初中物理竞赛讲义试题(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)
初中物理竞赛的知识点梳理与归纳

初中物理竞赛的知识点梳理与归纳物理竞赛是一项挑战性极高,充满乐趣和智慧的活动。
参加物理竞赛不仅可以提升学生的科学素养和动手能力,还能培养学生的解决问题的能力和团队合作精神。
在参加初中物理竞赛前,我们需要充分了解和掌握涉及的知识点。
本文将梳理和归纳初中物理竞赛常见的知识点,帮助大家更好地备战竞赛。
1. 运动力学运动力学是物理学中非常基础的一个分支,主要研究物体的运动规律和相关的物理量。
在初中物理竞赛中,运动力学通常涉及以下几个方面的内容:1.1 运动的描述与分析:涉及到速度、加速度、位移、时间、路径等物理量的概念和计算方法,例如匀速运动、加速运动、自由落体等。
1.2 牛顿运动定律:涉及到质量、力、加速度的关系,以及力的合成和分解等。
1.3 平抛运动:涉及到水平抛射的物体的运动轨迹、最大高度、飞行时间等。
2. 力学力学是研究物体受力和运动的学科,是物理竞赛中的重点内容。
以下是常见的力学知识点:2.1 牛顿第一定律:也称为惯性定律,描述了物体在受力为零时的状态。
2.2 牛顿第二定律:描述了力与物体质量和加速度之间的关系,通常用公式F=ma表示。
2.3 牛顿第三定律:描述了物体间互相作用的力的特点,即作用力和反作用力大小相等,方向相反。
2.4 弹簧力与弹簧振动:涉及到弹簧的弹力和弹性势能,以及弹簧振动的周期、频率等。
3. 热学热学是研究热量、温度以及热量传递的学科。
以下是与热学相关的知识点:3.1 温度与热量:涉及到温度的计量单位,以及热量的传递方式(传导、对流和辐射)。
3.2 热平衡与热传导:涉及到热平衡和物体间的热传导等概念。
3.3 热膨胀:涉及到物体由于温度变化而发生的体积、长度等变化。
3.4 热量计算:涉及到热量的计算,包括物体的热容量、比热容等。
4. 电学电学是研究电荷、电场、电流以及电磁场的学科。
以下是初中物理竞赛中常见的电学知识点:4.1 静电学:涉及到静电荷、静电场、电势差、电容等概念和计算方法。
初中物理奥林匹克物理竞赛辅导讲义

初中物理奥林匹克物理竞赛辅导讲义
一、导言
初中物理奥林匹克物理竞赛是指一种面向具有活跃思维的初中生的物竞,以提高学生对物理科学的理解和应用能力为目的的一项综合性活动。
本讲义是为了加强学生对初中物理竞赛的认识,提高其竞赛水平而编写的,内容涵盖了竞赛所需要的基本知识点、考点和解题技巧。
希望此讲义能够成为学生备战初中物理奥林匹克物理竞赛的重要资料,帮助大家获得更好的成绩。
二、感性认识
研究初中物理竞赛首先要树立正确的研究态度和方法,不仅仅是追求分数,更要理解物理科学的知识,培养学生的实际动手和思考能力。
研究初中物理竞赛是一项需要长期、系统的任务。
学生要感性认识到,只有通过不断的努力、实践,才能实现自己的物理竞赛梦想。
三、基本知识点
在研究初中物理竞赛时,需要掌握一系列基本的知识点,包括运动、力学、光学、电学等领域的知识,这些知识点不仅是参加物理竞赛的基本保障,而且还是理解物理科学的基础。
四、考点
初中物理竞赛中的考点非常多,涉及的内容也很广泛,包括数据分析、实验设计、物理模型等方面。
因此,学生在备战物理竞赛时,需要逐一梳理考点,全面掌握并练。
五、解题技巧
学生在参加初中物理竞赛时,需要有一些解题技巧。
比如,要注意审题,仔细分析和理解问题,正确使用公式,严格按照题目要求和标准化格式标注答案等。
一些实用的解题技巧可以帮助学生更快、更准确地解答题目。
六、总结
初中物理奥林匹克物理竞赛不仅考察了学生的物理知识,更考察了学生的思考能力、动手能力、创新能力等。
因此,学生在备战初中物理竞赛时,需要具备坚强的毅力,全面提高自己的素质,更好地迎接物理竞赛的挑战。
初中物理竞赛常考知识点的梳理

初中物理竞赛常考知识点的梳理物理是自然科学的一个重要分支,它研究的是自然界中物质、能量、力量之间的相互关系。
在初中物理竞赛中,考察的知识点涉及广泛,既包括基础理论,也包括实际应用。
为了更好地准备竞赛,本文对初中物理竞赛常考的知识点进行梳理和总结。
一、力的基本概念与运动学1. 力的概念和分类力是物体之间相互作用的结果,可以分为接触力和非接触力。
常见的接触力有摩擦力、弹力和支持力等,而非接触力有重力、电磁力等。
2. 公式:力的计算公式是力等于质量乘以加速度,即 F = m × a。
3. 运动图像与速度运动图像包括匀速直线运动、加速直线运动和自由落体运动。
速度是描述物体运动快慢和方向的物理量,用公式 v = s / t 来计算。
4. 速度图像与位移速度图像包括匀速直线运动的速度-时间图和加速直线运动的速度-时间图。
位移是物体运动的起点和终点之间的直线距离,用公式 s = v × t 来计算。
5. 加速度和力的关系加速度是速度变化率的物理量,用公式 a = (v - u) / t 来计算。
力和加速度成正比,即 F ∝ a,这是牛顿第二定律的基本原理。
二、光的传播和反射1. 光的直线传播光在真空中是直线传播的。
光线的方向可以用光的传播路径表示,光线的传播方向和光的传播方向相同。
2. 反射定律光在界面上的入射角等于反射角,即 i = r。
当光从光疏介质射向光密介质时,入射角大于和反射角小于90°;当光从光密介质射向光疏介质时,入射角小于和反射角大于90°。
3. 镜子和镜像平面镜上的每一个点都能够发出光线,并且按照反射定律进行反射。
镜子的位置称为光学中心。
镜面上的光线经过反射形成的像称为镜像。
4. 光的折射光从一种介质进入另一种介质时会发生折射。
光线由光疏介质射向光密介质时向法线偏向,光线由光密介质射向光疏介质时远离法线。
三、热传导和热传递1. 热传导热传导是热从高温物体传到低温物体的过程。
最新人教版初中物理知识竞赛辅导专题讲座知识点及专练

最新人教版初中物理知识竞赛辅导专题讲座知识点及专练初中物理知识竞赛辅导专题讲座第一讲力学(一) (教师使用)一、知识提要知识点分项细目测量1.长度的测量;正确使用刻度尺2.测量数据的记录和处理3.测量的特殊方法:(1)累积法;(2)替换法;(3)辅助工具法运动和力1.变速直线运动:理解的含义2.匀速直线运动3.按性质分类的三种力:重力、弹力、摩擦力4.二力的合成5.平衡力和相互作用力6.力和运动的关系密度1.密度的测量2.的应用压力与压强液体压强,连通器大气压强二、例题与练习[例1]小明和爸爸到市场上选购了一批(成卷的)电线,为方便搬运,不愿将每卷电线都散开,又担心电线的实际长度与商品说明书上的标称长度不符。
小明看到柜台上有电子秤和米尺,便向营业员要来了一段做样品的同品牌的电线,帮助爸爸顺利地测出了每卷电线的实际长度。
你知道小明是怎样做的吗?分析与解:(1)用米尺测量样品电线的长度L0;1/ 49(2)用电子秤测量样品电线的质量m;(3)用电子秤测量一卷电线的质量M;(4)算出一卷电线的实际长度:[练习1]现有一个内径为2cm的圆环和一支直径为0.6cm的圆柱形铅笔,仅用上述器材,你如何较精确地测出某足够长且厚薄均匀纸带的厚度?方法:;纸带厚度表达式为:。
分析与解:对一些形状不规则或者太小、太细、太薄的物体,直接测量有困难,只好寻求一些特殊的测量方法。
“累积法” 比效适合采用对“细、薄”的物体直径或厚度的测量运用方面。
将纸带紧密地环绕在铅笔上,直至恰好能套进圆环内,记下纸带环绕的圈数n。
纸带厚度的表达式:(2-0.6)/2ncm,或0.7/ncm [例2]现有一个盛有大半瓶饮料的平底可乐瓶(如图)给你一把刻度尺,一根细线,试测出这个可乐瓶的容积。
写出操作步骤及计算容积的数学表达式。
分析与解:(1)用刻度尺测液面的高h1;(2)用线绕主体部分一周,用刻度尺量出线长L,得瓶子主体部分的横截面积;2/ 49(3)算出装有饮料部分的体积;(4)将瓶盖旋紧后使瓶子倒置,重新测量上面空余部分的高h2,对应的体积;(5)可乐瓶容积的表达式:。
初三物理竞赛知识点

