 得到的[]L 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=13012207241221342447L3.进行求解⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=Et p Et p Et p y Et p Et p Ly 79425/850800225/323/1603/1603/160⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡Et p Et p Et p v u v u y v u v u U 79425/850800225/323/160353/44900075/6475/353007/7675/27/750244722112211 解得Et p v /422.82-= Et p u /497.12-= Et p v /028.91-= Et p u /897.11=于是求得各节点的位移为:⎩⎨⎧-==Etp v Etp u /028.9/897.111 ⎩⎨⎧-=-=Etp v Etp u /422.8/497.122 ⎩⎨⎧==033v u ⎩⎨⎧==044v u 六、求解相应的支反力(运用静力学的平衡方程进行求解)3号节点和4号节点的支反力如下图所示:。
(完整word版)有限元分析大作业报告要点
有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。
该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。
二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。
因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。
(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。
(6)模型施加约束:约束采用的是对底面BC 全约束。
大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。
以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。
有限元分析大作业
《有限元分析及应用》大作业——齿根弯曲应力计算报告班级:无可奉告姓名:无可奉告学号:无可奉告指导老师:无可奉告目录目录 (2)1.概述 (3)1.1工程问题描述 (3)1.2问题分析 (3)2.建模过程 (4)2.1几何建模 (4)2.2CAE网格划分与计算 (5)2.3后处理 (8)3.多方案比较与结果分析 (9)3.1多方案比较 (9)3.2结果分析 (11)1.概述1.1工程问题描述我在本次作业中的选题为齿根弯曲应力的计算与校核。
通过对机械设计的学习,我们可以知道,齿轮的失效形式主要是齿面接触疲劳和齿根弯曲断裂,而闭式传动硬齿面齿轮的失效形式以齿根弯曲断裂,这个时候进行齿根弯曲应力的校核才比较有意义,在设计问题的时候应当选取这种类型的算例。
设计计算的另一个主要思路是将有限元计算的结果与传统机械设计的结算结果进行对比,以从多方面验证计算结果的准确性。
综上,我们最终选取了《机械原理》(第三版)P50例3-1中的问题进行校核计算。
已知起重机械用的一对闭式直齿圆柱齿轮,传动,输入转速n1=730r/min,输入功率P1=35kW,每天工作16小时,使用寿命5年,齿轮为非对称布置,轴的刚性较大,原动机为电动机,工作机载荷为中等冲击。
z1=29,z2=129,m=2.5mm,b1=48mm,b2=42mm,大、小齿轮均为20CrMnTi,渗碳淬火,齿面硬度为58~62HRC,齿轮精度为7级,试验算齿轮强度。
齿面为硬齿面,传动方式为闭式传动。
根据设计手册查出的许用接触应力为1363.6Mpa,计算结果为1260Mpa,强度合格。
根据设计手册查出的许用弯曲应力为613.3MPa,计算结果为619Mpa,强度略显不够。
1.2问题分析大小齿轮啮合,小齿轮受载荷情况较为严峻,故分析对象应当为小齿轮。
可以看出,由于齿轮单侧受载荷,传动过程中每个齿上载荷的变化过程是相同的,故问题可被简化为反对称问题,仅需研究单个齿。
有限元分析大作业模板
《有限元分析》大作业基本要求:1.以小组为单位完成有限元分析计算,并将计算结果上交;2.以小组为单位撰写计算分析报告;3.按下列模板格式完成分析报告;4.计算结果要求提交电子版,报告要求提交电子版和纸质版。
《有限元分析》大作业小组成员:Job name:完成日期:一、问题描述(要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。
图应清楚、明晰,且有必要的尺寸数据。
)二、数学模型(要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。
)三、有限元建模3.1 单元选择(要求:给出单元类型,并结合图对单元类型进行必要阐述,包括节点、自由度、实常数等。
)3.2 实常数(要求:给出实常数的具体数值,如无需定义实常数,需明确指出对于本问题选择的单元类型,无需定义实常数。
)3.3 材料模型(要求:指出选择的材料模型,包括必要的参数数据。
)3.4 网格划分方案(要求:指出网格划分方法,网格控制参数,最终生成的单元总数和节点总数,此外还应附上最终划分好的网格截图。
)3.5 载荷及边界条件处理(要求:指出约束条件和载荷条件。
)四、计算结果及结果分析(要求:此处包括位移分析、应力分析、支反力分析等,应附上相应截图及数据,此外还应对正确性进行分析评判。
)五、多方案计算比较(要求:节点规模增减对计算精度的影响分析、单元改变对计算精度的影响分析、不同网格划分方案对计算结果的影响分析等,至少应选择其一进行分析,此外还应附上相应截图及数据。
)附件1:小组成员工作说明(要求:明确说明小组各个成员在本次大作业中所做的工作,工作内容将作为口试提问的依据之一,同时也作为成绩评定的依据之一。
需注意,附件1的撰写应由小组成员共同完成。
)附件2:详细的计算过程说明(按照上机指导的格式撰写)。
有限元大作业讲述
研究生课程考核试卷科目:有限元分析技术教师:金晓清姓名:刘双龙学号:20140713189 专业:机械工程领域类别:(专业)上课时间:2014年10月至2014年12月考生成绩:卷面成绩平时成绩课程综合成绩阅卷评语:阅卷教师(签名)重庆大学研究生院制带孔薄板应力分布及应力集中探究摘要:带孔薄板的应力集中问题是使用工程领域中一个较为常见的问题,也是弹性力学中平面问题的一个经典问题。
本文首先采用弹性力学中平面问题的相关知识进行推导,其中只考虑三个应力分量,而忽略其在厚度方向上的变化,从而得出圆孔附近的应力分布,由此可以看出应力集中最大点及其应力集中系数,从而在理论上验证了本探究的Benchmark(当孔径远小于薄板尺寸时,应力集中系数为k=3)。
接着应用ansys软件进行分析,得到直观的应力分布图,及应力集中最大点及其应力集中系数,随即绘制应力集中系数随圆孔直径变化的折线图,直观的可以看出应力集中系数的变化趋势,再用benchmark进行验证,正好吻合。
一、问题描述:如图(1)所示:在长为300mm、宽为300mm的矩形薄板中央开一个半径为a(a为可变常数)的圆孔,当薄板受横向拉伸的外载荷下,分析薄板的应力分布及应力集中系数。
本探究设定该薄板为各向同性材料,其弹性模量E=200000MPa,泊松比为v=0.3。
(1)二:理论求解应用弹性理论知识求解“孔半径远远小于薄板尺寸”时的应力系数1、将次实际问题问题转化为带孔薄板“等值拉压”和“等向拉伸”两种典型情况解答。
具体如下:(1)等值拉压:如下图所示:(2)等值拉压X轴方向两边均布载荷F=/2qY轴方向两边均布载荷F=/2-q(2)等向拉伸:如下图所示:(3)等向拉伸X轴方向两边均布载荷F=/2qY轴方向两边均布载荷F=/2-q2、具体求解:(1)等值拉压:如图(1)所示单位厚度矩形薄板的等值拉压情况。
在离边界较远处有半径a 的小圆孔。
X 轴方向两边均布载荷F=/2q ,Y 轴方向两边均布载荷F=/2q -,即已知:/2X q σ=,/2y q σ=-,τxy =0 (a )选用极坐标,板的矩形边界用半径为b 的同心圆来代替。
有限元受力分析大作业
1. 定义分析类型
Main Menu >Solution > Analysis Type > New Analysis, 选择Static 2. 定义位移约束
Main Menu >Solution> Define Loads >Apply >Structural>Displacement > On Areas, 在 弹出对话框中选Circle,点击OK后,在弹出的对话框中填入:0
后处理
1. 查看总体变形
Main Menu >General Postproc >Plot Results > Deformed shape
(2)
(2)
四. 加载和求解
1. 定义分析类型
Main Menu >Solution > Analysis Type > New Analysis, 选择Static 2. 定义位移约束
Main Menu >Solution> Define Loads >Apply >Structural>Displacement > On Areas, 在 弹出对话框中选Circle,点击OK后,在弹出的对话框中填入:0
七. 后处理
1. 查看总体变形
Main Menu >General Postproc >Plot Results > Deformed shape
S
作业三:轴承座盈利分析
1、 题目
2、建模
3、ansys前处理
导入
ansys前处理
1、定义单元类型 Main Menu>Proprocessor>Element Type >Add/Edit/Delete 弹出对话框 中后,点“Add” 。双弹出对话框,选“Solid”和“10node 92”,点 “OK”,退回到前一个对话框。
有限元分析题及大作业题答案
有限元分析及应用作业报告试题10一、问题描述确定图示扳手中的应力, E=210Gpa,μ=0.3, 假设厚度为10mm;并讨论采用何种处理可降低最大应力或改善应力分布。
图1为扳手的基本形状和基本尺寸图二、数学建模与分析由图1及问题描述可知,板手的长宽尺寸远远大于厚度,研究结构为一很薄的等厚度薄板,满足平面应力的几何条件;作用于薄板上的载荷平行于板平面且作用在沿厚度方向均匀分布在办手柄的左边缘线,而在两板面上无外力作用,满足平面应力的载荷条件。
故该问题属于平面应力问题,薄板所受的载荷为面载荷,分布情况及方向如图1所示,建立几何模型,并进行求解。
薄板的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3三、有限元建模1、单元选择:选取三节点常应变单元来计算分析薄板扳手的位移和应力。
由于此问题为平面应力问题,:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元。