初三物理竞赛知识点初三物理竞赛通常涵盖了初中物理的多个重要知识点,以下是一些关键的知识点:1. 力学基础:- 力的概念和分类(重力、摩擦力、弹力等)- 力的合成与分解- 牛顿运动定律(第一、二、三定律)- 动量守恒定律- 功和能量(动能、势能、机械能守恒)2. 运动学:- 描述运动的基本概念(位移、速度、加速度)- 匀速直线运动和匀变速直线运动的公式- 曲线运动(如平抛运动)3. 压强和流体力学:- 压强的定义和计算- 液体压强的分布规律- 帕斯卡定律- 流体的连续性方程和伯努利方程4. 热学:- 温度和热量的概念- 热传递的三种方式(传导、对流、辐射)- 理想气体状态方程- 热机的工作原理和效率5. 光学:- 光的直线传播、反射和折射- 光的色散现象- 透镜成像规律- 光的波动性和干涉、衍射现象6. 电学基础:- 电荷、电流和电压的概念- 欧姆定律- 电路的串并联- 电功和电功率- 电磁感应现象7. 原子物理和核物理:- 原子结构(原子核和电子云)- 放射性衰变- 核裂变和核聚变8. 物理实验:- 基本的物理测量技术- 误差分析- 物理实验设计和数据处理9. 物理思维和解题技巧:- 物理问题的建模- 物理图像的绘制- 逻辑推理和数学运算物理竞赛不仅考察学生对物理知识的掌握程度,还考察他们的逻辑思维能力、数学运算能力以及解决实际问题的能力。
因此,除了掌握上述知识点,学生还需要通过大量的练习来提高解题速度和准确率。
同时,了解竞赛的题型和解题策略也是非常重要的。
物理竞赛知识点总结初中

物理竞赛知识点总结初中物理竞赛是一项旨在激发学生对物理学的兴趣,提高他们的物理知识和解题能力的竞赛活动。
对于初中生来说,参与物理竞赛不仅能够加深对物理学科的理解,还能培养科学探究和解决问题的能力。
本文将总结初中物理竞赛的主要知识点,帮助学生更好地准备竞赛。
# 力学1. 基本概念:理解质量、密度、体积的概念及其相互关系。
2. 运动的描述:掌握速度、加速度的定义和计算,了解匀速直线运动和匀加速直线运动的特点。
3. 力的作用:熟悉常见的力如重力、摩擦力、弹力、浮力等,理解力的合成与分解。
4. 牛顿运动定律:掌握牛顿的三个运动定律,并能够应用它们解决简单的物理问题。
5. 功、能量和功率:理解功、能量的概念,掌握它们的计算公式,了解功率的定义。
6. 简单机械:了解杠杆、滑轮、斜面等简单机械的工作原理和效率计算。
# 热学1. 温度和热量:理解温度的概念,掌握热量的计算方法。
2. 热传递:熟悉热传导、热对流和热辐射的基本原理。
3. 热膨胀:了解物质在受热时膨胀的现象及其应用。
4. 理想气体定律:掌握理想气体状态方程,并能够应用它解决相关问题。
# 光学1. 光的反射:理解光的反射定律,熟悉平面镜和曲面镜的成像原理。
2. 光的折射:掌握光的折射定律,了解透镜的成像原理和应用。
3. 光的色散:了解光通过棱镜发生色散的现象。
4. 光的干涉和衍射:初步了解光的干涉和衍射现象。
# 电学1. 静电学:理解电荷、库仑定律、电场的概念。
2. 电路基础:掌握欧姆定律、串联和并联电路的特点及计算方法。
3. 电能和电功率:理解电能、电功率的概念,掌握它们的计算公式。
4. 电磁感应:了解法拉第电磁感应定律和楞次定律。
# 现代物理1. 原子结构:了解原子的基本结构,包括电子、质子和中子。
2. 核能:初步认识核裂变和核聚变,了解核能的基本原理。
3. 相对论:简单介绍爱因斯坦的狭义相对论,包括时间膨胀和长度收缩的概念。
# 实验技能1. 基本仪器的使用:学会使用天平、秒表、温度计、电压表、电流表等基本实验仪器。
初中物理竞赛知识点归纳

初中物理竞赛知识点归纳物理竞赛是测试学生对物理学知识的理解和应用能力的一种考试形式。
参加物理竞赛需要对各种物理学知识点进行深入了解和掌握,并能够在竞赛中准确应用。
本文将对初中物理竞赛中常见的知识点进行归纳,希望能对参加物理竞赛的学生提供一些帮助。
一、力学1. 运动与力- 运动的三个基本规律:牛顿第一定律、牛顿第二定律、牛顿第三定律;- 力的合成与分解;- 静摩擦力和动摩擦力;- 斜面上的物体。
2. 重力与力的计算- 万有引力定律;- 平衡条件;- 重力的计算方法。
3. 动能、势能和机械能- 动能和势能的概念;- 动能定理;- 弹簧势能;- 机械能守恒定律。
4. 运动学- 位移、速度和加速度的概念和计算方法;- 运动图像的绘制;- 近似计算。
二、光学1. 光的传播和光的本质- 光的传播的直线传播和反射;- 光的本质是电磁波。
2. 光的折射与光的速度- 折射定律;- 光在不同介质中的速度。
3. 镜子和透镜- 平面镜的成像规律;- 凸透镜和凹透镜的成像规律。
4. 光的色散和光的干涉- 小孔衍射;- 干涉条纹及其原理。
三、电学1. 电学基本概念- 电荷、电流、电压、电阻、电功率和电能的基本概念;- 串联和并联电路。
2. 电路中的电流和电压- 欧姆定律;- 电路中电流和电压的计算方法。
3. 电能与电功- 电功的计算;- 电能和电功率的关系。
4. 电阻和电阻的计算- 电阻的概念和计算方法;- 串联和并联电阻的计算方法。
四、其他物理知识点1. 牛顿运动定律在竞赛中的应用- 牛顿第一定律:保持匀速直线运动的物体;- 牛顿第二定律:力和物体质量的关系;- 牛顿第三定律:作用力与反作用力。
2. 热学知识点- 温度和热量的概念;- 热传导;- 热膨胀。
3. 声学知识点- 声音的传播;- 声音的特性;- 声音的干涉和衍射。
以上仅为初中物理竞赛中常见的知识点的一个概述,学生在备战物理竞赛时还需要对每一个知识点进行深入的理解和实际应用训练。
物理竞赛辅导讲义

物理竞赛辅导讲义第一部分:直线运动提高题1.汽车甲沿着平直的公路以速度v 0做匀速直线运动.当它路过某处的同时,该处有一辆汽车乙开始做初速度为零的匀加速运动去追赶甲车.根据上述的已知条件:A .可求出乙车追上甲车时乙车的速度B .可求出乙车追上甲车时乙车所走的路程C .可求出乙车从开始起动到追上甲车时所用的时间D .不能求出上述三者中任何一个2.火车以54h km /的速度沿平直轨道运行,进站刹车时的加速度是2/3.0s m ,在车站停1min ,启动后的加速度是2/5.0s m 。
求火车由于暂停而延误的时间。
3.客车以速率1v 前进,司机发现同一轨道正前方有一列货车以速率2v 同向行驶,2v <1v ,货车车尾距客车距离为0s ,司机立即刹车,使客车以加速度大小为a 作匀减速运动,而货车仍保持原速度前进,问:①、客车加速度至少多大才能避免相撞?②、若0s =200m ,1v =30m/s,2v =10m/s,客车加速度大小a =1 m/s 2,两车是否相撞?③、若0s =200m ,1v =30m/s,2v =10m/s,客车加速度大小a =0.2m/s 2,要求两车不相撞,则2v 应为多大?4.一个人坐在车内观察雨点的运动,假设雨点相对地面以速率v 竖直匀速下落,试写出下列情况下雨点的随时间变化而运动的运动方程和轨迹方程:①、车静止不动;②、车沿水平方向速率u 匀速运动;③、车沿水平方向作初速度为零的匀加速直线运动,加速度大小为a ;④、车以线速度大小v 做匀速圆周运动5.一只兔子向着相距为S 的大白菜走去。
若它每秒所走的距离,总是从嘴到白菜剩余距离的一半。
试分析兔子是否可以吃到大白菜?兔子平均速度的极限值是多少?6.如图所示,一个质点沿不同的路径从A 到达B :沿弦AB ,沿圆弧ACB ,沿圆弧ADB ,且经历的时间相等,则三种情况下:A 、平均速度相同B 、平均速率不等C 、沿弦AB 运动平均速率最小D 、平均加速度相同 7.一辆汽车从静止开始作匀加速直线运动,在第9妙内的位移为8.5米,求第9妙初和第9妙末的速度多大?8.一个小球从45米高处自由下落,经过一烟囱历时1妙,求烟囱的高度?(忽略空气阻力)9.一个小球从屋顶自由下落,在s t 25.0内通过高度为2m 的窗口,求窗台到屋顶的高度?(忽略空气阻力) 10.如图所示,一辆长为L 的小车沿倾角为 的光滑斜面下滑,加速度大小为 sin g ,连续经过两个小光电管A 和B ,所经历的时间分别是BAt t ,;求小车前端在两光电管之间运动的时间。
初中物理竞赛知识点

初中物理竞赛知识点初中物理竞赛知识点概述一、力学1. 基本概念- 质量和重量- 力的概念与分类(重力、摩擦力、弹力、浮力等) - 力的合成与分解- 牛顿运动定律- 动量与冲量- 功、能量和功率2. 运动学- 描述运动的基本概念(位移、速度、加速度)- 直线运动和曲线运动- 运动图象的分析- 圆周运动- 相对运动3. 静力学- 力的平衡- 杠杆原理- 浮沉条件- 简单机械(滑轮、斜面等)4. 动力学- 动能、势能和机械能守恒- 碰撞问题(弹性碰撞和非弹性碰撞)- 圆周运动的动力学分析二、热学1. 温度和热量- 温度的概念- 热量的传递方式(导热、对流、辐射) - 热容量和比热容2. 热力学定律- 热力学第一定律(能量守恒)- 热力学第二定律(熵的概念)3. 相变- 熔化和凝固- 蒸发和凝结- 气压和沸点的关系4. 理想气体定律- 压强、体积、温度和摩尔量的关系- 理想气体状态方程三、光学1. 光的反射- 平面镜反射- 曲面镜(凸面镜和凹面镜)的成像2. 光的折射- 折射定律- 透镜的成像(凸透镜和凹透镜)3. 光的干涉和衍射- 干涉现象- 单缝和双缝衍射4. 光的偏振- 偏振光的产生和检验四、电学1. 静电学- 电荷的性质- 库仑定律- 电场和电场线- 电势能和电势2. 电流和电路- 电流的基本概念- 欧姆定律- 串联和并联电路- 电功和电功率3. 磁场- 磁场的概念- 安培力和洛伦兹力 - 电磁感应- 法拉第电磁感应定律4. 电磁波- 电磁波的基本概念 - 电磁波的传播- 电磁波的应用五、现代物理1. 原子物理- 原子结构- 光谱线- 核能和核反应2. 相对论- 相对性原理- 时间膨胀和长度收缩- 质能等价3. 量子物理- 光的波粒二象性- 量子态和能级- 不确定性原理六、实验技能1. 实验设计- 控制变量法- 实验误差分析- 数据处理和图表制作2. 常用仪器使用- 测量工具(刻度尺、天平、秒表等)- 电学仪器(电压表、电流表、欧姆表等)- 光学仪器(分光计、显微镜等)3. 安全操作- 实验室安全规则- 紧急情况处理请注意,以上内容是一个初中物理竞赛知识点的概述,实际竞赛可能会有更深入和具体的题目。
初中物理竞赛知识点总结和解题思路

初中物理竞赛知识点总结和解题思路物理竞赛是检验学生对物理知识掌握程度和解题能力的一种竞赛形式。
为了在物理竞赛中取得好成绩,学生需要掌握一定的物理知识点,并且具备解题思路。
本文将从物理竞赛的知识点总结和解题思路两个方面进行讨论和分析。
一、物理竞赛知识点总结1. 力和压强:学生需要掌握力的概念及其计算公式,掌握常见力的性质和作用。
此外,学生还需了解压强的定义和计算方法,能够运用压强的概念解决实际问题。
2. 运动和速度:学生需要了解运动的基本概念,包括位移、速度和加速度,并能够应用速度公式解决简单问题。
此外,还需要了解常见的运动曲线,如匀速直线运动和匀加速直线运动。
3. 物质的三态和密度:学生需要掌握物质的三态变化规律,能够理解固态、液态和气态之间的相互转化。
同时,还需要理解密度的概念及其计算方法,能够应用密度解决一些实际问题。
4. 光的反射和折射:学生需要了解光的传播规律,能够理解反射定律和折射定律,并能够应用这些定律解决一些光的传播问题。
5. 电流和电阻:学生需要了解电流和电阻的定义及其计算方法,能够应用欧姆定律解决简单电路中的问题。
此外,还需要了解电阻和导体的关系,以及电阻和电流的关系。
6. 磁场和电磁感应:学生需要了解磁场的概念和特性,以及通过电流产生磁场的原理。
同时,还需要了解电磁感应的原理和应用,包括法拉第电磁感应定律和基本的电磁感应现象。
7.波动和声音:学生需要了解波动的基本特性,包括波长、频率和波速,并能够应用这些概念解决一些波动问题。
此外,还需要了解声音的产生和传播规律,包括声音的音调和音量。
8. 能量转化和守恒:学生需要了解能量的转化和守恒定律,包括机械能转化、热能转化和电能转化等方面。
二、解题思路1. 熟悉考试要求:在参加物理竞赛前,学生应该熟悉考试的要求和试题的类型。
了解考试的分值、难度和时间限制,有针对性地进行备考。
2. 掌握解题方法:学生需要掌握一些解题方法,如分析、归纳、推理、比较、类比等。
初中应用物理知识竞赛培训资料(定稿)