2、定义材料参数:ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK3、生成几何模型:a.创建关键点点:ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入16个点的坐标→OKb、将这16个关键点有直线依次连起来,成为线性模型4、生成实体模型:ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →连接特征点→生成两个area→Operate→Subtract→拾取整个扳手区域→OK→生成扳手模型5、结点布置及规模6、网格划分方案ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool →Mesh: Areas, Shape: Tri,Free →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window)7、载荷及边界条件处理8、求解控制A、模型施加约束给模型施加x方向约束ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On Lines →拾取模型左部的竖直边→OKB、给模型施加载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →force→on keypoints→拾取上面左端关键点→700N/mm→okC、分析计算:ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK6)结果显示:ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape… →select Def + Undeformed →OK (back to Plot Results window) →Contour Plot →Nodal Solu →select: DOF solution →displacement vector sum,von mises stress→OK四、计算结果及结果分析1、三节点常应变单元1)三节点单元的网格划分图2 常应变三节点单元的网格划分平面图图3 常应变三节点单元的网格划分立体图2)三节点单元的约束受载情况图4 常应变三节点单元的约束受载图3)三节点单元的位移分析图5 常应变三节点单元的位移分布图4)三节点单元的应力分析图6 常应变三节点单元的应力分布图2、六节点三角形单元1)六节点三角形单元网格划分图7 六节点三角形单元网格划分图2)六节点三角形单元约束和受载情况分析图8 六节点三角形单元约束受载图3)六节点三角形单元位移分析图9 六节点三角形单元的变形分布图4) 六节点三角形单元的应力分析图9 六节点三角形单元的应力分布图图10 六节点三角形单元的局部应力分布图根据以上位移和应力图,可以得出常应变三节点单元和六节点三角形单元的最小最大位移应力如表1-1所示。
重庆大学研究生有限元复习题及答案(2022)
重庆大学研究生有限元复习题及答案(2022)1.结点的位置依赖于形态,而并不依赖于载荷的位置(某)2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元。
√3.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(某)4.用有限元法不可以对运动的物体的结构进行静力分析(某)5.一般应力变化大的地方单元尺寸要划的小才好(√)6.四结点四边形等参单元的位移插值函数是坐标某、y的一次函数√7.在三角形单元中其面积坐标的值与三结点三角形单元的结点形函数值相等。
√8.等参单元中Jacobi行列式的值不能等于零。
√9.四边形单元的Jacobi行列式是常数。
某10.等参元是指单元坐标变换和函数插值采用相同的结点和相同的插值函数。
√11.有限元位移模式中,广义坐标的个数应与单元结点自由度数相等√12.为了保证有限单元法解答的收敛性,位移函数应具备的条件是位移函数必须能反映单元的刚体位移和常量应变以及尽可能反映单元间的位移连续性。
√13.在平面三结点三角形单元中,位移、应变和应力具有位移呈线形变化,应力和应变为常量特征。
√1.梁单元和杆单元的区别?(自己分析:自由度不同)杆单元只能承受拉压荷载,梁单元则可以承受拉压弯扭荷载。
具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承担的,通常用于网架、桁架的分析;而梁单元则基本上适用于各种情况(除了楼板之类),且经过适当的处理(如释放自由度、耦合等),梁单元也可以当作杆单元使用。
2.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。
3.有限单元法的收敛性准则?完备性要求,协调性要求。
位移模式要满足以下三个条件包含单元的刚体位移。
当结点位移由体位移引起时,弹性体内不会产生应变。
包含单元的常应变。
与位置坐标无关的应变。
有限元分析与应用大作业
有限元分析及应用大作业课程名称: 有限元分析及应用班级:姓名:试题2:图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为0.3cm;试采用如下方案,对其进行有限元分析,并对结果进行比较。
1)三节点常应变单元;(2个和200个单元)2)四节点矩形单元;(1个和50个单元)3)八节点等参单元。