应用物理知识竞赛培训资料初中应用物理知识竞赛专题一:压强与浮力【重点知识解读】1固体压强公式:p=F/S,液体压强公式:P=Pgh求固体之间的压力与压强时,先求压力后求压强。
而液体内部则先求压强后求压力。
2液体内部朝各个方向都有压强,在同一深度,各方向压强大小相等。
液体的压强只跟液体密度P和距液面的深度h有关,与液体重力、体积及容器形状、底面积等无关。
Pa=760mmhHgo活塞式抽水机和离心式抽水机都是利用大气压3大气压强是由于气体份子对器壁的碰撞而产生。
标准大气压数值p=1.013X105工作的。
大气压随高度的增加而减小。
在海拔3000m以内,大约每升高10m,大气压减小100Pao4在流体中,流速越大的位置,压强越小。
飞机能够升空是由于机翼上下表面空气流速不同产生了压强差。
5帕期卡定律:加在密闭液体上的压强,能够大小不变地被液体向各个方向传递。
液压机是帕斯卡定律的重要应用之一公式F大/S大==F 小/S小6气体的压强跟体积的关系:温度一定时,一定质量的气体,压强越大,体积越小;压强越小,体积越大。
7浮力是浸在流体中的物体受到流体向上托的力。
浮力的方向总是竖直向上的。
阿基米德原理:浸入液体(气体)中的物体受到向上浮力的大小等于它排开液体(气体)的重力,即F=PgV址。
排。
8密度计是用来测量液体密度的仪器,它根据飘荡时的受力平衡及阿基米德原理而制成的。
液体密度较大时,密度计露出部份多,反之就少。
密度计上的刻度数是上面较小下面较大,密度计上的刻度数值表示待测液体密度是水密度的倍数。
【经典竞赛题分析】例1 (2022全国初中应用物理知识竞赛试题)小明的父亲为了解决全家人夏季淋浴问题,想自己动手:作一个太阳淋浴器,他买来了一个圆柱形金属桶,一个压力传感开关,两个圆柱体以及细线若干。
初步设计如图13所示,其中A、B两个圆柱体通过细绳『与压力传感开关相连。
己知:圆柱形金属桶的底面积S =0.5 m2,高h =50 c m;压力传感开关的作用是当它受到竖直向下的拉力达到10 N时闭合,通过控l 1制水泵从进水口向桶内注水,当拉力等于4N时断开,水泵住手向桶内注水:两个圆柱体的底面积S =40 cm2,高h =12 cm,每一个圆柱体2 2重G=6N。
八年级物理竞赛辅导[人教版]
![八年级物理竞赛辅导[人教版]](https://img.taocdn.com/s3/m/8453ebbc1a37f111f1855b40.png)
物理竞赛辅导讲座(物理光学)(Ⅰ)基础知识一、光的本性的认识过程简介微粒说(牛顿²英国)→电磁说(麦克斯韦²英国)→波动说(惠更斯²荷兰)光子说(爱因斯坦²美籍德国人)→波粒二象性(德布罗意²法国)二、光的波动性1、光的速度v,波长λ,频率υ和折射率n1)光的速度,真空中的光速为C=3.0³108m/s在折射率为n的介质中的光速为v=C/n2)光的频率υ,波长λ,波速v三者之间的关系为v=λ²υ2、惠更斯——菲涅耳原理1)惠更斯——菲涅耳原理:由波源发出的波,在同一时刻t时,波所达到的各点的集合所构成的面,叫做此时刻的波阵面(简称波面,又称波前),在同一波阵面上各点的相位都相同,且波阵面上各点都可看作为新的波源(次级波源,所以这些波源都是相干波源)向外发射子波,子波相遇时相互叠加历时△t后,这些子波的包络面就是t+△t时刻的新的波阵面,且波的传播方向与波阵面垂直。
(如图1所示) 2)惠——菲原理是波动光学的理论基础,光的干涉与衍射现象是光的波动性的体现。
3)平面波、球面波及柱向波(1)平面波:波阵面是一个平面的波,其传播方向与平面垂直。
(2)球面波:波阵面是一个球面的波,其传播方向为沿球面的半径方向。
(3)柱面波:波阵面是一个柱面的波。
3、光程1)光程:光在介质中传播的几何路程r与介质折射率n的乘积n²r。
2)引入光程这个概念后,就可以将其在介质中走过的几何路程换算为光在真空中(同一时间间隔内)的等价路程,从而可以对光在不同介质中所走的路程折算为真空中的光程进行比较。
例,在t时间内,光在折射率为n的介质中走过的几何路程为r=mλ(λ为光在该介质中的波长,并设光在真空中的波长为λ0,且n=λ0/λ,则在时间t内光在真空中的几何路程r0=m²λ0=m²nλ=n²mλ=n²r。
3)由于光在两介质界面上发生反射时,可能会出现“半波损失”,即反射光与入射光相位可能相差π,计算光程时应增加(或减小)半个波长,即可能要加上一个附加光程差δ’=2λ=n20λ,而是否出现半波损失,需不需要增加此项,则由界面两侧的介质的折射率决定。
(完整版)初中物理竞赛资料(系统整理)

(完整版)初中物理竞赛资料(系统整理)竞赛辅导第一讲、《测量》因素 1012 109 106 103 102 101 10-1 10-2 10-3 10-6 10-9 10-12 名称太吉兆千百十分厘毫微纳皮符号 TGMkhdadcmμnp2、测量的准确程度(准确度)由测量工具的最小分度值决定。
3、测量工具的选择由测量需要达到的要求决定。
4、测量误差是不能消除的。
测量误差分为绝对误差和相对误差。
绝对误差=测量值—真实值;相对误差=测量值真实值—测量值×100%。
根据误差产生的原因可分为系统误差和偶然误差。
减小误差的方法一般有:①选用较精密的测量工具;②改进测量原理和方法;③多次测量取平均值。
5、初中物理中应学会的测量:长度、时间、体积、面积、质量、密度、力、压强、做功、功率、机械效率、电流、电压、电阻、电功率、家庭电路的用电量、温度、物质的比热容等。
6、一些特殊的测量方法:如“累积法”、“化曲为直法”、“等量替代法”等等。
例题:1、某同学测定出物体的长度的三组数据分别是2.001dm 、2.004dm 、2.003dm 。
则该物体的长度应记为dm 第二次测量中的正确值和估计值分别是、;本次测量的有效数字是位;使用刻度尺的最小刻度是。
2、常见啤酒瓶的容积约为()A 、640cm 3B 、64cm 3C 、6.4dm 3D 、64dm 33、给你一个小钢珠、一把直尺、一块三角板,你如何较准确地测出小钢珠的直径?4、如图,截取一段长为L 0的细管,找一直径为D 的钢珠,吧钢珠放在细管上方,如题图示,再测出管底到球顶部的高度L ,则细管的内径为。
5、有一条河道宽8m ,其横截面积如图所示,要计算小河的容积,需要测量出它的横截面积。
在老师的指导下,同学们每隔1m 测出河道的深度(尺寸见图所示,单位为m )。
试粗略计算小河的横截面积。
第二讲、《机械运动》1、整个自然界中,运动是绝对的,静止时相对的。
初中物理竞赛知识点汇总

初中物理竞赛知识点汇总物理竞赛作为一项重要的学科竞赛,旨在提高学生对物理学的理解和运用能力。
在初中阶段,学生需要掌握一系列的物理知识点,以便在竞赛中取得好成绩。
本文将对初中物理竞赛中常见的知识点进行汇总,供同学们参考。
一、力和运动1. 速度、加速度和位移的计算:速度等于位移除以时间,加速度等于速度变化量除以时间。
2. 简单机械:如杠杆原理、滑轮原理、势能和动能的转化等。
3. 牛顿三定律:物体静止或匀速直线运动时,受到的合力为零;物体匀加速直线运动时,合外力等于物体质量与加速度的乘积;物体受到的力与它对物体施加的力大小相等、方向相反。
4. 弹力和弹簧常数的计算:固定一个劲度系数,改变另一个劲度系数为何。
二、光学1. 反射和折射:光线从一种介质传播到另一种介质时,发生折射现象。
2. 球面镜和透镜:焦距、放大率和物像距离的计算。
3. 光线追迹:追踪光线传播的路径、方向和干涉等。
4. 颜色与光:颜色是因为物体对光的吸收、反射和透射。
三、电学1. 电路的基本概念:串联和并联电路的特性。
2. 电阻和电流:欧姆定律(电流等于电压除以电阻)。
3. 电压、电流、电阻和功率的计算:电流等于电压除以电阻,功率等于电压乘以电流。
4. 高级电学:伏安特性和二极管。
四、热学1. 温度和热量:物体的温度是物体内部分子的平均动能,热量是物体间传递的能量。
2. 傅里叶定律和热传导:热的传导方式和导热率的计算。
3. 热膨胀:不同物质受热后的膨胀现象和计算(线热膨胀、体热膨胀)。
4. 热力学循环:如卡诺循环、热机效率、热力学第一定律等。
五、海伦公式和向量1. 海伦公式:计算任意形状三角形的面积。
2. 向量:向量的表示方法、相等、加法、减法和数量积。
3. 斜抛运动:斜抛运动的理论和计算。
4. 物体平衡:如何通过力的合成等理论解决物体平衡问题。
六、其他知识点1. 核物理:原子结构、同位素和放射性等。
2. 波动:波的分类、波动方程和速度等。
全国初中物理竞赛精选题及答案word版本

全国初中物理竞赛精选题及答案全国初中物理竞赛精选题及答案初中物理知识要点一览与初中物理基本概念概要(一)初中物理知识要点一览速度:V(m/S)v= S:路程/t:时间重力G (N)G=mg(m:质量;g:9.8N或者10N)密度:ρ(kg/m3)ρ=m(m:质量;V:体积)合力:F合(N)方向相同:F合=F1+F2 ;方向相反:F合=F1—F2 方向相反时,F1>F2浮力:F浮(N) F浮=G物—G视(G视:物体在液体的重力)浮力:F浮(N) F浮=G物(此公式只适用物体漂浮或悬浮)浮力:F浮(N) F浮=G排=m排g=ρ液gV排(G排:排开液体的重力;m排:排开液体的质量;ρ液:液体的密度;V 排:排开液体的体积(即浸入液体中的体积) )杠杆的平衡条件:F1L1= F2L2 (F1:动力;L1:动力臂;F2:阻力;L2:阻力臂)定滑轮:F=G物S=h (F:绳子自由端受到的拉力;G物:物体的重力;S:绳子自由端移动的距离;h:物体升高的距离)动滑轮:F= (G物+G轮)/2 S=2 h (G物:物体的重力;G轮:动滑轮的重力)滑轮组:F= (G物+G轮)S=n h (n:通过动滑轮绳子的段数)机械功:W (J)W=Fs (F:力;s:在力的方向上移动的距离)有用功:W有=G物h总功:W总W总=Fs 适用滑轮组竖直放置时机械效率: η=W有/W总×100%功率:P (w)P= w/t (W:功; t:时间)压强p (Pa)P= F/s (F:压力; S:受力面积)液体压强:p (Pa)P=ρgh(ρ:液体的密度;h:深度【从液面到所求点的竖直距离】)热量:Q (J)Q=cm△t(c:物质的比热容;m:质量;△t:温度的变化值)燃料燃烧放出的热量:Q(J)Q=mq (m:质量;q:热值)串联电路电流I(A)I=I1=I2=……电流处处相等串联电路电压U(V)U=U1+U2+……串联电路起分压作用串联电路电阻R(Ω)R=R1+R2+……并联电路电流I(A)I=I1+I2+……干路电流等于各支路电流之和(分流)并联电路电压U(V)U=U1=U2=……并联电路电阻R(Ω)1/R =1/R1 +1/R2 +……欧姆定律:I= U/I电路中的电流与电压成正比,与电阻成反比电流定义式I= Q/t (Q:电荷量(库仑);t:时间(S))电功:W (J)W=UIt=Pt (U:电压;I:电流;t:时间;P:电功率)电功率:P=UI=I2R=U2/R (U:电压;I:电流;R:电阻)电磁波波速与波长、频率的关系:C=λν(C:波速(电磁波的波速是不变的,等于3×108m/s);λ:波长;ν:频率)(二)初中物理基本概念概要一、测量⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位.⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表.1时=3600秒,1秒=1000毫秒.⒊质量m:物体中所含物质的多少叫质量.主单位:千克;测量工具:秤;实验室用托盘天平.二、机械运动⒈机械运动:物体位置发生变化的运动.参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物.⒉匀速直线运动:①比较运动快慢的两种方法:a 比较在相等时间里通过的路程.b 比较通过相等路程所需的时间.②公式:1米/秒=3.6千米/时.三、力⒈力F:力是物体对物体的作用.物体间力的作用总是相互的.力的单位:牛顿(N).测量力的仪器:测力器;实验室使用弹簧秤. 力的作用效果:使物体发生形变或使物体的运动状态发生改变.物体运动状态改变是指物体的速度大小或运动方向改变.⒉力的三要素:力的大小、方向、作用点叫做力的三要素.力的图示,要作标度;力的示意图,不作标度.⒊重力G:由于地球吸引而使物体受到的力.方向:竖直向下.重力和质量关系:G=mg m=G/gg=9.8牛/千克.读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛.重心:重力的作用点叫做物体的重心.规则物体的重心在物体的几何中心.⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上.物体在二力平衡下,可以静止,也可以作匀速直线运动.物体的平衡状态是指物体处于静止或匀速直线运动状态.处于平衡状态的物体所受外力的合力为零.⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;方向相反:合力F=F1-F2,合力方向与大的力方向相同.⒍相同条件下,滚动摩擦力比滑动摩擦力小得多.滑动摩擦力与正压力,接触面材料性质和粗糙程度有关.【滑动摩擦、滚动摩擦、静摩擦】7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态. 惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性.四、密度⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性.公式:m=ρV国际单位:千克/米3 ,常用单位:克/厘米3, 关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;读法:103千克每立方米,表示1立方米水的质量为103千克.⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积.面积单位换算:1厘米2=1×10-4米2,1毫米2=1×10-6米2.五、压强⒈压强P:物体单位面积上受到的压力叫做压强.压力F:垂直作用在物体表面上的力,单位:牛(N).压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关. 压强单位:牛/米2;专门名称:帕斯卡(Pa)公式:F=PS 【S:受力面积,两物体接触的公共部分;单位:米2.】改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强.⒉液体内部压强:【测量液体内部压强:使用液体压强计(U型管压强计).】产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强.规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大. [深度h,液面到液体某点的竖直高度.]公式:P=ρgh h:单位:米;ρ:千克/米3;g=9.8牛/千克.⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家).托里拆利管倾斜后,水银柱高度不变,长度变长.1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高测定大气压的仪器:气压计(水银气压计、盒式气压计).大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低.六、浮力1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力.方向:竖直向上;原因:液体对物体的上、下压力差.2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力.即F浮=G液排=ρ液gV排. (V排表示物体排开液体的体积)3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差4.当物体漂浮时:F浮=G物且ρ物G物且ρ物2f f。
初中物理竞赛讲义试题(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)