(1个和20个单元)图2-1 薄板结构及受力图一、建模由图2-1可知,此薄板长和宽分别为2m和1.5m,厚度仅为0.3cm,本题所研究问题为平面应力问题。
经计算,平板右边受均匀载荷P=33.33MPa,而左边被固定,所以要完全约束个方向的自由度,如图2-2所示。
取弹性模量E=2.1×11Pa,泊松比μ=0.3。
P=33.33MPa图2-2 数学模型二、第一问三节点常应变单元(2个和200个单元)三节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。
采用2个单元的网格划分后的结果如图2-3,200个单元的网格划分图如图2-6所示。
约束的施加方式和载荷分布如图2-2中所示。
约束右边线上节点全部自由度。
计算得到的位移云图分别如图2-4、7所示,应力云图如图2-5、8所示。
图2-3 2个三角形单元的网格划分图图2-4 2个三角形单元的位移云图图2-5 2个三角形单元的应力云图图2-6 200个三角形单元的网格划分图图2-7 200个三角形单元的位移云图图2-8 200个三角形单元的应力云图三、第二问四节点矩形单元的计算四节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。
采用1个单元的网格划分后的结果如图2-9,50个单元的网格划分图如图2-12所示。
约束的施加方式和载荷分布如图2-2中所示。
约束右边线上节点全部自由度。
计算得到的位移云图分别如图2-10、11所示,应力云图如图2-13、14所示。
图2-9 1个四边形单元的网格划分图图2-10 1个四边形单元的位移云图图2-11 1个四边形单元的应力云图图2-12 50个四边形单元的网格划分图图2-13 50个四边形单元的位移云图图2-14 50个四边形单元的应力云图四、第三问八节点等参单元的计算四节点单元类型为PLANE82,设置好单元类型后,实常数设置板厚为0.3M。
有限元分析大作业报告要点
有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。
该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。
二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。
因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。
(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB 和lineBC ,设定input NDIV 为15;拾取lineAC ,设定input NDIV 为20,选择网格划分方式为Tri+Mapped ,最后得到600个单元。
(6)模型施加约束:约束采用的是对底面BC 全约束。
大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。
以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图(3)计算数据表单元类型最小位移(mm)最大位移(mm)最小应力(Pa)最大应力(Pa)三节点0 0.0284 5460.7 392364六节点0 0.0292 0.001385 607043 (4)结果分析①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。
有限元分析大作业
机电工程学院有限元分析及应用直齿圆柱齿轮的模态分析学号:S314070064专业:机械工程学生姓名:***任课教师:*** 教授2014年12月一 研究目的齿轮传动是机械工程领域应用最广泛的传动之一,模态分析技术已经成为振动系统分析与设计中广泛使用的重要手段,它是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
齿轮在传递运动和动力时,传动系统通过各种外部激励和内部激励传递给齿轮系统,从而使齿轮在传动过程中产生振动。
齿轮的固有频率是齿轮的动态特性之一,对动载荷的产生与传递以及系统的振动形式有很重要的影响,因此分析齿轮的动态特性,对齿轮的设计和改进以及整个传递系统的动态性能的改进都有非常重要的实际意义。
二 齿轮模态求解分析齿轮副在啮合过程中,因加工误差、齿侧间隙和轮齿受载弹性变形及热变形,会产生啮合合成基节误差,使轮齿啮合时产生转速差异与突变,引起振动,也就是固有频率,从传统的静力学分析,固有频率可有下式近似计算mk f π210= (1) 式中:m 和k 分别为齿轮的等效质量和刚度系数,其大小根据查阅手册选取或据经验而定。
传统的模态分析技术无法有效地处理含有接触关系的非线性系统的装配体模态分析问题,为处理此问题,人们采取了一些线性化的近似处理方法,例如将装配体视为单一实体零件,或在将零件间的联接简化成线性弹簧等。
这种线性化的简化分析方法,难以对含有非线性接触联接的装配体进行准确分析。
而且往往要多次计算,消耗大量人力物力,为此在材料力学基础上产生了弹性力学的有限元法。
其中,齿轮系统的运动微分方程为()t F KX X C X M =++ (2)式中:M,C,K 分别是齿轮系统质量矩阵、阻尼矩阵和刚度矩阵,F 为收到外界激振力向量。
若无外力作用,即F(t)=0,则是系统自由振动方程,刚度矩阵与约束有关,但由于啮合部位的接触面积不断变化,K 也会发生相应变化,用传统的线性分析方法不易分析,有限元采用分段逼近方法,模拟连续体的约束条件是求解问题的关键。