初中物理竞赛讲义重难点突破知识点梳理及重点题型举一反三巩固练习相对论初步知识相对论是本世纪物理学的最伟大的成就之一,它标志着物理学的重大发展,使一些物理学的基本概念发生了深刻的变革。
狭义相对论提出了新的时空观,建立了高速运动物体的力学规律,揭露了质量和能量的内在联系,构成了近代物理学的两大支柱之一。
§ 1 狭义相对论基本原理1、伽利略相对性原理1632年,伽利略发表了《关于两种世界体系的对话》一书,作出了如下概述:相对任何惯性系,力学规律都具有相同的形式,换言之,在描述力学的规律上,一切惯性系都是等价的。
这一原理称为伽利略相对性原理,或经典力学的相对性系原理。
其中“惯性系”是指凡是牛顿运动定律成立的参照系。
2、狭义相对论的基本原理19世纪中叶,麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁理论,又称麦克斯韦电磁场方程组。
麦克斯韦电磁理论不但能够解释当时已知的电磁现象,而且预言了电磁波的存在,确认光是波长较短的电磁波,电磁波在真空中的传播速度为一常数,,并很快为实验所证实。
从麦氏方程组中解出的光在真空中的传播速度与光源的速度无关。
如果光波也和声波一样,是靠一种媒质(以太)传播的,那么光速相对于绝对静止的以太就应该是不变的。
科学家们为了寻找以太做了大量的实验,其中以美国物理学家迈克耳孙和莫雷实验最为著名。
这个实验不但没能证明以太的存在,相反却宣判了以太的死刑,证明光速相对于地球是各向同性的。
但是这却与经典的运动学理论相矛盾。
爱因斯坦分析了物理学的发展,特别是电磁理论,摆脱了绝对时空观的束缚,科学地提出了两条假设,作为狭义相对论的两条基本原理:(1)狭义相对论的相对性原理在所有的惯性系中,物理定律都具有相同的表达形式。
这条原理是力学相对性原理的推广,它不仅适用于力学定律,乃至适合电磁学,光学等所有物理定律。
狭义相对论的相对性原理表明物理学定律与惯性参照系的选择无关,或者说一切惯性系都是等价的,人们不论在哪个惯性系中做实验,都不能确定该惯性系是静止的,还是在作匀速直线运动。
全国初中物理竞赛精选题及答案(后附初中物理知识要点一览与基本概念概要)

初中物理知识要点一览与初中物理基本概念概要(一)初中物理知识要点一览速度:V(m/S)v= S:路程/t:时间重力G (N)G=mg(m:质量;g:9.8N或者10N)密度:ρ(kg/m3)ρ=m(m:质量;V:体积)合力:F合(N)方向相同:F合=F1+F2 ;方向相反:F合=F1—F2 方向相反时,F1>F2浮力:F浮(N) F浮=G物—G视(G视:物体在液体的重力)浮力:F浮(N) F浮=G物(此公式只适用物体漂浮或悬浮)浮力:F浮(N) F浮=G排=m排g=ρ液gV排(G排:排开液体的重力;m排:排开液体的质量;ρ液:液体的密度;V排:排开液体的体积(即浸入液体中的体积) )杠杆的平衡条件:F1L1= F2L2 (F1:动力;L1:动力臂;F2:阻力;L2:阻力臂)定滑轮:F=G物S=h (F:绳子自由端受到的拉力;G物:物体的重力;S:绳子自由端移动的距离;h:物体升高的距离)动滑轮:F= (G物+G轮)/2 S=2 h (G物:物体的重力;G 轮:动滑轮的重力)滑轮组:F= (G物+G轮)S=n h (n:通过动滑轮绳子的段数)机械功:W (J)W=Fs (F:力;s:在力的方向上移动的距离)有用功:W有=G物h总功:W总W总=Fs 适用滑轮组竖直放置时机械效率: η=W有/W总×100%功率:P (w)P= w/t (W:功; t:时间)压强p (Pa)P= F/s (F:压力; S:受力面积)液体压强:p (Pa)P=ρgh(ρ:液体的密度;h:深度【从液面到所求点的竖直距离】)热量:Q (J)Q=cm△t(c:物质的比热容;m:质量;△t:温度的变化值)燃料燃烧放出的热量:Q(J)Q=mq (m:质量;q:热值)串联电路电流I(A)I=I1=I2=……电流处处相等串联电路电压U(V)U=U1+U2+……串联电路起分压作用串联电路电阻R(Ω)R=R1+R2+……并联电路电流I(A)I=I1+I2+……干路电流等于各支路电流之和(分流)并联电路电压U(V)U=U1=U2=……并联电路电阻R(Ω)1/R =1/R1 +1/R2 +……欧姆定律:I= U/I电路中的电流与电压成正比,与电阻成反比电流定义式I= Q/t (Q:电荷量(库仑);t:时间(S))电功:W (J)W=UIt=Pt (U:电压;I:电流;t:时间;P:电功率)电功率:P=UI=I2R=U2/R (U:电压;I:电流;R:电阻)电磁波波速与波长、频率的关系:C=λν(C:波速(电磁波的波速是不变的,等于3×108m/s);λ:波长;ν:频率)(二)初中物理基本概念概要一、测量⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位.⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表.1时=3600秒,1秒=1000毫秒.⒊质量m:物体中所含物质的多少叫质量.主单位:千克;测量工具:秤;实验室用托盘天平.二、机械运动⒈机械运动:物体位置发生变化的运动.参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物.⒉匀速直线运动:①比较运动快慢的两种方法:a 比较在相等时间里通过的路程.b 比较通过相等路程所需的时间.②公式:1米/秒=3.6千米/时.三、力⒈力F:力是物体对物体的作用.物体间力的作用总是相互的.力的单位:牛顿(N).测量力的仪器:测力器;实验室使用弹簧秤. 力的作用效果:使物体发生形变或使物体的运动状态发生改变.物体运动状态改变是指物体的速度大小或运动方向改变.⒉力的三要素:力的大小、方向、作用点叫做力的三要素.力的图示,要作标度;力的示意图,不作标度.⒊重力G:由于地球吸引而使物体受到的力.方向:竖直向下.重力和质量关系:G=mg m=G/gg=9.8牛/千克.读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛.重心:重力的作用点叫做物体的重心.规则物体的重心在物体的几何中心.⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上.物体在二力平衡下,可以静止,也可以作匀速直线运动.物体的平衡状态是指物体处于静止或匀速直线运动状态.处于平衡状态的物体所受外力的合力为零.⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;方向相反:合力F=F1-F2,合力方向与大的力方向相同.⒍相同条件下,滚动摩擦力比滑动摩擦力小得多.滑动摩擦力与正压力,接触面材料性质和粗糙程度有关.【滑动摩擦、滚动摩擦、静摩擦】7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态. 惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性.四、密度⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性.公式:m=ρV国际单位:千克/米3 ,常用单位:克/厘米3, 关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;读法:103千克每立方米,表示1立方米水的质量为103千克.⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积.面积单位换算:1厘米2=1×10-4米2,1毫米2=1×10-6米2.五、压强⒈压强P:物体单位面积上受到的压力叫做压强.压力F:垂直作用在物体表面上的力,单位:牛(N).压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关. 压强单位:牛/米2;专门名称:帕斯卡(Pa)公式:F=PS 【S:受力面积,两物体接触的公共部分;单位:米2.】改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强.⒉液体内部压强:【测量液体内部压强:使用液体压强计(U型管压强计).】产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强.规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大. [深度h,液面到液体某点的竖直高度.]公式:P=ρgh h:单位:米;ρ:千克/米3;g=9.8牛/千克.⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家).托里拆利管倾斜后,水银柱高度不变,长度变长.1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高测定大气压的仪器:气压计(水银气压计、盒式气压计).大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低.六、浮力1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力.方向:竖直向上;原因:液体对物体的上、下压力差.2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力.即F浮=G液排=ρ液gV排. (V排表示物体排开液体的体积)3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差4.当物体漂浮时:F浮=G物且ρ物G物且ρ物2f f。
历年初中物理竞赛试题精选

历年初中物理竞赛试题精选
本文档旨在汇总历年初中物理竞赛的优秀试题,供学生参考和练。
以下是一些精选试题的简要描述:
1. 电路题
题目描述:给定一个电路图,其中包含电源、电阻和开关等元件,要求求解电路中电流、电压等参数的值,并计算电路中某个元件的功率。
难度级别:中等
知识点:欧姆定律、串联电路和并联电路的性质。
2. 热学题
题目描述:一块金属板被加热,要求计算板的温度分布情况以及不同位置的温度值。
给定一些材料的热导率和热容量等参数。
难度级别:较难
知识点:传热方程、热导率和热容量的概念。
3. 光学题
题目描述:一束光线经过不同介质的折射和反射,要求计算光线的路径和入射角、折射角之间的关系。
难度级别:简单
知识点:折射定律、反射定律。
4. 力学题
题目描述:给定一个物体在不同受力下的运动情况,要求计算物体的加速度、速度和位移等参数。
难度级别:中等
知识点:牛顿第二定律、摩擦力、重力等。
5. 电磁题
题目描述:给定一个电磁场中的运动电荷,要求计算电荷所受的力和电场强度等参数。
难度级别:较难
知识点:库仑定律、电场力、磁场力等。
以上试题只是其中的一部分,每年的竞赛试题都有一定的难度和涉及的知识点会有所不同。
希望这些精选试题可以为学生提供一些练的材料和思路。
>注意:本文档中的试题描述仅供参考,请以实际考试为准,具体题目以考试本身为准。
初中物理竞赛题目的知识点梳理