有限元分析技术
研究生课程考核试卷科目:有限元分析技术教师:姓名:学号:专业:类别:上课时间:考生成绩:卷面成绩平时成绩课程综合成绩阅卷评语:阅卷教师(签名)重庆大学研究生院制《有限元分析及应用》课程Case Study计算轴的变形及等效应力1.引言本文利用材料力学的方法和有限元法分别计算轴的变形和等效应力,并计较不同计算方法所得结果的差异。
2.模型及数据设计T1 = 100Nm T2 = -100Nm P = 500N从左到右轴的直径设定大小L1=35mm L2=40mm L3=35mm L4=30mm 3.材料力学的方法计算轴的变形及等效应力由此可得到弯矩图:扭矩图:根据已作出的总弯矩和扭矩图,求出计算等效弯矩Mca,并作出Mca图,Mca的计算公式为:在这里,取α=1。
由此可得等效弯矩图:由此可得应力分布图:由此可得最大应力为38MPa4.有限元的方法计算轴的变形及等效应力(1)六面体单元轴的六面体网格图轴的受力示意图轴的应力图轴的变形图(2)四面体网格轴的六面体网格图轴的受力示意图轴的应力图轴的变形图5.结论利用不同的方法得出了不同的结果类型变形位移(MPa)等效位移(mm)六面体网格47.417 0.00955四面体网格46.318 0.00903《有限元分析及应用》课程Case Study 平面简支梁的三种类型单元分析及单元性能比较1.引言本文在ANSYS平台上,采用有限元方法对平面简支梁,在三种单元(梁单元、三节点三角形单元、四节点四边形单元)下的不同性能。
2.计算模型和要求模型图3.在三种单元下的不同性能(1)四节点四边形单元边界条件图应力图(2)梁单元边界条件应力图(3)三节点三角形单元边界条件图应力图位移图4.结论在相同的的外界条件下使用不同的单元可得出不同的结论单元类型应力(MPa)位移(mm) 四节点四边形单元136.76 0.123 梁单元135 0.122三节点三角形单元123.29 0.163《有限元分析及应用》课程Case Study不同板宽的孔边应力集中问题1.引言本文在ANSYS平台上,采用有限元方法如图所示的平面圆孔的孔边问题,通过数值实验的方法研究不同板宽的孔边应力集中问题,与弹性力学的解析值进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8求解:首先执行MainMenu→Solution→Solve→CurrentLS→OK进行求解。然后分别求出支座反力,最大结点位移及所在位置,最大应力单元,最后进行强度校核。
8.1支座反力求解
执行MainMenu→GeneralPostproc→ListResults→ReactionSolu→All struct forceF→OK
5为实体模型分配单元属性并划分网格
首先,设置单元长度(设置为50mm),然后,对梁进行单元属性分配并划分网格,最后,合并节点。
6定义分析类型并施加约束
有限元分析类型默认为static。对模型施加约束
7施加载荷
对模型施加载荷时,因模型的一个格子内载荷为2KN/ ,可等效为4这个格子的四个支撑点的集中载荷各0.5KN。相邻处有四个格子的支撑点等效集中载荷为2KN,
表1支座反力
NODE
FX
FY
FZ
1
≈0
0
42769
222
0
0
42769
423
0
0
46849
803
0
0
46849
1143
0
0
60382
3061
0
0
60382
8.2最大位移及其所在位置。
首先将结果排序,执行Main Menu→General Postproc→List Results→Sorted Listing→Sort Nodes,然后执行Main Menu→General Postproc→List Results→Nodal Solution,弹出ListNodal Solution,点OK之后弹出结点位移按顺序排列的结果,由输出结果可知,结点最大位移位于1973结点上,且其最大位移值为221.42mm。
3定义梁的截面
定义主梁和次梁的截面,执行Main Menu→Preprocessor→Sections→Beam→Common Sections
4创建实体模型
执行Preprocessor→Modeling→Create→Keypoints→In ActiveCS,首先创建一个关键点,输入坐标为(0,0,0),单击Apply,则第一个关键点创建成功。通过复制关键点操作,形成11行16列的关键点。然后通过关键点创建两条直线,再通过复制直线操作,形成10行15列个格子。
8.3图形显示结果并进行强度校核
对该结构中最危险单元(杆件)进行强度校核
强度校核结果:
材料是碳素结构钢Q235,其屈服极限是235MPa,由图结果可知最大应力为852.68MPa,所以材料强度不符合要求。
应变结果:最大变形为221.418mm,出现在舞台中间位置;
应力结果:最大应力为852.68MPa,出现在舞台前后边中间位置处。
2014有限元分析技术课程大作业
1.根据题目要求选择单元类型为beam-3D-2node-188单元。d/Edit/Delete→Add,选择beam-3D-2node-188。
2定义材料属性
该钢结构材料为碳素结构钢Q235,则将弹性模量设置为200GPa,泊松比设置为0.3。执行MainMenu→Preprocessor→Material Props→Material Models→Structural→Linear→Elastic→Isotropic,在EX框中输入2.05e,在PRXY框中输入0.3。