初中物理竞赛题目的知识点梳理物理是一门研究自然界物质、能量、力和运动等规律的科学。
初中物理竞赛题目通常涉及广泛的知识点,包括力学、热学、光学、电学和声学等。
下面将对这些知识点进行梳理和总结,以帮助你更好地应对初中物理竞赛。
1. 力学力学是研究物体运动和受力情况的学科。
初中生物理竞赛中常见的力学知识点包括:- 运动的描述:位移、速度、加速度;- 牛顿定律:牛顿第一定律(惯性定律)、牛顿第二定律(力与加速度的关系)、牛顿第三定律(作用与反作用);- 重力与重量:地球引力、物体重力计算;- 物体的平衡:平衡力、力的合成;- 动量与冲量:动量守恒定律、冲量的概念。
2. 热学热学是研究物体热现象和热力学规律的学科。
初中生物理竞赛中常见的热学知识点包括:- 能量的形式:机械能(动能和势能)、热能、电能等;- 热传导与热对流:热能的传递方式;- 物体的热膨胀:热膨胀的原理和应用;- 热与温度:摄氏度和开尔文温标、热平衡;- 热量的计量:热容量、比热容。
3. 光学光学是研究光现象及其规律的学科。
初中生物理竞赛中常见的光学知识点包括:- 光的传播:光的直线传播、反射、折射;- 光的颜色:光的原色、光的三原色;- 光的成像:凸透镜和凹透镜的成像规律;- 光的反射:镜面反射、漫射和光的吸收。
4. 电学电学是研究电现象和电路以及其规律的学科。
初中生物理竞赛中常见的电学知识点包括:- 电荷和电流:电荷的基本单位、电流的定义和计算;- 电阻与电压:欧姆定律、电阻的串并联;- 电功和电能:电功的计算、电能的转换;- 电路:串联电路和并联电路;- 电磁感应:法拉第电磁感应定律、发电机和电动机。
5. 声学声学是研究声音现象及其规律的学科。
初中生物理竞赛中常见的声学知识点包括:- 声音的传播:声音的产生和传播、声音的速度;- 音的特性:音的高低、音的响度、音的音色;- 声音的反射和回声:声波的反射和回声的产生;- 声音的吸收:音量的大小和声音的衰减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中物理竞赛讲义重难点突破知识点梳理及重点题型举一反三巩固练习相对论初步知识相对论是本世纪物理学的最伟大的成就之一,它标志着物理学的重大发展,使一些物理学的基本概念发生了深刻的变革。
狭义相对论提出了新的时空观,建立了高速运动物体的力学规律,揭露了质量和能量的内在联系,构成了近代物理学的两大支柱之一。
§ 1 狭义相对论基本原理1、伽利略相对性原理1632年,伽利略发表了《关于两种世界体系的对话》一书,作出了如下概述:相对任何惯性系,力学规律都具有相同的形式,换言之,在描述力学的规律上,一切惯性系都是等价的。
这一原理称为伽利略相对性原理,或经典力学的相对性系原理。
其中“惯性系”是指凡是牛顿运动定律成立的参照系。
2、狭义相对论的基本原理19世纪中叶,麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁理论,又称麦克斯韦电磁场方程组。
麦克斯韦电磁理论不但能够解释当时已知的电磁现象,而且预言了电磁波的存在,确认光是波长较短的电磁波,电磁波在真空中的传播速度为一常数,,并很快为实验所证实。
从麦氏方程组中解出的光在真空中的传播速度与光源的速度无关。
如果光波也和声波一样,是靠一种媒质(以太)传播的,那么光速相对于绝对静止的以太就应该是不变的。
科学家们为了寻找以太做了大量的实验,其中以美国物理学家迈克耳孙和莫雷实验最为著名。
这个实验不但没能证明以太的存在,相反却宣判了以太的死刑,证明光速相对于地球是各向同性的。
但是这却与经典的运动学理论相矛盾。
爱因斯坦分析了物理学的发展,特别是电磁理论,摆脱了绝对时空观的束缚,科学地提出了两条假设,作为狭义相对论的两条基本原理:(1)狭义相对论的相对性原理在所有的惯性系中,物理定律都具有相同的表达形式。
这条原理是力学相对性原理的推广,它不仅适用于力学定律,乃至适合电磁学,光学等所有物理定律。
狭义相对论的相对性原理表明物理学定律与惯性参照系的选择无关,或者说一切惯性系都是等价的,人们不论在哪个惯性系中做实验,都不能确定该惯性系是静止的,还是在作匀速直线运动。
(2)光速不变原理在所有的惯性系中,测得真空中的光速都等于c,与光源的运动无关。
迈克耳孙—莫雷实验是光速不变原理的有力的实验证明。
事件任何一个现象称为一个事件。
物质运动可以看做一连串事件的发展过程,事件可以有各种具体内容,如开始讲演、火车到站、粒子衰变等,但它总是在一定的地点于一定时刻发生,因此我们用四个坐标(x,y,z,t)代表一个事件。
间隔设两事件()与(),我们定义这两事件的间隔为间隔不变性设两事件在某一参考系中的时空坐标为()与(),其间隔为在另一参考系中观察这两事件的时空坐标为()与(),其间隔为由光速不变性可得这种关系称为间隔不变性。
它表示两事件的间隔不因参考系变换而改变。
它是相对论时空观的一个基本关系。
3、相对论的实验基础斐索实验上世纪人们用“以太”理论来解释电磁现象,认为电磁场是一种充满整个空间的特殊介质——“以太”的运动状态。
麦克斯韦方程在相对以太静止的参考系中才精确成立,于是人们提出地球或其他运动物体是否带着以太运动?斐索实验(1851年)就是测定运动媒质的光速实验。
其实验装置如图2—1所示;光由光源L 射出后,经半透镜P分为两束,一束透过P到镜,然后反射到,再经镜到P,其中一部分透过P到目镜T。
另一束由P反射后,经镜、和再回到P 时,一部分被反射,亦到目镜T。
光线传播途中置有水管,整个装置是固定于地球上的,当管中水不流动时,两光束经历的时间相等,因而到达目镜中无位相差。
当水管中的水流动时,两束光中一束顺水流传播,一束逆水流传播。
设水管的长度皆为l,水的流速为v,折射率为n,光在水中的速度为。
设水完全带动以太,则光顺水的传播速度为,逆水为;若水完全不带动以太,光对装置的速度顺逆水均为;若部分被带动,令带动系数(曳引系数)为k,则顺水为,逆水为,k多少由实验测定,这时两束光到达目镜T的时差为斐索测量干涉现象的变化,测得,所以光在介质参考系中的传播速度为式中θ是光线传播方向与介质运动方向间的夹角。
现在我们知道,匀速运动介质中的光速可由相对论的速度合成公式求得,设介质(水)相对实验室沿X轴方向以速度v运动,选系固定在介质上,在上观察,介质中的光速各方向都是,所以光相对实验室的速度u为由此可知,由相对论的观点,根本不需要“以太”的假说,更谈不到曳引系数了。
迈克尔孙—莫来实验迈克尔孙—莫来于1887年利用灵敏的干涉仪,企图用光学方法测定地球的绝对运动。
实验时先使干涉仪的一臂与地球的运动方向平行,另一臂与地球的运动方向垂直。
按照经典的理论,在运动的系统中,光速应该各向不等,因而可看到干涉条纹。
再使整个仪器转过900,就应该发现条纹的移到,由条纹移动的总数,就可算出地球运动的速度v。
迈克尔孙—莫来实验的装置如图2-1-2所示,使一束由光源S射来的平行光,到达对光线倾斜450角的半镀银镜面M上,被分成两束互相垂直的相干光。
其中透射部分沿方向前进,被镜反射回来,到M上,再部分地反射后沿MT进行;反射部分沿方行进行,被镜反射回来后再到达M上,光线部分透过,也沿MT进行。
这两束光在MT方向上互相干涉。
而在T处观察或摄影,由于臂沿着地球运动方向,臂垂直于地球运动方向,若= =,地球的运动速度为v,则两束光回到M点的时间差为当仪器绕竖直轴旋转900角,使变为沿地球运动方向,垂直于地球运动方向,则两束光到达M的时差为我们知道,当时间差的改变量是光波的一个周期时,就引起一条干涉条纹的移动,所以,当仪器转动900后,在望远镜T处看到的干涉条纹移动的总数为式中λ是波长,当l=11米,,所用光波的波长则△N≈0.4,这相当于在仪器旋转前为明条纹,旋转以后几乎变为暗条纹。
但是他们在实验中测得△N≈,而且无论是在白天、夜晚以及一年中的所有季节进行实验,始终得到否定的结果,就是说光学的方法亦测不出所在参考系(地球)的运动状态。
§2伽利略变换1、伽利略变换(1)如图2-2-1所示,有两个惯性系S和,它们对应的坐标轴相互平行,且当t==0时,两系的坐标原点与O重合。
设系相对于S系沿x轴正方向以速度运动。
同一质点P在某一时刻在S系中的时空坐标为(x,y,z,t),在S`系中的时空坐标为(x’,y’,z’,t’):即:(1)或即:式(1)称为伽利略时空坐标变换公式。
(2)将式(1)中的空间坐标分别对时间求一次导数得:即:或即:(2)式(2)称为伽利略速度变换公式。
(3)将式(2)再对时间求一次导数得即:或即:(3)式(3)表明在伽利略变换下加速度保持不变。
式(3)称为伽利略加速度变换公式。
2、经典力学的时空观(1)t=,或Δt=Δ(4)(2)Δ=,Δ=。
因(5)式(4)表明:在伽利略变换下,任何事件所经历的时间有绝对不变的量值,而与参照系的选择(或观测者的相对运动)无关。
式(5)表明:在伽利略变换下,空间任何两点间的距离也有绝对不变的量值,而与参照系的选择测得的同一事件的时间间隔和空间任意两点间的距离都是绝对的不变量。
这就是经典力学的时空观或者称之为绝对时空观。
用牛顿本人的话来说:“绝对的真实的数学时间,就其本质而言,是永远均匀地流逝着,与任何外界事物无关。
”“绝对空间就其本质而应是与任何外界事物无关的,它从不运动,并且永远不变。
”按照这种观点,时间和空间是彼此独立、互不相关,并且独立于物质和运动之外的某种东西。
3、力学规律在伽利略变换下的不变性(1)伽利略变换下的牛顿第二定律在s 系中,在系中,(6)(2)伽利略变换下的质点动量定理在s系中,在s`系中,(7)(3)伽利略变换下的质点动能定理在s系中,在s`系中,(8)(4)伽利略变换下的功的公式在s系中,在s`系中,(9)若为质点所受的合外力,则有(10)(5)伽利略变换下的动量守恒定律在s系中,若对两个而点组成的封闭系统的一维动量传递问题则有在s`系中,若(11)(6)伽利略变换下的机械能守恒定律在s系中,在s`系中,(12)综上所述,力学规律在伽利略变换下具有不变性。
即力学规律在不同的惯性参照系中具有相同的形式,是规律的形式相同,而不是每一个物理量的数值在不同惯性系中都相同。
§3 洛仑兹变换1、洛仑兹变换如图18-1-1所示的两个惯性系:S系和S′系。
设同一事件的两组时空坐标分别为(X,Y,Z,t)和(。
按洛仑兹变换有(13)或式(13)称为洛仑兹坐标变换公式,式中=1/。
请注意是X 和t 的函数,t是和的函数,即时间不再与空间无关。
2、洛仑兹速度变换公式或(14)式(14)中=1/§4相对论时空理论1、运动时钟延缓亦称爱因斯坦延缓。
我们考虑晶体振动这样一个物理过程。
设晶体在系中静止,在静止系中测得晶体的振动周期为,若系匀速v 相对S 系沿x轴运动,若晶体相邻两次达到振幅极大值的事件在S系中的坐标为(x,t),(x ,t) ,在系中为(,),(,),其中=。
由洛仑兹变换可得-=因为-=,令-=t,则t=这表示在系中同地发生的两事件的时间间隔,由S系观察是延长了。
将同地发生的两事件换为事件发生处钟的读数,就得到两个惯性系中时钟快慢的比较。
当系中的一个钟通过S系的两个钟(S系认为已校准的两个钟)时,S系的钟所记时间间隔比系所记的大,即每一个惯性系都测得对它运动着的时钟变慢了。
所有发生在运动物体上的物理过程都具有这种延缓,因此它是时空的一种基本属性,与过程的具体性质无关。
这种延缓又称为时间膨胀或爱因斯坦延缓。
2、运动尺度缩短设一棍静止在系中,沿轴放置,且系想对于S系以匀速v沿x方向运动。
在系的观察者观察,棍后端的坐标为,前端的坐标为,棍对他没有运动,因此他测得棍长为=-。
S系的观察者观察到在同一时刻t,棍后端的坐标为,前端的坐标为,则他测得棍长为=-,根据洛仑兹变换==两式相减,得即这表示物体沿其长度方向运动时,其长度缩短为静止时的倍。
这种现象称为洛仑兹收缩。
缩短是相对的,每一惯性系都测得对它运动着的物体沿运动方向的长度要缩短。
运动物体沿运动方向的长度缩短是时空的一种基本属性,不但物体的长度缩短,物体间的距离也要缩短,所以这种收缩不是物体内部结构的改变。
3、相互作用的最大传播速度和因果律由同时的相对性可知,事件的先后次序与它们的空间位置和两惯性系间的运动状态有关。
在经典的时空理论中,时间的次序是绝对的。
在相对论时空观中,是否事件的先后次序没有客观意义呢?显然不是的,如果两事件有因果关系(如农样生产中,先播种后收获,人的先生后死),则它们的先后次序应当是绝对的,不容颠倒,这是事件先后这个概念所必须反映的客观内容。
相对论在什么条件下才与这个条件一致呢?设两事件的时空坐标在S系中为()和() ,在系中为() 和() ,由洛仑兹变换有如果两事件有因果关系,而且>,由于它们的次序不能颠倒,必须在系中观察时,亦有。